

Ecological stoichiometry, biogeochemical cycling, invasive species and aquatic food webs: San Francisco Estuary and comparative systems

Journal:	Reviews in Fisheries Science
Manuscript ID:	BRFS-2011-0006
Manuscript Type:	Review
Date Submitted by the Author:	04-Feb-2011
Complete List of Authors:	Glibert, Patricia; University of Maryland Center for Environmental Science, Horn Point Laboratory Fullerton, David; Metropolitan Water District Burkholder, JoAnn; North Carolina State Univeristy, Center for Applied Aquatic Ecology Cornwell, Jeffrey; University of Maryland Center for Environmental Science, Horn Point Laboratory Kana, Todd; University of Maryland Center for Environmental Science, Horn Point Laboratory
Keywords:	ammonium, Bay Delta, nutrient ratios, phosphorus limitation, stoichiotrophic imbalance

SCHOLARONE[™] Manuscripts

1		
2		
3 ⊿	1	
- -	2	
6	3	
7	4	
8	5	
a	5	The least of the state of the second contract of the second contract of the second contract of the
10	6	Ecological stoicniometry, biogeochemical cycling, invasive species and aquatic
11	7	food webs: San Francisco Estuary and comparative systems
12	0	
13	0	
14	9	
15	10	
16	11	Patricia M. Glibert ¹ , David Fullerton ² , JoAnn M. Burkholder ³ , Jeffrey C. Cornwell ¹ , and
17	12	Todd M. Kana ¹
18	13	
19	10	
20	14	
21	14	
22	1.5	University of Mandaud Cantau & Environmental Science, Harry Deixt Laborateurs, DO Der 775
23	15	University of Maryland Center for Environmental Science, Horn Point Laboratory, PO Box 775,
24	16	Cambridge MD 21613; glibert@umces.edu
25		
26	17	² Metropolitan Water District, 1121 L St., Suite 900, Sacramento CA 95814
27		1
28	18	³ Center for Applied Aquatic Ecology North Carolina State University Raleigh NC 27695 USA
29	10	Center for Appried Aquate Deorogy, North Editorina State Entrensity, Ratelin, Ne 27095 Corr
30		
31	19	
32		
33	20	Condensed running head: Ecological stoichiometry, biogeochemistry and aquatic food webs
34		
35	21	
36		
37	22	Key words: ammonium, Bay Delta, <i>Corbula</i> , delta smelt, <i>Egeria</i> , <i>Microcystis</i> , nutrient ratios,
38	23	pelagic organism decline pH effects phosphorus limitation stoichiotrophic imbalance
39	20	pengle organism deemie, pri eneeds, phosphorus innuation, storemotrophie inisulate
40	24	
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
01 50		
52		
53		
55		
56		
57		
58		
59		
60		1

25 Abstract

Eutrophication has altered food webs across aquatic systems, but effects of nutrient stoichiometry have received less attention. Here, 30-year records of inorganic nitrogen and phosphorus concentrations, phytoplankton, zooplankton, invertebrates, and fish in the San Francisco Estuary were examined to collectively interpret ecosystem changes within the conceptual framework of nutrient stoichiometry and dynamics. Nutrients and nutrient ratios were highly related to many food web changes, consistent with different physiological requirements of different species or groups. This analysis suggests that nutrient changes led to a cascade of biogeochemical changes, leading, in turn, to altered stable states that were conducive to invasions of exotic macrophytes and bivalve molluscs, and to increases in the cyanobacterium *Microcystis.* Various other aquatic ecosystems have shown parallels in food web shifts linked to similar stoichiometric changes. This analysis indicates that nutrient stoichiometry is a significant driver influencing food webs in the Bay Delta. Altered nutrient supplies and associated biogeochemical changes helped invasive species thrive and led to various changes that have heretofore been considered stochastic. An overall implication is that remediation of planktivorous fish populations in the San Francisco Estuary will require significant reductions in nitrogen to restore the prior ecological stoichiometric balance.

42	
43	OUTLINE
44	
45	Introduction
46	
47	Part I: Eutrophication, ecological stoichiometry, nutrient ratios and alternate
48	stable state theory
49	Eutrophication
50	Ecological stoichiometry
51	Nutrient ratios and terminology
52	Alternate stable state theory
53	Summary of Part I
54	
55	Part II: Long-term trends and ecological stoichiometry relationships with the
56	food web of San Francisco Estuary
57	Data sources and analysis
58	Long-term trend overview
59	Nutrients
60	Phytoplankton
61	Zooplankton
62	Invertebrates
63	Fish composition
64	Fish size
65	Trophic interactions
66	Macrophytes
67	Summary of Part II
68	
69	Part III: Ecological stoichiometry and biogeochemical interactions
70	Abiotic release of P from saltwater intrusion
71	Riota-mediated P and N fluxes
72	Altered biogeochemical processes and effects under conditions of high
73	henthic primary productivity
73	Macrophyte production calcification and hivalves
75	Riological and biogeochemical feedbacks and Microsystis abundance
ני זר	Summary of Part III
70 77	
70	Part IV: Comparative systems
70	I an Iv. Comparative systems
/9	Lake wasnington Dotomao Divon Choganogko Davi
80	Гоютис кiver, Unesapeake Bay
81	Hudson Kiver
82	Ine Laurentian Great Lakes
83	Florida lakes and estuaries
84	European lakes and estuaries
85	Summary of Part IV
86	
87	Part V: Ecological stoichiometry and prevailing viewpoints

2
3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
24
04 07
35
36
37
38
39
40
41
42
12
40
44
45
46
47
48
49
50
51
52
52
3 3
54
55
56
57
58
59
50

1

101 102

107 108 109

Invasive species	78
Light limitation of primary producers	79
Potential inhibition of diatoms by NH_4^+	81
Food limitation	82
Variations in flow and habitat suitability	83
Exports of water	85
Summary of Part V	86
Part VI: Conclusions, implications and recommendations	87
Conclusions	87
Implications	<i>93</i>
Recommendations for further study	99
Acknowledgments	101
References	101

INTRODUCTION

This review applies eutrophication (e.g., Cloern, 2001), ecological stoichiometry (Sterner 110 and Elser, 2002) and stable state theory (Scheffer et al., 1993) as an overall framework in 111 evaluating the extent to which decadal changes in aquatic food webs in the San Francisco Bay 112 Delta and comparative systems have resulted from human-driven changes in nutrient loads and 113 forms. Eutrophication is the process whereby systems are enriched with nutrients with various 114 115 deleterious effects, but stoichiometry relates changes in the relative elemental (e.g., nitrogen (N) and phosphorus (P)) composition in body tissue and the water column. Here, 30 years of records 116 of inorganic N and P concentrations, phytoplankton, zooplankton, invertebrates, and fish in the 117 118 San Francisco Estuary were examined to collectively interpret ecosystem changes within the conceptual framework of nutrient dynamics. The premise of this paper is that alterations in 119 nutrient stoichiometry have profound consequences for aquatic food webs resulting from 120 121 different organismal needs for different nutrients, and different abilities to sequester the nutrient

Page 6 of 236

Reviews in Fisheries Science

that is in least supply. Stated more formally, the questions addressed in this paper are: Do systems exhibit self-assembly in fundamentally similar ways when nutrient stoichiometry is altered, and how has this been expressed in the San Francisco Bay Delta and comparative systems? Does changing nutrient stoichiometry have ecosystem effects even when nutrients are not at levels normally taken to be limiting by primary producers? If the food web changes that have occurred are related to nutrient loads, what are the biological, physiological or biogeochemical processes that help to explain, mechanistically, why such food web changes may have occurred? And, what are the management implications of such relationships? These questions are highly relevant considering that cultural eutrophication is one of the most pressing problems affecting both coastal and freshwater ecosystems worldwide (e.g., Meybeck, 1989, Vitousek et al., 1997a,b; Howarth et al., 2002; Galloway and Cowling, 2002; Turner et al., 2003; Conley, 2009, Doney, 2010). Nutrient pollution is on the rise because of dramatic increases in human populations in many regions, and concomitant increasing demands for energy, increases in nitrogen (N) and phosphorus (P) fertilizer use for agriculture, changes in diet that are leading to more meat production and animal waste, and expanding aquaculture industries (e.g., Smil, 2001; Galloway and Cowling, 2002; Galloway et al., 2002; Howarth et al., 2002; Wassmann, 2005; Glibert et al., 2010a). Although eutrophication is occurring globally, nutrient export from coastal watersheds is not evenly distributed (Seitzinger et al., 2002a, 2005; Howarth et al., 2005; Glibert et al., 2006a, 2010a), nor is the export of N and P changing proportionately. There is much to be understood about the implications of changes in N:P supplies, globally and regionally for aquatic food webs. Differentiating food web changes due to nutrient loads from those due to stochastic events has important implications for restoration and management.

S	
ר.	
2	
4	
5	
č	
o	
7	
o	
0	
9	
1	Λ
1	U
1	1
1	2
1	~
1	3
1	4
4	E
I	ວ
1	6
1	7
1	<u>'</u>
1	8
1	q
1	5
2	0
2	1
~	
2	2
2	3
~	4
2	4
2	5
~	č
2	6
2	7
<u>م</u>	0
2	0
2	9
ç	Λ
2	U.
3	1
ຊ	2
2	~
3	3
3	4
2	÷
3	5
3	6
Š	-
3	1
3	8
Š	õ
3	9
4	-
4	0
4 ∧	0 1
4 4	0 1
4 4 4	0 1 2
4 4 4 ⊿	0 1 2 3
4 4 4 4	0 1 2 3
4 4 4 4	0 1 2 3 4
4 4 4 4 4	0 1 2 3 4 5
4 4 4 4 4 4	0 1 2 3 4 5 6
4 4 4 4 4 4 4	0 1 2 3 4 5 6
4 4 4 4 4 4 4 4	0 1 2 3 4 5 6 7
4 4 4 4 4 4 4 4	0 1 2 3 4 5 6 7 8
4 4 4 4 4 4 4 4	0 1 2 3 4 5 6 7 8
444444444444444444444444444444444444444	0 1 2 3 4 5 6 7 8 9
44444444444	0 1 2 3 4 5 6 7 8 9 0
4444444445	0 1 2 3 4 5 6 7 8 9 0
44444444455	0 1 2 3 4 5 6 7 8 9 0 1
444444444555	0 1 2 3 4 5 6 7 8 9 0 1 2
4444444455555	0 1 2 3 4 5 6 7 8 9 0 1 2 2
4444444455555	0 1 2 3 4 5 6 7 8 9 0 1 2 3
444444444555555	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
444444444555555555555555555555555555555	0123456789012345
444444444555555555555555555555555555555	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
444444444455555555555555555555555555555	01234567890123456
444444444445555555555555555555555555555	012345678901234567
444444444445555555555555555555555555555	012345678901234567
444444444445555555555555555555555555555	0123456789012345678
444444444445555555555555555555555555555	01234567890123456789
444444444455555555555555555555555555555	012345678901234567890

1

Nutrient enrichment interacts with aquatic food web dynamics in complex ways. At the 145 planktonic level, many of these changes are well understood. With nutrient enrichment a shift in 146 plankton assemblage composition is frequently observed, with large diatoms giving way to 147 smaller phototrophs such as cyanobacteria and various flagellates (e.g., Smayda 1989; Marshall, 148 2003; MacIntyre et al., 2004; Finkel et al., 2010). Many of these species can be harmful to higher 149 150 trophic levels, disrupting normal ecosystem function. The dominance of such species can result in a failure of normal predator-prey interactions, which in turn enhances the transfer of nutrients 151 that sustain the blooms at the expense of competing algal species (Irigoien et al., 2005; Mitra and 152 153 Flynn, 2006; Sunda et al., 2006). Such changes have implications at all levels of the food web. Increased phytoplankton and macroalgal proliferations at high nutrient levels affect seagrasses 154 and benthic microbiota that compete for light (Harlin, 1993; Deegan et al., 2002; Burkholder et 155 al., 2007), altering food web structure by changing the habitat needed to support fish and 156 shellfish. All aspects of metabolism, predator-prey interactions, and species success are altered 157 when a system is stressed by nutrient over-enrichment (Breitburg et al., 1999; Breitburg 2002). 158 Adding to the complexity of understanding system and food web changes due to 159 increased nutrients is the relatively recent phenomenon of changing stoichiometry of nutrient 160 supplies. In many parts of the developed world, as a means to reduce or control algal blooms, P 161 reductions are being undertaken (e.g., in sewage effluents and laundry detergents), but N loads 162 often remain elevated (Glennie et al. 2004, European Environment Agency 2005). Thus, not only 163 164 have many systems undergone eutrophication, but many are showing signs of reversal due to this single nutrient reduction. Yet, even when many eutrophication symptoms are reduced, such as 165 hypoxia and algal blooms, systems only appear to partially recover (Burkholder, 2001a,b); their 166

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

food webs do not appear to return to their pre-eutrophic state.

Page 8 of 236

Reviews in Fisheries Science

The San Francisco Estuary, or Bay Delta, California, U.S.A. (Fig. 1) is an ideal ecosystem for addressing the questions posed above. The Bay Delta is one of the largest estuarine systems on the U.S. Pacific Coast as well as one of the nation's largest managed and engineered water systems. It is the largest source of municipal and agricultural fresh water in California, and is home to economically important fisheries. From phytoplankton to fish, the food web of this system has changed significantly over the past several decades (Alpine and Cloern, 1992; Jassby et al., 2002; Kimmerer et al., 2004; 2010; Jassby, 2008). The Bay Delta has been extensively monitored for most biological constituents over the past several decades, so this is a system rich in data with which to explore these relationships. It has also been influenced by major nutrient loads that have not only increased over time, but have also changed in composition (e.g., Van Nieuwenhuyse, 2007; Dugdale et al., 2007; Jassby, 2008; Glibert, 2010). Nitrogen loads have increased substantially since the mid-1980s, while P loads increased, then declined in the mid-1990s to levels that approximate earlier conditions. The Bay Delta is an inverse delta, receiving the majority of its flow from the Sacramento and San Joaquin Rivers (Atwater et al., 1979; Nichols et al., 1986). The Sacramento River is the larger river, contributing about ~80% of the freshwater to the system (Jassby, 2008). The upper reaches drain 61,721 km², while the upper San Joaquin River drains 19,030 km² (Sobota et al., 2009). Major modifications to the Bay Delta have occurred over the past century, including

expansion and deepening of shipping lanes, and significant diversion of water to various users throughout the state (Atwater et al., 1979). The Sacramento and San Joaquin Rivers converge at the confluence of the delta, then flow into Suisun Bay, San Pablo Bay, then ultimately the

drainage of marshes to support agriculture, installation of dikes to prevent farmland flooding,

190 Central and South Bays. River flow has varied about 10-fold in the past decades due to the

191 effects of El Niño, prolonged droughts and ENSO wet years (Jassby, 2008).

The Bay Delta ecosystem has also been significantly modified by invasive species, including clams, bay grasses, various species of copepods, and fish over the past several decades (Carlton et al., 1990; Cohen and Carlton, 1995, 1998; Kimmerer, 2002). In fact, this system has been characterized as one of the most heavily invaded estuaries (Cohen and Carlton, 1995, 1998), with most of these invasions traced to increased trading with Asia and "discharge of ballast water, inadvertent or deliberate release of aquarium organisms, deliberate introduction for fisheries, and inadvertent release of bait organisms" (Kimmerer, 2004, p. 8; NRC, 2010). The Bay Delta has been used as an example of a system undergoing "invasion meltdown," implying that frequent invasions alter habitat and promote additional invasions (Simberloff and Von Holle 1999, Simberloff, 2006), perhaps to the point of "no return." The extent to which habitat changes brought about by nutrient enrichment has contributed to these successful invasions, as well as other food web changes, has not been explored.

