

This bullefin is not copyrighted "and may be' reproduced elsewhere, proided due credit is given tor the authors and the California Department, of ish ond Gamer,
The free mailing list is on an exchange basis and is limited by budgetary onsiderations to 'libraries's' scientificic institutions, and' conservation agencies. he búlietin may also be secured by individuals who can make professional se of the material: At the timie of making opplication, individyals, must state heir a afilíation"and position. Exchange material should be sent to the Librarian, allifornía State Fisheriés Láboratory, Términal Island, California. Those desirig: to remain on;the free mailing listst must soundicate by returning the postard mailed, once each year with one of the, pulletins.
Individuals-and organizations who do not qualify for the free mailing list cay obtain , bulletins̀ by placing orders with the Printing Division, Documents ection, Sacramento 14, California: Money. orders or checks should be made ut to:Printing 'Division, Docümen's: Séction. Price information about bulletins ayy:be objained from any office of the Department of Fish and Game. '

EDMUND G. BROWN, Governor

FISH AND GAME COMMISSION

DEPARTMENT OF FISH AND GAME
Walter T. SHANNON, Director
. Sacramenlo
OFFICE-FISH AND GAME COMMISSION
722 Capital Avenue
Sacramento 14
OFFICES-DEPARTMENT OF FISH AND GAME
722 Capitol Avenue
1001 Jedsmith Drive
Sacramenlo
1234 Eosi Show Avenue
Fresne
627 Cypress Street
Redding
. Sacramento 14
Ferry Building San Francisco 724 South Spring Streel Los Angeles 511 Tuna Siree! 511 Tuna Sireet
Tarminal Island 407 West Line Street Bishop

271 Tylor Sireat Monterey
619 Second Sireel Eureka
Room 12, North Ramp Broodway Pier Building Son Diego

STATE OF CALIFORNIA DEPARTMENT OF FISH AND GAME

FISH BULLETIN No. 114

AN EVALUATION OF STOCKING HATCHERY-REARED STEELHEAD
 RAINBOW TROUT (Salmo gairdnerii gairdnerii)

IN THE SACRAMENTO RIVER SYSTEM

By RICHARD J. HALLOCK,
WILLIAM F. VAN WOERT, and LEO SHAPOVALOV

TABLE OF CONTENTS

OR1sinoll $\frac{1}{1}$
CKNOWLIEDGMDO！：
N＇JHODUCIION

\qquad

\qquad 1
$1 \cdot$
 $1 \div$
Alalt Migrations 11
Ase119
Sumaing17保：
$\because 1$
Isいдth－W゚eight Redativashia
$-\because 1$
$-\because 1$
MEIIIOL OF WVAIUAJING S＇HFELIHEANSOCHING -3

 \because
＇Trabs Usilike01
©ritive Numbers of loish Trase
－

－
－
Mallood of Computing lopulatima $:$

$:$
Marking：i：i
：ramiag－－－－－－－－－－－－Numbers 12 cleaser
\qquad
Aron of stackiag．．．
：：
：in
：SII1114
：WSIHON＇M＇IROUT －． $4!1$
 i）
S＇loldilld．ll Sl＇OL＇L FlSllfily\because
yous of lrishin：$0: 3$
$0: i$
bixhlug Cicir：$: 1$
Nominh binn sle（ther（．atren
$\therefore 1$
Nonreturn of lags，and Anjusted Citeh and Cost Fignres． －il
CHHLH，CliNSUS \cdots
FISIING JPrloolct （i．）
（1\％SI）HNCH OR ANGIHAS $1 i, 1$
i,
$i n$

 41：
（ONO：IJSIONS 1i9 is
 －：：

FOREWORD

Inaklequake basie information about steelseat populations has long hampered their management. bactors such as current harvest rates, safte hatesol rates, percentare survival of hatehery-reared juveniles, allol best phating procedores have usually beon subjeret to ghesswork.

Homerninties breed controversy. And so, dispute over the relative importanes: of matural vs. hatehery reproduction of steelhead led to the birth of this project. Now the study is done, and the facts gained have resolved the dispute and add considerably to knowledge of Sacramento liver sterlheme to the sulstandial benefit of future manarement.

Seasons and hag limits may be set with reater assurance, knowing approximately the size of the ron and the harvest mate of alnits
 lively, knowing approximatels how many of the phanded vearlines will redurl as adnlts, how many will be eanght, and how much it will eost To put whe in the ereed throngh stockingr. The added intormation about best times, plates, and sizes for stocking hatehery fish will also be of considerable practical value, although more information on these subjeets would be desirable.

I'his stanly has alroady paid hamdsome moxpereded dividends in Cali-
 the klamalla, 'l'rinity, l'eather, amel Nokelmme rivers was based in large park on survival mates of manded yearlings released in the Sactamento lixatr. Other eomparable benefits are anticipated here and elsewhere in the future.

We presint his report to all those interested in steelhead, hoping that it will rontribute to the conservation and enhanement of these nothle fish wherever they oeeme

Amax Cahaon
May, 1061

ACKNOWLEDGMENTS

 and to John P'eliatr, District Supervisor, U. S. F'ish anl Wilallite: Sorvice, who is head of Coleman National l-ish llatehery porided use of hateloery facilities and mueh vahable assistanee.

 throngh assistance with the final perpanation of the mannseriph line matication. In this, he was ably assister ley Willian di. Mralier. Alox (Gallomm, Chirf, Inland Fisherjes Jimach, was instrmmental in lurhering the mogress of the study. Harry Λ. Hanson and blton D. Wailey beneled the program during the firse two yeats, ame the batlor anso aritically reviewed the manaseriju. Dun A. Jatranmece, Joseph P'attersom, and fire late Javid (ilemm worked many lonar days developinge, operatimer, and mantaining the fish traps. John ligess helperl with lho
 marking and cevel censusing. Willian ind Mira (Gumingham maintained Mill Creck Comingr Station nine months cath rear, monnterl all strelheal seales for reading, and typed the mannseripic. (litha (borsin prepared the graples and mips in final form for pubiliaalion.
 progitam, and it is fitting that speecial hamks be givion to thense whene fimely artieles led to a better understaming of the program hy sportsmen and to rreater tas returns. Among these are liohert Jmest, (hiso Eiufcrurise Record; Marion Walker, Red lBall Daily Nems; lian Jomenhaner, Redding Record-Searehhight; Robert Revily, Samamento Union; Cllon Spuller, Sacramento Ber.

Tremendous assistane was given the stomy by the mane spoting gooels stores, fishing resorts, anil fishing camps along hos Sitermento Jiver between Redding and Merinlinn, who donated valuable: prizes loo the return of stechead tags. leinally, hambs are due the emonties of Shasta, Tehama, Butte, Glem, imd Colusit Sor contribulingr rommy fish and game fine monies to helg pay the strelleand fool hill at (olemant liateliery.

> Ticharid J. Hadomen
> Wihaiam j. Van Wohin
> the Shapovaion

An Evaluation of Stocking Hatchery Reared Steelhead Rainbow Trout, Salmo gairdnerii gairdnerii, In the Sacramento River System'
 Inland Fisherios Branch
 Californio Department of Fish and Game
 NTRODUCTION

 fromb. Sulmo !mirdurrii guirhurrii liahandsom. Barh liall, fishormen in
 lerom meighboring states, to partiripate in the havest al dhis prizal western game fish.

The inemease in the mombers of anglers has been brought abont be an aremmation of events. formont. of whith has been an explosive arowth

 alle ter suited for steelheat. The Satemmento is also a fivorite stedhend

 fiace of these montating demamis upon the resondere

 pressure prineipally ly a longrange management progran consistine

 complent with protertive regrobations and installation of fishways and

 athil Wart (1956).
 shork constal streams with fingerling sterllend in the summer montis, The results of this proriam sheal emsiderable dondt on the elteetiveness

ole llow or thor stuily.

Fiaume 1. A 13 -pound steelhend landed In Battle Creek, a tributary of the apper Sncramento River This was the second Ingeest pleelliend recorded during tho wthly. Photograph by Richara J. Hallock, Scptculber, 19:57.
 perimental program at Califormin's Wadelell and Sutt errolks from 1!ase
 may be expected from releases of fingerling steelhean, but that on the: average approximately 2 to 5 pereent may be expected to rethen as adults when allowed to deseend to seat as reallings al. their momal mirration time (Shapovalov and 'lart, loce cil.).
 progran for Sacramento River steelhean ham eomsistarl brimarily of protective regulations and installation of fish proderetive slevieres sullo ans
 head. The only previous signifiemt investigntion of Siaramento Rivere

 edge liad beer ned thromghthe thams about steedhead in the smallowe

 decided to examine this important resoure more thoronghly and to find out if artificial stocking of lare numbers of migrant-sized stee)head in the Sacramento was a feasible method of maintaining or im-

 mento liver with yearling, hatwervered fish. Serombary objectives were to study the fishery and the life history of Sacramento sterellead.
 hut was fomi possible to eomplete it by 1988 .

 fions which reagniged the wed for an exalation of steelleas stocking in the Sacramento River. Two sportsmen's orgatzations. ('aliforniat
 fome led to the fish at the hatwhery ame amateded one thomsamd doilats over a fivegear period to fishermen who retmend tars to the bepart-

 Moritian. The United Shales Fish amd Willlite Seviee trapmed and spawad adnlt steellomed in Battle (Geek and reated the resulting young to yarling size at Coleman National bish llatchery on the same stream. 'fhe Department of fish and (iame paid a small part of the food costs fur waring the lish, marked the yenlings, menased them, and walnated llo redurns.

SACRAMENTO RIVER SYSTEM

The ('entmal Valley of Califormian is roughly 400 miles long by tio miles wide: It is hordered loy the Siema Nevala and the Cuscade Range on the east, the Coast Ramges on the west, the Klamath Mountains and the Cascate liange on the north, and the Tehachapi Momatains on the sonth. 'The two prineipal rivers of the Central Valley are the Sacramento and San Joanin. These fwo rivers, along with their many tribnLaries, form the largest strean system in Catifornia. The Sacramento liver drains the methern pirt of the Valley, and the San duatuin drains the sombern part. 'lher flow towards eath other able merge iat the Sueramento-Sim Jomgin Jelta, a maze ol hevied chammels ame seaLevel istameds. The ambined waters then llow into Suism Bay, San

 miles downstream and some teo river miles livom sam liranciseon the inlant river is joined by Wagon Valley Creek, a springr-led strean urigimating mear the somithwest hase of Momint Shasta. From the stand. point of both water supply ame fishory resourees, the Sacmmento, above
 the (emtral Valley. This is the section with which this "oott is pio-

has been designated as the "fower Samamento" :and the portion between the month of the Feather and keswick Dann as the "upper Sacramento".

Since the completion of Shasta and Keswiek dams, the upper Satramento has been harnessed (Figure 2). Keswiek Dam, located about five miles above Redding, presents a eomplete block to anathomons fish migrations.
Between Redding and Itamilton City, a stroteh whioh inchules the prineipal steethead ampling area, the Saramento liver drops 350 foed in 96.4 miles, an aworage of :3.f fere per mile. In the 17.3 -mile strenth betwern Redding and Red lindi, the average gradient is $4 . t$ leed per mile.

Shove damilton (bity the Satramento is a rather wide, moterately swift stream with alternating long, free-lined pools and short pravel rifites. During nomal flows it varies in width from (i0) fere in some of the pool areas and at a few rifles down to e200 feet in many narowe sections. It is even less than 100 leet in some chamels. The atorage widh is probably between 350 and 400 foed. There are liow plates where "white water". similar fo that found in the Mrkenzic and Rogne rivers of Oregon, may be encountered.
In the 79 -mile section between Redding and V inat there are numerons rifice areas of widely varying sizes. Nearly all are fished for sterlheal durine the fall months.
The daily mean flow of the Samamento River at Red lant during most of the year, exeept in periods of heasy rmonf, is usmally less than 11,000 enbie feet per second. During the fall months it is usually. between 5,000 and 7,000 eubic feet per second. The maximmon daty diseharge at Red Blaff (1902 to date) ocemred on Febmany 28 , 19-f0, when 291,000 enbie feet per second was recorded.
'The primeipal tributaries in the upper river system, insolar as steel head fishing is eoneerned, all enter the valley from the cast; they are Mill, Deer, and Battle ereeks. Many smaller tributaries are also used by steelhead for spawning, and limited fishing takes plare in most of them.

SACRAMENTO RIVER STEELHEAD

Adult Migrations

1)uring the course of the stuly, a series of large wire fyke traps was operated in the Satamento River just abowe the month of the Feather River, near Fremont Weir. These braps were operated to examine seat rim sterthead for fin marks and fo hag fish for population and sport (ateh estimates. (omsifuction and operation of the traps has beron dess ribed by Hallock, Fry, and La F'amme (1950).
PThe time pattern of the migration of seatron sterelheat into the upper Sacramento Raver was deformined as a by-prothet of the oper-

 the pattern of migration hat beren establisherd, and the traps were opere ated each year therealter only from July matil the onsed of high water, sometime in Joeember.

It was found that steelhead migrate into the upper Sactamento River during most months of the year in one continuous run (Figure 3). Each season the first of the migration passes the mouth of the Feather River in July. The run in 1954 and 1955 was continuous until the middle of the following March. In 1954 very few, if any, adult steelhead moved from the Delta into the upper Sacramento between the middle of Mareh and the middle of dume. The bulk of the rom passes the Feather River between early Kugnst and late November, and hos peak of the migration usually oecurs near the end of September.
Above the mouth of the Feather River, most of the carly migrant steelhead remain in the main stem of the Sacramento until about the middle of November or until flows increase sufficiently in tributary streams to encourage ingress. During October and November they concentrate on riffles occupied by spawning king salmon, Oncorhynchus tshawytscha (Walbaum), and near the mouths of the larger tributary streams, principally between Hamilton City and Redding. Usually by the middle of November rain has swollen the entire river system, permitting the steclhead and the salmon which have not already spawned to fan out into spawning areas of the numerous tributaries.

