Appendix 11B Upstream Fisheries Impact Assessment Quantitative Methods

Appendix 11B Upstream Fisheries Impact Assessment Quantitative Methods

Temperature management is an important impact to consider for sensitive salmonids, water management, and power generation. Regulatory (California Department of Water Resources [DWR], Bureau of Reclamation [Reclamation]) and resource agencies (e.g., U.S. Fish and Wildlife Service [USFWS], National Marine Fisheries Service [NMFS], and California Department of Fish and Wildlife [CDFW]) put considerable effort into planning and assessing temperature management. This appendix summarizes fisheries impact assessment quantitative methods related to upstream temperatures. Other fisheries impact assessment quantitative methods are discussed in various other appendices.

11B.1 Upstream Temperature Methods

11B.1.1. Introduction

For the Sacramento River and American River, the water temperature analysis was completed utilizing daily modeled water temperature outputs from the HEC-5Q model, in addition to monthly modeled water temperature outputs from the Reclamation Temperature Model for the Feather River.

There were multiple methods used in this effects analysis to determine whether there would be effects of the Project on aquatic resources. The methods vary by river, race/species, and life stage (Table 11B-1). The first analysis evaluated the results of physical water temperature models that overlapped fish presence in space and time to assess potential water temperature-related effects to aquatic resources. The second analysis determined the frequency and magnitude that either exceeded or fell one or more water temperature index values or water temperature index ranges for each life stage, race/species, and location. The third and fourth methods involved an evaluation of water temperature-related mortality in the Sacramento River using the Martin and Anderson Egg Mortality Models (Martin and Anderson models) for winter-run Chinook salmon and SALMOD for all races of Chinook salmon.

No water temperature analyses were conducted for the Trinity River, Stanislaus River, San Joaquin River, and Clear Creek because preliminary review of the CALSIM II flow outputs indicated that there were negligible differences in flows between the No Action Alternative (NAA)¹ and all alternatives in these waterways (Appendix 5B2, *River Operations*). The only

¹ The term *NAA*, which is identical to the No Project Alternative, is used throughout Chapter 11, *Aquatic Biological Resources*, and associated aquatic resources appendices in the presentation of modeled results and represents no material difference from the No Project Alternative, as discussed in Chapter 3, *Environmental Analysis*.

water temperature model inputs affected by the alternatives would be flow. Therefore, because difference in flows would be negligible, difference in water temperatures would be negligible.

Table 11B-1. Water	Temperature Analysis Me	ethods Used in Each	River, Species, and Life
Stage			

	Method Used						
Life Stage(s)	Physical Model	Water Temperature	Martin and	SALMOD –			
Life Stage(s)	Output	Index Value/Range	Anderson Egg	Temperature-			
	Characterization	Analysis	Mortality Models	Related Mortality			
Sacramento River							
Winter-run Chinook Salmon							
Spawning, egg incubation, and alevins	х	х	Х	Х			
Fry and juvenile rearing	Х	Х		Х			
Juvenile emigration	Х	Х					
Adult immigration	Х	Х					
Adult holding	Х	Х					
Spring-run Chinook Salmon							
Spawning, egg incubation, and alevins	х	х		х			
Fry and juvenile rearing	Х	Х		Х			
Juvenile emigration	Х	Х					
Adult immigration	Х	Х					
Adult holding	Х	Х					
Fall-/Late Fall-run Chinook Salı	mon			·			
Spawning, egg incubation, and alevins	х	х		х			
Fry and juvenile rearing	Х	Х		Х			
Juvenile emigration	Х	Х					
Adult immigration	Х	Х					
Adult holding	Х	Х					
Steelhead							
Spawning, egg incubation, and alevins	х	х					
Kelt emigration	Х	Х					
Juvenile rearing	Х	Х					
Smolt emigration (not migrant parr)	х	х					
Adult immigration	Х	Х					
Adult holding	Х	Х					
Green Sturgeon				·			
Spawning and egg incubation	Х	Х					
Pre- and post-spawn adult holding	х	х					

	Method Used						
Life Stage(s)	Physical Model Output Characterization	Water Temperature Index Value/Range Analysis	Martin and Anderson Egg Mortality Models	SALMOD – Temperature- Related Mortality			
Post-spawn emigration	Х	Х					
Larval to Juvenile rearing and emigration	х	Х					
Adult immigration	Х	Х					
White Sturgeon							
Spawning and egg incubation	Х	Х					
Juvenile rearing and emigration	х	Х					
Adult immigration and holding	х	Х					
Pacific Lamprey							
Spawning and egg incubation	Х	Х					
Ammocoete rearing and emigration	х	х					
River Lamprey				·			
Spawning and egg incubation	Х	Х					
Ammocoete rearing and emigration	х	х					
Hardhead							
Non-spawning life stages	Х	Х					
Spawning	Х	Х					
Sacramento Hitch							
Spawning	Х	Х					
Sacramento Splittail							
Spawning	Х	Х					
Striped Bass							
Spawning, embryo incubation, and initial rearing	х	Х					
Larvae, fry, and juvenile rearing and emigration	х	Х					
American Shad							
Spawning, embryo incubation, and initial rearing	х	х					
Larvae, fry, and juvenile rearing and emigration	х	х					
Largemouth Bass							
Spawning	Х	Х					
Feather River							
Winter-run Chinook Salmon							
Non-natal rearing	Х	Х					

	Method Used						
Life Stage(s)	Physical Model Output Characterization	Water Temperature Index Value/Range Analysis	Martin and Anderson Egg Mortality Models	SALMOD – Temperature- Related Mortality			
Spring-run Chinook Salmon							
Spawning, egg incubation, and alevins	х	х					
Fry and juvenile rearing	Х	Х					
Juvenile emigration	Х	Х					
Adult immigration	Х	Х					
Adult holding	Х	Х					
Fall-run Chinook Salmon							
Spawning, egg incubation, and alevins	х	х					
Fry and juvenile rearing	Х	Х					
Juvenile emigration	Х	Х					
Adult immigration	Х	Х					
Adult holding	Х	Х					
Steelhead							
Spawning, egg incubation, and alevins	Х	х					
Kelt emigration	Х	Х					
Juvenile rearing	Х	Х					
Smolt emigration	Х	Х					
Adult immigration	Х	Х					
Adult holding	Х	Х					
Green Sturgeon							
Spawning, egg incubation	Х	Х					
Pre- and post-spawn adult holding	х	х					
Post-spawn emigration	Х	Х					
Larval to Juvenile rearing and emigration	Х	Х					
Adult immigration	Х	Х					
White Sturgeon							
Spawning and egg incubation	Х	Х					
Juvenile rearing and emigration	х	х					
Adult immigration and holding	Х	Х					
Pacific Lamprey							
Spawning and egg incubation	Х	X					
Ammocoete rearing and emigration	x	x					

	Method Used						
Life Stage(s)	Physical Model Output Characterization	Water Temperature Index Value/Range	Martin and Anderson Egg Mortality Models	SALMOD – Temperature- Related Mortality			
River Lamprev	Characterization	Analysis	Mortanty Models	Related Mortanty			
Spawning and egg incubation	х	Х					
Ammocoete rearing and emigration	х	Х					
Hardhead							
Non-spawning life stages	Х	Х					
spawning	х	Х					
Sacramento Hitch	I	l					
Spawning	Х	Х					
Sacramento Splittail							
Spawning	Х	Х					
Striped Bass							
Spawning, embryo incubation, and initial rearing	х	х					
Larvae, fry, and juvenile rearing and emigration	Х	Х					
American Shad							
Spawning, embryo incubation, and initial rearing	х	х					
Larvae, fry, and juvenile rearing and emigration	х	х					
Largemouth Bass							
Spawning	Х	Х					
American River							
Winter-run Chinook Salmon							
Non-natal rearing	Х	Х					
Steelhead							
Spawning, egg incubation, and alevins	х	х					
Kelt emigration	Х	Х					
Juvenile rearing	Х	Х					
Smolt emigration	Х	Х					
Adult immigration	Х	Х					
Adult holding	Х	Х					
Fall-run Chinook Salmon							
Spawning, egg incubation, and alevins	Х	Х					
Fry and juvenile rearing	Х	Х					
Juvenile emigration	Х	Х					
Adult immigration	Х	Х					

	Method Used							
Life Stage(s)	Physical Model Output Characterization	Water Temperature Index Value/Range Analysis	Martin and Anderson Egg Mortality Models	SALMOD – Temperature- Related Mortality				
Adult holding	Х	Х						
Pacific Lamprey								
Spawning and egg incubation	Х	Х						
Ammocoete rearing and emigration	х	х						
River Lamprey								
Spawning and egg incubation	Х	Х						
Ammocoete rearing and emigration	х	х						
Hardhead	•							
Non-spawning life stages	Х	Х						
Spawning	Х	Х						
Sacramento Hitch								
Spawning	Х	Х						
Sacramento Splittail								
Spawning	Х	Х						
Striped Bass				-				
Spawning, embryo incubation, and initial rearing	х	Х						
Larvae, fry, and juvenile rearing and emigration	х	х						
American Shad								
Spawning, embryo incubation, and initial rearing	х	х						
Larvae, fry, and juvenile rearing and emigration	х	х						
Largemouth Bass								
Spawning	Х	Х						

11B.1.2. Detailed Methods

11B.1.2.1. Physical Model Output Characterization

Patterns in water temperatures at key locations within the Sacramento, Feather, and American Rivers were evaluated for each month that a life stage of each race/species was present and were summarized at the beginning of the water temperature section for each impact statement. The purpose of this characterization was to identify whether there were any locations, months, or water year types in which differences in water temperatures between the NAA and each alternative could potentially cause an effect. It included an evaluation between the NAA and each alternative of exceedance plots of mean monthly water temperature by month and comparisons of exceedance values, long-term averages, and average water temperatures by

month and water year type, all of which is reported in Appendix 6C, *River Temperature Modeling Results*. If a specific result appeared concerning based on best professional judgment, the month, water year type, and location with the concerning result was flagged as requiring close examination in the results of the remaining water temperature evaluation. In addition, specifics of the month, water year type, and location with the concerning result were closely reviewed to determine the cause of the result and to determine whether the modeled effect could be avoided during real-time operations.

