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We comment on a nonstandard statistical treatment of
time-series data first published by Breton et al. (2006) in
Limnology and Oceanography and, more recently, used by
Glibert (2010) inReviews in Fisheries Science. In both papers,
the authors make strong inferences about the underlying
causes of population variability based on correlations
between cumulative sum (CUSUM) transformations of
organism abundances and environmental variables. Breton
et al. (2006) reported correlations between CUSUM-trans-
formed values of diatom biomass in Belgian coastal waters
and the North Atlantic Oscillation, and between meteoro-
logical and hydrological variables. Each correlation of
CUSUM-transformed variables was judged to be statistically
significant. On the basis of these correlations, Breton et al.
(2006) developed ‘‘the first evidence of synergy between
climate and human-induced river-based nitrate inputs with
respect to their effects on the magnitude of spring Phaeocystis
colony blooms and their dominance over diatoms.’’

Using the same approach, Glibert (2010) reported corre-
lations between CUSUM-transformed abundances of organ-
isms occupying many trophic levels and a range of
environmental variables in the San Francisco Estuary,
California. These correlations were reported to be statistically
significant, and on this basis Glibert (2010) concluded that
recent large population declines of diatoms, copepods, and
several species of fish were responses to a single factor—
increased ammonium inputs from a municipal wastewater
treatment plant. The study by Breton et al. (2006) is consistent
with a large body of research demonstrating the importance
of climate and human activity on phytoplankton communities
in Belgian coastal waters (Lancelot et al. 2007). However,
Glibert’s (2010) study piqued our curiosity about correlations
between CUSUM-transformed variables because it contra-
dicts the overwhelming weight of evidence that popula-
tion collapses of native fish (Sommer et al. 2007) and
their supporting food webs in the San Francisco Estuary
are responses to multiple stressors, including landscape
change, water diversions, introductions of exotic species,
and changing turbidity (Bennett and Moyle 1996; Kimmerer

et al. 2005; Cloern 2007; Jassby 2008; Mac Nally et al. 2010;
Thomson et al. 2010). We ask here how CUSUM transfor-
mation leads to inferences about such cause-effect relation-
ships when visual inspection of the data series (e.g., Fig. 1)
shows no association between wastewater ammonium and fish
abundance.

We emphasize an important distinction between the
CUSUM chart and CUSUM transformation. The CUSUM
chart is a well-established technique of quality assurance for
industrial processes (Page 1954). The method involves
keeping a running summation of the deviations of the
quality of the quantity of interest (e.g., concentration of an
industrial chemical) based on a sample of size n. If the
quantity suddenly jumps, or gradually drifts from the
specified tolerance, then a warning is raised and the process
is stopped. The CUSUM chart has been used as a valuable
off-line method in aquatic sciences to detect and resolve
climatic (Breaker 2007) and ecological (Briceño and Boyer
2010) regime shifts, as well as departures of water-quality
indicators from compliance conditions (Mac Nally and Hart
1997). In contrast, there appears to be no history for
regression (or correlation) analyses on CUSUM-trans-
formed variables prior to its use by Breton et al. (2006),
and we have found no theoretical development or justifica-
tion for the approach. We prove here that the CUSUM
transformation, as used by Breton et al. (2006) and Glibert
(2010), violates the assumptions underlying regression
techniques. As a result, high correlations may appear where
none are present in the untransformed data (e.g., Fig. 1).
Regression analysis on CUSUM-transformed variables is,
therefore, not a sound basis for making inferences about the
drivers of ecological variability measured in monitoring
programs. This issue is sufficiently important to warrant
exploration of the approach, which we present here.

The CUSUM function

The CUSUM function is a mathematical discrete operator
that transforms an input time series (xt) to an output time
series (yt) representing the running total of the input.*Corresponding author: jecloern@usgs.gov
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The CUSUM function often is applied to time series of
standardized residuals to detect changes in the mean of the
time series (Zeileis et al. 2003; Breaker 2007). The CUSUM
function changes the statistical properties of the input time
series. If the standardized input time series consists of
independent observations with zero mean (E [xt] 5 0) and
variance s2 (V [xt] 5 s

2) then

E yt½ �~
X

t

i~1

E xi½ �~0 ð2Þ

V yt½ �~
X

t

i~1

V xi½ �~t|s
2 ð3Þ

Cov yt,yt{1½ �~Cov
X

t

i~1

xi,
X

t{1

i~1

xi

" #

~(t{1)|s
2 ð4Þ

Corr yt,yt{1½ �~
Cov yt,yt{1½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V yt½ �|V yt{1½ �
p

~

(t{1)|s
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t|s
2
|(t{1)|s

2
p ~

t{1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t|(t{1)
p

ð5Þ

This means that the variance of the CUSUM-transformed
variables and the autocovariance between two consecutive
observations of the CUSUM-transformed variables both grow
linearly with time and, consequently, the autocorrelation of
the CUSUM-transformed variables quickly approaches 1.

Two key assumptions behind tests derived from standard
regression analyses are that the observations comprising
the sample are independently and identically distributed
(IID). As shown above, both assumptions are violated
when a random input variable is CUSUM-transformed
because: the variance is not constant, so the transformed
observations are not identically distributed; and the
transformed observations are autocorrelated and therefore
not independent of one another. Thus, applying statistical
regression techniques to CUSUM-transformed time series
violates the two most crucial assumptions for these tests.