Immediately after spawning, most steclhead start the long journey back to sea. During Mareh and Λ_{p} pril, spawned-out steelhead are particularly moticeable in catches along the upper Sacramento River. In May they are also in evidence in rood quantities in the SateramentoSan Joaquin Delta. As late as 1957 commereial gill netting for American shad, Alosa sapidissimia (Wilson), was permitted in the J)elta during Λ pril and May. With the mesh sizes employed it was almost impossible to fish nets for shad without catching steelhead as well. The catch of steelhead in commercial nets was particularly noticeable in the spring of 1955 , when shad fishermen sent in 36 tags. All tags were from steclhead that had been tagged during their spawning migration the previous fall.

Juvenile Migrations

An attempt to determine the time pattern of the juvenile steelhead migration past the mouth of the Feather River was mate by trapping. This method proved unsuceessful, because insufficient mumbers of fish were captured. IIowever, in the upper river all evidence indicates a heavy seaward migration of yearlings in the spring and a much smaller one in the fall. Creel census work also showed an increase in numbers of juvenile steclhead in the upper Sacramento in the late winter and early spring. It is thought that this periodic influx of small fish represents the ammal hordes of juveniles moving ont of the tributaries towards the sea. This conclusion is verified to some extent by the results obtained from the operation of a downstream trap for juvenile steclhead at Clough Dam on Mill Creek. It was found that young fish migrated downstream during most months of the year, but the peak periods for yearling and two-year-old fish were reached during the first heavy rumoff of fall and again in carly spring. Λ similar situation was found to prevail in California's eoastal streams (Shapovalov and Taft, loc. cil.). However, the migration in the Sacramento River appears to be a little 'ier than in Waddell Creck, where the coastal study was made. Sacrai to fish are known to be moving seaward in good quantifies as carly as February, a month carlier than most Waddell Creek

fish. When released in the spring, hatehery-reared steelhead of a size larger than 10 to the pound usually move downstream rapidly. This was first observed in 1955, when fish averaging seven to the pound were released at Princeton Ferry in January and several were landed by striped bass fishermen three weeks later at Sacramento, 112 miles downstream. In 1959, fish averaging seven to the pound were released in Mill Creek, about one mile above its eonfluenee with the Satramento, and within an hour were spilling over a shallow bar into the Satramento River.

Age

Ages of Sacramento River steelhead were sampled by reading seales from 100 fish. Scales used in the age study, and later for caleulation of growth in length, were selected to include all size groups from the scales of 400 steelhead trapped in the Sacramento River near the mouth of the Feather River during the fall of 1954 . They do not inelude hatchery fish.

Examination of the scales revealed that 70 of the 100 fish had spent two years in fresh water before entering the ocean, $2!$) had spent one year, and one had spent three years. Included in the 100 seale samples were seales from 17 two-year-old fish, 41 three-year-olds, 33 four-yearolds, six five-year-olds, two six-year-olds, and one seven-year-old. The two-year-old steelhead had spent one year in fresh water and one year in salt water. Thirty (73 pereent) of the three-year-ohd fish had spent two years in fresh water and one in salt water, and 10 (24 percent) had stayed one year in the river and two in the ocean. Twenty-sin (79 percent) of the four-year-olds had lived two years in fresh water and fwo years in salt water.
The age distribution of Sacramento River steelhead populations is somewhat similar to that in Califormia's coastal streams, but the percentages of older fish are much smaller in the Sacramento than in Washington streams. For example, Pantzke and Meigs (1940) found that of 100 mature steelhead canght by anglers in (ireen River, Washington, 13 were threc-year-olds, 60 four-year-olds, 23 five-year-olds, and four six-year-olds.

Spawning

Steelhead spawning extends over a period of several months and may take place any time from the latter part of December throngh Λ prii. February is usually the peak month for taking stechead erors at Coleman Hatchery. They spawn in practically every tributary of the upper Sacramento River and appear to do so in mumbers more or less proportionate to the amomit of rumoff. large streams such as Mill, Deer, and Battle ereeks have the largest runs; smaller streams are used by fewer fish. Aetual numbers of steelhead spawning in the main stem of the Sacramento River and in most tributaries are unknown.
Examination of the steellical seale samples collected diuming the fatl of 1954 revealed that 83 of the 100 fish were spawning for the first time, 14 for the seeond time, and two low the third time, (home fish, a 27.8 -inel mate, was spawning for the filth time. These lindings are similar to those of Shap...alov and Taft (loc. cil.), who found that of 3,888 adult steelhead tri: $\quad 1 \mathrm{in}$ Waddell Creek, California, 15 percent were spawning for the second time and 2 pereent for the third time. However.

Meigs and lantzke (1941) found that in Green River, Washington, only 5 percent of the mature steelhead eaught by anglers in 1940 and 6.9 percent in 1941 were spawning for the second time.

Size

Sacramento River steelhead are generally smaller than those found in other (Galiformia streams, exept, the khamath River. During the sis vars that the traps were operated near the mouth of the beather River, over 19,0)0 steethead were eaptured. Fork length measurements were mate of 18,671 . of these fish. The measurements showed that during most years there was a bimodal length distribution; one mode was 15.5 inches and the other 20.5 inches (Figure 4). The smaller fish consist principally of age elasses which have spent two years in fresh water and one year at sea. The larger steelhead are primarily fish which have spent two years in fresh water followed by two years in the ocean. Inchuting lengths of all fish measmed, the average size of a Samemento River steelhead was fomm to be 18.1 inches in fork length, with a rather large standard deviation of 3.4 inches. Omitting fish under 14 inches in length, a good portion of which are apparently seaward bound instead of aseending the river, the average length becomes 18.7 inches.
Sacramento stechead average about three pounds in weight. Fish up to eight pomids are common, while those over 13 pounds are rare. The largest steelhead recorded during the study weighed $1.5 \frac{1}{2}$ pounds.

Growth in Length

Data presented on growth in length of wild or natmally-produced steelhead were obtained from the examination of seale samples and inelude calculated lengths based on scale measurements, as well as lengths seemed at the time of capture. All seales were taken from fish trapped in the Saeramento River near the mouth of the Feather River. The seale samples were removed from steelhead ranging from 11.0 to 27.8 inches in fork length. Scales were removed from an area between the lateral line and dorsal fin on the left side of each fish. Λ few scales in each sample were inspected with the aid of a binocular microseope, and those without regenerated eenters were washed and mounted on glass slides in elear Karo syrup. The mounted seales were examined with a microprojector at a magnification of 40 X . The eenter of the foeus, each anmulus, the margin of the seale, and the point at which the fish entered sall water were marked along the edges of white cards. The distance between these points were measured to the nearest millimeter and recorded on the ratds. All measurements were made in the anterior fied of cach seale, along a radial line which was perpendicular to the anterior edge of the maseulptured posterior field.
Of the 100 seale samples originally selected, only the 83 from steelhead on their first spawning migration were used to determine the reladionship between fork lengh and anterior radins of the seales, or bodyscale relationship (Figure 5). The fitting of a least spuares line to the means of lork lengrlas, gromped by one-inch intervals, and means of the eorresponding seale radii, yielded the following equation.

The following formalit then was used for a more aceurate caleula1.ion of fish lengths (Lagler, 1952) :

$$
L_{1}=\frac{S_{1}\left(L_{2}-1.04\right)}{, S_{2}}+1.0 t
$$

Where:
$f_{1}=\mathrm{J}$ gnith of fish at any ammulus
$N_{1}=$ lacight of seale at any corresponeling ammulus
$L_{2}=$ Length of fishat athplure
$S_{2}=$ Length of scale radius when seale was taken from the fish.
Calculated fish lengths were obtained by substituting average seale measurements in plate of measurements of individual fish in the preeeding formula ('Tnble 1). This prowente eliminated the necessity of ealculating the growth of individual tish (Van Oosten, 1953). In wild steelhead the greatest immal length increment oceurs diving the first year of life in the oecan. Most of the stechead seales showed some "intermediate growth"-growth formed during the season of migra-

Ase of return ing adules*	Nunber of fish	Tear of life															
		1		2						3						4	
		$\left\lvert\, \begin{gathered} \text { Anaual } \\ \text { lencth } \\ \text { line:entrent } \end{gathered}\right.$	Leneth at end of year	Intermediate length increntent	Length When entering salt water	Salt water length increakent	Annual lencth increment	Lengtls when saptured	Length at end of year	Intermediate length increment	Lencth when entering salt water	Salt water length increment	Annual length inerement	Length when captured	Lengith at end of year	$\begin{gathered} \text { Annual } \\ \text { length } \\ \text { increment } \end{gathered}$	Lensth when captured
1,1	17	4.5	4.8	3.2	8.0	3.0	* 5.2	13.0									
1/2	10	4.5	4.5	2.4	\% 2	0.0	8.4		13.2			7.3	**) 3	20.5			
$2 / 1$	30	4.2	4.2				3.6		7.8	1.2	0.0	7.0	***	16.0			
$2 / 2$	20	3.7	3.7				3.4		7.1	1.3	8.4	5.1	0.4		16.8;	${ }^{* *} 0.5$	23.3

tion to the sea, prion to smber into salt waler. lish which hath spent two years in fresh water showed smaller amounts of intermediate growih and entered salt water al a greater lengeth than fish that had spent only one yeat in fress water. This indicates that the two-year stronat fish, haviug allained a larger size, migrated to sall. water at

 nine inehes. 'Ine considerable amoment af intormediate growh shown by most clownstream migrants was probmbly acepuired during their journey of about 240 miles to braekish water plas an additional 80 miles finough brackish and salt, water before entering the ocean.
Siteramento River steelleand grow Paster in fresh water ame slower in salt water than steelhead from Green liver, Washington. Growth shadies by Meigs and l’antze (loc. cil.) showed that Green River steelhead reached mean total lenerths of 3.4 S inches by the end of their first your in fresh witer and di.50 inelies by the end of their second yeme. Green fiver downstream migrants entered salt water at a mean ional length of 8.43 inehes. In Washington, mature steelhead attained mean total lengths of 18.54 inches alter one stmmer in the ocean and 95.68 inches after two summers in the ocenn.

Length-Weight Relationship

1)uring the period from August 1 to Novemher 20, 1956, forle length measurements and weights were taken of $48+$ steclhemd trapped in the Sarramento River near the month of the Feather liver. These fish ranged from 12.5 to 27.2 inches in lengith ant from 14 to 172 omnees in weight. I'lie lengih-weight melalinnship entre was fitted to the aver-
 of hengh. Baikh length group was represented by five or more fish. 'lle rehalionslif helween weirgt in onnces and fork length in inches for sleelhead from the Sacramento River is expressed by the equation:
$\log W=-2.205+3.063$ Jogr L
Whare:

$W^{\prime}=$ Weight. in omens

$L_{t}=$ Fork lengthin inches.
'Ihe length-weight relationship curve is slown in Figure 6. In general, there is good agreement between aremges of actual and ealenlated wrights. The data were not separated according to sex, malurity, of life hisiory of the fish.

METHOD OF EVALUATING STEELHEAD STOCKING

I'losplan for evaluating steelhent stoeking was to relense large num-
 liiver and then determine the mumbers of sea-run atults produced, their cost, and their contribution to the matural mas and to the fishery. No attenipt was to be mate to evalnate nuy contribution to rans of adnlts whith may have been derived from matural reroduction of hatchery fish.:

Figunp 6. Length-welght relationship of Sacramento River steelhead. Lengths and welghts were obtained from upstream migrants trapped in the Sacramento miver onehalf mille above its confluence whth the Feather Hiver, near Fremont Weir. The curve is the graph of the length-weight equation the dots represent averak

Adult stechead were trapped on their spawning migration in Battle Creek and spawned artificially. The resulting young were reared to approximately one year of age, marked by clipping off various combinations of f and released in the upper Sacramento River system, ordinarily $\&$ ng their normal seaward migration perioct. In this report, the words "markine" and "fin-elipping" are nsed interehange-
many ats possible were trapped in the fower Sacramento liver and examined for marks. All fish in good condition were tagged and allowed to proceed upstream. The site selected for adult steelhead trapping was such that population estimates and other data for the most part apply only to the Sacramento River system above its confluence with the Feather liver, and in partieular exelude the Ameriean and Feather rivers. Examination of large numbers of fish showed the perentare of the rum which consisted of hatchery fish, but did not reveal their total iumber. Since it was impessible to trap all of the steelhead. in order to find out how many hatehery fish were actually in the rm cach season it was also necessary to determine the total size of the rini. This was done by a tag and recovery method. The key to this evaluation, then, is the ammal adult steethead population estimate. and each years determination of the total mombers of sea-rum hateher? fish in the rum is only as atecurate as the computed total population. The sport eateh of both wild and hatchery fish is estimated from the numbers of tags returned by sportsmen. Costs involved in rearing and stocking the fish, as well as fishermen expenditures, were applied to present a picture of the economics involved.

The original plan ealled for three amual releases, commencing in 1953, of approximately 200,000 marked yearlings or a total of 600,000 fish. The five years following the last release were to be used for eval mating the returns of adults. Field work for the study would then ter minate in 1960. Howerer, this plan was altered when it became apparent that the observation period following an ammal release of marked fisin cond be shortened somewhat without materially affeeting an eval nation of the results. Therefore, the plan was changed to consist of four ammal plants of marked fish and an evaluation period to extend only two years beyond the last release. Thus, the project field work was terminated in the winter of 1958 , instead of the original target date of 1960 .

