GEOLOGIC MAP OF THE WILBUR SPRINGS QUADRANGLE, COLUSA AND LAKE COUNTIES, CALIFORNIA

E. I. Rich

1971

California (Wilbur Springs quad.). Geol. 1:48,000. 1971.

cop. 2.

M(200) M(200)

For sale by U.S. Geological Survey, price \$1.00

3 1818 00174945 4

MAP I-538

STRATIGRAPHY The marine sedimentary rocks within the Wilbur Springs quadrangle range in age from Late Jurassic

(Tithonian) to Late Cretaceous (Campanian) and, in

gross aspect, are a thick succession of fine-grained hemipelagic deposits enclosing isolated mappable units of coarser grained sandstone, conglomerate, or discrete sets of coarse-grained beds. Commonly, the

coarse-grained beds are restricted in lateral extent.

but a few of them have wide areal distribution.

Crook (1959) ascribes such a succession of rocks to

deposition in deep-water troughs in which finegrained hemipelagic sedimentation is continuous

through time. Intermittent incursions of coarse-

grained material, usually the result of turbidity currents or submarine slumps, are geologically instantaneous and form lensoid or tongue-shaped deposits within the fine-grained hemipelagic material.

From time to time, major tectonic events in the

source area of the sediment may cause a rapid influx of coarse clastic debris which is distributed widely

throughout much of the trough by longitudinal

marine currents. The coarse-grained deposits are

The formal stratigraphic names previously used

to subdivide the thick Mesozoic sedimentary section

are not adopted on the geologic map because: (a)

many of the formal names (such as Paskenta, Horse-

town, Chico) for the rocks are based upon supposed age relations, rather than upon mappable lithologic boundaries; (b) several of the formational units, defined by Kirby (1943), are not mappable in the Wilbur Springs quadrangle as they lens or grade laterally into rocks of different lithology; and (c) both small- and large-scale intertonguing of units and complex facies relations exist in all parts of the section. Redefinition of existing nomenclature or

definition of new stratigraphic units is beyond the

The mappable unmetamorphosed strata of pre-

Tertiary age are represented on the accompanying geologic map by a standardized letter symbol, a

through e, denoting lithologic texture, particularly grain size. The strata are further grouped into

numbered units. The contacts between the lettered

subunits are gradational; hence, they were selected

on the basis of textural criteria. The petrologic

characteristics were used to define the major

numbered units. The contacts between the major

numbered units are placed at the base of the lowest

lithologically persistent sandstone bed that has the petrologic characteristics of the higher of the two

The coarse-grained beds of each unit have similar petrologic characteristics. These characteristics, which are expressed as the relative content of quartz, plagioclase, K-feldspar, lithic fragments, and mica, are described in the map explanation. The propor-

tion of each constituent is an average of modal point

counts, recalculated to 100 percent. The petrologic

variations in the sandstone beds within the sequence

may be generalized as follows (from base to top):

(a) an increase in K-feldspar with an accompanying

decrease in plagioclase to K-feldspar ratio; (b) an

increase in mica; and (c) a reversible change in the

STRUCTURE

The Wilbur Springs quadrangle is divided by the

Stony Creek fault zone into two structurally dis-

similar terranes. East of the fault zone, the little deformed sandstone, siltstone, and conglomerate beds

of the late Mesozoic succession dip homoclinally east-

ward under the alluviated Sacramento Valley. West

of the fault zone and north of the Wilbur Springs

Resort, the rocks are strongly deformed. They are cataclastically metamorphosed volcanic rocks, sand-

stone, and siltstone—the Franciscan assemblage of

Bailey and others (1964). These rocks are structurally overlain by, and locally fragments of them are engulfed in, a sheetlike body of serpentinite. North of the Wilbur Springs quadrangle the Stony Creek fault zone is most probably a zone of thrusts that has placed the unmetamorphosed sedimentary rocks of the Sacramento Valley structurally against the cataclastic rocks (Blake and others, 1967; Irwin, 1966; Page, 1966; Brown, 1964; Bailey and others,

1964). The eastern trace of the thrust is marked along much of its length by linear and sheetlike

bodies of serpentinite half a mile to 2 miles wide.

Within the Wilbur Springs quadrangle, the Stony

Creek fault zone is extremely complex and is

necessarily simplified on the geologic map. The

surface trace parallels the western margin of Bear

Valley, but south and west of the Wilbur Springs Resort it has been sharply folded, offset by the

Resort fault, and probably underlies much of the

Serpentinite has been injected into and overlies

rocks of the late Mesozoic sedimentary sequence

along a branch of the Stony Creek fault zone, secs.