11B.1.2.2. Water Temperature Index Value Analysis

This analysis determined the frequency and magnitude of exceedance above one or more water temperature index values or outside one or more index ranges obtained from the scientific literature and U.S. Environmental Protection Agency (USEPA) guidance (U.S. Environmental Protection Agency 2003) for each race/species and life stage at multiple locations within the Sacramento River (Table 11B-2), Feather River (Table 11B-3), and American River (Table 11B-4). These index values and index ranges typically characterize the suitable, optimal, acceptable, and observed temperature range needed for survival, growth, or presence. The list of index values for salmonids and green sturgeon was originally compiled to assess potential upstream water temperature-related effects for the California WaterFix Section 7 consultation (National Marine Fisheries Service 2016) with supplemental information taken from the scientific literature as necessary. The list of index values and ranges for other species were primarily taken from the 2017 Draft EIR/EIS (Sites Project Authority and Bureau of Reclamation 2017), Appendix 12D, *Water Temperature Index Value Selection Rationale*, with supplemental information taken from the scientific literature as necessary.

For fish species not listed under the federal Endangered Species Act (ESA) or California Endangered Species Act (CESA), the frequency of exceedance above one or more water temperature index values or outside one or more index ranges was evaluated. For ESA-/CESAlisted fish species, both the frequency and magnitude of exceedance above water temperature index values was evaluated. NMFS has previously requested an analysis of both the frequency and magnitude of exceedance for Section 7 purposes because it provides additional information used in their jeopardy/adverse modification opinion. Therefore, this enhanced analysis has been conducted for listed salmonids (plus fall-/late fall–run Chinook salmon) and green sturgeon as part of the ongoing Section 7 Consultation process and the results of the analysis were available for this EIR/EIS.

Because USEPA (2003) criteria are provided as 7-day average daily maximum (7DADM) and water temperature model outputs are daily means for the Sacramento and American Rivers and monthly means for the Feather River, an additional conversion step was performed to convert 7DADM values into usable values for the analysis. This involved first calculating daily mean and maximum values from historical stream gage data for multiple locations in the Sacramento, Feather, and American Rivers obtained from the California Data Exchange Center web site (cdec.ca.gov). The 7DADM was calculated for each day using the mean of that day and the preceding 6 days. Next, the difference between 7DADM and mean daily values was calculated for each day. Finally, for each location, the mean monthly difference between 7DADM and mean daily values was calculated. This difference was used as a conversion value to adjust water temperature index values. These conversion values are presented by month in Table 11B-5,

Table 11B-6, and Table 11B-7 for the Sacramento, Feather, and American Rivers, respectively. No conversions were necessary for index values and index ranges that did not use USEPA 7DADM guidance.

The index value/range analysis consisted of three steps. First, for the NAA and each alternative, the total number of days (Sacramento and American Rivers) or months (Feather River) across the 82-year modeling period with a modeled temperature that exceeded a given index value or was outside a given index range in Table 11B-2, Table 11B-3, and Table 11B-4 was divided by the total number of days for each month of the year and water year type to provide the frequency of exceedance above the index value or occurrence outside the index range. The difference in frequency of exceedance or occurrence outside the range between NAA and each alternative was then calculated for each month and water year type.

Second, for listed species (plus fall-/late fall-run Chinook salmon) only, the magnitude of exceedance above a temperature index value was calculated. For all days (Sacramento and American Rivers) or months (Feather River) that the modeled temperature exceeded a given temperature index value as shown in Table 11B-2, Table 11B-3, and Table 11B-4, the cumulative degrees exceeded were summed as a degree-day or a degree-month total by month and water year type across the 82-year modeling period and divided by the total number of days or months, respectively, that the index value was exceeded, to provide the average daily/monthly magnitude of exceedance for those days/months that exceeded the index temperature. The difference in average daily/monthly magnitude of exceedance between NAA and each alternative was then calculated for each month and water year type. Combined, these calculations provided a magnitude and frequency of exceedance above a given temperature index value.

The final step identified in which months and water year types there would be a biologically meaningful effect. This differed between listed and non-listed species. For listed species (plus fall-/late fall-run Chinook salmon), this step evaluated both frequency and magnitude combined. A *biologically meaningful* effect was defined as the months and water year types in which water temperature results met two criteria: (1) the difference in frequency of exceedance between NAA and an alternative was greater than 5%, and (2) the difference in average daily exceedance was greater than 0.5°F. The 5% criterion was based on best professional judgment of fisheries biologists from NMFS, CDFW, DWR, and Reclamation. The 0.5°F criterion was based on: (1) a review of the water temperature-related mortality rates for steelhead eggs and juveniles (Swank pers. comm.), and (2) a reasonable water temperature differential that could be resolved through real-time reservoir operations. The 0.5°F value was applied to all species/races and life stages although it was based on data for steelhead eggs and juveniles. If a biologically meaningful effect was found, a thorough review was conducted to determine whether these patterns were persistent across multiple years and whether the differences could be alleviated during real-time operations (i.e., the results are due to a model artifact when in reality, the system would not be operated in this way). Further, when results from a month and/or water year type met these two criteria, exceedance plots were reviewed to determine whether the results may be due to one or two outliers. If this was found to be the case, it was concluded that the effect was not persistent enough to be biologically relevant and, therefore, less than significant and not adverse.

For non-listed species, the final step involved an evaluation of only the frequency of exceedance above a water temperature index value or occurrence outside a water temperature index range. A *biologically meaningful* effect was defined as the months and water year types in which the difference between NAA and an alternative in frequency of exceedance above a water temperature index value or occurrence outside a water temperature index range was greater than 5%. As with listed species, a thorough review was conducted to determine whether these patterns were persistent across multiple years and whether the differences could be alleviated during real-time operations. Further, when results from a month and/or water year type met the criterion, exceedance plots were reviewed to determine whether the results may be due to one or two outliers. If this was found to be the case, it was concluded that the effect was not persistent enough to be biologically relevant.

Table 11B-2. Water Temperature Index Values and Index Ranges Used for Water Temperature Index Value/Range Analyses, Sacramento River

Creation		Devied	I a satis a	Index Value/Range (°F)		Source /Nator	
Species Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes		
			Keswick	53.5		NMFS 2019	
			Clear Creek	53.5		NMFS 2019	
	Spawning, Egg		Keswick		55.4	USEPA 2003	
	Incubation, and	Apr-Oct	Clear Creek		55.4	USEPA 2003	
	Alevins		Balls Ferry		55.4	USEPA 2003	
			Bend Bridge		55.4	USEPA 2003	
			Red Bluff Diversion Dam ²		55.4	USEPA 2003	
			Keswick		61	USEPA 2003; core juvenile rearing ³	
Winter-run		Jul-Mar	Clear Creek		61	USEPA 2003; core juvenile rearing	
Chinook	Fry and Juvenile		Balls Ferry		61	USEPA 2003; core juvenile rearing	
Salmon	Emigration		Bend Bridge		61	USEPA 2003; core juvenile rearing	
	5		Red Bluff Diversion Dam		61	USEPA 2003; core juvenile rearing	
			Hamilton City		64	USEPA 2003; non-core juvenile rearing ⁴	
	A -1 - 14		Keswick		68	USEPA 2003	
	Adult	Dec-Aug	Bend Bridge		68	USEPA 2003	
			Red Bluff Diversion Dam		68	USEPA 2003	
			Keswick		61	USEPA 2003	
	Adult Holding	Jan-Aug	Balls Ferry		61	USEPA 2003	
			Red Bluff Diversion Dam		61	USEPA 2003	
			Keswick	53.5		NMFS 2019	
Spring-run	Spawning, Egg		Clear Creek	53.5		NMFS 2019	
Salmon	Alevins	Aug-Dec	Balls Ferry	53.5		NMFS 2019	
		115	Keswick		55.4	USEPA 2003	