POPULATION ESTIMATES

As previously stated, a tag and reeovery procedure was used to determine the size of the steelhead population in each year. This method of population estimation requires that a known number of fish be tagged at one point along their migration route, and allowed to proeced upstream. From the ratio of tagged to tminged fish observed in fie river system above it is possible to compute the size of the spawning rin, provided that this ratio is representative of the entire population.

Trapping of Adults

The preyiously mentioned large wire fyke traps were operated in the Sacramento River just above the mouth of the Feather River, near Fremond. Weir, to sample adnlt stechead populations migrating into he "pper Sacramento, so that large numbers eomble be ohathed for agging and could be examined for fin-clipped hatchery lish ($\begin{aligned} & \text { igure } 7 \text { 7 }\end{aligned}$. This trapping site was not ideally located for a tag and recovery type population estimate because of its great distance from the tag recovery area. However, the seven thaps used were very effec - in eapturing arye numbers of adult steelhead. The percentage the total rum (ranoed cach seasom varicd from 10) io 20 and averaged about 16 .

Figuns 7. Jemoving captured steelhead from a wire fyke trap. Seven traps werd
operated each season in the Sacramento Jiver onc-half mile ; bove its conllance with the Feather River, near Fremont Welr. Photograph by Nichard J. Hallock, Oetoler 952.

Captured fish were in excellent condition, even when left in the traps as long as three days. During the six years from 195:3 throurh 1958 , a total of 19,404 steelhead was trapped, including 17,085 fish 14 inches and over in fork length and 2,319 under 14 inches.

The traps were only slightly selective with regard to sizes of steelhead captured. When the run consisted of a large number of comparatively small individuals, a greater pereentage of the total rim was captured. Λ good cross section of the steelhead populations was trapped each season. This was indieater by eomparative ratios of tagged fish observed each season in several areas above the trapping site.

Tags Used
Since this $; \quad$ it a report on various types of fish tars, let it suffiec to present as. i deseription of the two tags used with equal suceess,
to the determination of the best location lor attaching tags to a stedheal's body (Figure 8).
A majority of the steelhead were lagred with Petersen disk tags (Calhom et al., 1951). The individual disks were made of laminated cellulose nitrate, one-half inch in diameter and 0.040 inch thick. Nl though the printed legend varied somewhat from yat to year, the disk for one side of each fish was inseribed with a number and a request that the tag be sent to a designated office of the Department of Fish and Game, while the disk on the opposite side of the fish was plain A small number of tags were attached to fish with tantalum wire, but Variously mbority of disks were fastened whe stambess steel wire all with blark lettering and mumbering. After considerable oxperi mentation, if was fonmed that the best results were obtained by rumeng the wire through the fish's body just under the anterior portion of the dorsal fint.

The second type of tar used was the tubing or so-called "spaghetti tar" (Collyer, 1954). The ontside diameter was generally about (0.(1)5 inch. The tubing was made of a vinyl plastic. This plastic is now known to be carcinogenie to rats (Oppenheimer ot al., 1955). Howerer, though probably not made of a desirable material, the tubing tags did serve the purposes of the study, and no ill effects were noted insofiar as tag

anding tak in place on a B , attaching

returns were concerned. When first used, a mumber and return address were inseribed on the tubing itself, but after the first season a Petersen disk, with an inseribed legend, was erimped around the fubing. 'Tubing tags were attached through the body of the fish just under the posterior section of the dorsal fin.

The effectiveness of the two types of tags was about egnal and no significant difference in returns by anglers was ohserved.

Effective Numbers of Fish Tagged

Population estimates were made during each of the six seasoms, 1953 through 1958. During this period 16,192 steelhead, an average of e, 2999 a year, were tagged. All tagred fish did not migrate upstream immediately following release. Many were landed by anglers below the fagging site, particularly at the mouths of the Smerican and Feather rivers. Others were canght farther downstream and in the Delta by both commercial and sport fishermen. Some tagged steelheal entered the American and Feather rivers and were recovered at varying listances from the Sacramento. In all, 478 tags, an aremare of 80 a year, wore reeovered below the tagging area. Of these 478 tags, 79 were taken from fish smaller than 14 inches in length and 3999 were laken lonn fish it inehes and over in length. Of the lags attached, only seven were reoovered in the ocean, all off the California const. ,

In order to arrive at the "effective" number of targed fish released each season, those recovered below the trapping area during the season in which they were tagged were subtracted from the total targed that year. A close examination of the tagging and recovery data also revealed that, although a considerable momber of steelhead moder it inches in length were tagred, and although fish as small as 12 inches migrated from the Delta into the upper Sacramento, relatively lew of these small tagged steelhead were observed above the trapping areat Anglers landed a much higher proportion of these fish which were tagged when under 14 inches in length. In addition, almost half of the small tagged fish caught during the season of targing were landed below the tagging area. This indicates that many of the smaller fish were actually migrating seaward and were mavailable to the upper river steelhead fishery until the season after tagroing. Therefore, all tags attached to fish under 14 inches in length were also subtracted from the total tags attached each season in order to arrive at the "effective" number of fish tagged. Population estimates are thus for fish 14 inches and over in length. Therefore, the population estimates are minimal, since unknown numbers of small fish have been eliminated. The computed returns of sea-rom hatchery fish also become minimal, since some marked fish were less than 1t inches lomg.

Examination of Steelhead Above the Tagging Site

In order to find out what percentage of the rinn hand beron harged, and to determine the ratio of marked to ummarked fish, as many steelhead as possible were examinel in the upper Sacratmento River system each fall and winter during and following the tagering periobl. Sleelhead were exam ${ }^{\prime}$ in Mill Creek at a counting station on (Hough Dam (Figure 9, 1 the Coleman hatehery holding ponds on Battle Creek, in the Keswick Dan fish tran on the umoer Samemonto -.... i.. 1 th..

Figunn 9. Min Creek Counting Station. A, nerial view of Clough Dam, showing t , fishway and house trailer which is used as a residence by the fish counter; B, el ator type bottom used in trap, so that eaptured fish could be raised for betce
ng: c, trap in use, showing how steelhead were rased to examhe them for marl and taks; D, the trap in lishing position in the fishway. Photographs by John E. Rigy
course of creel census work along the Sacramento and its tributarit between Meridian and Redding. During the six years in which popul: tion estimates were make, 15,57 !) steelhead 14 inches and over in lengt were examined above the taroring site. Of this mumber, 1.888 had bee targed during the season in which they were reoovered. Ineluding bot fish trapped and fish observed above the trapping site, one ont of ever four adult steelheat in the population was hamdled each season i: Those making the sturly:

Method of Computing Population:
Two methods of computing the steelhead populations were consi
the Petersen method (Ricker, 1958). Since both are standarel twelniŋnes, they are deseribed herein only brielly.
The use of tagging data to provide statistics on populations of fish generally implies that (1) either the tageing or sampling alter tagering (or both) is done at ramdom, (2) tagerel fish suffer the same mortality as untagred ones, (:3) tagged fish do mot lose thoir tars :and, (1) tamed fish are as vulterable to the fishery as motagred omes. However, shanefor (1951) takes into account the possibility that steelheal (or any other species of fish) may not necessarily be a single, homogeneous, completely mixed population, and the "mixing" of these fish between the time and place of tagging and that of subsequent sampling may not be complete. To reduce errors which might be introduced into population estimates, due to the probability that all parts of the population may not have the same tar ratio or to the probability that the inclusion of a given fish in a sample is a function of the time of sampling and the orefore a function of the time of tagring, the tagging and recovery data are divided by Schafer into convenient periods of time dming the season. This provides an estimate of the popmation present in suressive lime intervals, both at the tagging site and in the reoovery arrat, as well as the total population, or the sum of the interval estimates. However, when either the tagging or the sampling is "miform', and the probability of a fish being tagred or recovered is constant, the more rumbersome formula proposed by schacfer for computing fish populations (pmposely omitted since, as will be explamed later, it was not used) reverts to the simple l'etersen formula:

$$
N=\frac{M C}{R}
$$

Where:

$N=$ Size of the pepulation
$M=$ Number of fish tagged
(! = Number of fish sampled
$R=$ Number of tagged fish in the sample.
In general, the Petersen formula for calculating fish populations tends to approach the correct size of the populations more closely as the sample size is increased. If either the targing sample or the reoovery sample is random, an unbiased estimate of the total population can be obtained. If both tagging and sampling are selective, the estimate may be biased. In effect, when all parts of the population have the same tag ratio, it makes no difference whether or not subsequent samples represent various parts of the population equally. In addition, if the population is randomly sampled after tagring, so that the probability of a given fish being sampled is not a function of time of sampling of time of tagring, any uneven distribution of tags due to the time of migration will have no effect.
Chi-square tests were applied to the tagring and tang reeovery data to compare the size distribution of all fish which were tatred with the size distribution of the samples of tagered fish reeovered in fraps at Clough Dam, Keswick Dam, and Coleman hatchery, and in ereel censuses on the ramento River. Combination of the recovery data obtained at all a localities revealed signifieant diserepameies between
gories. Analysis of tag recoveries from eneh location revealed that only The ereel census data exhibited the expected distribution of tags by size groups, Chi-square tests were also made to determine whether or not fish examined at the fonr localities showed a consistent ratio of targed to mataged individuals. This was dome by desting the recovery samples against the border totals, statistically signifeant difieronees were fomb in the dag ratios at the fond localities during five of the six years amalyzed. (Slough bam and (Goleman hatehery showed the least miform tag ratios; usually more tags were observed than expected at Clough Dimm and fewer at Coleman hatchery. These tar ratios were statistically inconsistent, even thongh ammal differences between percentages of tags in all recovery areas varied from only 3 pereent in 1957 to 8 pereent in 1956, and areraged 5.7 pereent. IIowever, sampling over a large area, as was done in the Sacramento River system, as well as examimation of fish thronghont the entire season, would tend to compensate for diserepancies in tag ratios between areas when computing population estimates.
A similar problem of inconsisfeney between tag ratios amd the distribution of tags in the recovery samples was noted in the computation of sockeye salmon (Oncorlynchus nerlaa) populations (Howard, 1948). Chi-square analysis of the sockere sampling data demonstrated signifieant differences in the tag ratios with respect to time. area, and sex of fish. However, the over-all tag ratio gave an accurate measure of the population. In the case of the sockeye salmon, where the tag recovery was from dead fish after spawning, the numerous canses of variations in numbers of tags recovered compensated one another, provided that the sampling was complete with regard to both time and area.

The $195(\mathrm{i}-57$ steelhead tagging and tag recovery data were submitted to both the Schacfer and Petersen methods. The resulting population estimates were nearly the same. This was not surprising since, as was revealed in tabulation by the Selaefer method, the probability of a fish being tagred as well as being recovered remained fairly constant throughout most of the season and, as previously stated, under either of these conditions the Sehaefer formula reverts to the Petersen formula. Because the two procedures produced similar estimates, it was decided to abandon the more time-consmming Schaefer method, partieularly since the population sizes entering the upper river were not being sought on a time basis. Instead, a slight modification of the method proposed by Petersen was adopted. With ordinary or direct sampling, when the size of the sample or samples is fixed in advance or is controlled by fishing sucess, ete., the Petersen formula tends to over-estimate the true population (Ricker, loc. cit.). Therefore, the following modified Petersen formula proposed by Bailey (1951), which aceording to Ricker rives an almost mbiased estimate, was used to complite th: sterthead populations in this report:

$$
N=\frac{M(C+1)}{R+1}
$$

1) uring the six seasons $1953-54$ through 1958-59 th
lult steelhead population in the upper Sacramento River averaged \& of fish (Table

Shortly after the study began there was some doult ins to whether or not the smaller fish being captured in liatule Creek fon spawning purposes hat been to sen. 'To be eertain ol this point, salas were laken and examined for ocenn growth before any fish were used for spmoning. Only those known to be sea-run fish were spawned. 'Ilis was done for the 1954 and 1955 brood years. Adnlts from sulseronent puns were spawned on the basis of size, since scales liom virlatly all fish over 21 inches in length showed ocean growiln.

Marking

The 1952 brood year steelleat were marked in the fall of 1!55, sereral months before they were released. Ihas mecessilated a reoomat at. the time at planting. Fish from most sumereding brow vars were:

Fimute: 11. M.

ancesthetized before being marked. Anestheties used inchuded urethane
 melhamesulfomate). Mose fish were marked with the aid ol M. S. exe. Chloretone was used only sparimply during one season. The use of
 moperties (Wood, 195(i). diah ot the anestheties worked satisfartorily
 erty exposed to the anesthediging solution. lisnally about la women
 fislo wore sampled daily lou rorrenthess al matks. 'The marks were not repented oltener than every other year.

Grading

 maximmongrowlo abd on provent cambibatism. A stamdard Morton fish grader, eapahle of separating fish into five size catergories simultaneously, was used. (irading was done liree times dariner the period that carh brood yeat's fish remained at the hatehers. 'Ther were first divided.

 summer and usually aquin in the fall they were graded into four siza
 inehes. If he fish were lailly miform in si\% in the lill. they weri separated at that time into only three size gromps instead of four. 'fla fish were wot graded arain at the time of marking. except for the 195'? broud year fish, which were matked in the fall. The fish to be given separate maks were seleted from the prevonsly-grided gromps, often
 cymal-sized individnals. I'lue lish were hamd wombed and the tomal weight of cand marked lot was obtained at the time of release. At the lime of slocking. length measurements were also taken of representative samples from cach lot marked (ligure 12).

Numbers Released

 was marked and released ('l'able 3). Only the (ifi3, 2to fish fin-elipped during the first fone yous were marked as part of the evaluation pro-
 progran initiated in 1957 by California Kamlongs. Ine. and Simelhend

 twen hatelery and naturally-produred fish during the list fwo yours of the evalnation study. It was also hoperd that some substantiating chata
 alion of redurns would be limilal ly lime.