The fundamental question of whether changes in the food web are a result of anthropogenic changes, especially changes in nutrient loads and balance, or whether they are the result of stochastic events, has more than academic relevance. Many management questions and actions are directly affected by the extent to which the factors contributing to the food web changes can be identified and managed. Several fish, including the delta smelt (Hypomesus transpacificus) and longfin smelt (Spirinchus thaleichthys), are on the Federal Endangered Species list or are considered threatened (Wanger, 2007a,b). Water exports have been restricted by court order in recent years in an attempt to restore these species; new habitat is being created in the hope that it will contribute positively to the restoration of the system; and major re-engineering of the flow is also being debated for the coming decades (e.g., Bay Delta

Reviews in Fisheries Science

214 Conservation Plan, 2010,

http://baydeltaconservationplan.com/BDCPPlanningProcess/ReadDraftPlan/ReadDraftPlan_copy
1.aspx). Costs of these efforts are estimated in the hundreds of millions to billions of dollars at
present and over the coming years.

Despite current management efforts, delta smelt have undergone further significant population declines in the past decade, along with longfin smelt, threadfin shad (Dorosoma *petenense*) and young-of-the-year striped bass (*Morone saxatilis*; Rosenfield and Baxter, 2007; Sommer et al., 2007, Baxter et al. 2010). Accelerated losses during the last decade have been termed the "Pelagic Organism Decline" (POD) period (Sommer et al., 2007, Baxter et al. 2010). Much of the debate about the declines in fish populations have been centered on the effect of the export pumps that supply the water to large aqueducts that transport it throughout the state for municipal and agricultural use.

The complexity of the Bay Delta system – hydrologically and ecologically – cannot be underestimated. Kimmerer (2004, p. 12) noted that "complex environments such as estuaries" often seem not to obey general rules, but to respond in specific ways for which the general literature on estuaries provides little guidance." The frequent changes, invasions, and effects of engineering and other management actions complicate these relationships. This paper focuses on nutrient issues that heretofore, for the most part, have not been emphasized, and suggests some "general rules" by which such systems may respond. While there have been multiple freshwater systems for which ecological stoichiometric (Sterner and Elser, 2002) and stable state principles (Scheffer et al., 1993) have been applied (described in more detail throughout this paper), there have been relatively few examples where these principles have been applied in estuaries. Recent evidence suggests that the changes in trophodynamics in the Bay Delta system may be related to

nutrient changes (e.g., Wilkerson et al., 2006; Dugdale et al., 2007; Van Nieuwenhuyse, 2007; Glibert, 2010). However, ecosystem changes have not been collectively interpreted in the conceptual framework of nutrient dynamics. The multiple stressors on fish and the aquatic system in general have been, and are, the subject of multiple working groups, panels, and a National Academy Study (NRC, 2010) as the management implications are far-reaching. This paper is written in six parts, bringing to bear the ecological principles of eutrophication (sensu Cloern, 2001), ecological stoichiometry (sensu Sterner and Elser, 2002) and alternative state theory (sensu Scheffer et al. 1993). Part I outlines the conceptual overviews of eutrophication, elemental stoichiometry, nutrient ratios, and alternative stable states and their inter-relation. Part II probes the long-term nutrient and organismal changes in the Bay Delta and their ecological stoichiometric relationships, beginning with phytoplankton, then zooplankton, invertebrates, fish and macrophytes along with their trophic interactions. This analysis extends that of Glibert (2010) with a more comprehensive examination of the changes in trophic components and their interactions. In Part III, the complexities of biogeochemical processes and how they relate to changes in the food web are considered. This section also develops the apparent relationships between the emergence and production of macrophytes, blooms of the toxic cyanobacterium, *Microcystis aeruginosa*, and changes in biogeochemical fluxes that may accentuate food web changes. Part IV compares the Bay Delta to selected freshwater and estuarine ecosystems, given that "the comparative method assembles the separate realizations needed for scientific inference by ... recognition of information of patterns naturally occurring in temporal and spatial variations in existing conditions and phenomena" (GEOHAB, 2006, p.9). Part V compares the ecological stoichiometric and alternate stable state interpretations of changes with some prevailing views of system change in the Bay Delta. Lastly, Part VI

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

concludes with a summary of the implications of these ideas with respect to current debates and
 challenges with respect to nutrient management, the development of nutrient criteria, and
 predictions for system recovery upon nutrient removal. Directions for further study are also
 suggested.

265 PART I: EUTROPHICATION, ECOLOGICAL STOICHIOMETRY, NUTRIENT RATIOS,
 266 AND ALTERNATE STABLE STATE THEORY

268 Eutrophication

Although the term "eutrophication" has been variably defined (e.g., Nixon, 1995; Richardson and Jørgensen, 1996; Andersen et al., 2006; Ferriera et al., 2010), central to all definitions is the concept that the enrichment of water by nutrients causes an enhanced biomass and/or growth rate of algae, which, in turn, leads to an undesirable disturbance in the balance of organisms present in the water and to the quality of the water body concerned (Burkholder, 2001a,b; Duarte et al. 2008; Glibert et al., 2010a). The effects of eutrophication in estuaries and marine coastal waters are generally characterized in terms of increased chlorophyll *a* in the water column, loss of dissolved oxygen leading to hypoxia or anoxia, loss of seagrasses, and loss of certain fisheries (Cloern, 2001). Increases in many harmful algal species have also been associated with eutrophication (Hallegraeff, 1993; Anderson et al. 2002, 2008; Glibert et al., 2005a,b, 2006a, 2010a; Glibert and Burkholder, 2006; Heisler et al., 2008).

The ecosystem response to eutrophication is a continual process rather than a static condition or a trophic state (Cloern, 2001; Smayda, 2006). As a result of differences in nutrient loading, estuaries on the U.S. west coast have, for example, generally been characterized as less eutrophic than east coast estuaries (Bricker et al., 2007, 2008). Historically, the concept of

eutrophication was mostly applied to the natural aging of lakes, from deeper waters to a marsh

(Wetzel, 2001); more recently, the terms "accelerated" or "cultural" eutrophication have been

used in recognition of major human influences (e.g., Burkholder et al., 2006, 2007). Cloern

(2001) identified three conceptual phases of eutrophication. In the first phase, responses in

ecosystems are directly related to changes in nutrient loading; these responses included such

changes as chlorophyll a, primary production, dissolved oxygen or other measures of system

metabolism. In the second phase, it was recognized that estuaries act as filters, modulating the

responses so that both direct and indirect effects can be accounted for, and that system typology

(e.g., Kurtz et al., 2006; Madden et al., 2010) may also contribute to the variations in observed

responses to similar nutrient loadings. Indirect effects include changes in habitat, changes in the

benthos, changes in sediment biogeochemistry, and changes in food web structure, among other

chlorophyll a, primary production, development of harmful algal blooms (HABs), and changes

interactive effects of multiple stressors on a system, including contaminants, exotic or invasive

species, aquaculture development, climate change and hydrological changes (Fig. 2). Here, the

framework to further our understanding not only of the effects of nutrient loading, but also the

effects of disproportionate nutrient loading (or nutrient removal). A new phase of understanding

is introduced, based on the premise that food web changes may be understood and potentially

predictable if stoichiometric relationships are known.

conceptual Phase III model of Cloern (2001) is coupled with the ecological stoichiometric

responses. These changes in turn influence the direct responses, which include changes in

in macroalgal composition and biomass, among others. Finally, the third phase stresses

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

1 2		
2 3 4	306	
5 6 7	307	Ecological stoichiometry
7 8 9	308	Ecological stoichiometry provides a framework for "taming" the complexity of
10 11	309	eutrophication responses. Ecological, or elemental, stoichiometry suggests that different
12 13 14	310	organisms will dominate under different relative proportions of critical elements (carbon (C), N,
15 16	311	or P) due to differences in allocation of C, N and P in the types of structures that build different
17 18 10	312	types of organisms (Sterner and Elser, 2002). Different organelles have different requirements
20 21	313	for C, N or P and, therefore, different types of organismal structures, and ultimately organisms
22 23	314	will have different C:N:P allocations (Sterner and Elser, 2002). As noted by Hall (2009, p. 504),
24 25 26	315	"Ecological stoichiometry formalizes what should be obvious: Organisms interacting in food
27 28	316	webs are composed of different elements, such as C, N, or P. As a result, energy and nutrient
29 30	317	flow through consumer-resource interactions obey fundamental constraints."
31 32 33	318	In particular, ribosomes are high in P relative to N; they are "the most P rich and lowest
34 35	319	N:P organelles in cells" (Sterner and Elser, 2002, p. 73). Ribosomes are required for growth, and
36 37 38	320	an increase in ribosomes is required for a cell to have an increase in growth rate. This is well
39 40	321	illustrated for phytoplankton, for example (Geider and LaRoche, 2002; Sterner and Elser, 2002;
41 42 42	322	Quigg et al., 2003; Finkel et al. 2010). Fast-growing cells have a lower N:P ratio than their more
43 44 45	323	slowly growing counterparts. They have proportionately more allocation of resources to
46 47	324	"assembly machinery" (rRNA) than to "acquisition machinery" (protein) (Elser et al., 2003;
48 49 50	325	Klausmeier et al., 2004). In contrast, phytoplankton that can sustain their metabolism when
50 51 52	326	resources are low – i.e., more slowly growing cells, have a higher proportion of pigments and
53 54	327	proteins with proportionately higher N:P ratio (Sterner and Elser, 2002; Elser et al., 2000a, Elser
55 56 57	328	2006; Arrigo 2005; Finkel et al., 2010; Fig 3.). Slowly growing cells are also generally, but not

always, larger in size (e.g., Malone, 1981; Kagami and Urabe, 2001; Finkel et al. 2010). Slowly growing, nutrient-stressed phytoplankton, however, may also have the capability of short-term transport of the limiting nutrient in excess of growth demands (e.g., Glibert and Goldman, 1981; Terry et al., 1985), leading to highly variable N:P ratios under transient conditions (Flynn, 2002); thus, the change in N:P ratio with algal growth rate is not necessarily a linear function (Ågren, 2004).

At the level of organismal structure, stoichiometry also varies. There is a greater need for P in skeleton and bone than in skin, heart, kidney, muscle or brain (Sterner and Elser, 2002). The latter all have a high N:P content (Sterner and Elser, 2002). Small fish, therefore, that have a higher muscle:skeleton ratio than large fish have a higher biomass N:P ratio. Whereas whole fish N content generally varies across a relatively small range, ~8-11%, whole fish P content tends to vary from ~1-5% (Sterner and George, 2000). Biomass N:P of fish generally ranges from ~5-15 (Sterner and George, 2000; Fig. 4). Piscivorous fish are generally larger than planktivorous fish, and have more bone and skeleton. As emphasized by Sterner and Elser (2002, p. 254), "as one ascends the pelagic food web...trophic groups grow increasingly nutrient and especially P rich..." Thus, fish community composition as well as fish size should change as a function of N:P ratio. Ecological stoichiometric principles have also been invoked in predicting the overall fitness of a population. As noted by Sterner and Elser (2002), the balance of multiple chemical elements has many consequences for community dynamics. These authors state that "Stoichiometry can either constrain trophic cascades by diminishing the chances of success of key species, or be a critical aspect of spectacular trophic cascades with large shifts in primary producer species and major shifts in ecosystem nutrient cycling". The relative balance of nutrients affects all aspects of behavior (i.e., in meeting nutritional demands), growth rate,

Reviews in Fisheries Science

2
3
4
5
6
7
<i>i</i>
ð
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60

fecundity, and ultimately the success of different populations (Jeyasingh and Weidner 2005,
2007). Biodiversity should therefore be a consequence of stoichiometry and populations should
self-stabilize as a result of stoichiometric constraints.

Phototrophs generally have limited ability to dissipate nutrients because they do not 355 actively excrete, and are more likely to reflect the stoichiometric proportions and the variability 356 of their environment. They are more likely to follow the "you are what you eat" model (Sterner 357 and Elser, 2002, p.16), and this has been elegantly demonstrated for many phytoplankton in 358 culture, where, for example, it has been shown that the medium N:P ratio and the cellular N:P 359 ratio of the chlorophyte *Scenedesmus* are very similar when grown over a range of N:P ratios in 360 culture (e.g., Rhee, 1978). Some field comparisons of N:P stoichiometry in dissolved substrates 361 have also compared favorably with that of particulate matter in some regions (e.g., Glibert et al. 362 2006b), but examples of a range of relationships between dissolved and particulate matter can be 363 found. Many phytoplankton species or species groups do have adaptations to life under non-364 Redfieldian conditions. For example, cyanobacteria have a wide range of abilities to thrive at 365 both the low and the high N:P ends of the Redfield spectrum, with many species having the 366 capability to fix N₂ when N is limiting, and other species having the capability of reducing their 367 P requirement at the high end. Many cyanobacteria can substitute non-P containing lipids when P 368 is low (Van Mooey et al., 2009) and some cyanobacteria have alkaline phosphatase activity that 369 can be more than 30-fold higher than that in diatoms (Giraudet et al., 1997). Very small cells, 370 371 such as the cyanobacteria *Prochlorococcus*, *Synechococcus*, and the pelagophyte *Aureoumbra lagunensis* have very low P requirements, leading to very high cellular C:P or N:P ratios (Liu et 372 al., 2001; DeYoe et al., 2007; Finkel et al., 2010). Mixotrophy provides another mechanism by 373 374 which many species can thrive outside the normal Redfield range of nutrients (Burkholder et al.,

2008). Cyanobacteria, diatoms and flagellates differ in size by several orders of magnitude (Finkel et al., 2010). Cell size, in turn, affects the cell's stoichiometry as well as a large range of physiological processes from resource capture to survival against predation to allelopathic interactions to motility and buoyancy (Flynn, 2002; Finkel et al., 2010). Heterotrophs, in contrast, do not necessarily reflect the stoichiometric proportions of their chemical environment, because mechanisms of excretion and release favor the loss of non-limiting nutrients and the sequestering of the limiting nutrient (Sterner and Elser 2002; Fig. 5). Compared to plants, including microbial plants, heterotrophs are relatively inflexible in their stoichiometry (McIntyre and Flecker, 2010). Thus, heterotrophs that can sequester the nutrient in least supply relative to their needs should ultimately outcompete those that cannot effectively acquire what they need. They will become dominate, keystone species. These species further stabilize the nutrient environment by excreting, egesting, or respiring what they do not need (Sterner and Elser, 2002). The dichotomy between resource N:P ratios and consumer N:P ratios increases even more when consumers ingest nutrient-poor food; the need to dissipate excess nutrients increases (Vanni et al. 2002). Many bacteria also do not reflect the stoichiometric proportions of their resource, as they remineralize nutrients. As noted by Sterner and George (2000, p. 127), "Nutrient flux from resources to consumers and then to waste products can be thought of as a chemical reaction wherein mass must balance" (emphasis added). Moreover, as noted by Malzahn et al. (2007, p. 2063) based on Brett (1993), "stoichiometric needs of secondary consumers and the stoichiometry of prey are normally finely tuned." In fact, this means that fish, with their relatively inflexible skeletal requirements, have a greater likelihood to be limited by nutrients than energy or other factors (McInyre and Flecker, 2010) Stoichiometry would thus predict that the dominant keystone predator should have a

Reviews in Fisheries Science

biomass N:P ratio that is inversely related to the N:P ratio of the ambient nutrient pool, and homeostasis from nutrient recycling will drive the nutrient balance of the system to be self-sustained. Yet, homeostasis comes at a cost, typically a reduction in the rates of growth or reproduction (Boersma 2000, Boersma and Kreutzer 2002, Boersma et al., 2008). Schindler and Eby (1997) showed that obligate planktivores are most likely to recycle nutrients at high N:P ratios. McIntyre and Flecker (2010, p.553), in a broad survey found that "the N:P ratio of excreted nutrient increased substantially with body size; on average, large fishes excreted relatively more N than P compared to smaller counterparts." Ecological stoichiometric principles thus suggest that many changes will occur in food webs as the N:P ratio changes (Sterner and Elser, 2002). Biogeochemical processes are also affected by changes in nutrients. Under eutrophic conditions in shallow systems, benthic biogeochemical processes are particularly important, as these processes may sustain eutrophication and reduced oxygen levels through self-sustained feedbacks (Kemp and Boynton, 1992; Kemp et al., 2005). Return fluxes of N and P from the sediment act as a key feedback in enhancing eutrophication, and decreases in coupled nitrification/denitrification by anoxia result in a longer residence time of available N. There are multiple interacting feedbacks between nutrient cycling and biogeochemistry, food web dynamics and benthic-pelagic coupling. Overall, "disentangling....effects of anthropogenic stressors in human-altered systems and the potential for other stressors to exacerbate these effects" (Breitburg, 2002, p. 775) requires a comprehensive, multidimensional view linking nutrients to physiological responses, trophodynamics and food web structure. By applying stoichiometric principles, the expected changes in food webs and biogeochemical processes are predictable as N:P ratios increase (Fig. 6).