Caracian		Devied		Index Value/Range (°F)		
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes
			Clear Creek		55.4	USEPA 2003
			Balls Ferry		55.4	USEPA 2003
			Bend Bridge		55.4	USEPA 2003
			Red Bluff Diversion Dam		55.4	USEPA 2003
			Keswick		61	USEPA 2003; core juvenile rearing
			Clear Creek		61	USEPA 2003; core juvenile rearing
	Fry and Juvenile	Year-	Balls Ferry		61	USEPA 2003; core juvenile rearing
	Emigration	round	Bend Bridge		61	USEPA 2003; core juvenile rearing
	g.		Red Bluff Diversion Dam		61	USEPA 2003; core juvenile rearing
			Hamilton City		64	USEPA 2003; non-core juvenile rearing
			Keswick		68	USEPA 2003
	Adult	Mar-Sep	Bend Bridge		68	USEPA 2003
			Red Bluff Diversion Dam		68	USEPA 2003
			Keswick		61	USEPA 2003
	Adult Holding	Apr-Sep	Balls Ferry		61	USEPA 2003
			Red Bluff Diversion Dam		61	USEPA 2003
			Keswick	53.5		NMFS 2019
			Clear Creek	53.5		NMFS 2019
			Balls Ferry	53.5		NMFS 2019
Fall-run	Spawning, Egg		Bend Bridge	53.5		NMFS 2019
Chinook	Incubation, and	Sep-Jan	Red Bluff Diversion Dam	53.5		NMFS 2019
Salmon	Alevins		Keswick		55.4	USEPA 2003
			Clear Creek		55.4	USEPA 2003
			Balls Ferry		55.4	USEPA 2003
			Bend Bridge		55.4	USEPA 2003

Creation	Life Stews	Daviad	I a antion	Index Value/Range (°F)		Source /Notes	
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes	
			Red Bluff Diversion Dam		55.4	USEPA 2003	
			Keswick		61	USEPA 2003; core juvenile rearing	
			Clear Creek		61	USEPA 2003; core juvenile rearing	
	Fry and Juvenile	Dec lun	Balls Ferry		61	USEPA 2003; core juvenile rearing	
	Emigration	Dec-Juli	Bend Bridge		61	USEPA 2003; core juvenile rearing	
	9		Red Bluff Diversion Dam		61	USEPA 2003; core juvenile rearing	
			Hamilton City		64	USEPA 2003; non-core juvenile rearing	
	6 J. J.		Keswick		68	USEPA 2003	
	Adult	Jul-Dec	Bend Bridge		68	USEPA 2003	
			Red Bluff Diversion Dam		68	USEPA 2003	
			Keswick		61	USEPA 2003	
	Adult Holding	Jul-Aug	Balls Ferry		61	USEPA 2003	
			Red Bluff Diversion Dam		61	USEPA 2003	
			Keswick	53.5		NMFS 2019	
			Clear Creek	53.5		NMFS 2019	
			Balls Ferry	53.5		NMFS 2019	
			Bend Bridge	53.5		NMFS 2019	
	Spawning, Egg	Dec-lun	Red Bluff Diversion Dam	53.5		NMFS 2019	
Late Fall-run	Alevins	Dec-Juli	Keswick		55.4	USEPA 2003	
Salmon			Clear Creek		55.4	USEPA 2003	
			Balls Ferry		55.4	USEPA 2003	
			Bend Bridge		55.4	USEPA 2003	
			Red Bluff Diversion Dam		55.4	USEPA 2003	
		Mar-lan	Keswick		61	USEPA 2003; core juvenile rearing	
		10101-Jall	Clear Creek		61	USEPA 2003; core juvenile rearing	

. ·		D · 1		Index Value/Range (°F)		
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes
			Balls Ferry		61	USEPA 2003; core juvenile rearing
	Fry and Juvenile		Bend Bridge		61	USEPA 2003; core juvenile rearing
	Emigration		Red Bluff Diversion Dam		64	USEPA 2003; non-core juvenile rearing
	g. =		Hamilton City		64	USEPA 2003; non-core juvenile rearing
	A shale		Keswick		68	USEPA 2003
	Adult	Nov-Apr	Bend Bridge		68	USEPA 2003
	iningration		Red Bluff Diversion Dam		68	USEPA 2003
			Kocwick	53		McCullough et al. 2001
		, Egg a, and Nov-Apr s	Reswick	56		NMFS 2009
			Clear Creek	53		McCullough et al. 2001
				56		NMFS 2009
	Spawning, Egg		v-Apr Balls Ferry	53		McCullough et al. 2001
	Alevins			56		NMFS 2009
			Bend Bridge	53		McCullough et al. 2001
				56		NMFS 2009
Cto allo a al			Red Pluff Diversion Dam	53		McCullough et al. 2001
Steeinead				56		NMFS 2009
					68	USEPA 2003
			Keswick	70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)
	Kelt Emigration	Feb-May			68	USEPA 2003
			Bend Bridge	70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)
			Red Bluff Diversion Dam		68	USEPA 2003

<u> </u>		- · ·		Index Value/	'Range (°F)	
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes
				70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)
			Keswick	63		Intermediate value of ranges of optimal growth from Grabowski 1973; Hokanson et al. 1977; Wurtsbaugh and Davis 1977; Myrick and Cech 2005; and Beakes et al. 2014
					69	Sullivan et al. 2000
		Clear Creek	63		Intermediate value of ranges of optimal growth from Grabowski 1973; Hokanson et al. 1977; Wurtsbaugh and Davis 1977; Myrick and Cech 2005; and Beakes et al. 2014	
	Juvenile	e Year- g round	-		69	Sullivan et al. 2000
Rearing	Rearing		Balls Ferry	63		Intermediate value of ranges of optimal growth from Grabowski 1973; Hokanson et al. 1977; Wurtsbaugh and Davis 1977; Myrick and Cech 2005; and Beakes et al. 2014
					69	Sullivan et al. 2000
			Bend Bridge	63		Intermediate value of ranges of optimal growth from Grabowski 1973; Hokanson et al. 1977; Wurtsbaugh and Davis 1977; Myrick and Cech 2005; and Beakes et al. 2014
					69	Sullivan et al. 2000

Guadaa		Destad	La sa ti sa	Index Value/Range (°F)		Course (Nation
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes
			Red Bluff Diversion Dam	63		Intermediate value of ranges of optimal growth from Grabowski 1973; Hokanson et al. 1977; Wurtsbaugh and Davis 1977; Myrick and Cech 2005; and Beakes et al. 2014
					69	Sullivan et al. 2000
			Keswick	54		Zaugg and Wagner 1973; Adams et al. 1975; Zaugg 1981; Hoar 1988
			Clear Creek	54		Zaugg and Wagner 1973; Adams et al. 1975; Zaugg 1981; Hoar 1988
	Smoltification	on Jan-Mar	Balls Ferry	54		Zaugg and Wagner 1973; Adams et al. 1975; Zaugg 1981; Hoar 1988
			Bend Bridge	54		Zaugg and Wagner 1973; Adams et al. 1975; Zaugg 1981; Hoar 1988
			Red Bluff Diversion Dam	54		Zaugg and Wagner 1973; Adams et al. 1975; Zaugg 1981; Hoar 1988
			Keswick		61	USEPA 2003
					64	USEPA 2003
			Cloar Crook		61	USEPA 2003
	Smolt				64	USEPA 2003
	Emigration	Nov-lup	Balls Forny		61	USEPA 2003
	(excludes migrant parr)	NOV-Juli			64	USEPA 2003
			Bend Bridge		61	USEPA 2003
				64	USEPA 2003	
			Red Bluff Diversion Dam		61	USEPA 2003
					64	USEPA 2003
		Aug-Mar	Keswick		68	USEPA 2003

- ·	Creation Life Store		Location	Index Value/Range (°F)		Course (Nation	
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes	
				70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)	
			Bend Bridge		68	USEPA 2003	
	Adult Immigration			70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)	
					68	USEPA 2003	
			Red Bluff Diversion Dam	70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)	
			Keswick		61	USEPA 2003	
	Adult Holding	Sep-Nov	Balls Ferry		61	USEPA 2003	
			Red Bluff Diversion Dam		61	USEPA 2003	
	Spawning and	nd Mar-Jul	Bend Bridge	63			
	Embryo		Red Bluff Diversion Dam	63		Upper end of optimal range for embryonic development (Van Fenennaam et al. 2005)	
	Incubation		Hamilton City	63			
			Bend Bridge	66		Assumes that adults are at least as tolerant to temperatures as larvae and juveniles	
Green	Non-Spawning			73		Houston 1988; Erickson et al. 2002	
Sturgeon	Adult Presence	Aug-Feb	Red Bluff Diversion Dam	66		Assumes that adults are at least as tolerant to temperatures as larvae and juveniles	
	Pre- and Post-			73		Houston 1988; Erickson et al. 2002	
	Spawn Holding)		Hamilton City	66		Assumes that adults are at least as tolerant to temperatures as larvae and juveniles	
				73		Houston 1988; Erickson et al. 2002	