Area of Stocking

In 195,3, the first year that stectheat were relensect, there was only one sige gromp and all fish were given the same man: we were split

 ng lish lito the channel which connects the hatchery hold
mento River at Ord Ferry and Princeton (Figure 13). This rather widespread stocking was carried out to get some idea of what returns of adults might be expected from releases of yearlings sulpjectecl in part to the summer "trout" fishery, or at least stocked in the trout fishing area. Creel censuses on the opening day of the 1953 trout. season at Battle and Mill erecks slowed that all of the sloeked steelhead had not migrated to the sea. Many limits and near limits of marked fish were laken. Therefore, since the principal evaluation wis to be made on the basis of adnts produced from releases of known numbers of yourlings, all steellead planted between 1954 and 1956 were storked in the Sarrat mento River at Prinectom, some 110 miles downstrean from the momath of Jatele Creok. गhis is below the gemeral trout fishing area. Vary few yearlings were eanght prior to entry into the ocean when liberated in this portion of the river. During the spring of 1957, when the secomed cooperative enortsmen's steelhead stocking program was started, marked fist re relpased in the Samamento River at. Princeton and

TABLE 3
Hatchery-Reared Steelhead Released in the Sacramento River System

Aldurcilathens
manxllary.
Redding jund also in Mill and Battle creeks. As in 1953, catehes of marked juvenile fish were so great in the upper river system that all fish released.in 1958 ngain were stocked at Princeton.

RETURNS OF SEA-RUN HATCHERY STEELHEAD

Since sport fishing for steelheat was permitted below as well ats above
 mento were lowered by an manown platmity lamed by dishermen in the lower river and Dela. No suceessfal eftort was made fo determine ailher line mmbers of hateshery stembead in the rum, or the hamdings by fishermen below the trapping site. Only a minot steelleat sport fishery exists belon the eity of Satramento, and most of the fish eaught ans landed by striped bass ingerers. Itowever, between Siceramento and the trapping area large numbers of steellead are landed low sport fishermen: partieulaily at the mouths of the American and F aer Rivers. Whe former eonmercial frill net fishery for salmon in the leata nso took cons.

 and observations. 'This fishery was abolistaed at the emd of the 19as season by the State Lerislature.

Since redurning fish bearing the same fin mark were at least two years
 hatelaery fish imto their moper brood vears was de vised. Ihtis couht have been atecomplished by taking seales from the manked fish tralped and detemining their ages; however, this proedture would have been rather time consuming. Instean, iclentienlly fin-elipperl fish were established in correet brood yaus by lougth measurements, a procelure which almost aminated the meressity of serale rembing ('Table f). Nest of the fin-
 1055 identieally marked fish from two brood yans (1952 and 195.4 returned kogedher from the sea for the first time. Fork lemeth meinaremonts of these fish revented two distinet size groups. 'Theongh the folowing years, eontimed measurements showed that there was practically mis overap in lengths of identioally fin-clipped hatehery steelhear, so long as the mark was mot momed oftomer than evory other brond year. Among the three- and fom-your-old marked fish. however, there were a few whose lomarlis were sublt that seales were read to be eretain of the brool yeat.

The examiation of stedhemt trapmed in the lower Sarramento liver movided miny the perentage of the entire run consisting of hatehery fish; the total mumbers of hateliery fish in the rum were calemated by muliflying the total pomiation by the perevonge of manked tish observed in the traps.

Methods of Presenting Relurns

Dila on survival of yearling stembend to time of return as sear-un malts miay he presented in several ways. Three methods are used in this report:

The most common method is fo eompare the mombers of yearlings released in a river with the numbers of sea-rim adnles refirning in sulsemuent reans to that river. lieturus of adults resulting from releases of varionsly-sized fish provide data on the hest size of fish to stock. Retmons from fish planted at dilferome seasoms of the year reveal information on the best times to stork. In some instances release of fish at difterent locations in a river system may provile atelidional informalion on stacking lomalites which result in the best returns. 'Phere are, of course, several combinations of fish size, amd time nul plate of re-
 a particular return.
Λ seeond method is to compare the mombers of aldult sted for artificial spawning with the mumbers of sen-run adults produced. 'I'le returns permit a simple emparison betweon the edticieney of arti-
 bhown.
Λ ditat method is to compare the mombers of steellome used for arlifiecial spawning and/or mumbers of yourlines releaseal with the resulting mumbers of sertrun hatehery fish taken by sorglers. 'lhe first two methods show the numbers of sen-rim sleelhemi i in the population by artificial propagalion (poriding il is not just arplarement),

TABLE 4
Lengths of Sea•Run Hatchery Steelhead Returning to the Upper Sacramento River. The Length Measurements Here Made of Marked Fish Captured by Trapping in the Sacramento River, One-Hall Mile Above its Coniluence With the Feather River Near Fremont Weir, and Illustrate the Reliahility of Separating Steelhead From Different Brood Years on the Basis of Length Alone

Item	Brood year	Date of relense	Approximate ape at time of reluase (months)	Number per pound at tinte of release	Number and length at time of release	Returning Sea-Run Steelinead					
						1953-54	1954-is	1035-36	1936-57	1957-58	105S-39
Ad-RV \qquad Number measured \qquad Range (inches) \qquad Average fork length (inches) Standard deviation. \qquad	1952	$\underset{1953}{\text { March and April, }}$	13	8	$\begin{gathered} 1.114 \\ 3.1-13.7 \\ 0.0 \\ 2.0 \end{gathered}$	47 $14.4-19.3$ 16.2 1.1	977 14.8 .25 .5 20.0 2.2	$\begin{gathered} 11 \\ 90.2-24.3 \\ 23.3 \\ 1.2 \end{gathered}$	$\underset{\substack{9 \\ 25.0-95.9 \\ 95.4 \\ 0.6}}{\substack{ \\\hline \\ \hline}}$		
Ad-RV \qquad Number neeasured \qquad Range (inches) \qquad A verage fork length (inches) Standard deviation \qquad	1954	Feb., 1955	11	20	3.488 $1.7-7.9$ 4.3 1.0			35 $11.3-16.5$ 13.3 1.4	$\begin{gathered} 94 \\ 13.3-24.5 \\ 19.3 \\ 2.4 \end{gathered}$	18.4	1 25.0
Ad-RV \qquad Numbered measured \qquad Range (inches). \qquad Average fork length (inclies) Standard deriation. \qquad	1950	Jan:: 1957	10.5	12	900 4.4 .8 .5 3.9 0.3					$\begin{gathered} 12 \\ 12.2-15.9 \\ 14.4 \\ 1.0 \end{gathered}$	$\begin{gathered} 41 \\ 15.7-23.4 \\ 19.4 \\ 1.9 \end{gathered}$
Ad-BV \qquad Numbered messured. \qquad Range rinchea). \qquad A veraçe iork length (inehes) Standard deviation. \qquad	1053	Jan., 1954	10.5	4	$\begin{gathered} .495 \\ 3.8-13.1 \\ 3.0 \\ 1.7 \end{gathered}$		$\begin{gathered} 74 \\ 13.1-20.0 \\ 15.7 \\ 1.4 \end{gathered}$	$\begin{gathered} 13 \\ 10.7 .25 .5 \\ 21.2 \\ 2.2 \end{gathered}$	$\begin{gathered} \frac{2}{24.0 .3 .5} \\ -3.2 \\ 0.4 \end{gathered}$		
Ad-BV \qquad Numbered measured \qquad Range (inches) \qquad Average fork lengila inches) Standard deviation.	1955	Dec.. 19:5	9.5	6	$\begin{gathered} 1.027 \\ 3.0-10.0 \\ 0.3 \\ 1.3 \end{gathered}$				$\begin{gathered} 3.21 \\ 11.9 .19 .4 \\ 15.5 \\ 1.3 \end{gathered}$.96 $17.5-2 \overline{3}-3$ 21.3 1.9	$\left\lvert\, \begin{gathered} 2 \\ 29.94 .1 i \\ 23.1 \\ 1.3 \end{gathered}\right.$
Ad-BV. \qquad Numbered thesurured. \qquad Range tinches) \qquad Average fork length (inches) Standard deviation. \qquad	1957	Dec., 1957	10	;	$\begin{gathered} 550 \\ 3.9-10.3 \\ 6.8 \\ 1.1 \end{gathered}$						$\begin{gathered} 12 \\ 13.0-18.0 \\ 16.0 \\ 1.4 \end{gathered}$

BY.-.-.-.-.-..............--	1953	March, 1954	13	18							
Numbered measured.					2,544	:	129	293	4		
Ranģe (inches) -					2.6-8.9		11.6-18.4	13.3-24.2	19.1-27.1		
Average fork length (inchea)					4.8	\%	14.3	19.9	22.9		
Standard deviation...------		-			1.1	-	1.2	2.2	1.8		
Br.............................	1955	March, 1950	13	10		;					
Xumbered measured...-...-					2.026	;			173	114	4
Range (inches)............-					3.0-9.3	,			11.3-16.5	15.6-24.0	20.7-24.3
Average fork length (inches)					5.8				14.1	20.8	22.0
Standard deviation.......-.-					1.2				1.0	1.6	1.7
BV...-.......................	1957	Jan., 1958	11	12							
Numbered measured........					1,198						10
Range (inches)					3.2-8.7						12.0-16.3
Average fork length (inches)					5.7						14.5
Standard deviation.........-					0.9						1.3
Ad-LT.	1954	Jan., 1955	11	7							
Numbered measured.......-					1,200					7	
Range (inches)....-.......-.					3.5-11.6			11.6020 .5	15.2-26.1	20.1-25. ${ }^{\text {a }}$	
Average fork length (inches)					6.8			12.6	$21 . \overline{7}$	24.0	
					1.4					1.0	
Ad-LV.-.-.-.-.----.-.-.-. -	1956	Jan., 1957	11	30							
Numbered mensured.-.-...-					750					5	18
Range (inches).............-					2.5-5.0					12.0-13.2	15.6-21.4
Averase fork length (inches)					4.3					12.7	18.0
Standard deviation.-.-.---.					0.7					0.5	1.4
Ad-LMax.	1053	March, 1950	13	22							
Numbered tneagureri.......--					1,216						
ye tinches) \qquad age fork lengith (incles)					2.7 .7 .8 +1.6				${ }_{\text {12, }}^{11.60 .13 .5}$	$16.7-24.8$ 20.1	$18.50-19.3$ 19.2
....udard deviation...-.-...-					1.0					2.1	1.0
Ad-LMax.	1957	Apr., 19008	14	0							
Numbered measured					285						
Range (inches) ------.....-					3.9.10.1						
A verage fork length (inches)					7.3						
Standard deviation.....-.-.-					1.2						

TABLE 4-Continued
ping in the Sacramento River, One-Half Mile Above its Confluence With the Feather Length Measurements Were Made of Marked Fish Captured by Trap-

INo first two medhots are presernted in this seetion of the report, and the thind is diseussed in the seetion on "Steelhead Sport Catels".

Relurns of First Time Spawners and Repeat Spawners

Dxamination of the seales of 175 marked hatehery steelhend showed that in the Saeramemo system the proportion of fish which spawn more than onde is math lower among hatrierergared indivituals than anomg
 fish taken in the river are on theive first spawing mighation and that messe, if mot all, of the remainder are on their serome. None were en-
 sample was hot large. Jy way of comparison a sample of 100 wild adults showed 17 repeat spawners (see pare 16.)

In this paper, each time a slochead retumed it was treated as a sepanate julividual on the basis that a fish which makes (wo spawning rums is exposed to the fishery twiee and, if it survives, spawns fwier. ete If each fish were treated as a single individual, regardless al its momber of spawning migrations, the resull. would be to lower the tolal momber
 eost of putting adult. sheclhead in the run by a similar amount. 'Ilacre

 disenssed later.

Comparison Between Yearlings Released and Sea-run Adult Returns

Juring the first four yours of the stmly, Gib3.240 marked yemrling steelhant were liberated. jrom these rebases. ineluling all signs of fish planted, there were 13, (055 sea-ron stembed returns to the upper river.

 aboblher way, it took aboit 50 averagesesed hatehery yeathings to pro-
 hemd had the same survival tate as hatehery fish, ath average of a lithe over $1,000,000$ jurenile sterlhead a year misprated ont ot the wine Simemamonto River during the study to mainiain the average rum of 20,512 idults.