CUSUM transformation inflates correlation

The CUSUM of a purely random process is a pure
random walk, an example of a difference-stationary
variable (because its first difference is stationary). Pfaff
(2006) described the difficulty of using difference-stationary
variables in regression and correlation: ‘‘In this case, the
error term is often highly correlated and the t and F
statistics are distorted such that the null hypothesis is
rejected too often for a given critical value; hence the risk
of a ‘spurious regression’ or ‘nonsense regression’ exists.
Furthermore, such regressions are characterized by a high

Fig. 1. Annual (A) abundance index of delta smelt (Hypomesus transpacificus) in the San Francisco Estuary and (B) wastewater
loadings of ammonium to the Sacramento River, 1985–2005. Treatment plant data were obtained from the Sacramento Regional County
Sanitation District (S. Nebozuk pers. comm., 28 July 2006). Monthly loading was calculated from discharge-weighted ammonium
concentrations using the methods described by Jassby and Van Nieuwenhuyse (2005). Delta-smelt abundance data were obtained from
the California Department of Fish and Game (http://www.dfg.ca.gov/delta/data/townet/indices.asp?species53).
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R2.’’ Regressions involving cumulative variables such as
those produced by CUSUM transformation are classic
examples of spurious regression and a well-known problem
in econometrics (Hendry 1980).

To illustrate the problem more concretely, we conducted
the following Monte Carlo experiment. We first generated
two independent, standardized (mean 0, standard deviation
1), normal random processes of length 30, about the length
of many annualized time series available from monitoring
data (e.g., those analyzed by Glibert 2010). We then
calculated the Pearson correlation between these two series
and also between their CUSUM-transformed values. We
repeated the process 100,000 times, yielding two distribu-
tions of correlation coefficients from which we generated
95% confidence intervals (CIs). The distribution of CUSUM
correlations is very different from the distribution of
correlations of the untransformed variables (Fig. 2). The
95% CI is (20.36, 0.36) for the original variables (Fig. 2A),
but (20.71, 0.71) for the CUSUM-transformed variables
(Fig. 2B). Thus, correlations must exceed 0.71 (instead of
0.36) for CUSUM-transformed variables to be considered
significant at the p , 0.05 levels. This implies that the
CUSUM transformation increases the probability of making

a Type I error (incorrectly rejecting a null hypothesis of no
correlation) from 5% to 42% when Pearson’s statistics are
applied. Therefore, on this basis alone, the p-values for
correlations of CUSUM-transformed variables reported by
Breton et al. (2006) and Glibert (2010) are incorrect.

The above experiment was based on independent
random processes. Water resources data, however, com-
monly exhibit serial correlation (Helsel and Hirsch 2002).
The introduction of serial correlation accentuates the
problem by broadening the distribution of correlation
coefficients even further than in the example above. To
measure this effect, we repeated the simulations after
introducing varying amounts of first-order serial correla-
tion (r1, r2) into the paired series that otherwise represented
random normal processes (using the arima.sim function of
R; R Development Core Team 2010). This second
experiment shows how the 95% CIs for the correlations
broaden in proportion to the strength of serial correlation
(Table 1; Fig. 2C). The presence of serial correlation thus
increases the probability of making a Type I error further
(53% when r1 5 r2 5 0.5), making any conclusions from
such correlations correspondingly less reliable. Even if a
significance level of p , 0.0001 were used, the probability

Fig. 2. (A) Frequency distribution of correlation coefficients for two independent random
normal series of length 30 (n 5 100,000). (B) Same as A after the samples are CUSUM-
transformed. (C) Same as B, but with first-order serial correlation of 0.5 introduced into the
otherwise random normal processes. Vertical dashed lines, 95% CI.
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of making a Type I error (19% when r1 5 r2 5 0.5) would
still be much greater than 5%.

We showed that two CUSUM-transformed variables
often have an apparent statistically significant correlation
even if none exists between the original untransformed
series. Moreover, even if a statistically significant relation-
ship could be established between CUSUM-transformed
variables, there is no proven basis for inferring relation-
ships between the original variables. Given these difficul-
ties, we wonder what purpose is served by CUSUM
transformation for exploring relationships between two
variables. As a real example, Glibert (2010) inferred a
strong negative association between delta smelt abundance
and wastewater ammonium from regression of CUSUM-
transformed time series. However, the Pearson correlation
(r 5 20.096) between the time series (Fig. 1) is not
significant, even under the naive IID assumptions (p 5

0.68). In short, correlations between CUSUM-transformed
variables should not be used as a substitute for analysis of
the original untransformed variables.
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Table 1. Upper limits of the 95% CIs for correlation between
two untransformed and CUSUM-transformed random variables
with different combinations of serial correlation coefficients, r1
and r2.

r1 r2 Untransformed
CUSUM-
transformed

0.0 0.0 0.36 0.71
0.1 0.1 0.36 0.73
0.1 0.5 0.38 0.77
0.1 0.9 0.39 0.82
0.5 0.5 0.44 0.81
0.5 0.9 0.51 0.86
0.9 0.9 0.71 0.92
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