		Index Value/Range (°F)		/Range (°F)	Source /Notes	
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes
		Year-	Knights Landing	66		Assumes that adults are at least as tolerant to temperatures as larvae and juveniles
		round		73		Houston 1988; Erickson et al. 2002
	Larval to		Bend Bridge	66		Upper end of optimal range for
	Juvenile Degring and	Year-	Red Bluff Diversion Dam	66		bioenergetics performance of Age 0/1
	Emigration	round	Hamilton City	66		(Mayfield and Cech 2004)
	Spawning and	Feb-May	Hamilton City	61		Optimal egg incubation range upper limit (Israel et al. 2009)
	Incubation	TED-Ividy	Hamilton City	68		Embryo hatching upper limit (Israel et al. 2009)
White Sturgeon	Juvenile Rearing and Emigration	Year- round	Hamilton City	66		Stress observed in juvenile white sturgeon above 66°F (Israel et al. 2009)
	Adult Immigration and Holding	Nov-May	Hamilton City	77		Upper limit of suitable water temperatures for adults (Israel et al. 2009)
			Keswick	50-64		High survival and low occurrence of
Pacific	Spawning and Egg Incubation	Apr-Aug	Red Bluff Diversion Dam	50-64		embryonic developmental abnormalities observed in this range (Meeuwig et al. 2002, 2005)
Lamprey	Ammocoete	Vear-	Keswick	72		Significant decrease in survival and increase
	Rearing and Emigration	round	Red Bluff Diversion Dam	72		in developmental abnormalities observed above 72°F (Meeuwig et al. 2002, 2005)
			Keswick	50-64		High survival and low occurrence of
River Lamprey	Spawning and Egg Incubation	Feb-Jul	Red Bluff Diversion Dam	50-64		embryonic developmental abnormalities observed in this range (Meeuwig et al. 2002, 2005)
			Keswick	72		

- ·				Index Value/Range (°F)		Source /Notos	
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes	
	Ammocoete Rearing and Emigration	Year- round	Red Bluff Diversion Dam	72		Significant decrease in survival and increase in developmental abnormalities observed above 72°F (Meeuwig et al. 2002, 2005)	
	Spawning	Apr lup	Keswick	59-64		Optimal range (Wang 1986)	
	Spawning	Арг-зип	Red Bluff Diversion Dam	59-64		Optimal range (wang 1986)	
Hardhead	Non-snawning	Year-	Keswick	65-82		Widest observed range (Cech et al. 1990,	
	Life Stages	round	Red Bluff Diversion Dam	65-82		Moyle 2002, Southern California Edison Company 2007)	
Sacramento	Spowning	Mar Iul	Red Bluff Diversion Dam	57-79		Moyle 2002	
Hitch	Spawning	Mar-Jul	Butte City	57-79		Moyle 2002	
Sacramento Splittail	Spawning	Feb-May	Hamilton City	45-75		Observed range of suitable water temperatures (Moyle et al. 2004)	
Chain and Dance	Spawning, Embryo Incubation, and Initial Rearing	Apr-Jun	Butte City	59-68		Optimal range (Moyle 2002)	
Striped Bass	Larvae, Fry, and Juvenile Rearing and Emigration	Year- round	Butte City	61-71		Optimal range (Fay et al. 1983)	
	Spawning,		Red Bluff Diversion Dam	60-70		Optimal range (Bell and Kypard 1985	
American	Embryo Incubation, and Initial Rearing	Apr-Jun	Butte City	60-70		Leggett and Whitney 1972, Painter et al. 1980, Rich 1987)	
Shad	Larvae, Fry, and		Red Bluff Diversion Dam	63-77			
	Juvenile Rearing and Emigration	Year- round	Butte City	63-77		Optimal range (Moyle 2002)	

		D · 1		Index Value/Range (°F)			
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Notes	
Largemouth	Largemouth		Keswick	54-75		Acceptable range for spawning and	
Bass	Spawning	iviar-Jun	Red Bluff Diversion Dam	54-75		incubation (Moyle 2002)	

¹7DADM = seven-day average daily maximum

² The Red Bluff Diversion Dam, which was decommissioned in 2013, and the Red Bluff Pumping Plant are co-located, and the names may be used interchangeably when referring to the geographic location.

³Core = "moderate to high density" (U.S. Environmental Protection Agency 2003)

⁴ Non-core = "low to moderate density" (U.S. Environmental Protection Agency 2003)

Table 11B-3. Water	Temperature Index Values and Index I	Ranges Used for Water	Temperature Index	Value/Range Analyses,
Feather River				

Creation	Life Sterre	Stage Deviad Legation Index Value/Range (°F)		ange (°F)	Source (Note	
species	Life Stage	Period	Location	Mean Monthly	7DADM ¹	Source/ Note
Winter-run Chinook	Non-Natal	Jul-Mar	LFC ² above Thermalito		64	USEPA 2003; non-core juvenile rearing ³
Salmon	Rearing		HFC ⁴ at Gridley		64	USEPA 2003; non-core juvenile rearing
	Spawning, Egg		LFC below Fish Dam		55.4	USEPA 2003
	Incubation, and Alevins	Sep-Feb	HFC below Thermalito		55.4	USEPA 2003
	Fry and		LFC below Fish Dam		61	USEPA 2003; core juvenile rearing ⁵
Spring-run Chinook	Juvenile Rearing and Emigration	Nov-Jun	HFC below Thermalito		64	USEPA 2003; non-core juvenile rearing
Salmon Adult Immigration	A duit	Mar-Jun	LFC below Fish Dam		68	USEPA 2003
	Immigration		HFC below Thermalito		68	USEPA 2003
			LFC below Fish Dam		61	USEPA 2003
	Adult Holding	Apr-Sep	HFC below Thermalito		61	USEPA 2003
	Spawning, Egg		LFC below Fish Dam		55.4	USEPA 2003
	Incubation, and Alevins	Oct-Feb	HFC below Thermalito		55.4	USEPA 2003
	Fry and		LFC below Fish Dam		61	USEPA 2003; core juvenile rearing
Fall-run Chinook	Juvenile Rearing and Emigration	nd Nov-May n	HFC below Thermalito		64	USEPA 2003; non-core juvenile rearing
Salmon	A duit		LFC below Fish Dam		68	USEPA 2003
	Immigration	Aug-Dec	HFC below Thermalito		68	USEPA 2003
			LFC below Fish Dam		61	USEPA 2003
	Adult Holding	Aug-Dec	HFC below Thermalito		61	USEPA 2003

Caracita		Destad	1	Index Value/R	lange (°F)	Course (Nata			
Species	Life Stage	Period	Location	Mean Monthly	7DADM ¹	Source/Note			
	Spawning, Egg		LFC below Fish Dam	53		McCullough et al. 2001			
	Incubation, and Alevins	Dec-May	HFC below Thermalito	53		McCullough et al. 2001			
			LEC balow Fish Dam		68	USEPA 2003			
	Kalt Emigration	Ech May	LFC DEIOW FISH Dam	70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)			
	Keit Emigration	reb-iviay	HFC below		68	USEPA 2003			
			Thermalito	70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)			
			LFC below Fish Dam	63	63 63 63 63 63 63 63 63 63 63 63 63 63 6				
	Juvenile	Y I			69	USEPA 2003			
Steelhead	Rearing	Year-round	HFC below Thermalito	63		Intermediate value of ranges of optimal growth from Grabowski 1973; Hokanson et al. 1977; Wurtsbaugh and Davis 1977; Myrick and Cech 2005; and Beakes et al. 2014			
					69	Cech 2005; and Beakes et al. 2014 USEPA 2003			
	Cmoltification	lon Mor	LFC below Fish Dam	54		Zaugg and Wagner 1973; Adams et al. 1975; Zaugg 1981; Hoar 1988			
	Smoltification	Jan-Mar	HFC below Thermalito	54		Zaugg and Wagner 1973; Adams et al. 1975; Zaugg 1981; Hoar 1988			
	Smolt		LFC below Fish Dam		61	USEPA 2003			
	Emigration	Dec-Jun	HFC below Thermalito		64	USEPA 2003			
					68	USEPA 2003			
	Adult Immigration	Aug-Mar	LFC below Fish Dam	70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)			
				68	USEPA 2003				

		Devied	1	Index Value/Range (°F)					
Species	Life Stage	Period	Location	Mean Monthly	7DADM ¹	Source/Note			
			HFC below Thermalito	70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)			
			LFC below Fish Dam		61	USEPA 2003			
	Adult Holding		HFC below Thermalito		61	USEPA 2003			
	Snawning and		LFC below Fish Dam	63					
	Embryo	Mar-Jul	HFC below Thermalito	63		Upper end of optimal range for embryonic development (Van Eenennaam et al. 2005)			
	medbation		HFC at Gridley	63					
			LFC below Fish Dam	66		Assumes that adults are at least as tolerant to temperatures as larvae and juveniles			
	Non-Spawning	ng ce n, Aug-Nov		73		Houston 1988; Erickson et al. 2002			
Green	(Immigration, Pre- and Post- Spawn Holding)		HFC below	66		Assumes that adults are at least as tolerant to temperatures as larvae and juveniles			
Sturgeon		U U	Inermalito	73		Houston 1988; Erickson et al. 2002			
			HFC at Gridley	66		Assumes that adults are at least as tolerant to temperatures as larvae and juveniles			
				73		Houston 1988; Erickson et al. 2002			
	Larval to		LFC below Fish Dam	66		Upper and of antimal range for biognargatics			
	Juvenile Rearing and	d Year-round	HFC below Thermalito	66		performance of Age 0/1 sturgeon with full or			
	Emigration		HFC at Gridley	66					
	Spawning and		LFC below Fish Dam	61					
	Embryo	Feb-May	HFC below Thermalito	61		Optimal egg incubation range upper limit (Israel et al. 2009)			
\//bita	incubation		HFC at Mouth	61					
Sturgoop	Juvenile Rearing and		LFC below Fish Dam	66					
Sturgeon		Year-round	HFC below Thermalito	66		Stress observed in juvenile white sturgeon above 66°F (Israel et al. 2009)			
			HFC at Mouth	66					
		Nov-May	LFC below Fish Dam	77					