It is obvious even after a quick ghane at Trable io that emsiderable variation exists in returns of adults from releases of fish of dilferent
 two main size rateronios, a somewhat different bieture is presomed ('lable: (i). Wish weighing cight to the pomus and larger resulted in an

 to the pound.
'Ihere is smoe varialion in the relanens of adnles liom the storking of
 1952 brood year fish were released in the upper Sacran, hiver and in two tributaries prior to the opening of the trout senss and because of the large cateloes of these manked lish in Mill and liattle "rereks be-

TABLE 5
Returns of Sea－Run，Hatchery Steelhead to the Upper Sacramento River System，Showing Numbers of Yearling Hatchery fish Released，Arranged in Chronological Order，and Calculated Percentages and Total Numbers of Adults Produced

table 6
Returns of Sea－Run Hatchery Steelhead to the Upper Sacramento River System，Showing Numbers of Yearling Hatchery Fish Released，Grouped into Two General Size Categories，and Calculated Percentages of Adults Produced

Mark	Brood year	Plare of release	Date of release	Number per pound	Average fork lenkth （inclies）	Number released	Percentage returas				
							First year	Second year	Third year	Erurth ：$\because=35$	Total
Fish larger than 10 ；fr pound Ad－RV	1952	Sacramento River Battle Creek Mill Creek	Mar．© Apr．1933	S	6.0	63.590	0.64	2.33	0.20	9．02	3.2
Ad－Br	19：3	Sacramento River	Jan．，1954	\pm	8.0	6．570	5.37	2.42	0.17	－－	8.0 average 4.0
Ad－LV	19，4	Sacramento River	Jan．． 1955	－	6.8	46．252	3.08	1.34	0.15	－－	6.8 （ ${ }^{\text {c }}$
Ad－BV	$19: 5$	Sacramento River	Dec．． 1955	6	6.5	67.051	1.70	0.68	0.02	．．	2.4
D－LV．	1950	Sacramento River	Dec． 1050	0	7.2	32，17	2.44	0.39	\cdots	．－	．．
D－RV	19.50	Battle Creek	Jan．， 1957	E	7.0	26.629	0.63	0.34	－．	．	．－
Ad－Bl．－	1937	Satramento River	Dec．， 1957	7	6.8	33，531	0.25	－－	－－	．－	．．
Ad－LALex	1957	Sucramento River	Apr．， 1958	0	7.3	4，615	－＊	－－	．－	．－	－
Fish 10 per pound athl sualler											
	19：3	Sncramento River	Miar．，19，54	13	4.8	145.278	0.33	1.71	0.17		2.2
Ad－RV	19\％4	Sacramentu Miver	Feb．，1955	26	4.3	131．007	0.06	11.10	＊	$=$	0.5 averabo 1.2
$3{ }^{3}$	1985	Sacramento lliver	1ar．． 1930	10	． 3.8	143，137	0.37	0.70	0.02	－－	1.2
$\cdot 1$	1少湤	Sucramento River	Mar．， 1950	22	4.6	50，755	．－	0.27	0.02	－－	0.3
Au－C゙	1950	Sacramento River	Jan．， 1957	12	5.18	60．979	0.13	0.31	－－	．	－－
Ad－n\iax	1950	Mill Creek	Jan．，1957 Oct．，105\％	30	4.3 2.7	107.328 18．28；	－．	0.13	\cdots	－	．－
BV^{2}	19.7	Sacranuento liver	Jan．，19．jS	12	7.7	51.248	0.08	－－	－	－．	．．
D－Ad．．．	1057	Sacramento lliver	Jan．． 1958	22	4.4	10．727	0.06	－－	－－	．．	．

[^0]fore their seaward migration, retnons of adnlls were mot expected to approach those from equal-sized fish panied during the thee following seasons below the trout fishing area at lipincelon.

Aclditional umaccomatable differemees also exist in relurns of alules
 brood year fish, for example, were emmsiderably lower than from the previous thee brood years. l'art ol the 195% brooll year fish were

 stadied. A clear-cent correlation helween times when stedhead were stocked, flooding in the river and in the several hypasses, and latere returns of aclults was mot evident. Jowever, the fish relcased in December, 195., were stocked immediately prior to a protion of extreme flooding and did return fewer alults than were expereled. Alhomgh nat conchusive, the evidence at hand suggests that eansidemable losses may oceur when yearlings are libernted during periods ol high water. In any event, the evidence is sufficient to withhold slouking of fish at such times, at least until facts are gained to the contrary.
Comparisons between returns from several of the relcases of marked fish are not feasible, since fwo variables exist: planling lime and si\%e of fish. The two lesi, returns were from fish planted in Jimmary, iund one of these gronps eonsisted of the liargest fish plambed. Plants liom December through Mareh appuar for are sal isfactory redurns bul more tests are needed to be certain of the lost month in whieh to release sleelhead.

Comparison Between Adulis Spawned and Returning Sea-run Adults

During the first four yeirs, 458 femates were usect for arlifuial
 were subserguently profluent, or is sai-rum adnlls in the rims for each female used for artificial spawning ('I'ahle 7). Siave fle umbler of males used at the hatehery for artifinial spawnimer was omly slightly less than the momber of females, there were 15 steelhead reforms for cach fish spawned at the hateloery.
 tunted considerably during the simly ('Tahle 2). Thwever, sinme the rims are barely lolding their own, it is choions that natural reproditetion is on the order of 1 to 1 . I'lat is, for ameh atult another adult will be producerl. Thus, hatrleery produetion of seation sterlhead, hased on all sizes of yearlings released from an average brool year, is roughly

 to result in lower survival rates of lowh hatronery and wild fish. At the

 fish in the mumbers used in this projeret.
 2,808 egge d iog the first four years of the study. 'Jhis is mot an indication of a ge fecundity, sime muny smaller fish wore mot used.

Although an average over－all 2 perecnt survival from yearling to sca－ run adult was obtained，the strvival from egg to returning adult was ouly 1 percent．

Distribution of Sea－run Hatchery Steelhead

It is of interest to note the spawning distribution of returning hatehery－reared steellicad relensed in the Sacranento liver at Priner－ ton．These fish were mainly of Batile Creek shoek，ill rearel it（bole－ man hatehery on Batte Creek，but releases 110 miles downsi ratul from the mouth of Batle Greek．Adults athributable to the Primeremp plants returned for spawning purposes in significant numbers to batlle Creck， the parent stream，but at the same time dispersel considerabl？ throughout the upper Sacranento River system．
Juring the $1955-56$ season， 18 percent of all steelhemd migrating into the Sacranento River were hatehery fisls storked at Prinecton． LIowever，after these same fish had distributed thenselves anong the tributaries， 27 percent of the stecllead in Batuc（reek and only 2 per－ eent of those in Mill Creek were hat chery fish．In the $1956(-57$ seatson， when the total run included 17 percent hatedery fish，a similat patilemin was followed．The steellead in lyatle Creck consisted of ： 37 percent． hatchery fish，while the Mill Creek rum arain ineluded only＇ 2 pereent hatehery fish．Therefore，by stocking yearling stechlead at l＇wheetom （below the gencral trout fishing area）during the nurmal migrotion－ period of widd fish，sufficient returns were obtained at hee hatellery on on $\}$ Battle Creck to continue a moderate artificial stocking progran；at the same time，there was some natural dispersion of ：miluls thromghout） the upper Sacramento River system．

GROWTH IN LENGTH OF hatchery steelhead

The wide range of lengths found in hatehery fisk prior to therir re－ lease，and again when they were recaptured during subseruent seasoms as sea－run adults，indicates that growth rate was c⿴囗十ile variable（＇liable 8）．The data presented on growth in length of minked steelhade inelule only lengths obtained at the time of relense（at about，owe sear of are） and when trapped in the Sacramento hiver near the mombth if the Peather River during the fall of suceeding sears．Calculated lenerths， based on scale measurements at the cond of the sereral years of hife，are not included．Thas，the determined lengen increments show only ap proximate ammal growth．Λ comparison of lengrise of taryerol fisla it． the time of tagrging and at time of reventure in damary all Mill（Freek Counting Station shows that they comfinued to grow during the sprown－ ing migration．On the average，steelheal tagred in the fill inerensed three－fourths of an inch by the end of dannary，which inproximates the end of a year of life，at lenst insoliar as the growing seasent is concerned．
 of tife，during the first summer after release．A comparision betweren sizes of fish when released and after the secemal summeres sprowth shews
 in lengeth d ing the second year．The length increnvent of tish both larger and iller than 10 to the pound when stocked was approxi－ mately the same during their secoma year，averaging almolt nime inches．

TABLE 8
Average Fork Lengths and Approximate Annual Length Increments of Hatchery－Reared Steelhead， in Two General Size Categories，Released in the Upper Sacramento River System and Captured by Trapping in the Sacramento River One－Half Mile Above Its Confluence With the Feather River＊

Categury amal lat	Ifromal year			2	Yi:ar 3	uf lif． 4
Fish 10 per pound and smaller Mi－1，V． Number meaniured ．．．．．．．．．．．．．．．．． Avernge fork lengtio（ineles） Standard devintion． （Growth inercment（inchers）	19：50	30	$\begin{aligned} & 7.0 \\ & 4.3 \\ & 0.7 \end{aligned}$	5 12.7 0.5 8.4	18 18.0 1.4 3.3	
Al－RV． \qquad Nimbiner inceanared． ．．．．．．．．．．．．．． Average fork lemath（inelara） \qquad Stumdard devintion． \qquad （Grisith inerement（inehes）．	1964	20	$\begin{array}{r} 3.188 \\ 1.3 \\ 1.0 \end{array}$	3.7 13.3 1.4 0.0	10.4 10.3 2.4 0.0	18.1
1）．Ad． Numbict memanicel Avormse fork lengel（inelnes） Shambaral ilevintion \qquad （irnwll interement（inelhes）．．	11967	2：	$\begin{aligned} & 1.601 \\ & 1.14 \\ & 1.8 \end{aligned}$	$\begin{gathered} 3 \\ 16.5 \\ 1.18 \\ 12.4 \end{gathered}$		
Al－M．Max． \qquad Nibulber menabirevi． \qquad Averame furk lemgeli（inelues） \qquad Standard deviation． \qquad Sirowth inerenimet（inehes）．	1905	± 2	$\begin{array}{r} 1.2116 \\ 4.18 \\ 1.0 \end{array}$	$\begin{gathered} 5 \\ 19.6 \\ 0.0 \\ 8.0 \end{gathered}$	10 20.1 2.1 7.5	19 19.9 1.0
IV． Nutuber mensured \square Averate fork leagth（inehes） Standaral devintion．． （iruwtla inarement（inches）	105：3	15	$\begin{array}{r} 2.844 \\ 4.8 \\ 1.1 \end{array}$	129 14.3 1.2 9.5	223 10.0 2.8 5.6	4. 22.0 1.8 3.0
HV． Number amenatrox． Avernge fork lengeth（inellen） Shadaral ilevintion． （ irow lha inerement（ineliss）	1957	12	$\begin{array}{r} 1,198 \\ 6.7 \\ 0.8 \end{array}$	10 1.4 .5 1.3 8.8		
As－IRV． \qquad Number theymireal． \square Avernze furk lonstl／（ixulnes） SLumatard devinliun． （irow lh itwreturat（iturhes） \qquad	1856	12	$\begin{aligned} & 900 \\ & 6.9 \\ & 0.8 \end{aligned}$	10 14.4 1.0 8.5	41 10.4 1.4 0.0	
13 V ． Number measirred．．．．．．．．．．．．．．．．．．．．．．．．．． Averace fork lengeth（inelhes） Standard devintima． Growih invriment（ineher）．．．． 	1085	10	$\begin{array}{r} 2,026 \\ 5.8 \\ 1.2 \end{array}$	$\begin{gathered} 173 \\ 1.4 .1 \\ 1.0 \\ 8.3 \\ 1.1 \end{gathered}$	$\begin{gathered} 134 \\ 20.8 \\ 1.6 \\ 6.7 \\ 8.0 \end{gathered}$	$\begin{array}{r} 11 \\ 23.17 \\ 1.7 \\ 1.2 \\ 2.1 \end{array}$

table 8-Continued

Average Fork Lengths and Approximate Annual Length Increments of Hatchery-Reared Steelhead, in Two General Size Categories, Released in the Upper Sacramento River System and Captured by Trapping in the Sacramento River Dne-Half Mile Above Its Coniluence With the Feather River *

Growth was not as rapid cluring the thitel year of life, and there was it tendency at this age for the fish which were small when stocked to frow more than thase released at the latger sizes. The growth rate decreased during the fourth rear of life. The smatl manher of hatchery
 of growth at that age, although the lemph inemement appears to be simall.

RESIDENT TROUT

 manatied steelheme migrating upsitremm past the mouth of the Fenther River and fish canght in the upper samemento. It was antidpated that if a resident population over 1 t inches in length existed in the upper river, or if there were many sterelneal in this si\%e rathener which hat
 sudficiont to eflect a notiecable decrease in the marked fisla ratio in the upher river. During the five seasons, 195t through 1959, crod censuses showed that the over-all ratio of marked fish, includiner only steellead 1t juches and over in longih, was higher at the trappiner site than in the иpper river. Itwe perentage difference between the two arons varied from 2 perecnt in $195 \pm$ to $\overline{7}$ perent in 1spo, indicating that a sizable populatjon of tront exists in the upper river during some rears, in ablitition to those whiclo come in lrom the sar. When the ratios of individalal fin marks were eompared between the two areas, arain ineluding anly fish 14 inches amb over in length, it was lomme that significant differences generally orenred onle anomg eromps in whith the stedhead were smaller than 20 imehes, indieating that the trout which dial mot. migrate to sea during a particular season and any resident fish were mincipally hetween $1+$ and 20 inelhes in length. Their mambers were
 considerable but manown mumbers of tront under I-I inthes in lemeth in the upper river at all times.

COSTS OF SEA-RUN HATCHERY STEELHEAD IN THE RIVER

The returns of sea-rin adults liom hatehery prodnction have been
 costs. I'o properdy evalnate artibieial stocking of migrant-sized steellead it is desitable to know not only returns in terms of numbers of adult

The average eost of problucing a vearling sterlhead, inchudiner expenditures associated with laking cryps, rearing, amd stocking. varied from 3 ceints to 18 couls. with an over-all avarage ot 6 eronts during the four-year study ('Table 9). 'Ihese firumes jachude all rearing eosts except capital invesconent and eapital improvements at the hatchery and anministrative overhemb. 'lhey do not inelude costs of marking on-
 When releaserl, the more it rosts, per lish, to probluee diem. Costs of reming yenrling sted edond it Coleman hatehery eompare favorahly with
 formia Department of tish and Game hateheries. Jur: the fiseal year $1955-56$ for example, the average cost to rear and stc atelable-sized
rambow trint weighing six to the pomm was 13.6 cemts eand GMaklin

Types of Fishing

Sterelhead ate calught in the npper Samemento hy a variely al lishing technigues, which vary with the spisom and other factors.