Many ecological stoichiometric relationships were developed in the whole-lake studies that were conducted in the 1970s-1990s (e.g., Schindler, 1974, 1977, 1988, 1990, 1991; Schindler and Fee, 1974; Schindler et al., 1987; 1993; Shapiro and Wright, 1984; Edmondson and Abella, 1988; Meijer et al., 1989; van Donk et al., 1990). Freshwaters are generally considered to be P-limited (Schindler, 1977), and there is a greater wealth of understanding of stoichiometric constraints in freshwater systems. Estuarine and coastal waters are more often considered to be N-limited at the primary producer level (Hecky and Kilham, 1988; Howarth, 1988; Howarth and Marino, 2006). However, as nutrient loads have changed in many parts of the world due to increasing N and decreasing P, this dichotomy of nutrient limitation is not the truism it once was. Sequestration of P in calcareous sediments leads to P limitation in some tropical regions (Smith, 1983; Fourgurean and Zieman, 1992; Touchette and Burkholder, 2000, and references therein). In lotic systems there is growing evidence of both N (Mosisch et al., 2001; Grimm et al., 2003) and P limitation (Martí and Sabater, 1996; Carr and Chambers, 1998), or N and P co-limitation (Rudek et al., 1991; Carr and Chambers, 1998; Elser et al., 2000a,b; Elser et al., 2007). Even in lakes, the paradigm of P limitation has recently been questioned (Elser et al., 2007; Lewis and Wurtsbaugh, 2008), although many hardwater lakes are still regarded as P-limited (Wetzel, 2001). A large-scale meta-analysis of algal response experiments across the world found no latitudinal differences in N vs. P limitation across the salinity gradient, and simultaneous N and P enrichment produced "strongly positive synergistic responses" across freshwater and marine environments (Elser et al., 2007). Nevertheless, ecological stoichiometric principles have not been rigorously examined in estuarine systems, as most current emphasis is on the effects of eutrophication or general nutrient enrichment.

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

1

Reviews in Fisheries Science

2		
3		
1		
4		
5		
6		
7		
8		
9		
ں 11	•	
44	,	
11		
12	-	
13	5	
14	Ļ	
15	;	
16		
17	,	
11		
18)	
19)	
20)	
21		
22	,	
22	-	
23)	
24	-	
25	,	
26	;	
27	•	
28 28	2	
ລາ	,	
25	,	
30)	
31		
32	2	
33		
21		
04 07		
35)	
36	;	
37	,	
38	;	
30)	
л л	,	
40	,	
41		
42	-	
43	5	
44	Ļ	
45	;	
16		
40	,	
47		
48	5	
49)	
50)	
51		
50	,	
52	-	
23	•	
54	ł	
55	;	
56	;	
57	,	
59	2	
50	,	
26	,	
ഹ)	

445 Nutrient Ratios and Terminology

Nutrient stoichiometry is a comparison of nutrient ratios in solution or biomass. The 446 concept of the Redfield ratio (Redfield, 1934, 1958), in which organismal C:N:P ratios are 447 assumed to be in the proportion of 106:16:1 by atoms, is likely the most well-known 448 449 stoichiometric relationship. Redfield (1934) documented that the N:P ratio of plankton should fall in the range of 16:1 on a molar basis, and hence deviations from this ratio (in both the 450 particulate and the dissolved nutrient pools) have been interpreted as evidence of limitation. The 451 Redfield ratio was developed from observations in oligotrophic waters where both biomass and 452 nutrient concentrations are low and there is minimal interference from suspended sediments. The 453 ratio of N:P provides a simple, easily measurable index, and total, particulate and/or dissolved 454 N:P ratios are frequently used to evaluate nutrient status (Fisher et al., 1992; Glibert et al. 1995, 455 2004, 2006b). Changes in this ratio have been compared to shifts in plankton composition, 456 yielding insight about the dynamics of nutrient regulation of plankton assemblages (e.g., Tilman 457 1977; Smayda, 1990; Hodgkiss and Ho, 1997; Hodgkiss, 2001; Heil et al., 2007). More recently 458 it has been suggested that annual mean N:P ratios give a better indication of nutrient status than 459 short-term measures of N and P (Smith, 2006), as nutrients may be uncoupled from the biomass 460 at that same point in time due to the many processes by which nutrients are taken up, transported 461 and and/or transformed in form. 462

Although N:P ratios can be useful in a relative sense, the same ratio can be obtained from
vastly different numerators and denominators, as long as their proportions remain the same.
Thus, an elevated N:P ratio, suggestive of P limitation, can be obtained by a depletion in P (true
P limitation), or by an increase in N without a corresponding depletion in P. The latter is the

case for the mouth of the Mississippi River, USA, where elevated N:P ratios have resulted from
excess loading of N rather than from decreasing P (Justic et al., 1995; Rabalais et al., 1996;
Turner and Rabalais, 2004; Dodds, 2006).

Most applications of N:P ratios consider only inorganic forms of N and P. Different ratios may be obtained depending on which form(s) is (are) included in the ratio (Dodds, 2003). The perspective of whether a system is N- or P-limited may be different depending on whether the N:P ratio is calculated solely with inorganic forms of N and P, or with both inorganic and organic forms. For example, on the western Florida shelf, the mean N:P ratio of the water off the Caloosahatchee River in May of 2003 was found to be considerably less than Redfield proportions when inorganic forms of N and P only were considered, leading to a conclusion of an N- limited system, but when the ratio of organic nutrients were included, the proportions suggested a P-limited system (Heil et al., 2007). Determining whether to include the organic fractions of N and P in such ratios may depend on the degree to which the organic fractions are bioavailable to the specific communities present. Unfortunately, much still is not known about the bioavailability of most organic constituents (Seitzinger et al., 2002b; Berman and Bronk, 2003). While virtually all algal species can use all forms of inorganic N and P, not all species can use organic nutrients equally well. In fact, there is no biological or chemical reason why a ratio of 16:1 on a molar basis would be an appropriate ratio for the highly variable nature of bioavailable DON and DOP. The calculation of nutrient ratios also changes depending on whether chemical interactions with particulate matter are taken into consideration. Nutrients, especially P, interact with particulate matter (via both adsorption and desorption), and result in deviation of both the particulate and dissolved N:P ratios. These interactions are discussed on more detail in Part III.

1		
2		
4	490	
5 6 7	491	Alternate Stable State Theory
7 8 9	492	The alternate stable state theory was developed to describe the general state of shallow,
10 11 12	493	productive lakes (Scheffer et al., 1993, 2003). This theory states that a system will develop a
12 13 14	494	stable state condition, i.e., homeostasis will prevail, until an environmental change or disturbance
15 16	495	occurs, altering the positive reinforcing feedbacks of homeostasis, and the population is shifted
17 18 19	496	to a new stable state: hysteresis overcomes homeostasis (Scheffer et al., 1993; Scheffer and
20 21	497	Carpenter, 2003). Such shifts can be abrupt (e.g., Tátrai et al., 2009). Communities may not
22 23 24	498	return to their original state when the disturbance is removed.
24 25 26	499	Both direct and indirect interactions between and among organisms help to stabilize
27 28	500	assemblages (Vanni, 2002). Trophic cascades and food chain interactions result from predator-
29 30 31	501	prey interactions, release of organisms from predation pressure, propagated effects on both the
32 33	502	biotic and abiotic environment and changes in availability of substrates, among many other
34 35	503	factors. Nutrient loading, "bottom-up" control, and grazing, "top-down" control are ultimately
30 37 38	504	interconnected. Their interconnectivity is at two levels. First, selective grazing alters nutrient
39 40	505	regeneration. This has been well demonstrated, for example, at the microbial level.
41 42 43	506	Macrozooplankton, such as copepods, can both enhance and reduce the flow of regenerated N.
44 45	507	On the one hand, they release N directly, but how much and which form depends on what they
46 47	508	ate and how long ago they ate it (Bidigare et al., 1983; Miller and Glibert, 1998). They also graze
48 49 50	509	on both phytoplankton and microzooplankton, which are consumers and regenerators,
51 52	510	respectively, of N (Caron and Goldman, 1990; Glibert, 1998). Copepods further stimulate NH_4^+
53 54 55	511	regeneration by bacteria through release of organic substrates during feeding and metabolism
55 56 57	512	(Roman et al., 1988; Glibert, 1998), and by preying on larger microzooplankton that relieve

smaller microzooplankton from predation, in turn resulting in higher NH_4^+ regeneration (Glibert

2
3
4
5
5
0
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
∠າ ງງ
2Z
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
20
30 20
39
40
41
42
43
44
45
46
40 17
41
48 46
49
50
51
52
53
54
55
55
20
5/
58
59
60

1

513

et al., 1992; Miller and Glibert, 1998; Glibert, 1998). Similar interactions occur from size-514 selective predation by benthic invertebrates or fish (Vanni, 2002). Food web stability or balance 515 thus depends on interactions at all levels, and factors that alter the balance of nutrients also alter 516 the balance of animal-mediated recycling, leading to new relationships (Vanni, 2002). In fact, 517 518 stoichiometric models suggest that the N:P ratios of release products are influenced more by algal N:P than by the grazer's own N:P (Elser and Urabe, 1999). When these principles are 519 applied to organisms of larger biomass, the concepts are similar, but the complexity of 520 521 interactions is enhanced. Larger organisms are greater sinks of nutrients than smaller organisms, and thus their impacts on nutrients are evident over longer time scales and larger space scales. 522 Fish excretion varies in the proportion by which materials are egested (feces, pseudofeces) and 523 excreted (urine production), as well as by the species and their osmotic environment, with NH_4^+ 524 excretion typically being more episodic and concentrated in saltwater environments, and more 525 dilute and continuous in freshwater environments (e.g., Randall and Wright, 1987). Nutrients are 526 also translocated by animals, moved across physical boundaries that would otherwise prevent 527 such mixing. Examples include translocation across the sediment-water interface, across the 528 pycnocline, or across natural flow (Vanni, 2002). Large fish play a proportionately larger role in 529 nutrient translocation, especially from benthic to pelagic environments (Vanni, 2002). 530 Second, when external nutrient loads, "bottom-up" control, is altered, "top-down" 531

control is affected via the shift in nutrient dynamics from the water column to the sediment,
where nutrient reserves are accessed by those organisms capable of doing so. They, in turn, alter
habitat for grazers. Thus, in shallow lakes, the typical stable states are pelagic- phytoplanktondominated systems and littoral-macrophyte-dominated systems (Scheffer et al., 2003; Peckham

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

Reviews in Fisheries Science

י ר		
2		
3		
4		
5		
6		
7		
, מ		
0 0		
9	~	
1	0	
1	1	
1	2	
1	3	
1	4	
1	י 5	
1 1	с С	
1	0	
1	1	
1	8	
1	9	
2	0	
2	1	
	י ר	
2 ~	2	
2	3	
2	4	
2	5	
2	6	
2	7	
~	' ^	
2	8	
2	9	
3	0	
3	1	
х 2	2	
0 0	2 2	
С С	3	
3	4	
3	5	
3	6	
3	7	
2	ò	
2	0	
3	9	
4	0	
4	1	
4	2	
4	3	
4	4	
т Л	ᄃ	
+	5	
4	0	
4	7	
4	8	
4	9	
5	ი	
5	1	
0 5	1	
S	2	
5	3	
5	4	
5	5	
5	ñ	
5	7	
о -	1	
5	8	
5	9	
6	0	

et al., 2006; Mieczan, 2010). Blindow et al. (1993) specifically identified that systems dominated
by macrophytes such as *Hydrilla* are in a unique stable state. Shifts from one state to another
have been described as a function of turbidity and light availability (Scheffer et al., 1993),
nutrient loading (McClelland and Valiela, 1998; Meiczan, 2010a), toxic ammonia levels (van der
Heide et al., 2010), changes in macrophyte abundance due to mechanical harvesting (Scheffer et al., 2003), as well as other effects.

Regime shifts represent another way to conceptualize alternate stable states. Regime 542 shifts due to climate change and stochastic events such as storms are well recognized in ecology 543 and biogeochemical sciences. Regime shifts also involve shifts in food webs (e.g., Ives and 544 Carpenter, 2007), through alteration in habitat or introduction of species to new areas. Such 545 regime shifts in species have long been considered difficult to predict and model, but clues to 546 regime shifts are provided in the variance of biomass or chemical constituents of aquatic 547 ecosystems (Carpenter and Brock, 2006). More recent results suggest that phytoplankton 548 changes may be a leading indicator of regime shifts in fish populations (Carpenter et al., 2008). 549 Recent interest in stable state theory commonly reflects efforts to restore macrophyte 550 dominance in systems that have become dominated by phytoplankton as a consequence of 551 increased eutrophication (e.g., Bachmann et al., 1999; Poor, 2010). In the Bay Delta, 552 management efforts are focused on understanding how a productive, more turbid, phytoplankton 553 554 system can be restored to aid endangered pelagic fish.

556 Summary of Part I

555

557 The fundamental questions of how systems respond to nutrient loading (eutrophication), 558 changes in the relative composition of the nutrient pool (ecological stoichiometry) and the extent

to which hysteresis overcomes homeostasis (altered stable states) are all interwoven concepts in nutrient- altered aquatic ecosystems. Trophodynamic interactions are consequences of elemental stoichiometry, physiological adaptation of autotrophs and heterotrophs, and biogeochemical nutrient feedback processes. These principles are illustrated below for the Bay Delta food web.