Crosies	Life Sterre	Devied	Location	Index Value/R	lange (°F)	Source (Nate	
species	Life Stage	Period	Location	Mean Monthly	7DADM ¹	Source/Note	
	Adult Immigration		HFC below Thermalito	77		Upper limit of suitable water temperatures for	
	and Holding		HFC at Mouth	77		addit (Israel et al. 2009)	
			LFC below Fish Dam	50-64		Llich curring and low accurrence of orthogonic	
	Spawning and Egg Incubation	Apr-Aug	HFC below Thermalito	50-64		developmental abnormalities observed in this	
Pacific			HFC at Mouth	50-64		Talige (Meedwig et al. 2002, 2003)	
Lamprey	Ammocosto		LFC below Fish Dam	72		Significant degrapes in survival and increases in	
	Rearing and	Year-round	HFC below Thermalito	72		developmental abnormalities observed above	
	Emigration		HFC at Mouth	72		/2 F (Meeuwig et al. 2002, 2005)	
			LFC below Fish Dam	50-64		Link and indexed to the second second second	
	Spawning and Egg Incubation	d Feb-Jul n	HFC below Thermalito	50-64		developmental abnormalities observed in this	
River			HFC at Mouth	50-64		range (Meeuwig et al. 2002, 2005)	
Lamprey	Ammocoete Rearing and	mocoete ring and Year-round	LFC below Fish Dam	72		Circuiticant deserves in survival and increase in	
			HFC below Thermalito	72		developmental abnormalities observed above	
	Emigration		HFC at Mouth	72		72 F (Meeuwig et al. 2002, 2003)	
			LFC below Fish Dam	59-64			
	Spawning	awning Apr-Jun	HFC below Thermalito	59-64		Optimal range (Wang 1986)	
l le velle e e el			HFC at Mouth	59-64			
Hardnead			LFC below Fish Dam	65-82		Widest showned was as (Cash at al. 1000	
	Non-Spawning Life Stages	ning Year-round es	HFC below Thermalito	65-82		Moyle 2002, Southern California Edison	
			HFC at Mouth	65-82			
Sacramonta			LFC below Fish Dam	57-79			
Hitch	Spawning	Mar-Jul	HFC below Thermalito	57-79		Moyle 2002	

Currier	Life Stews	Devied	Leastion	Index Value/Range (°F)		Source/Note	
Species	Life Stage	Period	Location	Mean Monthly	7DADM ¹	Source/Note	
Sacramento Splittail	Spawning	Feb-May	HFC at Mouth	45-75		Observed range of suitable water temperatures (Moyle et al. 2004)	
	Spawning, Embryo	Apr-lup	HFC below Thermalito	59-68		Optimal range (Moyle 2002)	
Striped	Incubation, and Initial Rearing	Apr-Juli	HFC at Mouth	59-68			
Bass	Larvae, Fry, and Juvenile	Voar round	HFC below Thermalito	61-71		Optimal range (Fau et al. 1982)	
Rearing and Emigration		HFC at Mouth	61-71		Optimal range (ray et al. 1903)		
	Spawning, Embryo	Aprilup	HFC below Thermalito	60-70		Optimal range (Bell and Kynard 1985, Leggett	
American	Incubation, and Initial Rearing	Apr-Jun	HFC at Mouth	60-70		1987)	
Shad	Shad Larvae, Fry, and Juvenile Rearing and Emigration		HFC below Thermalito	63-77		Ontimal range (Maula 2002)	
		Jul - Nov	HFC at Mouth	63-77		Optimal range (Moyle 2002)	
Largemout h Bass Spawning	Spawning	Mar-Jun	HFC below Thermalito	54-75		Acceptable range for spawning and incubation	
			HFC at Mouth	54-75			

¹ 7DADM = seven-day average daily maximum

² HFC = High Flow Channel

³ Core = "moderate to high density" (U.S. Environmental Protection Agency 2003)

⁴LFC = Low Flow Channel

⁵Non-core = "low to moderate density" (U.S. Environmental Protection Agency 2003)

Table 11B-4. Water	Temperature Index Values and Index	Ranges Used for Water	Temperature Index	Value/Range Analyses,
American River				

Spacios	Life Sterre	Dariad	Location	Index Value/F	Range (°F)	Source (Note	
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Note	
Winter-run Chinook Salmon	Non-Natal Rearing	Jul-Apr	Watt Ave		64	USEPA 2003; non-core location ²	
	Spawning, Egg		Below Nimbus		55.4	USEPA 2003	
	Incubation, and Alevins	Oct-Feb	Watt Ave		55.4	Source/Note USEPA 2003; non-core location ² USEPA 2003 USEPA 2003 USEPA 2003; core juvenile rearing ³ USEPA 2003; non-core juvenile rearing USEPA 2003; non-core juvenile rearing USEPA 2003 USEPA 2003 USEPA 2003 USEPA 2003 McCullough et al. 2001 McCullough et al. 2001 USEPA 2003 Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range) USEPA 2003 Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range) USEPA 2003 Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range) USEPA 2003 Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range) Intermediate value of ranges of optimal growth from Grabowski 1973; Hokanson et I. 1977; Wurtsbaugh and Davis 1977; Myrick and Cech 2005; and Beakes et al. 2014	
Fall rup	Fry and Juvenile		Below Nimbus		61	USEPA 2003; core juvenile rearing ³	
Chinook	Rearing and Emigration	Jan-May	Watt Ave	Mean Daily7DADM1Consequence64USEPA 2003; non-core location255.4USEPA 200355.4USEPA 2003; core juvenile rearing361USEPA 2003; core juvenile rearing364USEPA 2003; non-core juvenile rearing68USEPA 200361USEPA 200363USEPA 200364USEPA 200363USEPA 200364USEPA 200365USEPA 200366USEPA 200353McCullough et al. 200153Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptima range)7068USEPA 200370Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptima range)			
Salmon	Adult	Son Doc	Below Nimbus		68	USEPA 2003	
	Immigration	Sep-Dec	Watt Ave	68 USEPA 2003			
	Adult Staging		Below Nimbus		61	USEPA 2003	
		Jui-Dec	Watt Ave		61	USEPA 2003	
	Spawning, Egg		Below Nimbus	53		McCullough et al. 2001	
	Incubation, and Alevins	Dec-May	Watt Ave	53		McCullough et al. 2001	
			Below Nimbus		68	USEPA 2003	
				70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)	
Stoolbood	Keit Emigration	rep-ividy			68	USEPA 2003	
Steelnead			Watt Ave	70		Average of studies cited in Richter and Kolmes 2005 (for upper end of suboptimal range)	
	Juvenile Rearing	Year-round	Below Nimbus	63	69	Intermediate value of ranges of optimal growth from Grabowski 1973; Hokanson et al. 1977; Wurtsbaugh and Davis 1977; Myrick and Cech 2005; and Beakes et al. 2014 Sullivan et al. 2000	
					05	Sumvan et al. 2000	

Creation	Life Stage	Deried	Location	Index Value/Range (°F)		Source (Nete	
species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Note	
				62		Intermediate value of ranges of optimal	
						growth from Grabowski 1973; Hokanson et	
			Watt Ave	05		al. 1977; Wurtsbaugh and Davis 1977; Myrick	
						and Cech 2005; and Beakes et al. 2014	
					69	Sullivan et al. 2000	
			Rolow Nimbur	51		Zaugg and Wagner 1973; Adams et al. 1975;	
	Smaltification	lan Mar	Delow Millious	54		Zaugg 1981; Hoar 1988	
	Smolulication	Jan-Iviar	Matt Ava	Γ /		Zaugg and Wagner 1973; Adams et al. 1975;	
			Wall Ave	54		Zaugg 1981; Hoar 1988	
	Smolt	Declup	Below Nimbus		61	USEPA 2003; core location	
	Emigration	Dec-Jun	Watt Ave		64	USEPA 2003; non-core location	
					68	USEPA 2003	
	Adult Immigration	Oct-Apr	Below Nimbus	70		Average of studies cited in Richter and	
						Kolmes 2005 (for upper end of suboptimal	
						range)	
			Watt Ave		68	USEPA 2003	
				70		Average of studies cited in Richter and	
						Kolmes 2005 (for upper end of suboptimal	
						range)	
	Adult Holding	Oct-Nov	Below Nimbus		61	USEPA 2003	
	Adult Holding		Watt Ave		61	USEPA 2003	
			Below Nimbus	50-64		High survival and low occurrence of	
	Spawning and	Mar-Jul	Watt Ave	50-64		embryonic developmental abnormalities	
	Egg Incubation		Mouth	F0 64		observed in this range (Meeuwig et al. 2002,	
Pacific Lamprey			wouth	50-64		2005)	
	Ammocoete		Below Nimbus	72		Significant decrease in survival and increase	
	Rearing and	Year-round	Watt Ave	72		in developmental abnormalities observed	
	Emigration		Mouth	72		above 72°F (Meeuwig et al. 2002, 2005)	
			Below Nimbus	50-64		High survival and low occurrence of	
Diverlamente	Spawning and		Watt Ave	50-64		embryonic developmental abnormalities	
Kiver Lamprey	Egg Incubation	red-Jui	Mouth	50-64		observed in this range (Meeuwig et al. 2002, 2005)	