During Oetober, November, and Devember, when liall-run lingr salmon are spawning, steelhead congrerate with the salmont on rifles, both in the main Sacrmmo and its tribuanies. lexaminalion of steel-
 usually reveals a good quatmity of egrs, and if lishormen are present
 romsist of salmon ceres in varions slages ot developmont, which wro probably dug up by one snlmon excavaling a nest on lop of anolher. There is no evidence to indieate that sterolnead dig un a sabom mest for food. In addition, the steedicad themselves do not prepare nests on top of salmon mests in the fall, since they don mot spawn at that time. It is not known whether or not the stemblead achally roh a salmon mas. hy darting in and grabbing wattended eqgs, but it is thought that mesis.
 are hooked behind spawning salmon.

Although Shapovalor and 'rialt (1954) report hat mbill sterlhand do not commonly feed durine their spawning migration in romsal st reans, those in the Sacramento River definitely an. There is evidenee that hary continme to eat until the time of spraining in the Sarammento, simes at Coleman hachery adult stedhead trapped in liatlle (Grovk and plated in loulding ponds continue to feed on salmon roe upito the time they ate spawned artificially and releasel.

When salmon are actively spawning, slombead in Hne vioinily strike voraciously at almost any small objeet, especially once resembling a sahmon egg, which drifts through the nests. Under these comalions most fish are hooked hy drifting simghe salmon bras amil salmon row clusters through the rifles (ligure 14). Several artificial lures which resemble salmon eggs have also been developed and are inereasing in

 of red thorescent yann lied to the hook (glow bug), and another is mate by attaching a small, spherieal piece of red sponge rubber to the look.

Many steclhead and salmon also congrecrate neat the months of tribntaty shreams, awaiting suitable flow eonditions belore aseronling the ereeks. Steelhead ate campht by several methorls of fishing in these

 fishing with sthmon roe clusters and casting with metallie artifieial Jures are the most pophtiar methods.

When the fall-rinn salmon have completed their spawning, steellead become searee on rifles in the Satranento. However, many steellead then seck their own spawning ateas in tribubary stremms. diy danmary of each year, most stecheat fishing has shifted to the tributary streams. Most of the steellicarl landed dubing this lather part of the fishing season in the tributaries are tanght by drifting single eqges and easting andilicial metallie Jures.

Fishing Gear
Spiming equipment is the fishing gear most commonly emploged. A rod f to 7 j fect long is preferred by most fishermen. 'The line is gromerally monofilament nylon of 6 - to s -pound lest, with s-pound line beiner Whe most common. Most types of spimang reels on the matint todar lave been observed at one time or another on the Simeramento; however,
 ratuly used.

Many fishomen tie the hook or lare diredly to the line, while others allach a leater of lower breaking strenget then the dinc, to jusure minimum loss of Jine shoulat the hook or lare berome suarrod. At times when the water is especially elear, at thin leader is used. Sinkers are somelimes attached direetly to the line or leader, especially when split shot is used. Many anglers prefer a pencil simker and attach it to the liae through the use of a small swivel or at dron loog in the lime itself. Ucensionally, anglers attach at weight to the line in such a wing that it is free to slide along the line to a desired distance from the hook. This "sliding sinker" arrangement is more commonly used by those who "still fish" than by those who drift their bait through the water. In any event, in drift fishing the weight is small enongh so that it will keep bouncing along the bottom until the line has staightened out, downstrean from the angler. In this way the fisherman can drift his bait down the entire lengith of the rifle, only a few inders oft the boltom.

Fishing Access

 are usailly but a short wall from the end of a road. Other rilles may be reathed only by boat or by walking a comsideralbe distanee. During the study period, there was a tremendons inerense in lion numbers of boats used by stechlomat anglers. One of the hig pro s of a boat owner is that of finding a suitable hamehing site in the .. ${ }^{\text {sen }}$ where he

Game, throngh the Wildife Conservation lamed, has insialled several concrete boat launching ramps and antomohile parkinge aneas at kex points along the upper Sacramento. 'These ramps are mandained bex the county in which they are located. Ihose installeal lo diale (.lnme, 1960) are located at Redding, Balls Fervy, liend, led linit, and Vinal.
l'ractieally all land bordering the tributary streams is also privately owned and, as on the Sacramento, fishing aceess is mermithen loy many
 limes walk e:onsiderable dishances aloner (lue eroroks.

STEELHEAD SPORT CATCH

 have been targed. This quotient womld whevinsly le: a minimum lizun for total landings, miless some correction were mate for the monlouof tags taken from steelliend but not retimed to the bepatment of Fish and Game. An estimate of monrelorin of tairs thos lewommes ant essential element in computing fotiol eatelt, when using the mellow deseribed hercin. However, since a measure of momedmon is purely nan estimate based on human behavior, it is believed desirahle lo first present the minimum entel statistics derived from artual har returns, and then show the same data corrected by peremiages of momedmen. The numbers of hatchery fish in the rateh and their rosts, bissed on different pereentages of nomelarn of tags, are shown in the sirelion on "Nomreturn of Thas, and Adjusied Catch and Cost l'igrores".

Numbers of Steelhead Landed, Based Upon Uncorrected Tag Relurns

On the basis of actual hag relurns between 1053 and lab!, anylars lanted an average of abont 6,100 stee:hoad catelo seasen in llue upore Sacramento River system, or close to 30 percent of the entire rme. The catch has varied from 20.1 perecont of the rim in $195: 3-5.1$ to 36.5 percent in 1958-59 ('rible 11). Nbout 70 pereent of the slewllaciel
 Thus, the best steellead fishing has usually passed each seasom in the Sacramento before it commences in many of California's eomsial streams.

Numbers of Sea-run Hatchery Steelhead Landed and Their Cost in the Creel, Based Upon Uncorrected Tag Returns

The numbers of hatehery-reared steelhead aprearing in anorers' ereels each season were determined by multiplying the rompulad numbers of sea-run hatelery fish in the total population hy the fraction of the run caught. It is assumed that hatehery fish inde rallagh ans rearlily as wild fish and that they are taken in apmoximately the same propertions in which they appear in tho population. (hi-stuare analysis of the tagging and ered econsus data shows that these assimmpions are valid.
It is also obvions that sine the pereentage of the rom eandil is baseal upon tag renins, a measurement of nonreturn of tags also plays in important in the cate

minimum figure without eorrection for nonroturn ol tags, eosis ol putting sea-rim latehery steellead in the run and in the ereed wonkl be maximum figmes, since they increase as the mombers of fish. decerease.

Of 663,240 yentings releasel during the study: 3,882 eventually cuded up in anglers' ereels as sea-rinn stedliead ('Table 1i2). 'Ihus, with a 2 percent return to the upper Satamento of the ycarlings released, on an average about 0.6 percent fomm their way into ant angler's areel. Dividing the fotal enst of produeding the vearlimes reldased by
 average it cost $\$ 10$ to put a hate:hery stenthead in the ereel ('lable IO).

As previonsly slated, reluras of sea-roul hatehery fish lo tho upper sacramento from the 1955 brood year fish were mada lower than for those from the three previous years. Tf returns (io the ereel from only

Nonrelurn of Tags, and Adjusted Catch and Cost Figures

The importance of mosasuing nomelurn of stemilient tars has already been pointed oul. Iowever, in this study the main dimet was coneminated on petting all tags back, by offering a chanee in win a valuable prize for each lag relurned, rather that on measuring the depree of nonretmrn. Nevertheless, it, is believerd that suffecient information is on hand to make a faibly reliable estimate of nomecturn
of tars of tags.

In 1954 an indirect effort to get some jelea rararding mumbers of taws taken from sleellicad by sportsmen but not sent in was made hy offroing \$iof in prizes for the retion of tags. No awavels hat been made during the 1953 seasom. The prizes were awarded at a drawing for all
 angher, the zreater would he his chancess of wiming. Alahomplo fhere was a signifitant increase in tag returns during 1954, it was innpessible to differentiate that portion representing an athat increase in fishing pressure and in the catch from that indicating nometarm. Ako, ohorer factors were involved, including a betier understanding of the proeram by sportsmen in 1954, which no doubt led to greater redurns.
J)uring 1955, a more direct attempt to determine nomreturn was made at the time anglers were being interviewed during dieel censuses. Ilowever, the data gathered were not considered entively reliable becanse of the reluctance of many sportsmen to admit readily flat they lad previously failed to send in tags.

In the striped bass fishery of the Satemmento-San Jompuin belta, it measurement of nombeturn of tays was determined ly using comparable
 (Chalwiek, 1960). It was lomed that abont 45 pereent of the non-

 enomgh to assure the relarn of all reward tags taken, we at least comongh to reduce to insignificance any error in resulhingr calenhations. However, it is believed by the writers that this method trinds to overestimate nollreturn, esp, "ly after anglers understand that there are two types of tars out, etually discournging the relurn of lags for which no

money is received. This would abnormally widen the gap between returns of $\$ 5.00$ reward tags and those of no cash value.

During the steellicad study, inchoding the 1954 season and each year thereafter until its conclusion, an ammal tag drawing was held for nearly $\$ 500$ in eash and merchandise prizes offered by sportsmen's organizations, fishing resorts, and sporting goods stores for tags returmed to the Department of Fish and (iame (ripme 15). Under this plan it was, of eomme, adrantageons to rehmath tars, in order to have each tag momber registered for the drawing. Cemsidemble publicity was

television and ratio aprearances, state-wide press releases, local un papers, illustrated talks at sportsmen's and serviee chats and bep mental meetings, use of targ return posters loeated at key riffles resorts; and interviews with anglers during cereel census work. F the beriminer of the sturly, all tars sent in were returned to the ant along with a commendation eard and a hetter explaining the pury of the targriner and (beqioning in 195t) printing ont that his tar n her had been andered in a drawing for valuable prizes. 'Io further

The 1954 and 1955 studies indicated that the pereentare of nomred of steelhead taps was considerably lower than that shown for stri

 The sport cateh and cost fignes were re-evalanted atorodingly:
By re-arranging the eateli figures and presenting then on the I of different percentages of nonreturn of tars, a somewhat diffe pieture of mumbers emurht, and of eosts to put a sear-inn sterellem the ereel is seem ('Talles 13 and 14). Fom example, on the hasis miform 20 perent nomretury of tars during the stmely, an ave 36.9 percent, instead of 29.5 percent, of the-population was haw eneh seasom, and anglers harvested about. 45.6 percent of the rou 1958 instead of the 36.5 pereent obtainet wiflout corrertion for, return. Also, if allowance for $\pi 20$ perent nomreturn of tags is m the average cost of putting an adult steelhead in the ereel wiss wis ins of $\$ 10$. If a 20 pereent nometurn and returns of alults from only first three brood years of yearling sterellemal released are used. tha

CREEL CENSUS

Steelhead ereel censuses were designed to provide the areatre e: per angher home, lengith of the average angler shay, ame romery of dence of the fishermen, and to seo as many sterelhead as possiblo in on
 in the upper Samemmento River system. As previonsly mentionerl attempt was male to determine total cateh by means of areel ren since this was done on the basis of tagging and far return data. W total catch, eatch per home, and momber of hours in the average an day laad been determined, total fishing efforts amd fisheratem days computerl.

During most months of the year, ered ecosus work was carricd with only a moderately controlled simpling selome. Waworre, dur
 most of the fishing fffort for sem-rin fish is expended, an inten:
 census procedme was direelod loward obbininer a salisfactory sam of the total fishing effort and also serenting as large a sample as poss in interviewing anglers. It was definitely nos a romplete amsus, dn the many access points and to the limited manpower ailable. Altho the censuses were not stribetly rambom it is believe at the data ${ }^{\text {g }}$, ered present a reasomally representative piatore al ameliner anor. :

TABLE 13
Upper Sacramento River Steelhead Sport Catch. Annual Landings Are Computed With Different Percentages of Nonreturn of Tags. All Fish Are 14 Inches and Over in Fork Length

Season	Pereentage of nonreturn									
	0		10		20		30		40	
	Number of fish caught	$\begin{aligned} & \text { Percentage } \\ & \text { of run } \\ & \text { caught } \end{aligned}$	Nimber of foll canght	Percentage of run catuthe	Number of fish caught	Percentage of run caught	Number of fish eategh	Percentase of rin cautht	Number of Gish eaught	Perrentage of run caught
10.33-54.	2.505	20.1	3.217	2.3	3,619	25.1	4.134	2S.7	4.S:5	
1054-55.	9.143	32.2	10.161	3.3.8	11.431	40.3	13.064	14.0	15.24t	33.7
1035-56.	7.515	27.15	S.653	30.7	9,769	34.5	11.114	39.4	13.025	46.0
1135-37.	6.395	34.5	\%.100	38.7	7,994	43.5	9.134i	10.7	10,655	35.0
1935.5S.	\$.010	25.8	5. 5.65	28.7	6,263	32.3	-1.35	33.9	\$8,350	43.0
1035-50..	3.23;	30.5	3,817	40.0	6,544	45.6	7.459	3.3 .1	S.725	tio. ${ }^{\text {d }}$
Average percentas - it runs caught \qquad	29.3		32.8		36.9		12.1		40.2	

TABLE 14
Upper Sacramento River Sport Catch of Sea-Run Hatchery Steelhead, and the Average Cost of Putting One in the Creel. Annual Landings and Costs Are Computed With Different Percentages of Nonreturn of Tags. All Fish are 14 Inches and Over in Fork Length