18, 19, and 20, T. 15 N., R. 5 W. The contact relations are clearly exposed in Stinchfield Canyon, in the hills

on either side of a small reservoir that straddles the

line between sections 18 and 19, and in the hill south

of the ranch house in section 20. The rocks east of the serpentinite are steeply tilted to overturned;

those on the west are strongly deformed and locally

sheared. In the NW1/4 sec. 18, the serpentinite over-

lies the sedimentary rocks and merges with the large

serpentinite mass west of the Stony Creek fault

zone. A few isolated knobs in sections 18 and 19 are

capped by serpentinite, and near the junction of

sections 19 and 30 serpentinite projects eastward

from the Stony Creek fault zone across the upturned edges of the sedimentary strata. Two isolated knobs that project above the alluvium in sections 29 and 32 are made up of steeply dipping siltstone beds capped by a thin veneer of serpentinite. The fault in the southern part of Bear Valley is covered by the

alluvium, although its position may be indicated by

several alined springs. The mapped relations, the assumed trace of the fault, and the serpentinite now

preserved as isolated patches overlying the sedimentary rocks may indicate that serpentinite once

covered most of the western and southwestern part

The southwestern part of the quadrangle is probably underlain by the Stony Creek fault zone. The serpentinite-surrounded patches of volcanic rock

exposed in the cores of small anticlines near Grizzly

Creek are probably part of this folded thrust. Be-

tween these exposures of serpentinite and Destanella

Flat, the rocks of unit 1 are intricately broken by a

network of folds and faults only a few of which

The serpentinite body east of Warnick-Lynch Canyons (secs. 26, 35, and 36, T. 14 N., R. 5 W., and secs. 1 and 2, T. 13 N., R. 6 W.) is considered here to

have been intruded into the sedimentary sequence

either along bedding planes or along other zones of

weakness that developed during the principal episode

of folding and thrusting. The serpentinite is foliated

breccia, of which 20-40 percent is massive serpen-

tinized peridotite blocks as much as 10 feet in diam-

eter, and the remainder is a foliated slickensided mash of crushed serpentinite. Exotic blocks of metasedimentary and metavolcanic rocks, as well as long, thin slivers of fossiliferous limestone, mudstone, and siltstone, are enclosed within the foliated

serpentinite. In a few places, surface creep or land-

sliding has extended the outcrop area of the serpen-

tinite, and locally covered or incorporated penecon-

temporaneous clastic serpentinite debris. This body of serpentinite has previously been described as

The serpentinite between Warnick Canyon and

Bear Creek and that exposed along the Abbot fault

are nearly vertical dikes that, at the surface, blend

"WACHINGTON

MIEDLIBRARY

JUN 2 3 1971

into a carapace-like structure similar to that

REFERENCES

Anderson, C. A., 1936, Volcanic history of the Clear

Lake area, California: Geol. Soc. America Bull.,

Bailey, E. H., Irwin, W. P., and Jones, D. L., 1964,

Franciscan and related rocks and their significance

in the geology of western California: California

Blake, M. C., Jr., Irwin, W. P., and Coleman, R. G., 1967, Upsidedown metamorphic zonation, blue-

schist facies, along a regional thrust in California and Oregon, in Geological Survey research, 1967: U.S. Geol. Survey Prof. Paper 575-C, p. C1-C9.

Brown, R. D., Jr., 1964, Geologic map of the Stony-

ford quadrangle, Glenn, Colusa, and Lake Counties, California: U.S. Geol. Survey Mineral Inv. Field

Crook, K. A. W., 1959, Lithotopic relationships in

Dickinson, W. R., 1966, Table Mountain serpentinite

Irwin, W. P., 1966, Geology of the Klamath Moun-

Kirby, J. M., 1943, Upper Cretaceous stratigraphy of

Page, B. M., 1966, Geology of the Coast Ranges of California, in Bailey, E. H., ed., Geology of north-

ern California: California Div. Mines and Geology

Taliaferro, N. L., 1943, Franciscan-Knoxville prob-

lem: Am. Assoc. Petroleum Geologist Bull., v. 27,

west side of Sacramento Valley south of Willows, Glenn County, California: Am. Assoc. Petroleum

tains Province, in Bailey, E. H., ed., Geology of northern California: California Div. Mines and

extrusion in California Coast Ranges: Geol. Soc.

deep-water troughs: Jour. Sed. Petrology, v. 29,

Div. Mines and Geology Bull. 183, 177 p.

Studies Map MF-279, scale 1:48,000.

America Bull., v. 77, no. 5, p. 451-472.

Geologist Bull., v. 27, no. 3, p. 279-305.

Geology Bull. 190, p. 19-38.

Bull. 190, p. 255-276.

no. 2, p. 109-219.

no. 3, p. 336-342.

detrital serpentine (Taliaferro, 1943).

scribed by Dickinson (1966).

v. 47, no. 5, p. 629-644.

could be shown at the scale of the map.

of Bear Valley.

southwestern part of the map.

percentage content of lithic fragments.

scope of this publication.

units concerned.

preserved as the only distinctly mappable strata.