Smaaina	Life Stewa	Devied	Location	Index Value/Range (°F)		Source /Neto	
Species	Life Stage	Period	Location	Mean Daily	7DADM ¹	Source/Note	
	Ammocoete		Below Nimbus	72		Significant decrease in survival and increase	
	Rearing and	Year-round	Watt Ave	72		in developmental abnormalities observed	
	Emigration		Mouth	72		above 72°F (Meeuwig et al. 2002, 2005)	
	Spawning	April – June	Below Nimbus	59-64		Optimal range (Wang 1986)	
Hardhead	Non-Spawning Life Stages	Year-round	Watt Ave	65-82		Widest observed range (Cech et al. 1990, Moyle 2002, Southern California Edison Company 2007)	
Sacramento	Creative	Man lube	Below Nimbus	57-79		Maula 2002	
Hitch	Spawning	Mar-July	Watt Ave	57-79		Moyle 2002	
Sacramento Splittail	Spawning	Feb-May	Mouth	45-75		Observed range of suitable water temperatures (Moyle et al. 2004)	
	Spawning,		Watt Ave	59-68			
Striped Bass	Embryo Incubation, and Initial Rearing	Apr-Jun	Mouth	59-68		Optimal range (Moyle 2002)	
	Larvae, Frv, and	arvae, Fry, and		61-71			
	Juvenile Rearing and Emigration	Year-round	Mouth	61-71		Optimal range (Fay et al. 1983)	
	Spawning,		Watt Ave	60-70		Optimal range (Bell and Kurpard 1095 Laggett	
American Shad	Embryo Incubation, and Initial Rearing	Apr-Jun	Mouth	60-70		and Whitney 1972, Painter et al. 1980, Rich 1987)	
	Larvae, Fry, and		Watt Ave	63-77			
	Juvenile Rearing and Emigration	Jul-Nov	Mouth	63-77		Optimal range (Moyle 2002)	
Largemouth Bass	Spawning	Mar-Jun	Watt Ave	54-75		Acceptable range for spawning and incubation (Moyle 2002)	

¹7DADM = seven-day average daily maximum ²Non-core = "low to moderate density" (U.S. Environmental Protection Agency 2003)

³ Core = "moderate to high density" (U.S. Environmental Protection Agency 2003)

Month	Keswick	Clear Creek	Balls Ferry	Bend Bridge	Red Bluff	Wilkins Slough ²
January	-0.36	-1.01	-0.75	-0.67	-0.86	0.0
February	-0.28	-1.11	-0.86	-0.62	-0.97	-0.3
March	-0.17	-1.29	-0.94	-0.66	-1.23	-0.3
April	-0.25	-1.66	-1.47	-0.95	-1.55	-0.6
May	-0.36	-1.73	-2.18	-1.59	-1.47	-1.4
June	-0.32	-1.55	-2.25	-1.87	-0.96	-1.2
July	-0.36	-1.41	-2.18	-2.01	-0.90	-1.3
August	-0.43	-1.74	-2.06	-1.61	-0.94	-1.3
September	-0.30	-2.00	-1.76	-1.16	-1.70	-2.0
October	-0.25	-1.73	-1.25	-0.91	-1.83	-1.4
November	-0.38	-1.37	-1.10	-0.99	-1.53	-1.3
December	-0.82	-1.42	-1.30	-1.24	-1.48	-1.0

Table 11B-5. Conversion Factors (°F) for USEPA (2003) Seven-Day Average Daily Maximum(7DADM) Water Temperature Index Values to Monthly Mean, Sacramento River¹.

¹ Based on historical data from 2003-2014 for all sites except Wilkins Slough, which is based on historical data from November 2012 through June 2015. For a given location and month, values in this table were added to 7DADM index values in Table 11B-2 such that actual values used in the evaluation for each month were lower than those listed in Table 11B-2.

² Because there is no flow gage at Hamilton City, Wilkins Slough data were used to calculate the conversion factor for Hamilton City.

Table 11B-6. Conversion Factors (°F) for USEPA (2003) Seven-Day Av	erage Daily Maximum
(7DADM) Water Temperature Index Values to Monthly Mean, Feather	er River ^{1,2} .

Month	RM 66.3 (Downstream of Hatchery)	RM 58.7 (Downstream of Afterbay Outlet)	RM 25.5 (Shanghai Bend)
January	-0.76	-0.52	-0.45
February	-0.83	-0.56	-0.58
March	-0.93	-0.60	-0.60
April	-0.88	-0.78	-1.06
May	-1.06	-0.87	-1.34
June	-1.10	-1.37	-1.74
July	-1.82	-1.41	-1.30
August	-2.08	-1.37	-1.04
September	-2.16	-1.58	-1.48
October	-1.36	-1.20	-1.51
November	-0.92	-1.15	-1.45
December	-0.94	-0.78	-0.96

- ¹Based on historical data from 2002–2014. For a given location and month, values in this table were added to 7DADM index values in Table 11B-3 such that actual values used in the evaluation were lower than those listed in Table 11B-3.
- ² RM 66.3 conversion factors were used for both locations in the LFC (below Fish Dam and above Thermalito); RM58.7 conversion factors were used for the HFC below Thermalito Afterbay Outlet; RM 25.5 conversion factors were used for the HFC at Gridley Bridge.

Month	Below Nimbus Dam	Watt Ave
January	-0.44	-1.01
February	-0.15	-1.05
March	-0.25	-1.29
April	-0.40	-1.72
May	-0.60	-2.05
June	-0.44	-2.55
July	-0.50	-3.17
August	-0.70	-3.11
September	-0.59	-2.52
October	-0.60	-2.01
November	-0.80	-1.65
December	-0.77	-1.26

Table 11B-7. Conversion Factors (°F) for USEPA (2003) Seven-Day Average Daily Maximum (7DADM) Maximum Water Temperature Index Values to Monthly Mean, American River¹.

¹Based on historical data from 2003–2014. For a given location and month, values in this table were added to 7DADM index values in Table 11B-4 such that actual values used in the evaluation were lower than those listed in Table 11B-4.

The tiered management approach for summer cold-water pool management in the ROC on LTO proposed action (Bureau of Reclamation 2019:4-29 to 4-33) was evaluated in two ways. First, an additional temperature index value analysis by tiers rather than by water year type was conducted for 53.5°F and 56°F in the Sacramento River below Clear Creek. Second, the Anderson and Martin models, as described in Section 11B.1.2.3, Winter-Run Chinook Salmon Egg Mortality Analysis based on Martin et al. (2017), and Section 11B.1.2.4, Winter-Run Chinook Salmon Egg Mortality Analysis based on Anderson (2018), were used to evaluate how the Project would affect winter-run Chinook salmon mortality. The 53.5°F water temperature criterion is based on Martin et al. (2017), which is the genesis of the Martin model and from which the Anderson model is based. The Anderson and Martin models incorporate the biological mechanisms underlying water temperature-related effects on winter-run Chinook salmon egg incubation. As such, they provide more biologically relevant information for winter-run Chinook salmon egg incubation than the water temperature index value analysis. However, the index value analysis was used to evaluate the ability for operators to meet the 53.5°F and 56°F targets in tiers that manage to those temperatures. Tiers 1 through 3 manage to 53.5°F for some or all of the May 15 through October 31 cold-water pool management period and Tiers 2 through 4 manage to 56°F

for some or all of the period (Bureau of Reclamation 2019:4-29 to 4-33). Because tier designations are based on storage conditions in Shasta Lake and storage conditions can vary among model scenarios (including the NAA) for a given year, there were 3 years (1933, 1977, and 1990) in which tiers differed among model scenarios. In addition to Shasta Lake storage conditions, factors such as meteorological conditions, Shasta inflow, and Central Valley Project operations vary among years and can make a comparison between model scenarios with different tiers challenging to interpret. Therefore, the 3 years in which the tier differed among scenarios were excluded from the index value analysis by tier. This was not done for Anderson and Martin analyses because the analyses were not conducted by tier.

One limitation of using the index value analysis to evaluate the ability to meet temperature targets in the tiered management approach is that the determination of when to change temperature targets between 53.5°F and 56°F in Tiers 2 and 3 is based on real-time monitoring of winter-run redd presence. Another limitation is that there is no operational temperature target identified in Tier 3; it could range from 53.5°F to 56°F during the period. A third limitation of modeling the tiered approach is that temperature targets in the modeling are set to Shasta release temperatures although the tiered approach assesses temperature below Clear Creek. The change in water temperature between Shasta and below Clear Creek is dependent on release temperature, meteorological conditions, Trinity imports, Clear Creek temperature, and release volume. As such, for a given release temperature, there is a wide range of possible temperature changes between Shasta and Sacramento River below Clear Creek. In order to assess potential effects in light of these uncertainties, assumptions were required to model the approach and the approximate resulting target temperatures at Clear Creek are provided in Table 11B-8. These temperature targets were assessed using the index value analysis approach, but organized by tier and 15- or 16-day period (e.g., May 16–31) in place of water year type and month.