Yertings relcased				Percentage of nonreturn									
				0		10		20		30		40	
Brood year	$\begin{gathered} \because \text { :mber } \\ \text { iper } \\ 16 . \end{gathered}$	Siumber releaserl	Cust of ycarlines released	Total hatehery: adilits causht	Cost per adult in creel	Total hutchers adiults vansite	Cust per adult in ereel	Total hatchery adults caught	Cost per adult in creel	Tutal hasehers: adults ran:lit	Cose per adult in	Total hatehery adults caneht	Cost mer adult in rreol
1952..........	S	63.590	\$7.081.30	395	\$12.85	06.3	\$10.68	746	\$9.49	5.33!	89.30	99.5	\$3.12
1953.........	14	$\begin{array}{r} 6.570 \\ 14.3 .278 \end{array}$	\$1.107.00\|	162 430	$\$ 7.39$ $\mathbf{3 . 9 4}$	$\begin{array}{r} 180 \\ 1.033 \end{array}$	$\begin{array}{r} \text { : } 6.6 .5 \\ 5.3 .5 \\ \hline \end{array}$	$\begin{array}{r} 202 \\ 1,162 \end{array}$	$\begin{array}{r} 55.93 \\ 4.75 \end{array}$	$\begin{array}{r} 231 \\ 1.324 \end{array}$	$\begin{array}{r} 5.5 .18 \\ 4.16 \end{array}$	$\begin{array}{r} 970 \\ 1.530 \end{array}$	$\begin{array}{r} 54.43 \\ 3.35 \end{array}$
Totals Averages \qquad		1.51.848	\$0,719.30	1,002	8n.15	1.:13	s.i.it	1,364	\$4.93	1.8i0	84.31	1.820	S3.69
1!0.4...........	${ }_{3}^{4}$	$\begin{array}{r} 10.2: 32 \\ 1: 11,0,678 \end{array}$	$\begin{aligned} & 51,114.2 \mathrm{~S} \\ & 3.1 \% \mathrm{k} .12 \\ & \hline \end{aligned}$	$\begin{aligned} & 914 \\ & 214 \end{aligned}$	8.4 .81 14.75	$\begin{array}{r} 1.01 ; i \\ 235 \end{array}$	$\begin{aligned} & \$ 4.148 \\ & 13.26 \end{aligned}$	1,242 268	$\$ 3.61$ 11.78	$1.306 i$ 3015	83.15	1.783	$\begin{aligned} & \$ 2.311 \\ & 8.84 \end{aligned}$
Tutals \qquad $3 \quad-$		177.259	\$7.273.70	1.1:S	30.4\%	1.:331	S.8. 81	1,410	$\$ 5.16$	1.412	ミ1.:1	1.580	S3.67
	19 10 $: 10$			9.24 4115 115	$\$ 13.47$ 18.15 37.37	as $\therefore 80$ $\therefore 1$	$\$ 12.12$ 16.27 311.07	$\begin{array}{r}655 \\ 619 \\ 58 \\ \hline\end{array}$	$\$ 10.77$ 14.45 29.96			$\begin{array}{r}973 \\ 83.1 \\ 73 \\ \hline\end{array}$	
Tutals........		271).813		J,号:-	SIfictiri	1.15:	S1:.041	$1.332 \text { । }$	\$13.32	$1.2:$; i;	1.73\%	S! 10
Grand totals -		cimis.e 10	\$18,81:.85	:8.86?		-1.312:		4,852		S.in; i		1.471	

Figure 16. Creel checking a steelhead angler on the Sacramonto pliver near Jellys
The steethead fishing area was divider into three general seedioms, Whe centers of which are Hamilton City, Las Molines, and Jalls Ferry (Figure 2). Seasonal cmployees were used to do a groxl portion of the ereel eensus work and usually traveled by antomobile, stupping at the fishing resorts and rifles. between Vina and heed Jhaff, the Sacranento liver was covered by the project stiff, as well an ly antomobile The ereel census work was also cooperative. Departument of Jish num (iane salmon survey ecews, drifting designated sections of the Sacianento daily betwe iedding and Vina cacla fall and winter, also creel claceked

FISHING EFFORT

 d he average eateln pre hour and mamber of hours in the averare angle
 study. It was hen only netessary to know the numbers of steelhea cenurht, meluding both inlults and juveniles, to eompute total angle homs and total ampler days expended ach month imel each season 'Ihe eatch of sea-rin fish, as deseribed previonsly, was derived from ta returns by anglers, while landings of jurentes computed in this seetio are weighted figures based on maios of fish muler 1 It ineles in lengt to harger individuals observer during ercel eensuses.

Most fishing for sca-pun stombed in the upuer Sacramento take

 from Mareh through August are usually eatugh only inedentally b 1.hose seeking other species of fishes, or while amgling for juvenil steelhead and resident tront. Since this report is coneerned primaril with the fishery for sea-run fish, creel census clata presented herei include only those collecten churing months when the main fishin: effort was for sca-run fish, i.e., September throngh Felruary. Belwee: 1954 and 1958 , over 30,000 steclhead anglers were interviewed ant their eatehes inspeeted during these months. Whenever a fishermat plamed to contime fishing after being creel checked, he was griven self-idhlressed, stamped pest ward on which there was but one reguest the dotal homs he fisherd that. day. About 30 peremot of these rard were not reformed, athough all fishermen had ronsented to semd the in. In all, close to $\mathfrak{f}, 000$ completed fishing efforts were obtained ath indiealed that the averaure sleedhead angher fishes 4.1 lomuss during ai average day ('Tahle 15). Damghins of the average anger day remaine lainly eonstand throughome the stuly period and even throughout rat ions months of any partienlar rear. llowever, in the fall, when mos

TABLE 15

Upper Sacramento River Steelhead Sport Catch and Angling Effort. Numbers of Fish 14 Inche and Over in Length CAdults) Were Computed With a 20 Percent Nonreturn of Tags. Juvenile Steelhead Caught Are Based on the Ratio of Juveniles to Adults Observed While Creel Censusing

Scason*	Nubuler of fishermen inlerviewed	A verake tulal catelitarr nugher Intur	Avernce huurs per completed unular thy	Catch			Augler hotiors:	Ansler days
				Juncniles	Alults	Tonal		
13151-5:5.	1,311:	11.1108	4.1810	1,703	11.4nis	12,7̄1	115, 140i	27,50\%
10Sferat	2, $18: 3$	16. 1:77:	F 3.8781	2,30,	11.28	11.819	\$1.159	21.781
111:16.517	1,41419	${ }^{1.0 .08177}$	1. 1.1711 .4	1.1519	7.878	11.2010	1 (Hi,Sis	24,301
11157-58.	2.114	(1. 1611	1. $123: 311$	4.85%	16, 1113	11, 1 ini	(is, (t) ${ }^{\text {a }}$	16.8.11
110:88531.	2,762	0. 1.1.1	4.184178	:8,619	6,3819	10,0:38	(6) 533	17.181
Tounla.	10,189.				10,6027	51, 1227	145,612	107. 1881
Avern	2.014	(1. 19:3)	1.1117	2, $\mathrm{s}(\mathrm{k})$	8,13	m1. 10°	ss.som	21.51%

[^1]searran fish are caught, lengrins of the aremge amaler day wore ereatest During Oetoher and November, for example, when sterllamerare the most vulnemble, fishermen spend more time angling lor them. This vulnerability is indiented by observalions and by the averatre eatel per angler hour, which was typically higher in Oehober and November than during other months of the season. This pallern was constant from year to year. Smith (loc. cil.) also noted during the 19-48:49 season that Sacramento lliver stoelhoad landings depended upon arail.
 or decreased with the fotal caleli in all bul. three of the $1: 3$ monllas studied.

 bers of individuals fishingr for steelhead cath season, the amoler dass, or total fishing effort sjent by these fislicrmen in pursuit of sleethead, show a deerease through the rears which is proportionate for flue dedine in populations of fish. The ional amman fishine effort catels sorason is partieularly intheneed by the avaibibility of fish in Oetober and November, sinee these are the mondiss whem mosi, fish are eaturht and when the grentest effort is expended. If the rum is latrge ank :fish ate available during these months, the anman fishing efforl, is substamiant. In addition, the fishing emplasis shifts towards the smaller tront when sea-run fislo are searec. This was partienlaty notjecable in 1957 anil 1958 when anglers, realizing that the larger fish were not prosent: in sufficient quantitics, kept many small trout, which normally they would have relensed (Table 15).

The number of hateliery fish in the cateh of jureniles churine the months of Scptember through February has varied duriner the conrse of the study. It has depeniled mainly on the lowalion of the mants of hateliery fish. In 1957 and J958, years in which upsi ream plants al hatchery fish had been made, the lateliery fish formeal a litule overe G percent of the enteh of juveniles, while in ollore years, in which only downstream phants of hatehery fish hat heron minle, Hoey eomprised less than 1 perecot of the eatel of juveniles.

RESIDENCE OF ANGLERS

Steclhead anderes travel from all parts of Califorinial to fish the upper Sacramento each fall. In the five-yan period, $1!5 \%$ thomerh 195 s over 7,000 anglers were inturviewed in the months of Octohper anil November alone. It was foumd that, on the averate, those fishimer the upper Sucramento each fall are residents from 40 ol Galifornia's 58 counties. By grouping these connties it is seen that gi pervent or the fishermen travel from three principal areas in California: (1) Sacra-

 head season extesels over a longer perionl, most anghers fishinge dinving months other than Oelober and November are residends of the Siacrat-

 leat :maters resinle, stowlag tise fercentuge of total anglers from each areat.

ITwe importanre of steelhemen and salmon fishing is also reflected in The prowd of commerojal boat latminas and fishing resorts alomer the Nacramento River betwen Hamilton City and Redding. In 1945 there were no eommercial boat landings in the upper river area. The first organiad sportsman's landing and boat rental was established in 1!94; (Simith, loe cil.). Only three suelt establishments were operating in 19-47. However, at the close of the 1948 season cight bont lamelings

 offerimg sutela facilifies is cabins, homse laiker space, boat latuchiner, boith doukarge, and hat rembah. In some estabhishments complete lines of fishing tuekle, as well as boats and motors, are fore sule.

VALUE OF THE FISHERY

A sport fishery is worth at least the amount of momey that imoflers spend in pursuit of it. An ceomomice sturey by the Departurat of lisish and Game in 1953 indicated that the average daily expmontiture by at Califomia steelliead angler was $\$ 18.11$ (1'elgen, 1955). Steellecad fishing expenses ineluded transportation, food and lentrime, servemeds and

 phied by appropriate annual factors derived from comsumer price: indexes for San Pranciseo, published by the United States Department of Latbor. The corrected daily popuotitures wre then in turn multi-

 nge amual value for the "pper sacramento River steelheal fishery was a little muler *390,000 from 1954 through 1958.
As previously noted, the averare stecllowem fistherman spents 4.1
 into consideration, on the averare he fishes lwo angler days fore carli steetheind he lands. Therefore, whe average fishermanm spends athosid $\$ 10$
 cach sea-run hatelery stecllemd maling up in a creal, an :hnger is willing to spened ahmost five times blat amomen to catelh ome.
table 16
TABLE 16
Minimum Annual Expenditures of Sacramento River Steelhead Fishermen

S-usou*	$\begin{aligned} & \text { Toulat :umbler } \\ & \text { llays } \end{aligned}$	J:xpenditur. iner nutuli-r dry:	Total mbiom nturill ly marilury
1081-6m.			:
1055-5m.		\$18.1.1	\$174.51:4
t1156-57.	201, 215	18.02	:1715, 11.12
11597-58.	23,392	18.15	1:31.682
tuc8.69.		14.14	: 111.86
,	316,7ili	1! 1.87	3:13, 1:40
Avorusos.		\$18.7:	s:mal.in It

- September thioush firlnuary unls.

CONDITION OF THE RUNS

During the six seasons, 1953-5t through 195s-59, the stectheal:pupuIntions of the upper Sucramenta River averaged eot,5ty lish. The ammal prons of maturally-spawned or wild fish alome averatyel abome $p 8,1010$ fisll ('Table 17). An examination of the wild populations also rescals a jump from $1+0,000$ in $1953-54$ to 26,0000 in $195+55$, followed hy at decline:
 shows a siminar rise and dedine The tremp sinee lesfors(b is definitely
 enough to determine this. Close obsirvation of the prepulations should
 passing throug, matmal fluel nation, or whelher there is a gemine
dereline in ther mus.

Breakdown of Annual Upper Sacramento River Steelhead Populations, Showing
Numbers of Hatchery Numbers ol Hatchery and Will (Naturally.Produced) Fish. All Fish Are 14 Inches and Over in Fork Length

Sctabil	$\underset{\substack{\text { Hutrlw } \\ \text { fixh }}}{ }$	Wild fis)	$\begin{aligned} & \text { 'rulul } \\ & \text { '।"! } \end{aligned}$
1maicil			
1981 -6.6,	2:31:	13,	11.1814
Jubstrich.... ..	5,	-3. maF_{5}	-s, $3=0$
1986.67.	3,20:	15,17.5	18.380
$111.77-68 .$. 11.88 .519	2.871	16,331	19.110
	!1:	13:308	11:161
Aromber	$\because .141$	15.01s	:10.1:

In Che Columbia lierer, whore both winter and summer rums of sted.

 amil the spawning escappoment averaged about 53 pererot of Che totai population from 1949 through 195t. Both commervial and spocts fisheries for steelhend exist in the Cohmbia River. The size and spawning escapement of the winter cill are wiknown.
The spawning exserpement of adult steelhead ontering the upper Sace ramento liver and tributarics has averated about dis percent during

 tower river (below the mombly of the broither liver). It is thonght to be no greater that 10 perema, it which reve the areraite spiowning escapement iwould be at heast 5is pereemt, a firute which is the same as that which is considered alleymate for mainfuance of the Columbia liver rins.
'Ilse lairly' emamentrated summer sports fishary in he sampanento for the juvenile sterelheid or resident tront may necoessitato a larger spawning cseapement of adults to perpelatite the rums that wonld mormatlybe reynited were yer-romal fishing not permitlent.