564 PART II: LONG-TERM TRENDS AND ECOLOGICAL STOICHIOMETRY 565 RELATIONSHIPS WITH THE FOOD WEB OF SAN FRANCISCO ESTUARY

This synthesis begins with a description of the sources of data that were studied and terminology, and an overview of the long-term trends in freshwater flow, nutrients and community structure of the Bay Delta. Then, ecological principles of stoichiometry as related to each major trophic level are described, relating the available Bay Delta data to those principles. Following Smith (2006), this analysis is based on averaged data over annual scales. Nutrients loads and/or concentrations would not be expected to be synoptically related to biomass (except possibly on the microbial level), due to the various processes of uptake, transformation and grazing that occur. Annual means have been shown to be highly related to chlorophyll *a* over broad data sets worldwide (Smith, 2006; Boyton and Kemp, 2008). A comparable, broad, seasonal analysis of the Bay Delta is forthcoming. Seasonal changes in stoichiometric proportions of nutrient loads are significant, but it is assumed here that annual changes have been more significant than seasonal dynamics over the past several decades for the Bay Delta.

580 Data Sources and Analysis

Publically available databases (mostly 1975-2005) were used for all analyses of the Bay

Reviews in Fisheries Science

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
20	
20	
31	
32	
33	
34	
35	
36	
20	
37	
38	
39	
40	
41	
12	
12	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
50	
20	
57	
58	
59	
60	

582 Delta (Table 1). This system has an extensive monitoring program in place, covering a wide range of parameters including physical variables, water chemistry, phytoplankton, zooplankton, 583 invertebrates, and fish. Flow data were obtained from the California Department of Water 584 Resources Day flow record (http://www.water.ca.gov/dayflow/). The data for Sacramento 585 outflow were used here. All nutrient, chlorophyll a and phytoplankton data were obtained from 586 the Interagency Ecology Program Bay Delta and Tributary project data portal, 587 http://www.bdat.ca.gov/. Wastewater effluent data were obtained from the Central Valley 588 California Regional Water Quality Control Board (2010; 589 590 http://www.waterboards.ca.gov/centralvalley/). Phytoplankton data, available as individual taxa counts by cell number, were grouped into dominant functional groups: Bacillariophyceae (total 591 diatoms), Chlorophyceae (green algae), Cryptophyceae (cryptophytes), Dinophyceae 592 (dinoflagellates), and Cyanobacteria. Individual species identifications are only considered for 593 potentially harmful species. Cyanobacteria are underestimated in these long-term data as the 594 recent expansion of *Microcystis* (Lehman et al., 2005, 2008, 2010; Baxa et al., 2010) is not well 595 represented in these taxa counts. Picocyanobacteria are not included because they are not 596 routinely enumerated. Zooplankton data were retrieved from the monthly zooplankton surveys 597 conducted by the California Department of Fish and Game (http://www.dfg.ca.gov/delta/). The 598 survey data do not include ciliates or bacteria. Data on abundance of the invasive clam, Corbula 599 *amurensis* (formerly *Potamocorbula amurensis*) were also obtained from the Interagency 600 601 Ecological program database (http://bdat.ca.gov/). Fish data were provided by the California Department of Fish and Game (http://www.dfg.ca.gov/delta/). Many of these data have been 602 compiled by the National Center for Ecological Synthesis (NCEAS Project 12192, Ecosystem 603 604 analysis of pelagic organism declines in the Upper San Francisco Estuary;

2	
3	
1	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
39	
40	
4U 14	
41	
42	
43	
44	
45	
46	
47	
18	
10	
49	
50	
51	
52	
53	
54	
55	
56	
00	
5/	
58	
59	

1

http://www.nceas.ucsb.edu/projects/12192), and these compilations have been used where
available. Because of the wide range of organisms considered here, species are referred to by
their genus names or their common names.

Data from the primary growing season, spring to fall, were averaged for most parameters (Table 1) and compared annually. All nutrient and abundance data were log transformed. Regression analysis was used for all comparisons. All data from other comparative systems were obtained from literature sources or from the authors' measurements, described where appropriate below. Note that for the years 1977 and 1979 there were many missing data records and thus these years are not included in many of the comparisons.

614 The geographic coverage of the chemical, microbial and invertebrate data is from the 615 confluence of the Sacramento and San Joaquin Rivers down to roughly the bottom of Suisun 616 Bay. However, the fish indices, such as the fall midwater trawl (FMWT) Index, may include 617 catches from higher in the Sacramento River or from the Central and southern Delta or from the 618 San Joaquin River above the confluence.

The analysis herein compares inorganic N to total P (DIN:TP) because organic forms of 619 N are not available in most of the datasets considered here. Also, as noted by Dodds (2003), TP 620 is a preferred metric due to the uncertainty of the relationship between the analytical measures of 621 inorganic P, PO_4^{3-} , and soluble reactive PO_4^{3-} . Availability of organic forms of nutrients would 622 undoubtedly strengthen the analysis. However, to further the analysis, comparisons are also 623 made throughout with the individual concentrations of ammonium (NH_4^+) , TP as well as 624 phosphate (PO₄³⁻) and with the ratio of the dominant inorganic N and P forms, NH_4^+ to PO₄³⁻, the 625 latter analysis specifically targets the period of its maximal change. Some species have strong 626 627 relationships with N or P, others with both. In some cases where species are strongly affected by

Reviews in Fisheries Science

both N and P, the effects may be opposite, leading to a dampening of the relationships with DIN:TP. Some species are positively or negatively correlated with NH_4^+ , but such relationships are not always readily apparent when total DIN is dominated by other forms of inorganic N. Thus, much can be learned from analysis of individual nutrients and from calculations of the ratios of different forms of the elements. Much more can be learned from multiple comparisons than from comparisons with a single parameter or ratio. As with all correlations, the variables examined may have a cause-and- effect relationship or both may be related to another variable; mechanistic explanations are provided when physiological and ecological data permit. Long-Term Trend Overview The long-term trends in freshwater flow, nutrient loading, and biota in the Bay Delta have been previously well described (e.g., Kimmerer et al., 2000; Kimmerer, 2002, 2004; Bennett, 2005; Jassby, 2008; Glibert, 2010). Here we provide a brief review for context, focusing on trends in the confluence of the Sacramento and San Joaquin Rivers to Suisun Bay. Each nutrient and component of the food web is then described in more detail in subsequent sections. The early to mid-1980s represented a period of relatively high flow, whereas the late 1980s represented a period of lower flow, and the early 1990s had very low flow (Fig. 7). Flow increased in the late 1990s and decreased in the early 2000s, but this latter period of low flow was not as low as in the early 1990s. Phytoplankton biomass (as chlorophyll *a*) was high in the 1970s, often reaching values $>30 \ \mu g \ L^{-1}$, but declined sharply in the mid-1980s following invasion of the exotic clam, *Corbula* amurensis (previously identified as Potamocorbula amurensis; Alpine and Cloern, 1992; Kimmerer et al., 1994; Kimmerer, 2004; Jassby 2008). The proportion of diatoms also declined

in the early 1980s, coincident with an increase in NH_4^+ discharge (Glibert, 2010).

Dinoflagellates, cryptophytes, and chlorophytes were generally the dominant phytoplankton
groups in the late-1980s to mid-1990s (Brown, 2010). Cyanobacteria, including *Microcystis*,
increased beginning in the late 1990s through the early 2000s (Lehman et al., 2005, 2008, 2010;

655 Glibert, 2010).

Dominant copepod species also changed over time. Calanoid copepods Eurytemora affinis and Acartia clausii were dominant in the 1970s and early 1980s. The calanoid copepod Sinocalanus doerrii first appeared in the late 1970s (Orsi et al. 1983). The calanoid copepod *Pseudodiaptomis forbesi*, also an exotic species, began increasing soon thereafter, followed by the invasive cyclopoid copepod Limnoithona tetraspina (Orsi and Walter, 1991; Kimmerer, 2004). In the fresher reaches of the Bay Delta, and in years of higher flow, Daphnia magna has also been an important member of the zooplankton community (Müller-Solger et al., 2002). The clam Corbula amurensis first appeared in significant numbers in Suisun Bay in 1987 (Alpine and Cloern, 1992; Kimmerer et al., 1994; Kimmerer, 2004). It thus appeared around the same time that the copepod *Pseudodiaptomis forbesi* began to appear.

Pelagic fish populations changed over time, coincident with changes in lower trophic levels. Delta smelt (estimated from both summer townet (STN) or FMWT indices), as well as longfin smelt, began to decline in \sim 1982, but their decline accelerated beginning in \sim 1999, the pelagic organic decline, or POD period (Fig. 7). In contrast, other fish species increased in numbers over the time series, including largemouth bass (Micropterus salmoides), inland silversides (Menidia beryllina), threadfin shad, and sunfish (Lepomis spp.). Additional changes have also occurred, including increases in macrophytes, especially water hyacinth (Eichhornia *crassipes*) and Brazilian waterweed (*Egeria densa*)

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

Reviews in Fisheries Science

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ I 00	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
24	
04 07	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
17	
-т <i>і</i> ЛО	
40	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

In contrast to conditions in the 1960s and early 1970s when hypoxia was more frequently noted (Nichols et al., 1986), there presently are no widespread classic symptoms of eutrophication (e.g., Cole and Cloern, 1984; Kimmerer, 2004). However, localized hypoxia has been reported as well as increased frequency of cyanobacterial blooms, especially *Microcystis aeruginosa*, in the past decade (Lehman et al., 2005, 2008, 2010).

680 Nutrients

679

Both loadings and concentrations of N and P have changed significantly over time. The 681 extent and timing of these changes differ not only between N and P, but also between forms of 682 N. Average dissolved inorganic N (DIN) concentrations between the confluence of the San 683 Joaquin and Sacramento Rivers (Suisun Bay region, Fig. 1) were relatively invariant for the first 684 years of this time series, from 1975-1982, but they increased significantly after 1982, coincident 685 with the increase in loading of N, especially NH_4^+ , from the Sacramento Regional Wastewater 686 Treatment Plant (SRWWTP), which came on line at that time (Figs. 8 and 9). Both 687 concentrations of effluent discharge and total loads have increased over time; the current loads of 688 NH_4^+ are 14 tonnes day⁻¹, with concentrations that exceed 25 mg L⁻¹ (Fig. 9). These conditions 689 well exceed those that define N hypersaturation (e.g., Waiser et al., 2011). 690

691 Concentrations of total P (TP) and $PO_4^{3^2}$ tracked those of total DIN for the period of 692 1982-~1991, but after that concentrations declined, returning to levels approximating those of 693 pre-1982 (Fig. 8). This decline has been suggested to be the result of removal of P from laundry 694 detergents (Litke, 1999), as well as the loss of a number of canneries in the region which used P 695 in their processing (Van Nieuwenhuyse, 2007). The DIN:TP ratio in the effluent from the 696 SRWWTP also increased most significantly after 1992 (Fig. 9). As a consequence of these

changes, DIN:DIP ratios increased significantly over time in the Suisun Bay region, but the change in NH_4^+ :PO₄³⁻ ratios was most significant between 1987 and 1999 (Fig. 8).

700 Phytoplankton

The relative dominance of different phytoplankton classes changed over time in the Suisun Bay region (Figs. 10 and 11). Total chlorophyll *a* declined abruptly after 1986 (Fig. 11). Diatoms dominated from the start of the time series (1975) to ~1986, although they were already in decline by the mid-1980s when dinoflagellates and cryptophytes were increasing (Glibert, 2010; Brown, 2010). From 1986-1999, diatoms, chlorophytes, cryptophytes and cyanobacteria declined significantly, but dinoflagellate abundance was comparatively stable (Fig. 11). After 1999, increases were observed in the abundances of crytophytes and cyanobacteria, although these changes were not significant (but note the underestimation of cyanobacteria; Fig. 11).

There were no significant relationships between total chlorophyll *a* or any species groups and TP or PO_4^{3-} (Fig. 12). Declines in chlorophyll *a* and diatoms were significantly related to the increase in NH₄⁺ concentrations, as were increases in dinoflagellates (Fig. 13). The dominant dinoflagellate taxon was *Peridinium*, some species of which have been shown to have toxic or alleopathic properties that can adversely affect fish (Rengefors and Legrand 2001, 2007). When the changes in phytoplankton are related to nutrient ratios, not only were the declines in chlorophyll a and diatoms negatively correlated with DIN:TP, but the increase in dinoflagellates was positively related to DIN:TP (Fig. 14). During the 1986-1999 period, when the change in phytoplankton was most pronounced, a significant decline in cryptophytes was significantly correlated with increasing NH_4^+ : PO₄³⁻ ratios (Fig. 15).

In relation to ecological stoichiometric principles, these changes in phytoplankton

Page 32 of 236

Reviews in Fisheries Science

abundance are generally consistent with expectations. Diatoms generally have a lower biomass N:P ratio than dinoflagellates, especially HAB dinoflagellates (Finkel et al. 2010). Low N:P should lead to higher growth rates, due to the high proportion of P required in ribosomes and biomass (Fig. 3). Moreover, diatoms may be inhibited by high concentrations of NH_4^+ , and preferentially use NO₃⁻ under many conditions (e.g., Dugdale and Goering, 1969; Lomas and Glibert, 1999; Dugdale et al., 2007). Dinoflagellates, especially those that produce toxins, such as some members of the Peridiniales (Butow et al., 1996; Rengefors and Legrand, 2001, 2007), would be expected to differ in their biomass composition from that of the water column. The production of toxins rich in N is sometimes regarded as a dissipatory "strategy". In many algal flagellates, toxin production increases under P stress (Granéli et al., 1998; John and Flynn, 2002). Whether these toxins are used for defense or other purposes is irrelevant to their function in stoichiometric homeostasis. However, it is relevant that the freshwater *Peridinium* aciculiferum has been shown to cause recruitment failure in the larvae of the planktivorous vendace (*Coregonus albula*) in Sweden (Nyberg et al., 1998; Rengefors and Legrand, 2001). Thus, like heterotrophs, algal species with such a capability may thrive by sequestering what they need and secreting what they do not. Cyanobacteria, while generally more constrained than eukaryotic phytoplankton in their stoichiometry (Flynn, 2009), may have more flexibility when cells produce toxins. When cyanobacteria produce toxins, such as microcystins, anatoxins, and saxitoxins as secondary metabolites, the cells have a mechanism to dissipate their excess N (Carmichael 1992).

Other examples of phytoplankton community shifts in relation to nutrient changes can be found in a long-term dataset from the Neuse River Estuary, North Carolina, USA. Rothenberger et al. (2009) related an increase in NH_4^+ concentrations to increased abundance of the potentially

harmful raphidophyte *Heterosigma akashiwo* and the bloom-forming dinoflagellate *Heterocapsa rotundata*. In contrast, abundances of "pfiesteria-like" dinoflagellates and *Karlodinium veneficum* were related to high TP concentrations.

The quality (form) of N also influences dominance among primary producers. The competitive advantage of different phytoplankton species has been related to their inorganic N source, NH_4^+ or NO_3^- , in combination with their P demand (Rhee, 1974; Terry et al., 1985). Shifts in N form from NO_3^- to NH_4^+ lead to shifts away from plankton assemblages dominated by diatoms to those dominated by flagellates, cyanobacteria, and bacteria, in turn shifting the composition of higher food webs (e.g., Legendre and Rassoulzadegan, 1995; Glibert, 1998; Steele et al., 2007; Collos et al., 2009; Glibert et al. 2010b).