Tier	May 16–31	Jun 1–15	Jun 16–30	Jul 1– 15	Jul 16–31	Aug 1–15	Aug 16–31	Sep 1–15	Sep 16–30	Oct 1–15	Oct 16–31
1	53.5	53.5	53.5	53.5	53.5	53.5	53.5	53.5	53.5	53.5	53.5
2	56	56	56	53.5	53.5	53.5	53.5	53.5	53.5	53.5	53.5
3	56	56	56	56	53.5	53.5	53.5	53.5	56	56	56
4	56	56	56	56	53.5	53.5	53.5	53.5	56	56	56

 Table 11B-8. Approximate Temperature Targets (°F) for Sacramento River below Clear

 Creek Assumed for Modeling Purposes for Each Model Scenario.

11B.1.2.3. Winter-Run Chinook Salmon Egg Mortality Analysis based on Martin et al. (2017)

Background

The dissolved oxygen content of the water passing through the gravel substrate and sustaining winter-run Chinook salmon eggs is positively correlated with temperature; warm, anoxic conditions result in egg mortality. This analysis attempted to isolate the thermal component of egg mortality from other components such as density-dependent mortality and redd dewatering. Both the Martin et al. (2017) model described in this section and the Anderson (2018) model

(described below in Section 11B.1.2.4) begin by modeling a redd's lifetime by counting the days required to cross a known cumulative degree-days threshold, and both estimate mortality as a linear, increasing function of temperature past a known temperature threshold, but each model uses a different set of assumptions to implement this conceptual model. The methods were applied to a set of simulated redds and the results were summarized on a seasonal level for comparison of mortality outcomes between DCR 2015 Without and With Project scenario HEC5Q model runs.

Martin et al. (2017) identified a discrepancy between laboratory and field estimates of egg mortality and proposed a mechanism based on differing flow velocities in the laboratory and field environments. They then outlined a model for estimating temperature-dependent egg mortality in the field and fit its parameters to Sacramento River winter-run Chinook salmon population data collected between 1996 and 2015 (Martin et al. 2017).

Mortality Calculations

The first step in the Martin et al. (2017) model is to estimate a redd's date of emergence. Individual eggs within the redd hatch but stay within the gravel substrate of the redd and become alevins. These alevins later depart the redd in the emergence stage. The redd's estimated date of emergence is intended to represent the point in the average egg's life span where it leaves the gravel substrate of the redd.

The Martin et al. (2017) model estimates the date of emergence using a linear relationship between water temperature (T, in °F) and maturation: Rate of maturation = 0.00058 * T - 0.018 (Zeug et al. 2012). For each simulated redd, the Zeug et al. (2012) equation was applied to daily temperatures starting the day after redd creation until the cumulative sum of daily maturation rates is greater than one. The day on which this occurs is considered the date of emergence for the redd.

Daily survival is then calculated for every day of the redd's lifespan. Below a temperature threshold of 11.9° C, no temperature-dependent mortality is recorded, and the survival is 1. For each degree C above the threshold, 0.024 is subtracted from the daily survival. The product of the natural exponents of daily survivals is the total survival, and one minus survival is the estimated mortality fraction for that simulated redd.

In summary, the Martin et al. (2017) model uses the Zeug et al. (2012) equation to estimate date of emergence, then estimates daily mortality for each day of the redd's lifespan using a linear relationship.

Spatiotemporal Distribution of Simulated Winter-Run Chinook Salmon Eggs

The Martin et al. (2017) model was applied to HEC5Q Sacramento River temperature results using the same spatiotemporal distribution of redds in each year. The distribution is the averaged location and timing of redds counted in California Department of Fish and Wildlife Winter-Run aerial survey data from 2007 to 2014. Simulated redds were created and subjected to mortality calculations. All simulated redds' mortalities were combined in a sum, weighted by the spatiotemporal distribution, to estimate the total seasonal mortality fraction.

No assumption was made regarding the total number of redds, as density-dependent mortality is not considered in this calculation; results indicate only the percentage of the total seasonal winter-run Chinook salmon egg population in the upper Sacramento River that is estimated to have succumbed to temperature-dependent mortality. Because a large percentage of modeled redds survived into October and the HEC5Q simulation ends at September of 2003, temperature-dependent egg mortality was only estimated for the 1922–2002 water years.

Tables 11B-9 and 11B-10 indicate the river miles and dates for which simulated redds were created as well as the proportion of the total winter-run Chinook salmon egg population which each location or time represents. The same temporal distribution was assumed for all locations.

Table 11B-9. Spatial Distribution of Simulated Redds Used in the Martin et al. (201	7)
Model of Winter-Run Chinook Salmon Egg Mortality	

River Reach	River Mile	Mean Percentage (2007– 2014)
Keswick to ACID Dam	298	46.4%
ACID Dam to Highway 44 Bridge	296	46.1%
Highway 44 Br. To Airport Rd. Br.	284	6.7%
Airport Rd. Br. To Balls Ferry Br.	275	0.3%
Balls Ferry Br. To Battle Creek.	271	0.2%
Battle Creek to Jellys Ferry Br.	266	0.2%
Jellys Ferry Br. To Bend Bridge	257	0.1%
Bend Bridge to Red Bluff Diversion Dam ¹	242	0.0%

¹ The Red Bluff Diversion Dam, which was decommissioned in 2013, and the Red Bluff Pumping Plant are co-located, and the names may be used interchangeably when referring to geographic locations.

Table 11B-10. Temporal Distribution of Simulated Redds Used in the Martin et al. (2017)
Model of Winter-Run Chinook Salmon Egg Mortality

Date (month/day)	Mean Percentage (2007–2014)
5/15	5.4%
6/1	5.9%
6/9	7.8%
6/16	13.3%
6/24	16.0%
7/1	15.9%
7/9	14.2%
7/16	10.4%
7/24	6.7%
8/1	3.1%
8/16	1.4%

11B.1.2.4. Winter-Run Chinook Salmon Egg Mortality Analysis based on Anderson (2018)

Anderson (2018) developed a model that built on Martin et al.'s (2017) findings but differed in two key assumptions. While Martin et al. (2017) applied mortality to each day of a redd's lifespan from birth past hatching to emergence, Anderson (2018) used a short critical period instead. Using field data from 2002 through 2015, a critical period just before hatching was found to provide the best fit (Anderson 2018). This analysis used a critical period of 5 days in length, following the implementation of the Anderson (2018) model on the SacPAS website (<u>http://www.cbr.washington.edu/sacramento/fishmodel/</u>).

Instead of using the Zeug et al. (2012) equation to estimate date of emergence, the Anderson (2018) model uses a different equation to estimate date of hatching. Like the Zeug et al. (2012) equation, daily temperatures are correlated to daily maturation and a cumulative sum of daily maturation is calculated until maturation crosses a known threshold. The date on which this occurs is the hatching date, and in this implementation of the Anderson (2018) model the 5 days before hatching are the days on which mortality is estimated.

The daily equation was calibrated as by Alderdice and Velsen (1978): ln(Daily development rate) = ln(k) + b * (ln(T - c)), where k = 0.08646, b = 1.23473, c = -2.26721, and temperature is measured in °C. The day on which the cumulative sum of daily development rate passes 100 is considered the redd hatching date.

Like the Martin et al. (2017) model, the Anderson (2018) model assumes a linear relationship between mortality and temperature, with zero mortality below a threshold. The threshold was set identical to the Martin et al. (2017) model at 11.9° C, while the slope is not 0.024 but 0.5. This is unsurprising; calibration to substantially the same dataset will naturally result in a much higher slope, or a much larger mortality impact per °C above the threshold, for a model that only applies mortality to 5 days instead of the full lifespan of the redd. The same formulae for adding up daily survivals and finding a total mortality estimate were used as for the Martin et al. (2017) model, as described above in *Mortality Calculations*. The same spatiotemporal redd weighting was applied as the Martin et al. (2017) model; see description above in *Spatiotemporal Distribution of Simulated Winter-Run Chinook Salmon Eggs*.

11B.2 References

11B.2.1. Printed References

- Adams, B.L., Zaugg, W.S., and McLain, L.R. 1975. Inhibition of salt water survival and Na-K-ATPase elevation in steelhead trout (Salmo gairdneri) by moderate water temperatures. Transactions of the American Fisheries Society 104(4):766–769.
- Alderdice, D. F., and F. P. J. Velsen. 1978. Relation between temperature and incubation time for eggs of chinook salmon (*Oncorhynchus tshawytscha*). Journal of the Fisheries Research Board of Canada 35:60–75.