CONCLUSIONS

It may be comeluded from this stude that stombing hatellery-teared Peating stechead is a valid methool of sumphomenting nat ural slecllead produrfion in the Sactrumento River. Natural reproduction by stechead during the staty periond was on the order ol' 1 to 1 (i, er, for cach adult one oflere was produceal), whife artificial propagation produced about 15 fish for each oues spawned. This, of course. holds true only for the
 ably, a great increase in artificially-spawned adults would depress the

at the beginning of the study insufficient adults wore avaibable fo dake the required momber of ergs, while at the connlusion exeres fish were being turned away to spawn maturally
To obtain the greatest returns of sea-run hatehery steelhead in the upper Sacramento, the yearlings should be stocked during the normal seaward migration period of wild steelhead in the late winter and early spring at a size larger than 10 to the pound. Whter such conditions the steclhead released from Coleman hatchery produced an averare of one sea-run adult refurn for eadh 25 yearlings stocked. Ilowever, if the entire hatehery production from an average of the brood years involved is considered, only one sea-run adnlt. return was protuced for each 50 yearlings released. Stocking of yearlings at princeton, downstream from the general trout fishing area, produed greator me urns of adults than stocking of yoarlings in the "prer river system.
Althourh the initial cost of rearing and stocking a yeatling steelhead was only six cents, the average cost of each seatron hatehery steelhead return to the upper Sacramento was 50 times greater, or $\$ 3.00$. At first glance this cost appears exorbitant. Towever, the a verage adult stechead weighs three pomuds, so in effect the cost of each adult fish may be figured by including the initial production eost of yearlings stocked, minus the value attributed to losses of fish between stocking time and return to the upper Sacramento, phas the value of any river and ocean growth gained by the survivors. From this viewpoint, the average adult hatehery steelhead was put in the rmin for $\$ 1$ a pound, a figure not far above the cost of prorlucing and planting "catchable" rainbow trout in California.

Whereas the cost of each yearling steclhead stocked was only six cents, the average cost of each sea-run hatehery steelhead landed by anglers was nearly 140 times greater. INowever, the value of each steelhead to a fisherman is almost five times greater than the cost of putting one in his ereel by hatchery methords. This value of a steelhead is reflected by sportsmen's expenditures, which indieate that amplers are willing to spend $\$ 40$ for each steelhead lambed on the upper S:acrat mento River. Since an average of only 36.9 pereont of the athlt steel head are harvested each season (assuming a 20 pereent, nometurn of tags), and it costs about $\$ 3$ on the average to put a seatrut hatehery steelhead in the run, it costs about $\$ 8$ to put one in the anciler's ereel.
The upper Sacramento River steelhead sport fishery is of consider able magnitude and provides tremendous economie and recerational assets to the people living in many areas of California. Becanse of this importance, the fishery as well as the populations of fish should be studied periodically so that the management plan may be altered, if necessary, to insure the best possible fishing.

SUMMARY

In 1952 the California Department of Fish and Game ipitiated a study on the Sacramento River to determine the effectiveness of supplementing natural steelhead production with yearling, hatehery-reared fish. Secondary objectives were to sturly the steelhead sport fishery and life hi y of Sacramento steelhead. This was a cooperative study. Others par.wipating included the sportsmen of Californiai through

GOCKING HATCHERY-REARED STEELAEAD RAINBOW TROUT

Two of their organizations, California Kamoops, the and steell lnlimited, amd the lhited states lisish amd Wilalife Sorviee the its liacilities at Coleman National Fish Hatchery on battle Creek.
The sacramento River upstream from its confluence with the Fea River, the area with which the study was primarily concerned, is most important of all streams in the Central Valley of Califo from the standpoint of both water supply and fishery resourees. daily mean flow near Red Bluff is usually less tham 11,000 cubic per second amd is gremerally between 5,000 and $7.000(0)$ enbic feet second in the fall, when most steethead are camght. The prine steelhead fishing tributaries are Nill, Deer, and battle creeks.
Adult stechead migrate into the upper Sacramento principally fi bily through the midule of the following Mareh. Thome is hit ammal rime, the bulk of which passes the mouth of the Ferather lia neat the end of September.
The time pattern of juvenile steelhead moving seaward out of Sacramento was not definitely established, although all evidence it cates that peaks oecur in the spring and late fall
Sges of Sateramento River steelhearl were sampled by reading seale samples. It was found that there were 17 two-vear-old 41 three-year-olds, 33 four-year-ohds, six five-ycar-oblds, two six-ye olds, and one seven-year-old.
Steelhead spawn in the upper Sacramento River and in most tri taries from the latter part of Deeember through Λ pril. Seale samp collected in 1954 indicated that 83 percent of the fish were spawn for the first time, 14 percent for the second time, and 2 percent for third time
Atthough a bimotat distribution appeated in leneth measureme of the anmual adult population during most years of the sfudye, arerage size of a Satramento steelhead was determined to be 18.1 inct in fork length. The average fish weighed about 3 pounds.
The body-seale relationship of wild or matwally-produced steethe Was determined, and lengths and lengh inderments of stechean valions ares, as well as longths at which they enter sall water, we catculated. Steelhead which spend one or fwo years in fresh wat generally migrate into the ocean after attaining a fork length of to !) inches.

The Jength-weight relationship of Sacramento steelhead was eal lated from a sample of $48+$ fish trapped during the lall of 1956 in 1 Sacramento River, one-half mile above its eonflnenee with the Feath River. In general, there was good agreement between averages culated weights
The plan for evaluating the steelhead stocking was to release lar numbers of marked (fin-elipped) yearling, hatehery-reared steelhea and then determine the numbers of sea-rm adults produced, their eos and their contribution to the natural runs and to the fishery. Evaln tion of returns was accomplished by trapping in the lower Sacramen to determine the pereentage of hatchery fislo in the populations, ar then by tagging and tag recovery (including angler returns) to dete were applied to the returns to take. Natehery pr tion cost figur were applied to the returns to present a picture e he economies in
 Fastapped in the Sacranconto Rivere jusit above the month of the were torged and examined for hatehery fish. Fish in grood eondition were tagged and released. 'Iwo types of tags were used on the adnat steclhead trapped, Petersen disk and tubing or "spaghetti" lags. Jow"ag the study, 15,714 steellomed 14 inches and over in lionk length were "effectively" tagged. In all, 15,579 stecthead 14 inclies and iover in
fork length were examined above the trapping site for tags amblmarks.
'I'wo methods of computing the steelhead populations were sturlicel, (1) The Sclatefer method for stratified or changring populations and (2) the Jetersen method. Although both methods produced similat fesults, the Petersen method was used becanse it was less emmbersome.])uring,

 mates each season and indicate that the population esplimitits wern
rate
turns of sea-run ardults wearling steellead were designes to provide me. the dotal fish produced from cath brood yenr stovered, and alsion to determine the size of vearlings released bhat would result in the best relurns of adults.
l'metically all eggs for the study were taken from wild fish drapperel
 wick Dam and from returning hatehery steelliearl.
Most of the yearling stecelhead were manked by cibiping olf lwo fins in various combinations. 'The fish were anesthelized before mationg. Jas all, $1,041,754$ steelhead were fin-clipurd and released during the sis-y study; however, only the returns from the (jiz3,240 released during the first four years were evaluated. Identieal manks were nol reproaloul oftemer than every other year. Fish from tha l!as brome your were re leased in the upper Sacramente River system in several localitios. Joish from the thare remaining brood years cualuated were stomeded at frinceton, below the general tront fishing area. Retmoning sem-rinn hatelarev fish, identically matked, were established in corred hood yaits lis engit measurements.
An examination of seales from 175 of the hatchery-reared semerun adults indieated that slightly over 96 percent were on their first sprime ing migration. Most, if not all, of the remainder were returning for 1.1 he The Gime.
The 663,240 yearlings released during the first four years primelueal 13,055 sea-run hatehery fish returns to the upper Sacramento, an average return of 2 pereent. Fisll weighing eight to the pomad and laverewhen released produced an average 4 percent retum, while thense weighslightly over 1 percent.

In atl, 85 ! steellicad were spawned at. the hatelaery mod produceo

 Stocking of ead in the run.
Stocking of "narling steellomin in the Siamamento River at l'rincelens

 Ihrounhout the upprer simanumbon River systemi.
The growth rate of yrarling hatelhery stechisall is varialle. (irvilest
 double their lengeth during the second year of life, addiung about niue inchess The fish which are smaller when stoekell grow murer rapidly dur-
 var of life. This generally athout 20 inches long at the cumb of its thirim
bificernecs in ratios of ante clecrenses rapidly after the third yemr.
He Sereciecs in ratios of marked fish betwen the trapping site amb trout population orerenrs in ine the trapping site indicate that a sizable liun to sexti-ryin lish.
 righteen cents eneh and averaved six cents. Since a return of winty:-2, perevent as adults was realized from the average group of yearlines re-

Sleclhead fislinng in ilk:
steellicul are cand in in sheramento River is purely for spori. Most
 eggs and lures which resembled of nugling sonsists of drititing single mounllis of tributarics in rswemble ckges. Stecelhead also collect near the

llue stecellicad enught eaels seison are landed in Oetuler nuth Nowember.
The sport catch was based prinurily on angler tan reeturns. Wiithout
 arrawe of alout 30 perecrit of the run was harvested cillh serisum, ant
 to 36.5 pereent in 1958 . It was estimatect that about 20 perrent of the tags taken by nuglers were not returred. Correcting for an 20 percent
 of 30.5 percent.

 creells. 'Thus, whereas 2 percent of the average yenrilings relensed res.
turvel turned to the upper Sneramento as admits, oily" 0.6 pereent ended in
 steelliead in the errecl. .ly currerting this figure for at 20 perernt nomreturn on tagse, the average cost of putting an adult steellicad in the "reel
wis $\$ \$.00$. was \$8.00.
Creed censuses were conducted to det ermine arerage cateh per angler hour, Jength of the arerage angler day;, nuld comuty of residenee of aumeress and to see as miny steclhemid is possible in orter to helf
 Trinn 1954 through 1958 , over 10,0 ,vol steelheal anglers were interviewerd. Thue average augter days was determineel to be alhont 4.1 hours. The Surrimento fromn 1954 of sterilhend angler days spemt on the mper

Sacramento River annually. Ninety-six percent come from Lluec gent eral areas in California: (1) Sacramento Valley, (2) San liranciseo Bily and Sacramento-San Joaquin Delta, atd (3) southern California A sport fishery is worth at least the amome of money that anglers spend in pursuit of it. The minimum average ammal expenditure by Sacranento River steelhead fishermen was a little under $\$: 300,000$ from 1954 through 1958. The average steellead fisherman spends ahoost $\$ 40$ for each stcelhead landed.
The pernelations of wild or naturally-prodneed slevellead in line
 years of the study. It is not known whether this represents a initural luctuation in abundance or a real clecline in the runs
Five gencral conclusions regarding Sacramento steelheat ard made: (1) stowking hatchery-reared yearling stechead is a valid imelhood of supplementing natural steelhead production, (2) greatest returns of sea-run hatchery steellead are obtained by stocking yearlings larger han 10 to the pound below the general tront fishing arcit, (d) on a poundige basis the cost of putting a sea-run hatehery steellead in the run is not far above the cost of producing and planting "catehable" rainhow trout, (4) the value of each steclliead to a fisherman is almost five times greater than the cost of putting one in his ereel by haichery methors, (5) the Sacramento River stechead sport fishery is 'ol. considerable importance, and the manageneme plan for the fishery should be evaluated periodically to jnsure the best poxsible fishing.

STOCKING MATCHERY-REARED STBELIIEAD RATNHOW THOL't

Railey, N. J. J

REFERENCES

1951. On estimating the size of

Cable, Lonella dg.
19\%0. Validity of nge delermination from senles, and growiln of matked talas

(I), D. LI. Fry', Jr., und 1. 1'. Iughes

Mrastic deterioration and metat corrosion ja Petersen disk fish tans. Cilif
Clmadwilli, larolil k
 Game, Inland Fisheries Admin. Rept. no. 60-1, 3 i in.
Chapman, D. G.
 Collver, Hobert IJ.
(heriments on the yellowtail, Seriola dorsolis (Gill) (enlif and Game, vol. 40, 10. 3, pn. $205-312$.
Mallock, Richard J., D. II. Fry, Jr., and Don A. Ia Fiance
1955. The use of wire fyke traps to estimate the runs of adult salmon and steel-

Howard
ward, Gematel Y
 Jagher, Кatl ド.
 $x+360 \mathrm{pp}$.
Latson, Jinlfh W., anal John M. Ward
in. Management of steelhend trout in the State of Washington. Amer, Fish

Macklin, Itohert, mind Aho J. Cordone

Meifs, Rehert C., and Charence I'. I'aniake
 gnirducrii) with sugमestions for management of the suecies. Wiash. Dept Game, Biol. Rull, uo. 5, 13 pp .
omenheimer, 13. S., linit IT. Oppenheimer, I. Danisherṣky, Arthur Purdly Stout
and Hromeriack JR. dhirich

Oregon Jish Cammission

-untente, Garcose li., and leobert C. Meigs

l'olzen, J. L .

Ricker, W. Jo.
 Schnefer, M. 13.
1951. Netimalion of size of mimal popmations hy marking axperiments, I!. S Shapmonher, Jat
1017. A system for recoriling monaremonts of fish scates.
'I'rians., 19.|d, vol. 74, po. 59-62.

DEL'Alt'MEN'I OW FIStI ANJ (iAME:

 Smitli, Stanfurd II.
 Siri, Jont: F'isharies, no. 34, 14 lll
Sucrlecer, (iequge II'

Pati Jostrin, John

确解, William

 Fisheries Admin. lent. nu. $\mathbf{6 7}-141, \overline{5}$,

 Iles. Ind. Canadin, Jour., vil. 14, no. 2, pp. 20:-212.
Fourl, 1: M.

[^0]:

[^1]: - Sicuteminer thriough Prolimary mils.