754 Zooplankton

Zooplankton composition changed over time in the Suisun Bay region (Figs. 16 and 17). The calanoid copepods Eurytemora affinis, Sinocalanus doerri, Acartia clausii, and harpacticoid copepods decreased from roughly the start of the time series to the early to mid-1990s, although the decline in Acartia mostly occurred in the mid- to late-1990s (Fig. 17). The decline in these species, especially *Eurytemora*, has been interpreted to be a consequence of increased grazing after the invasive clam *Corbula amurensis* became established (e.g., Alpine and Cloern, 1992; Kimmerer, 2004). The invasive calanoid copepod, *Pseudodiaptomus*, had relatively invariant abundances for its first decade in the estuary, then declined, but may be showing a renewed increase. The concentration of the cyclopoid copepod, *Limnoithona* spp., increased significantly during the mid-1990s; this latter expansion was due to the invasion of Limnoithona tetraspina, a different species than was present earlier in the time series, *Limnoithona sinensis* (Bouley and

Reviews in Fisheries Science

3 4	766	Kimmerer, 2006). Overall, the ratio of Eurytemora/cyclopoid copepods showed a decline in the
5 6 7	767	first part of the time series, and then a relatively stable ratio of abundances (Fig. 17).
, 8 9	768	Over time, the abundances of the cladocerans Bosmina longirostris and Daphnia sp. were
10 11	769	similar to that of Limnoithona spp., lower in the mid-1980s, then rising significantly until the late
12 13 14	770	1990s (Fig. 17). The mysid macrozooplankter, Neomysis mercedis, was abundant in the early
15 16	771	years but declined significantly from the mid-1980s to 1999 (Fig. 17; Winder and Jassby, 2010).
17 18	772	From 2000 to 2005, <i>Neomysis</i> began to increase in abundance once again (Fig. 17).
19 20 21	773	In relation to TP and PO_4^{3-} , the changes in <i>Eurytemora</i> , <i>Pseudodiaptomis</i> and
22 23	774	harpacticoids, were not significant (Fig. 18). In contrast, the abundance of Acartia was
24 25	775	significantly positively correlated with the concentration of TP, while the abundances of
26 27 28	776	Limnoithona, Sinoclanus, and the cladocerans were significantly negatively correlated to TP
29 30	777	(Fig. 18). For <i>Daphnia</i> , this relationship is consistent with recent modeling efforts that show that
31 32 33	778	maximum <i>Daphnia</i> growth occurs in the range of ~20-40 μ g L ⁻¹ TP and declines with increasing
34 35	779	TP (Persson et al., 2007; Park and Goldman, 2008).
36 37	780	It is interesting that Acartia, unlike other calanoids, showed the opposite relationship with
38 39 40	781	TP, but its overall abundances were lower later in the time series compared to the earlier years
41 42	782	(Fig. 18). Acartia, more of an estuarine copepod, may also be more prevalent during dry years
43 44 45	783	when Suisun Bay would have greater intrusion of higher salinity water. On a seasonal basis, this
45 46 47	784	copepod was found to be a spring dominant in North Carolina estuaries under nutrient-rich
48 49	785	conditions, but the community transitioned to the cyclopoid copepod Oithona colcarva as
50 51 52	786	silversides increased in summer (Fulton, 1984). Walve and Larsson (1999) found that Acartia
53 54	787	copepodites had a higher P content than adults in Baltic waters.
55 56 57 58	788	In relation to NH_4^+ , the abundances of <i>Eurytemora, Sinocalanus, Pseudodiaptomis</i> ,

Bosmina, *Daphnia* and *Neomysis*, as well as the harpacticoids were significantly negatively correlated, but *Limnoithona* was positively correlated (Fig. 19). Thus, when zooplankton abundances were examined in relation to DIN:TP ratios for the entire time course, or to NH_4^+ :PO₄³⁻ ratios for the period of its maximum change, many of the relationships were highly significant (Figs. 20 and 21). Of note are the overall significant declines in Eurytemora, Sinocalanus, Pseudodiaptomis, Acartia, and Neomysis and harpacticoids in relation to increasing DIN:TP ratios (Fig. 20) as well as the increases in *Eurytemora*, *Sinocalanus*, Limnoithona, Daphnia and Bosmina and decreases in Acartia, Neomysis and harpacticoids in relation to NH_4^+ :PO₄³⁻ (Fig. 21). These changes in zooplankton composition for the Suisun Bay region are consistent with ecological stoichiometric principles. If ecological stoichiometry is a driving principle shaping the food web, then consumers that can successfully sequester the nutrient in least supply should dominate and in so doing will stabilize the system at a new stable state. Calanoid copepods generally have a high N:P ratio of their biomass, ~20-35 by atoms, whereas Daphnia and cyclopoid copepods, have N:P ratios much closer to Redfield atomic ratios (Walve and Larsson, 1999; Sterner and Elser, 2002). Calanoid copepods thus generally retain N, while excreting nutrients in a lower N:P ratio than their biomass (i.e., they release proportionately more P), while cyclopoid copepods and cladocerans have a high P requirement in biomass, and therefore excrete nutrients in a higher N:P ratio than their biomass (i.e., they release proportionately more N; Hessen, 1997; Sterner and Elser, 2002; Fig. 22). Excretion measurements of Acartia tonsa under a range of conditions have shown rates to be very low, consistent with relative retention of N by these animals (Checkley and Miller, 1988; Miller and Glibert, 1998).

Thus, *Limnoithona* demonstrated a dramatic increase in relation to the NH₄⁺:PO₄³⁻ ratio

Page 36 of 236

812

1

Reviews in Fisheries Science

and similar increases were also significant for *Daphnia* and *Bosmina*, while the calanoids and

2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
59

60

harpacticoids decreased with increasing DIN:TP ratios (Figs. 20 and 21). It is of note that 813 *Limnoithona* grazes not only phytoplankton but also ciliates, using ambush predator strategies 814 (Bouley and Kimmerer, 2002). 815 Studies from whole lake experimentation suggest that the N:P ratio will alter zooplankton 816 817 size, composition and growth rate, as those animals with increased RNA allocation will grow at higher rates due to increased protein synthesis rates (Sterner and Elser, 2002). While at a given 818 protein level the percentage of N increases only modestly with growth rate, the changes in P with 819 820 growth are much higher. Thus, growth rate should be negatively related to N:P ratios. Similar findings were reported from annual studies in the Baltic Sea (Walve and Larsson, 1999). Kiørboe 821 (1989), in a laboratory study where Acartia tonsa was fed diatoms grown on different N 822 concentrations, confirmed that zooplankton change their feeding rate in response to 823 phytoplankton of different chemical composition. Moreover, egg production followed the 824 variation in algal N content and increased with increasing algal N. 825 Hassett et al. (1997) compared the ecological stoichiometric constraints on zooplankton 826 in 31 lakes and 21 marine systems. While their data were strongly suggestive of stoichiometric 827 828 control, especially P constraints in the lake systems, the marine systems were not nearly as regulated. The authors noted that while N:P recycling ratios would argue for an accentuation by 829 zooplankton of P limitation in lakes and N limitation in the oceans, systems dominated by a 830 831 microbial food web may show an opposing effect. The most pronounced nutrient deficiency was found in systems that lacked large piscivores, i.e. those dominated by the planktonic food web. 832 Bacteria and protists are also important regulators of N and P (e.g., Goldman et al., 1985; Caron 833 834 et al., 1985; Dolan, 1997), but their rates and long-term trends have not been well monitored or
studied in the Pay Delta 025

1 2 3

4	835	studied in the Bay Delta.	
5 6 7	836		
8 9	837	Invertebrates	
10 11 12 13 14 15 16	838	Large changes in invertebrate composition and abundance have occurred in the Bay	
	839	Delta over the past several decades. Most significant is the appearance of the invasive clam,	
	840	Corbula amurensis. Crabs (including Dungeness - Cancer magister - and Mitten - Eriocheir	
17 18	841	sinensis), have also changed over time, with significant increases in the years before the mid-	
19 20 21	842	1980s, then a period of highly variable abundances, followed by declines post-1999 (Fig. 23).	
22 23	843	Shrimp (Crangon franciscorum, Crangon nigricauda, and Palaemon macrodactylus) either	
24 25	844	showed no change or modest declines prior to 1999, followed by more substantial declines in	
26 27 28	845	recent years (Fig. 23). Except for Palaemon sp., which increased in relation to TP (but not	
29 30	846	PO_4^{3-}), none of the other invertebrate abundances were significantly related to TP. With	
31 32	847	increasing NH ₄ ⁺ , Corbula amurensis and the crab species significantly increased and the shrimp)
33 34 35	848	taxa decreased. Consequently, the changes overall in Corbula amurensis and crabs were	
36 37	849	positively related to DIN: TP ratios, while those of shrimp were negatively related to DIN: TP	
38 39	850	ratios (Fig. 23). Shrimp can be significant sources of NH_4^+ in intertidal creeks, not only through	n
40 41 42	851	their excretion but also via sediment bioturbation (Haertel-Bores et al., 2004).	
43 44	852	Thus, <i>Corbula amurensis</i> appears to tolerate elevated NH_4^+ levels, and it may release	
45 46 47	853	higher proportions of N than P, while shrimp appear to sequester N, or are inhibited by elevated	l
47 48 49	854	$\mathrm{NH_4}^+$ concentrations and may release higher relative proportions of P. A positive relationship	
50 51	855	between <i>Corbula amurensis</i> abundance and the increase in NH_4^+ and ratios of DIN:PO ₄ ³⁻ has	
52 53 54	856	previously been reported (Glibert, 2010). The relationship between P and Corbula amurensis is	
55 56	857	discussed further in Part IV.	
57 58			
59 60			30

858 Fish Composition

Fish communities have changed significantly over time in the Bay Delta. Many of these changes have previously been attributed to invasive species introductions, some intentional and some accidental. Among those identified as invasive are, "largemouth bass, white and black crappie, bluegill, threadfin shad, striped bass, inland silversides, white catfish, black and brown bullhead, and common carp" (Moyle, 2002, p.31).

Many of the planktivorous fish are in decline. Among these are delta smelt and threadfin shad, which feed on copepods generally in open waters, and longfin smelt which are more likely to feed on copepods and opossum shrimp (*Neomysis mercedis*) in brackish regions (Moyle, 2002). American shad (*Alosa sapidissima*) and striped bass are also planktivorous in their early life stages. Inland silversides have similar feeding strategies to smelt (Moyle, 2002). Delta smelt are found from Suisun Bay to the northwest delta and the lower Sacramento River (Moyle, 2002; Miller et al. in review). They preferentially feed on the calanoid copepod *E. affinis*, although the calanoid copepod *P. forbesi* has increased in importance in their diet. Increased spring mortality has been linked to the decline in food availability (Moyle, 2002; Kimmerer, 2004; Miller et al., in review).

Among the piscivorous fish in the Bay Delta are striped bass, white catfish (*Ameiurus catus*), channel catfish (*Ictalurus punctatus*), and largemouth bass. Striped bass were introduced in the late 1900s (Moyle, 2002). While successful in the early twentieth century, they have declined since the early 1980s (Fig. 24). Prevailing thoughts on the reasons for this decline include, "(1) climatic factors, (2) south Delta pumps, (3) other diversions, (4) pollutants, (5) reduced estuarine productivity, (6) invasions by alien species, and (7) exploitation" (Moyle, 2002, p. 369). Among the many factors thought to be related to the decline in delta smelt is the

1 2		
3 4	881	invasion of silversides, which share much of the same diet and habitat (Bennett and Moyle,
5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 21 22 32 4 5 26 27 8 9 30 132 33 4 5 6 37 8 9 40 1	882	1996). Although catfish were not analyzed herein, they emerged in a recent analysis as among
	883	the most P-rich of fish families (McInyre and Flecker, 2010)
	884	When the time series are examined in detail for many of these fish, several patterns are
	885	apparent. First, delta smelt, longfin smelt, splittail, threadfin shad, and yellowfin goby declined
	886	precipitously since 1999; this is the POD, pelagic organism decline (Sommer et al., 2007) (Fig.
	887	24). Crappie (<i>Pomoxis</i> sp.), sunfish and largemouth bass increased significantly in the same
	888	years (Fig. 24). For many fish, as well, the mid-1980s was also a period of rapid or abrupt
	889	change.
	890	Several of the changes in fish abundance were directly and significantly related to TP or
	891	PO_4^{3-} (Fig. 25). Specifically, longfin smelt, crappie, sunfish and largemouth bass abundances
	892	were significantly negatively related to TP. Interestingly, the species that have shown recent
	893	declines in abundance, while not showing an overall significant change in relation to TP, do
	894	show a change in slope when regressed against TP, all in the direction of a more positive
	895	relationship (dashed lines in Fig. 25). The abundances of longfin smelt, and striped bass (both
	896	POD species), and yellow fin goby were significantly negatively related to NH_4^+ concentrations
	897	(Fig. 26). Thus, overall, delta smelt, longfin smelt, yellowfin goby, and striped bass were
42 43 44	898	negatively related to DIN:TP, and silversides, sunfish and largemouth bass were positively
45 46	899	related to DIN:TP (Fig. 27). For the period of most rapid change in NH_4^+ :PO ₄ ⁻³ ratios, delta
47 48 49 50 51 52 53	900	smelt, longfin smelt, splittail, sunfish and crappie were highly positively related to the NH_4^+ :
	901	PO_4^{-3} ratio (Fig. 28).
	902	Ecological stoichiometric principles provide insights as to why these community changes
54 55 56	903	occurred. Ecological stoichiometry predicts that system shifts from low to high N:P ratios should
57 58		
59		

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

Reviews in Fisheries Science

shift from planktivores to piscivores (Sterner and Elser, 2002) (Figs. 5 and 6). Planktivorous fish and calanoid copepods have similar relationships with N:P ratios, whereas piscivorous fish have relationships with N:P ratios that are more similar to those of cyclopoid copepods. Sequestration of P in the biomass of the piscivorous fish (with more skeleton and bones) would lead to them being proportionately more abundant when P is less available in the water column. A broad survey of herbivores across freshwater and terrestrial systems also showed that herbivore C:N and C:P ratios were generally considerably lower than the C:N and C:P ratios of their food (Elser et al., 2000a). Moreover, fish excreta, like that of zooplankton, helps to support the homeostasis of nutrient ratios. These trends also support the notion that nutrient limitation propagates up the food chain (c.f., Malzahn et al., 2007, 2010; Boersma et al., 2008). That different fish have different elemental stoichiometry is expected. Sterner and George (2000), for example, highlighted the elemental differences in the biomass of centrarchids versus cyprinids (Fig. 4). The Bay Delta trends are consistent with these concepts. The abundances of piscivores (crappie, sunfish, largemouth bass) were negatively related to TP concentrations; they have a higher P demand and can sequester this nutrient more efficiently. The planktivores, with a lower P demand, were less efficient at sequestering P and generally showed either no relationship with P or evidence of a positive relationship with P, especially in the latter years. This finding is consistent with Hendrixson et al. (2007) who showed that the plankivorous fish, less successful at sequestering P, were the most susceptible to P limitation. Hendrixson et al. (2007) also found that bluegills (Lepomis macrochirus) only varied in their P content by $\sim 1\%$ when fish from numerous sites were compared, thus underscoring their strong stoichiometric control. Grazing on P-limited copepods such as the calanoids or harpacticoids will enhance P limitation at the level of the

planktivores (Boersma et al., 2008).