- Anderson, J. J. 2018. Using river temperature to optimize fish incubation metabolism and survival: a case for mechanistic models. *bioRxiv*:257154. Available: <u>http://dx.doi.org/10.1101/257154</u>. Accessed: July 3, 2019.
- Beakes, M. P., S. Sharron, R. Charish, J. W. Moore, W. H. Satterthwaite, E. Strum, B. K. Wells, S. M. Sogard, and M. Mangel. 2014. Using Scale Characteristics and Water Temperature to Reconstruct Growth Rates of Juvenile Steelhead Oncorhynchus mykiss. Journal of Fish Biology 84:58–72.
- Bell, C. E., and B. Kynard. 1985. Mortality of adult American shad passing through a 17megawatt kaplan turbine at a low-head hydroelectric dam. North American Journal of Fisheries Management 5:33–38.
- Bureau of Reclamation. 2019. *Reinitiation of Consultation on the Coordinated Long-Term Operation of the Central Valley Project and State Water Project. Final Biological Assessment.* Mid-Pacific Region. Chapter 4, Proposed Action. October 2019.
- Cech, J.J., Mitchell, S.J., Castleberry, D.T. et al. 1990. *Distribution of California stream fishes: influence of environmental temperature and hypoxia*. Environ Biol Fish 29:95–105.
- Erickson, D. L., J. A. North, J. E. Hightower, J. Weber, and L. Lauck. 2002. Movement and habitat use of green sturgeon *Acipenser medirostris* in the Rogue River, Oregon, USA. *Journal of Applied Ichthyology* 18:565–569.
- Fay, C. W., R. J. Neves, and G. B. Pardue. 1983. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic): Striped bass. U. S. Fish and Wildlife Service, Division of Biological Services Report No. FWS/OBS-82/11.8, and U. S. Army Corps of Engineers Report No. TR EL-82-4, Washington, D.C.
- Grabowski, S. J. 1973. Effects of fluctuating and constant temperatures on some hematological characteristics, tissue glycogen levels, and growth of steelhead trout (*Salmo gairdneri*). Ph.D. dissertation. University of Idaho. 77 pp.
- Hoar, W.S. 1988. The physiology of smolting salmonids. Pages 275–326 *in* W.S. Hoar and J.R. Randall, editors. Fish Physiology, Volume XIB, Academic Press, New York.
- Hokanson, K. E. F., C. F. Kleiner, and T. W. Thorsland. 1977. Effects on constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, *Salmo gairdneri*. Journal of the Fisheries Research Board of Canada 34:639–648.
- Houston, J. J. 1988. Status of green sturgeon, Acipenser medirostris, in Canada. Canadian Field-Naturalist 102:286–290.
- Israel, J., A. Drauch, M. Gingras. 2009. Life history conceptual model for white sturgeon (*Acipenser transmontanus*). Available at:

https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=28423. Accessed January 23, 2023.

- Leggett, W. and R. Whitney. 1972. Water temperature and the migrations of American shad. Fish Bulletin 70.
- Martin, B. T., A. Pike, S. N. John, N. Hamda, J. Roberts, S. T. Lindley, and E. M. Danner. 2017. Phenomenological vs. biophysical models of thermal stress in aquatic eggs. *Ecology Letters* 20(1):50–59.
- Mayfield, R. and J. Cech, Jr. 2004. Temperature Effects on Green Sturgeon Bioenergetics. Transactions of The American Fisheries Society 133:961–970.
- McCullough D. A., S. Spalding, D. Sturdevant, M. Hicks. 2001. EPA Issue Paper 5: Summary of Technical Literature Examining the Physiological Effects of Temperature on Salmonids. EPA-910-D-01-005.
- Meeuwig, M., J. Bayer, J. Seele, and R. Reiche. 2002. Identification of Larval Pacific Lampreys (*Lampetra tridentata*), River Lampreys (*L. ayresi*) and Western Brook Lampreys (*L. richardsoni*) and Thermal Requirements of Early Life History Stages of Lampreys: Annual Report 2002. 10.2172/821798.
- Meeuwig, M., J. Bayer, and J. Seelye. 2005. Effects of Temperature on Survival and Development of Early Life Stage Pacific and Western Brook Lampreys. Transactions of The American Fisheries Society. 134. 19-27. 10.1577/FT03-206.1.
- McCullough D. A., S. Spalding, D. Sturdevant, M. Hicks. 2001. EPA Issue Paper 5: Summary of Technical Literature Examining the Physiological Effects of Temperature on Salmonids. EPA-910-D-01-005.
- Moyle, P. B. 2002. *Inland Fishes of California*, Revised and Expanded. Berkeley: University of California Press.
- Moyle, P. B., R. D. Baxter, T. Sommer, T. C. Foin, and S. A. Matern. 2004. Biology and Population Dynamics of Sacramento Splittail (*Pogonichthys macrolepidotus*) in the San Francisco Estuary: A Review. *San Francisco Estuary and Watershed Science* 2(2).
- Myrick, C.A and J.J. Cech, Jr. 2004. Temperature effects on juvenile anadromous salmonids in California's central valley: what don't we know? Review in Fish Biology and Fisheries 14:113–123.
- National Marine Fisheries Service. 2009. Biological and Conference Opinion on the Long-Term Operations of the Central Valley Project and State Water Project. June 4. Southwest Region.
- National Marine Fisheries Service. 2016. Central Valley Recovery Domain 5-Year Review: Summary and Evaluation of California Central Valley Steelhead Distinct Population Segment. National Marine Fisheries Service, West Coast Region.

- National Marine Fisheries Service. 2019. Biological Opinion on Long-term Operation of the Central Valley Project and the State Water Project. National Marine Fisheries Service, West Coast Region. <u>https://doi.org/10.25923/f6tw-rkl9</u>
- Painter, R. L., L. Wixom, and L. Meinz. 1980. American Shad Management Plan for the Sacramento River Drainage. Anadromous Fish Conservation Act Project AFS-17, Job 5. Sacramento, CA: California Department of Fish and Game.
- Rich, A.A. 1987. Water temperatures which optimize growth and survival of the anadromous fishery resources of the lower American River. A.A. Rich and Associates. San Rafael, CA.
- Richter A. and S. A. Kolmes. 2005. Maximum Temperature Limits for Chinook, Coho, and Chum Salmon, and Steelhead Trout in the Pacific Northwest. Reviews in Fisheries Science 13(1):23–49.
- Sites Project Authority and Bureau of Reclamation. 2017. Draft Environmental Impact Report/Draft Environmental Impact Statement. Appendix 12D, Water Temperature Index Value Selection Rationale. State Clearinghouse #2001112009.
- Southern California Edison Company. 2007. Attachment H, Life History and Habitat Requirements of Fish Species in the Project Area. February. Rosemead, CA.
- Sullivan K., D.J. Martin, R.D. Cardwell, J.E. Toll, and S. Duke. 2000. An analysis of the effects of temperature on salmonids of the Pacific Northwest with implications for selecting temperature criteria. Sustainable Ecosystems Institute. Portland, OR. 147 pp.
- U.S. Bureau of Reclamation (Reclamation). 2019. Reinitiation of Consultation on the Coordinated Long-Term Operation of the Central Valley Project and State Water Project. Final Biological Assessment. Mid-Pacific Region. January 2019.
- U.S. Environmental Protection Agency. 2003. *EPA Region 10 Guidance for Pacific Northwest State and Tribal Temperature Water Quality Standards*. EPA 910-B-03-002. Region 10 Office of Water, Seattle, WA. 49 pp.
- Van Eenennaam, J.P., Linares-Casenave, J., Deng, X., and Doroshov, S.I. 2005. Effect of incubation temperature on green sturgeon embryos, Acipenser medirostris. Environmental Biology of Fishes 72(2):145–154.
- Wang, J. C. 1986. Fishes of the Sacramento-San Joaquin estuary and adjacent waters, California: A guide to the early life histories (Vol. 9). U.S. Department of Interior, Bureau of Reclamation.
- Wurtsbaugh, W.A. and G.E. Davis. 1977. Effects of temperature and ration level on the growth and food conversion efficiency of rainbow trout, *Salmo gairdneri*, Richardson. Journal of Fish Biology 11:99–104.

- Zaugg, W. S. 1981. Advanced photoperiod and water temperature effects on gill Na⁺-K⁺ adenosine triphosphatase activity and migration of juvenile steelhead (*Salmo gairdneri*). Can. 5. Fisheries and Aquatic Science 38:758–764.
- Zaugg, W.S. and H.H. Wagner. 1973. Gill ATPase activity related to parr-smolt transformation and migration in steelhead trout (*Salmo gairdneri*): Influence of photo-period and temperature. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 45:955–965.
- Zaugg, W. S. 1981. Advanced photoperiod and water temperature effects on gill Na⁺-K⁺ adenosine triphosphatase activity and migration of juvenile steelhead (*Salmo gairdneri*). Can. 5. Fisheries and Aquatic Science. 38:758-764.
- Zeug, S., P. Bergman, B. Cavallo, and K. Jones. 2012. Application of a Life Cycle Simulation Model to Evaluate Impacts of Water Management and Conservation Actions on an Endangered Population of Chinook Salmon. *Environmental Modeling and Assessment* 17(5):455–467.

11B.2.2. Personal Communications

Swank, David, National Marine Fisheries Service. July 24, 2015—Email regarding a significant temperature increment for steelhead eggs and juveniles at which mortality increases quickly.