The notion that nutrient limitation may propagate through the food web has not been well investigated in estuarine food webs, but multiple trophic-length mesocosm experiments have elegantly demonstrated this phenomenon. In studies in which nutrients, light and food chain length were manipulated, not only did the phytoplankton assemblage under low nutrient conditions become composed primarily of cyanobacteria and chlorophytes ("intermediate" to "poor quality" food) compared to proportionately more cryptophytes and diatoms under high nutrients ("high quality" food), but fish body C and P also varied among treatments (Dickman et al., 2008). Vanni et al. (2002) examined the stoichiometry of 28 species of fish and amphibians, and their data suggested that elemental stoichiometry control was strongest when consumers ingested nutrient-poor items such as nutrient-limited algae or detritus. The effects were weaker when consumers ingested multiple food items including other animals that were apparently more nutrient-rich.

The analyses described here have not specifically considered stoichiometric requirements of larvae, nor seasonal changes. Larvae would be expected to have relatively high P demands due to their high growth rates (Boersma, 2008), and to the shift in resource allocation from muscle growth to bone and fin rays (Malzahn et al. 2007). Boersma et al.'s (2008, p. 484) review specifically noted of the potential mismatch between food quality and larval growth, "Larval fish growth typically follows the population increase of herbivorous zooplankton, which succeeds the spring bloom of phytoplankton...if for some reason the tight coupling of these dynamics becomes less...it could well be that the larval fish is faced with herbivorous zooplankton that is feeding on late-bloom phytoplankters rather than early bloom ones. Feeding on late-bloom algae automatically implies that the nutrient conditions of these algae are more depleted with respect to

Reviews in Fisheries Science

phosphorus and nitrogen and thus these zooplankters are a food source of suboptimal quality for
larval fish." Experimentally, nutrient limitation of larval fish has been demonstrated; P-limited
tri-trophic food chains had greater effects on fish larval condition than did N-limited food chains
(Malzahn et al. 2007). The trajectory of changes in phytoplankton and zooplankton in the Bay
Delta over decades as well as with season are consistent with such an effect.

956 Fish Size

There are many reasons for changes in fish size over time and within individual fish species, a large variation in body size is frequently observed for a given life history stage (Krebs 2008). Among the reasons is the availability of adequate nutrition. When nutrition is adequate, organisms will grow faster and will reach a larger size. Ecological stoichiometry predicts that animal size should be related to water-column N:P ratios (Sterner and Elser, 2002). However, there have been variable reports of relationships between fish size and N:P in other systems. In a study of bluegills (Lepomis macrochirus), higher percentages of P and lower percentages of N were found in larger sized fish (Davis and Boyd, 1978). While Vanni (1996) suggested that such relationships should be evident in streams, Tanner et al. (2000) observed weak relationships at best for 20 fish taxa in Lake Superior, and Sterner and George (2000) also found weak relationships for cyprinids.

Several fish species of the San Francisco Estuary did indeed show strong correlations between their size and either TP concentrations or DIN:TP ratios (Fig. 29). Longfin smelt, threadfin shad and American shad increased significantly in length as a function of TP, while delta smelt, threadfin and American shad decreased significantly in relation to DIN:TP ratios (Fig. 29). Glibert (2010) previously reported that the size of delta smelt decreased when the

zooplankton composition changed from *Eurytemora* dominance to *Pseudodiaptomus* dominance.
The data for American shad, an anadromous species, are based on the fall midwater trawl
surveys, which would capture the early life stages. This would suggest that early feeding is an
important determinant of the ultimate size the fish attain.

978 Trophic Interactions

Comparisons of responses to nutrients across trophic groups provide clues to the questions raised in the introduction, and whether there is evidence of self-assembly under different nutrient conditions. Recall that stoichiometric changes should result in keystone species that are able to sequester nutrients in least supply; through their excretion or other dissipatory mechanism(s), they help to stabilize the communities. Such relationships were explored here by comparing several key species in relation to other organisms across the nutrient-time gradient. A number of zooplankton, invertebrates and fish that varied in tandem with diatom abundance (Fig. 30). Highly significant positive correlations were found between diatom abundances and the copepod *E. affinis*, the macrozooplankter *N. mercedis*, and the shrimp Crangon spp. and Paleamon macrodactylus. Consistent with the broader observations of Jónasdóttir et al. (1998), no evidence of diatom toxicity to calanoid copepods was observed in these data. Negative correlations were found between diatom abundance and *Limnoithona* spp. (Fig. 30). Delta smelt, longfin smelt, and striped bass, both young-of-the year and adults, were positively correlated with diatom abundance, while sunfish abundance (*Lepomis* spp), was negatively correlated. It is of note that similar associations between diatoms, E. affinis, Neomysis, and smelt were also observed in St. Lawrence River estuarine transition zone (Winkler et al., 2003).

Page 44 of 236

Reviews in Fisheries Science

Several significant negative correlations were found between dinoflagellate abundances and higher trophic levels (Fig. 31). Delta smelt (STN) annual averages declined significantly when dinoflagellates increased. The correlation was also significant between dinoflagellate abundances based on the FMWT survey data for delta smelt and longfin smelt. As noted above, the genus Peridinium has been reported to produce allelopathic compounds that adversely affect planktivorous vendace in the Baltic (Nyberg et al., 1998; Rengefors and Legrand, 2001). Young-of-the-year striped bass and starry flounder (*Platichthys stellatus*) also declined significantly in relation to the increase in dinoflagellates. Calanoid copepods and either Cladocera (Daphnia, Bosmina) and/or Limnoithona spp. can be viewed as alternate keystone zooplankton species. While *Eurytemora* and the cladocerans generally prefer different salinities, they do co-occur (Figs. 16 and 32). The abundance of *Eurytemora* was highly significantly positively correlated with the abundances of diatoms, mysids (including *Neomysis*), longfin smelt, and striped bass. Cladocerans were positively correlated with *Sinocalanus*, longfin smelt, and crappie (Fig. 32). It is interesting to note that the relationship between the abundances of cladocerans and longfin smelt length was negative. Longfin smelt length was also negatively related to TP concentrations. The self-assembly of the Bay Delta food web at the beginning (1975-1986) and end (1999-2005) of the time course examined here can also be seen as a function of the ratio of the major types of copepods, *Eurytemora*/cyclopoids (Fig. 34). These time periods had similar freshwater flow, and thus salinity tolerances should not be a major factor in trophic segregation. When *Eurytemora* was dominant, the system was dominated by higher relative abundances of

piscivore-dominated community (sunfish, largemouth bass) when cyclopoids became dominant.

planktivores (delta smelt, longfin smelt, yellowfin goby), but there was a shift to a more

Note, also, that the most recent period does not seem to be a stable one, and strong relationshipsare found with both the phytoplankton and fish communities.

Overall, the planktivores were negatively correlated with NH₄⁺ and with DIN:TP ratios. and showed little or no relationship with changes in NH_4^+ :PO₄³⁻ ratios (Fig. 35). The data suggest that the planktivores and their food, from phytoplankton to copepods, tended to either sequester N and release P, or to be highly sensitive to excess levels of NH_4^+ , with exception of the dinoflagellates. Piscivore abundances were largely inversely correlated with TP, but positively correlated with NH_4^+ concentrations, DIN:TP ratios, and NH_4^+ :PO₄³⁻ ratios (Fig. 35). If their biomass demands for P are higher than those of planktivores because of their higher bone density, then they would be expected to be inversely related to TP, reflecting their ability to sequester this nutrient.

1031 Macrophytes

With progressive eutrophication, increased algal production generally occurs at the expense of seagrasses and submersed aquatic vegetation (Harlin, 1993; Burkholder et al., 2007 and references therein). Filamentous algae may replace planktonic algae (Valiela et al., 1997; Cloern, 2001; McGlathery et al., 2007). Excess N causes native seagrass loss (Burkholder et al., 1992; Short and Burdick, 1996); for example, nearly complete loss of eelgrass (Zostera marina L.) was reported when land-based N loading exceeded 100 kg ha^{-1} yr⁻¹ (Latimer and Rego 2010). On the other hand, as nutrient stoichiometry changes, other macrophytes can proliferate (Burkholder et al., 1994; Burkholder et al., 2007, and references therein).

1040The macrophyte community of the Bay Delta has changed considerably over the past1041several decades. Native submersed aquatic vegetation has largely been replaced by invasive

Page 46 of 236

Reviews in Fisheries Science

submersed and floating vegetation, including Brazilian waterweed (Egeria densa) and water hyacinth (*Eichhornia crassipes*; Lund et al., 2007; Santos et al., 2011. Although these changes have occurred in the freshwater reaches of the Bay Delta including the confluence, not in the Suisun Bay region, they have large effects on the entire ecosystem. Water hyacinth appears to have been introduced over a century ago (Finlayson, 1983; Gopal, 1987), but has increased in abundance mostly in the past several decades (Finlayson, 1983; Toft et al., 2003). By the early 1980s, water hyacinth covered \sim 500 ha, or \sim 22% of the waterways, in the Bay Delta (Finlayson, 1983). Water hyacinth grows rapidly and has been described to create somewhat similar habitat to the native pennywort (Toft et al., 2003). Although structurally the habitat may be similar, the food web is not. In the Bay Delta, regions heavily overgrown by water hyacinth have been shown to have different epiphytic amphipod species and also a distinctly different fish-invertebrate food web compared to that supported by native pennywort (Toft et al., 2003). Overgrowth of water hyacinth has led to major efforts to control its spread as it blocks waterways. In the late 1990s, chemical control of more than 900 ha of hyacinth in the Bay Delta cost approximately \$1,000,000 (CDBW, 1998; Toft et al., 2003; Anderson, 2003), but chemical control has been found not to be a cost-effective mitigation strategy (Khanna et al., 2009) The first appearance of *Egeria* in the Bay Delta is thought to have been in the 1960s, but it is documented to have increased significantly during the decade of the 1980s (Jassby and Cloern, 2000) and even more in the 1990s, after the drought (Anderson, 1999). Although estimated to contribute <10% of the Bay Delta productivity (Jassby and Cloern, 2000), it covers more than ~2,400 ha (6,000 acres) of area in varying densities (Anderson, 1999; 2003; Hestir et al., 2008, 2010). Of >800 sites sampled in 2007 and 2008 in the central Delta, *Egeria* was found in >50% of the samples, about half of which were monospecific patches (Santos et al., 2011).

Moreover, in the same study, it was found that >60% of the waterways were covered with

submersed plant canopy, most of which, especially in summer, was the non-native Egeria

(Santos et al., 2011). It appears to be a species well adapted to thrive in an altered nutrient and

light regime. Under relatively low light, it develops apical shoots more rapidly than under high

light, allowing it to reach more light-rich surface waters faster (Rodrigues and Thomaz, 2010).

al., 1994). As its coverage increases, it affects nutrients via uptake, decreases turbidity by

zooplankton since it provides a refuge from predation (Fig. 36). As these beds trap sediments,

they also alter water flow (Gacia and Duarte, 2001; Wetzel, 2001). In the Bay Delta, decreased

turbidity has been noted in macrophyte areas (Hester et al., 2010). Higher abundance of macro-

summarized by Marba et al. (2006), this is due to "enhanced rates of recruitment within canopies

(Duggins et al., 1990; Boström and Bonsdorff, 2000), shelter from predation (Peterson and Heck,

biomass, but the extent to which they replace other structurally complex submersed macrophyte

species or adds new structure to an otherwise more open habitat (Martin and Valentine, 2010).

Macrophyte beds serve as habitat for largemouth bass. These fish nest among the

submersed vegetation, and they contribute to the development of clearer water by their voracious

grazing on planktivorous fish (Moyle, 2002). In the Bay Delta, largemouth bass are increasing

(Fig. 24), and this increase has been linked to the habitat provided by beds of Egeria (Conrad et

al., 2010). Brown and Michniuk (2007) documented an increase in alien centrarchids in

suspension feeders, including bivalve molluses, also generally occurs in vegetated areas. As

2001) and high abundance of food availability." The extent to which invasive, structurally

complex species alter habitat – and therefore food webs – is a function not only of their

sediment trapping, increases light availability, and is also thought to positively affect

Egeria has been identified as an ecological engineer (Yarrow et al., 2009, *sensu* Jones et

2
3
1
4
5
6
7
۵.
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
∠ I 00
22
23
24
25
20
26
27
28
20
29
30
31
32
22
33
34
35
36
27
51
38
39
40
<u>، م</u>
40
42
43
44
45
40
40
47
48
49
50
50
51
52
53
50
04
55
56
57
50
00
59
00

1

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

Page 48 of 236

Reviews in Fisheries Science

macrophyte habitats in recent years as well, compared to surveys of decades past. Macrophyte
beds also are excellent habitat for carp. Grass carp (*Ctenopharyngodon idella*), for example, are
omnivorous, but are preferentially herbaceous as adults and prefer plants such as *Hydrilla* and *Egeria* (Moyle, 2002).

Published stoichiometry data of *Egeria* suggest a plant that has a high N:P content (Yarrow et al., 2009). Among marine seagrasses, Romero et al. (2006, p. 245) noted that "when nutrients are abundant, leaves seem to be the 'preferred' site for uptake; in contrast, when nutrients are scarce, root uptake is maximized" and more biomass is allocated to leaves in N-rich environments. Although generalized, this information collectively suggests that in dense vegetation stands, the dominant macrophytes might be expected to have a high biomass N:P ratio, while the dominant fish would be expected to be comparatively large in size and have a low biomass N:P ratio.

1101 Summary of Part II

Patterns in the abundance of various members of the aquatic community in the Bay Delta, from phytoplankton and macrophytes to zooplankton, invertebrates, and fish, appear to follow trends related to ecological stoichiometric 'rules'. Members of different trophic levels were found to have different correlations with N and P, as did taxa within trophic levels. The patterns are consistent with the general notion that the community becomes proportionately more P-rich with increasing levels of consumers (Sterner and Elser, 2002).

1111 PART III: ECOLOGICAL STOICHIOMETRY AND BIOGEOCHEMICAL

1112 INTERACTIONS

Ecological stoichiometric principles, and the data described above, support the expectation that large piscivores should increase in abundance as levels of P in the ambient environment decrease. Yet, these fish have higher metabolic demands for P in their biomass structures. If large fish with a high P demand dominate in environments where the ambient N:P ratio is high, the question arises: What is the source of the P? These organisms may be efficient at sequestering the needed element, but it must be available in order to be taken up. Additionally, to what extent are other biogeochemical processes altered when stoichiometry changes? What feedbacks may help to sustain an altered ecosystem structure?

Sediment chemistry observations in estuaries show that concentrations of nutrients in the sediments are significantly higher than in the water column. Sediments represent enormous stores of both P and N; porewater NH₄⁺ concentrations have been documented to reach up to 1 mM (=14 mg L⁻¹) and PO₄³⁻ more than 50 μ M (=1.6 mg L⁻¹) in a wide range of environments (e.g. Udy and Dennison, 1997; Touchette and Burkholder, 2000). In the Bay Delta, where P has been measured in the upper few cm of sediment, concentrations were 5-10 μ M g⁻¹ in the confluence region, but significantly higher in the more freshwater sites when samples were collected in fall of 2001 (Nilsen and Delaney, 2005). Sediment enrichment of PO₄³⁻ and NH₄⁺ have been well described for other estuarine systems (e.g. the Potomac River, USA; Fig. 35), whereas NO₃, a key substrate for denitrification, does not typically accumulate in porewater. Locked in sediments as mineral or strongly adsorbed species, much of the P is not biologically available. In freshwater systems (Carlton and Wetzel, 1988; Wetzel, 2001) as well as marine

Reviews in Fisheries Science

2			
3 4	1134	habitats, several biogeochemical and chemical processes serve to mobilize this P, making it	
5 6 7	1135	available for organismal uptake. These abiotic and biotic processes are described below,	
7 8 9	1136	followed by a description of the interactions of altered geochemical and biogeochemical	
10 11	1137	processes as they affect the food web.	
12 13 14	1138		
15 16	1139	Abiotic Release of P from Saltwater Intrusion	
17 18	1140	In non-calcareous freshwater sediments, P is most often bound to iron oxyhydroxides	
20 21	1141	(FeOOH, Compton et al., 2000; Jordan et al. 2008). The FeOOH-bound P may be delivered to	
22 23	1142	estuaries with transport of suspended solids, or may become adsorbed to particulates when P is	
24 25 26	1143	discharged from other sources, such as from point source discharge. When this bound P meets	
27 28	1144	saline or sulfate-rich water, either from transport down-estuary, or from salt intrusion to	
29 30	1145	sediments, formation of iron sulfide minerals releases P to overlying water (Caraco et al. 1989;	
 Jordan et al., 2008; Lehtoranta et al., 2009). The sulfides in salt water compete with releasing P and precipitating Fe(II); this has been termed the iron conveyer belt (Jor 			
38 39 40	1149	$FeOOH(s) \cdot H_2PO_4^{-}(ads) + H_2S \rightarrow FeS(s) + H_2PO_4^{-}(aq) $ (1)	
 41 1150 where (s) refers to sediment, (ads) refers to adsorbed, and (aq) refers to aqueous. In 			
⁴³ ₄₄ 1151 FeOOH-bound P may be released under anoxic conditions, but the cycle of Fe bi		FeOOH-bound P may be released under anoxic conditions, but the cycle of Fe binding of P	
 45 46 1152 begins anew when oxygen is encountered again (Carignan and Flett, 1981). In the 47 			
48 49	1153	high concentrations of Fe-bound P in sediments have previously been reported (Nilsen and	
50 51 52	1154	Delaney, 2005).	
53 54	1155	The iron conveyor belt has been demonstrated clearly in studies of P fluxes in the	
55 56 57 58	1156	Patuxent River Estuary, a tributary of Chesapeake Bay (Jordan et al., 2008). There, Fe-bound P	

was found to decline with increasing salinity. Furthermore, highest concentrations of dissolved P in river transects were found in the region of the river where salinity ranged from ~2-4. When PO_4^{-3} concentrations for the Bay Delta are plotted as a function of specific conductance for all data available for the 30 year record (Fig. 37), the near universality of the change in P availability can be seen at ~200 µmhos cm⁻¹, corresponding to the fresh to low salinity zone. In Tomales Bay, California, USA, Chambers et al. (1995) estimated that release of PO_4^{-3} from Fe-bound P was ~12% of the benthic flux of P in sediments that were sulfide rich. In the

Patuxent Estuary, release from iron oxides was estimated to contribute ~30% of dissolved PO_4^{-3} to the estuary, with point source discharges contributing another 50-60%. The contribution of this flux is highest in summer when rates of SO_4^{-2} and Fe(III) reduction are highest (Boynton et al., 1995, 2008; Jordan et al., 2008).

The influence of salinity on sediment nutrient cycling differs for N and P. Seitzinger et al. (1991) suggested that lower denitrification efficiencies in salt water compared to freshwater arise, at least in part, due to decreased adsorption of NH_4^+ at higher ionic strengths which leads to poor efficiency of nitrification. Porewater NH_4^+ concentrations decline, rather than increase with salinity, leading to a significant difference in the flux rates of these elements with regard to salinity (Jordan et al., 2008; Weston et al., 2010). Whereas rates of NH₄⁺ flux are higher in freshwater, P flux rates are higher in salt water (Jordan et al., 2008 and references therein), and this can accentuate the discrepancy between N:P ratios along the salinity gradient. Caraco et al. (1989) showed that the relative efficiency of return of sediment P to the water column was directly related to the concentration of sulfate in the overlying water. Sulfate concentrations in brackish water can be 100-500 times higher than freshwater, leading to increased dominance of sulfate reduction as a metabolic pathway. The increased production of H₂S results in loss of P-

Reviews in Fisheries Science

binding iron oxide surface area. Regardless of salinity, the supply of labile organic matter tosediment remains a key determinant of sediment N fluxes.

1182 Comparisons of the NH_4^+ : PO_4^{3-} ratio along the salinity gradient of four sub-estuaries of 1183 Chesapeake Bay (Patuxent, Potomac, Choptank and Bush Rivers) revealed a common switch 1184 from molar ratios >16 to <16 as salinity increased, with the major breakpoint at salinities of 1-4 1185 (Hartzell and Jordan, 2010). These changes were mostly due to changes in P, not N. These 1186 comparative results are suggestive that similar P-Fe-S interactions could enhance sediment PO_4^{-3} 1187 effluxes in the Bay Delta, particularly in the low salinity zone.

1189 Biota-Mediated P and N Fluxes

Abiotic processes are significant, but are not the only pathways by which P and N may be mobilized into solution. Macrophytes such as *Egeria* are able to take up P from the sediment. Egeria obtains P from both the water column and the sediment, but the relative importance of the water column or the sediment as a P source depends on the ambient concentrations in each of these media (Moeller et al., 1988; Wetzel, 2001; Feijoo et al., 2002). Egeria thus has the physiological capability to balance its N demand by water-column uptake, and its P demand by sediment uptake in waters with high N:P. It may have been a successful "invader" due to its adaptive physiology, making it a suitable species to do well in an environment in which the water column is rich in NH_4^+ , and the sediment rich in PO_4^{3-} . Classic work by Barko and Smart (1980) showed that PO_4^{3-} turnover in the interstitial water increased 1,000-fold in sediments supporting Eurasian milfoil or *Egeria* growth.

Egeria, and the related invasive macrophyte *Hydrilla (Hydrilla verticillata)*, can reach
very high biomass levels and can attain very high growth rates. In dense productive stands, the

aqueous environment can become limited by free CO₂. However, these plants are well suited to grow well under low CO_2 due to well developed CO_2 concentrating mechanisms (Bowes, 1987; Bowes and Salvucci, 1989; Lara et al., 2002). Leaf polarity allows these plants to regulate the equilibrium of HCO_3^- at the leaf surface, thus allowing CO_2 to enter the plant. In a closed system, the depletion of $CO_2(aq)$ during photosynthesis increases pH as the dissolved inorganic carbon system shifts towards an increased dominance of HCO_3^{-1} and CO_3^{2-1} according to the reaction: $CO_2 + H_2O <->H_2CO_3 <->HCO_3 + H^+ <->CO_3^{2-} + 2 H^+$ (2)*Hydrilla* and *Egeria* are thus able to use HCO₃, and elevate pH of the surrounding water as they photosynthesize. Although measurements of pH for the Suisun Bay region have not been regularly taken for the duration of the time series of interest, long-term general trends in pH for a range of stations in the Bay Delta show similar patterns, including a increase since the mid-1990s (Fig. 38A,B). High-frequency measurements show a diel oscillation with late-day pH elevations during the summer growing season (Fig. 38C), and pH values in excess of 10 have been recently recorded in the western Delta (Lindemuth 2010). The pH increase is related to 1) photosynthetic DIC uptake, 2) the rate of air-sea exchange of pCO_2 to replenish the depleted CO_2 (aq), 3) resupply of CO₂ (aq) via respiration and 4) the pH-buffering capacity of the water (e.g., Stumm and Morgan, 1981). In fact, *Hydrilla*, while having the capability to grow well at a pH of 5-9, attains a growth rate 10-fold higher when the pH is 9 than in lower pH growth conditions (Spencer and Bowes, 1985; Bowes, 1987). Thus, high productivity leads to elevated pH, which has a positive effect on growth rate of these plants. Conversely, low pH and/or increases in sulfate, which also reacts with HCO₃ have been shown to be detrimental to Egeria (Mulsow and Grandjean, 2006).

As pH increases, the fundamental physical-chemical relationships related to P adsorption-

Reviews in Fisheries Science

1226	desorption changes. Enhancement of sediment P release under elevated water-column pH
1227	conditions has been observed in eutrophic lakes (i.e., Andersen, 1974; Drake and Heaney, 1987;
1228	Jensen and Andersen, 1992; Xie et al. 2003) and tidal freshwater/oligohaline estuaries
1229	(Seitzinger, 1991). Indeed, PO_4^{-3} flux from the sediment in the Potomac Estuary increased from
1230	< 5 μ mol m ⁻² h ⁻¹ to nearly 30 μ mol m ⁻² h ⁻¹ in < 24 h when pH increased from 7.8 to 9.5 (Fig. 39)
1231	The effect of pH 10.5 is far greater, however: PO_4^{-3} efflux increased to >100 µmol m ⁻² h ⁻¹ in 24
1232	h, and continued to increase to >160 μ mol m ⁻² h ⁻¹ when these high pH values were sustained for
1233	100 h (Fig. 39). Organisms that can tolerate a high pH and high NH_4^+ thus form the base of the
1234	food web in these stands. In turn, they benefit from a source of PO_4^{-3} not otherwise available
1235	from the water column. Estimates of P release from <i>Egeria</i> stands in Arkansas, USA, have been
1236	estimated to range from 0.13 to 0.36 μ M L ⁻¹ d ⁻¹ for a stand corresponding to 132 cm ² of plant
1237	area and a density of 788 g m ⁻² , when direct release and direct release plus decomposition are
1238	considered, respectively (Arnott and Vanni, 1996, based on data from Barko and Smart, 1980).
1239	

Altered Biogeochemical Processes and Effects under Conditions of High Benthic Primary

Productivity

Elevated pH resulting from high productivity by macrophytes affects the biogeochemical cycling of N, including the chemistry of NH₄⁺-NH₃ and processes such as nitrification, denitrification, and dissimilatory NO_3^- reduction to NH_4^+ (e.g., Huesemann et al., 2002; Kemp et al., 2005). The form of NH_4^+ - NH_3 is a function of pH based on the reaction:

$$\mathrm{NH}_3 + \mathrm{H}_2\mathrm{O} < \underline{^{Kb}} > \mathrm{NH}_4^+ + \mathrm{OH}^- \tag{3}$$

where K_b is the equilibrium constant (Bange, 2008). At elevated pH's, the proportion of NH₃ to $\Sigma NH_3 + NH_4^+$) increases; the salinity dependence of K_b results in increase in the proportion of

NH₃ at lower pH under freshwater conditions than under brackish/marine conditions. The penetration of elevated pH into aquatic sediment results in a shift of porewater NH₄⁺ to NH₃. With a large pool of adsorbed NH₄⁺ in equilibrium with porewater NH₄⁺ (Rosenfeld, 1979; Cornwell and Owens, in review), particularly in freshwater (Seitzinger, 1991), a large pool of bound NH₄⁺ can be released to the pore water as NH₃, leading to elevated fluxes of Σ (NH₃ + NH₄⁺). Moreover, at high pH, direct volatilization of NH₃ from *Egeria* has been observed (Reddy et al., 1987).

Elevated pH values also alters bacterial metabolism (Tank et al., 2009). Both bacterial production and respiration have been shown to be negatively affected by alkaline pH resulting from high rates of macrophyte photosynthesis which, in turn, affects C cycling and energy flow and reduces rates of remineralization (Tank et al., 2009). The bacteria Nitrosomonas and *Nitrobacter* are inhibited by NH₃, and their inhibition in turn reduces nitrification. Without nitrification, the effects of elevated NH₄⁺ and NH₃ are sustained (Russo, 1985; Kemp et al., 2005). Macrophytes also release dissolved organic carbon (DOC; Wetzel, 2001; Mateo et al., 2006). Estimates of the quantity of DOC released vary widely, and depend on the species and their physiological state, but fall in the range of 5-10% of total carbon fixed (Brylinsky, 1977; Moriarty et al., 1986; Ziegler and Benner, 1999). The importance of this flux to ecological stoichiometry is that DOC enhances bacterial production and may shift local metabolism, especially sediment metabolism from autotrophic to heterotrophic (Ziegler and Benner, 1999), in turn accelerating nutrient recycling and potentially secondary production (Marba et al., 2006). Microbial activity typically is enhanced in vegetated regions (e.g., Nielsen et al., 2001; Wetzel, 2001), leading to accelerated rates of nutrient cycling (Marba et al., 2006). Increasing NH₄⁺ shifts aquatic communities to dominance by phototrophs with higher

Page 56 of 236

Reviews in Fisheries Science

 NH_4^+ tolerance, for example, dinoflagellates and macrophytes such as *Egeria*. As NH_4^+ increases, organisms that are tolerant of it increase; as primary production increases, pH increases, and the equilibrium shifts to NH₃. Feedback inhibition of the food web then occurs due to the toxic effects of NH_3 . There are multiple physiological effects to exposure to high NH_3 . levels. Shrimp, for example, alter their ability to osmoregulate, with the degree of disruption a function of both concentration as well as time of exposure (Lin et al., 1993). Values of pH >9.7 have also been found to be lethal for some shrimp species (Shaw, 1981). Toxic effects of unionized NH₃ on fish are multi-faceted and can include damage to the gill epithelium, stimulation of glycolysis and suppression of the Krebs cycle, uncoupling of oxidative phosphorylation and inhibition of ATP production and disruption of osmoregulation and effects on liver and kidneys, and suppression of the immune system, leading to susceptibility to infection (Tomasso et al., 1980; Alabaster and Lloyd, 1982; Russo, 1985; Adams and Bealing, 1994; Camargo and Alonso, 2006). Collectively these effects can lead to reduced feeding activity, fecundity, and survivorship (Alonso and Camargo, 2004). Toxic effects of NH_3 on physiology can intensify when other chemical pollutants or hypoxia occur, because of additive and synergistic effects (Alabaster and Lloyd, 1982; Russo, 1985; Mugnier et al., 2008; Camargo and Alonso, 2006). High pH alone, as well, has been found to be stressful for many fish species, resulting in reduced spawning and, in some cases, direct mortality (Smith et al., 1958; Calabrese, 1969; Moyle, 2002). Largemouth bass, for example, are more tolerant of moderate hypoxia compared to smallmouth bass (Furimsky et al. 2003), but are stressed by pH values above 9 (Moyle, 2002).

High pH has also been shown to adversely affect some seagrasses; massive die-offs have
been related to episodic pH events and associated elevated NH₃ (van der Heide et al., 2010).

2
3
1
4
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
- I 22
22
23
24
25
26
20
27
28
29
30
30
31
32
33
34
25
30
36
37
38
20
39
40
41
42
13
44
45
46
47
-T/ 40
40
49
50
51
50
02
53
54
55
56
50
5/
58
59
60
00

1295	Ammonia toxicity is known for many vascular plants (Britto and Kronzucker, 2002). Growth of
1296	seagrasses Ruppia drepanensis and Z. marina has been significantly depressed under NH_4^+
1297	enrichment (mean pH 8.5), unrelated to light attenuation from algal overgrowth (Santamaría et
1298	al., 1994; van Katwijk et al., 1997). In the Santamaría et al. (1994) and van Katwijk et al. (1997)
1299	studies, sediment and water-column NH_4^+ were high relative to levels typically found in seagrass
1300	habitats, with die-off occurring at 3-220 μ M NH ₄ ⁺ N (=0.42-3.08 mg L ⁻¹) in the water column,
1301	and at 500-1,600 μ M NH ₄ ⁺ N (=7.00-22.4 mg L ⁻¹) in the sediment porewater. Earlier work by
1302	Thursby and Harlin (1982) had also shown that maximum rates of root NH_4^+ uptake by Z.
1303	marina were substantially compromised during periods when leaves were exposed to increased
1304	NH_3 (15-30 μ M). The authors hypothesized that the observed response was associated with
1305	higher basipetal translocation of N products relative to acropetal translocation.
1306	Toxic effects of NH_4^+ and NH_3 on the common calanoid copepods, <i>Eurytemora</i> and

Pseudodiaptomus, have been reported in the Bay Delta (Flores et al. 2010). For example, *Pseudodiaptomus* reproduction rates are negatively affected, as are nauplii and juvenile growth
rates (Flores et al., 2010). Suppression of productivity and reduction in the proportion of
primary: bacterial productivity have been reported for other N-hypersaturated systems as well
(Waiser et al., 2011), and such impacted systems have been identified to be significant sites of
ecological change (Brooks et al., 2006).

Tolerance for NH₃ and its excretion in bivalves are other adaptations to long periods of
emergence. Most bivalves excrete NH₃ after short emergence periods as a mechanism to avoid
NH₃ toxicity during the acidosis that develops during emergence (e.g. Widdows and Shick, 1985;
Schick et al., 1988). However, adaptations of the freshwater clam *Corbicula fluminea* apparently
differ: In *C. fluminea* there was no evidence of immediate NH₃ release following 2-4 days in air;

Reviews in Fisheries Science

rather, maximal excretion rates occurred 15 h after re-submergence and were maintained for at

least 35 h (Byrne et al., 1991b). Rates of release increased up to 4-fold for 2-day exposures at 25°C (Byrne et al., 1991b). This species may fundamentally change its metabolism during these exposure periods by suppressing protein catabolism and NH₃ production, and/or by storing and subsequently deaminating amino acids such as alamine (Gainey 1978). When emersed, C. *fluminea* shows little NH₃ production, but after return to the water, elevated excretion rates suggest a shift in metabolism. Within the significant tidal range of Suisun Bay (Smith and Cheng, 1987), a similar mechanism in the clam Corbula amurensis would provide an additional physiological explanation for the strong long-term relationships with NH_4^+ and NH_4^+ : PO_4^{3-} (Fig. 23) (Glibert, 2010). Macrophyte Production, Calcification, and Bivalves Aquatic macrophytes alter sediment CaCO₃ dissolution rates due to aerobic respiration (Burdige and Zimmerman, 2002). In *Egeria*, as in various other macrophytes that are capable of using bicarbonate (Allen and Spence, 1981), inorganic carbon is taken up through the abaxial surface, and hydroxyl ions are released through the adaxial surface. Thus, the pH is lower on the lower side and high on the upper side (Prins et al., 1982; Raven, 1984). With this polarity, CaCO₃ may precipitate on the side of hydroxyl ion release. CaCO₃ production rates in temperate to tropical seagrass beds range from <0.1 to >7 g CaCO₃ m⁻² d⁻¹ (Gacia et al., 2003 and references therein). Extracellular Ca^{+2} concentrations have also been associated with the ability of the plant to endure stress; *Egeria* produces H₂O₂ and induces leakage of other electrolytes (Marre et al., 1998).

The pK of calcium carbonate is 7.9. As the pH rises, the reaction

$$Ca(HCO_3)_2 \leftrightarrow CaCO_3 + H_2CO_3$$
 (4)

is driven to the right, thus increasing calcification. While the effects of vegetation on biogeochemistry can be large, these effects are also species-specific and depend on sediment characteristics. In macrophyte communities, calcifying fauna represent the dominant epibiota (Marba et al., 2006). These epiphytes have been shown to be preferred sources of food for fish such as sunfish (Lepomis spp.) (e.g., Werner and Hall, 1979; Schramm and Jirka, 1989; Toft et al., 1983). Larger organisms with more bone also have a greater need for Ca than do smaller organisms; shad, for example, increase their Ca in biomass from 1% to 6% when their length increases from 20 to 120 mm (Pilati and Vanni, 2007).

The precipitation of CaCO₃, a complex process in bivalves, requires significant PO_4^{3-} as well as Ca²⁺ (Asana and Ito, 1956). Total P requirements in shellfish are high (Asano and Ito, 1956); in fact, in a comparison of net incorporation rates of P in fish and shellfish, those of the shellfish were higher (Asana and Ito, 1956). In the Bay Delta, there is a strong long-term correlation between water-column DIN:TP ratios (and DIN: PO_4^{-3} ratios) and abundance of the clam, Corbula amurensis (Fig. 23) (Glibert, 2010); there is also a strong long-term relationship between pH and C. amurensis abundance (Fig. 40). This species invaded the Bay Delta in 1987, at the start of a several-year period of drought (Alpine and Cloern, 1991; Kimmerer 2004). Some freshwater bivalves appear to be particularly well adapted to sustain drought and dry periods, and such adaptations relate, as well, to Ca metabolism. The freshwater clam *Corbicula fluminea*, another invader of freshwater habitats including the Bay Delta (Lucas et al., 2002), mobilizes shell CaCO₃ to retard the effects of acidosis that results from long periods of aerial exposure or hypoxia (Byrne et al., 1991a). Concentrations of Ca in sediment porewater in regions occupied

Reviews in Fisheries Science

by clams would be expected to be much higher than that of sediments where clams are not abundant. In addition to metabolic fluxes, dead clam shell dissolution contributes to such concentrations and help to sustain elevated concentrations in a positive feedback. Zebra mussels (Dreissena polymorpha), invaders in the Laurentian Great Lakes, many rivers in the midwestern USA., and much of Europe, sustain a net loss of Ca when the pH falls below 6.8 (Heath, 1993). Suspension-feeding bivalves can also increase seagrass productivity because their biodeposits are a conduit between the pelagic and the benthic communities, bringing particulate nutrients to the benthos in the form of algae and increasing nutrient availability to the benthos through their regeneration (Peterson and Heck, 2001; Heck and Orth, 2006). Suspended sediments depress photosynthesis in seagrasses (e.g., Ralph et al., 2006; Touchette and Burkholder, 2007); however, macrophytes with an ability to enhance gas exchange across the leaf surface by floating are not as affected. The rates and pathways by which bivalves release particulate and dissolved nutrients to the rhizosphere and the water column also influences stock re-establishment and associated eutrophication impacts (Newell, 1988; Rice, 2000; Peitros and Rice, 2003; Burkholder and Shumway, 2011, and references therein). Reduction of turbidity by filter feeders also can increase light availability of macrophytes. *Corbula* spp. burrows a few centimeters into the sediment, with at least a portion of its siphon remaining in the water column. This animal has a pelagic larval stage that typically is in the water column for several weeks in spring, and it accelerates rates of calcification in summer

when temperatures and pHs are elevated (Hrs-Brenko, 2006). Larvae survive well under oxygen
stress (Rosenberg, 1977), and in enclosed bays with high sedimentation and reduced

hydrodynamic flow (Solis-Weiss et al., 2004). *Corbula gibba* has been shown to have higher
survival rates under hypoxic conditions, especially adults, than under oxygen-replete conditions

(Holmes and Miller, 2006). It can become dominant in hypoxic, systems, but otherwise is a
relatively poor competitor (Holmes and Miller, 2006).

1390 Biological and Biogeochemical Feedbacks and Microcystis Abundance

Positive feedback interactions between clam production, excretion, altered biogeochemical processes, and nutrient accumulation help to explain why shifts in algal assemblage composition occur when clams are abundant (Glibert, 2010). Macroinvertebrates are well recognized to be sensitive indicators of anthropogenic impacts in lakes and estuaries (Chainbo et al., 2010) and *Corbula* spp. is well documented to be a bioindicator of pollution (FAO/UNEP, 1986). They are considered to be rapidly growing "r-selected" species (Gray, 1979; Hrs-Brenko, 2006). The virtual disappearance of chlorophyll a from Suisun Bay since 1987 has been attributed to the proliferation of *Corbula amurensis* (Alpine and Cloern, 1991; Kimmerer, 2002; Jassby et al., 2002). Diatoms had declined from this system a few years earlier than the invasion, and during the late 1980s there was a shift to increasing abundance of chlorophytes, dinoflagellates, cryptophytes and cyanobacteria (Figs. 10 and 11) (Glibert, 2010). The cyanobacterium *Microcystis* is commonly observed in the upper (fresher) reaches of the Bay Delta, not in Suisun Bay where *Corbula amurensis* is most common. Instead, the upper reaches of the Bay Delta have a higher prevalence of *Corbicula fluminea* (Lucas et al., 2002). Although cyanobacteria increased in abundance in the mid-1980s, their abundance and their ecosystem impacts have escalated significantly in the past decade (Lehman et al., 2005, 2008, 2010).

Links between zebra mussels and *Microcystis* have been examined in various systems (discussed below; Sarnelle et al., 2005), and these findings may be analogous to the relationship between invasive clams and *Microcystis* in the Bay Delta. Excretion by zebra mussels is

Page 62 of 236

Reviews in Fisheries Science

significantly higher than that by crustacean zooplankton (Conroy et al., 2005). Ecological stoichiometric principles have been examined with respect to zebra mussel invasions of Swedish Lakes (Naddafi et al., 2009). While nutrient stoichiometry was not linked to mussel fitness, the zebra mussels tolerated low P and that their stoichiometry was altered by both food quantity and quality.

Numerous studies have suggested a linkage between the increased prevalence of cyanobacteria blooms and either reduced stocks of planktivorous fish (e.g. Reinertsen et al., 1989; Hessen, 1997) or increases in invasive bivalve molluscs (e.g., Bykova et al., 2006). Both trophic cascade effects and altered nutrient cycling from changes in nutrient release have been thought to be the linking mechanisms. Nutrient loading can interact with resource removal through trophic cascading: Depletion of large grazers (including invertebrates) results in decreased predation on macro- and microzooplankton, leading to reductions in microzooplankton populations and increases in algal blooms in the nutrient-enriched environment (Merrell and Stoecker, 1998; Stibor et al., 2004; Vadstein et al., 2004). In cyanobacteria-dominated reservoirs in Australia, a trophic link between mesozooplankton and *Cylindrospermopsis* has been suggested (Ying et al., 2010). Mesozooplankton preferentially consume algae other than *Cylindrospermopsis*, in turn releasing P that is rapidly taken up by the cyanobacteria. This phenomenon may be germane with respect to increases in *Microcystis* blooms not only in the Bay Delta, but also in many other systems affected by invasive species. Microcystins appear to adversely affect growth and development of daphnids, with offspring showing decreased growth and survival even if the offspring were raised in microcystin-free conditions; effects are age and dose-dependent (Dao et al., 2010; Ortiz-

Rodríguez and Wiegand, 2010). Wang et al. (2010) showed that *Microcystis* developed in

experimental systems when zooplankton were included in the enclosures, but not in those where zooplankton were removed prior to the start of the experiment. It has similarly been noted that *Microcystis* blooms in lakes typically co-occur when small-sized zooplankton dominate (Allen, 1436 1977; Edmondson and Lutt, 1982; Wang et al., 2010). The effect of microcystins on *Daphnia* in 1437 the Bay Delta has not been examined, but greater detrimental effects on the copepod *Eurytemoras* than on the copepod *Pseudodiaptomus* have been observed in that system (Ger et 1439 al., 2010).

Various studies have related increasing N and increasing N:P ratios to increased toxicity of *Microcystis*. In Daechung Reservoir, Korea, *Microcystis* toxicity was related not only to an increase in N in the water, but also to cellular N content (Oh et al., 2001). In P-limited chemostats, Oh et al. (2000) observed that while Microcystis growth declined as the degree of P limitation increased, more microcystins were produced as the extent of P limitation increased. In addition, the more toxic microcystin-LR form was produced compared to microcystin-RR (Fig. 41). Excess N has also been related to microcystin production under controlled chemostat conditions (Van de Waal et al., 2009, 2010). In the Philippines, increased *Microcystis* was associated with high N but not P loading, and its cellular P content (cell quota) was low (Baldia et al., 2007). In the Huron River, Michigan, USA, Microcystis has been associated with molar water column N:P ratios ranging from 40 to 80 (Lehman, 2007). Similar relationships were reported for a field survey of Hirosawa-no-ike Pond, Kyoto, Japan, where the strongest correlations between microcystins and nutrients were found at high concentrations of NO_3^- and NH4⁺. Moreover, seasonal bloom maxima were associated with extremely high water column N:P ratios ranging from 40-90 (Ha et al., 2009). In the field and in culture, the molar cellular N:P of *Microcystis* has varied from ~10 to more than 30 (Tsukada et al., 2006). Thus, both abundance

Reviews in Fisheries Science

2	
-	
<u>_</u>	
S	
Δ	
-	
5	
~	
6	
7	
1	
8	
0	
9	
10	
11	
12	
12	
13	
10	
14	
15	
10	
10	
17	
.,	
18	
10	
19	
20	
20	
21	
22	
~~	
23	
21	
24	
25	
20	
26	
~~	
27	
20	
20	
29	
30	
24	
зı	
32	
02	
33	
~ ~	
34	
0E	
30	
36	
00	
37	
~~	
38	
აი	
29	
<u>4</u> 0	
40	
41	
40	
42	
42 42	
42 43	
42 43 44	
42 43 44	
42 43 44 45	
42 43 44 45	
42 43 44 45 46	
42 43 44 45 46	
42 43 44 45 46 47	
42 43 44 45 46 47 48	
42 43 44 45 46 47 48	
42 43 44 45 46 47 48 49	
42 43 44 45 46 47 48 49	
42 43 44 45 46 47 48 49 50	
42 43 44 45 46 47 48 49 50 51	
42 43 44 45 46 47 48 49 50 51	
42 43 44 45 46 47 48 49 50 51 52	
42 43 44 45 46 47 48 49 50 51 52	
42 43 44 45 46 47 48 49 50 51 52 53	
42 43 44 45 46 47 48 49 50 51 52 53	
42 43 44 45 46 47 48 49 50 51 52 53 54	
42 43 44 45 46 47 48 49 50 51 52 53 53 55	
42 43 44 45 46 47 48 49 50 51 52 53 55 55	
42 43 44 45 46 47 48 49 51 52 53 54 55 55 55	
42 43 44 45 46 47 49 501 523 555 556 556 556	
42 43 44 46 47 49 50 51 52 53 55 55 55 55 55	
42 44 45 46 47 49 51 52 53 55 55 55 55 55 55 55 55	
42 43 44 45 46 47 48 49 51 52 53 55 55 57 55 57	
42 44 45 46 47 49 50 51 55 55 55 55 55 55 55 55 55 55 55 55	
42 44 45 46 47 49 50 52 55 55 55 55 55 55 55 55 55 55 55 55	

1456 and toxicity of *Microcystis* appear to be enhanced under high water-column N:P ratios. This 1457 would suggest that *Microcystis*, unlike many phytoplankton, does not follow the "you are what you eat" model" (Sterner and Elser, 2002, p. 16), but instead functions stoichiometrically more 1458 like a heterotroph, in this case sequestering P and releasing excess N in the form of the toxin, 1459 microcystin. It may also have the capability to reduce its P requirement by lipid substitution, 1460 1461 although this has not been directly shown for this species, but has for other cyanobacteria (Van Mooey et al., 2009). From its C-concentrating capability (e.g. Paerl, 1983) to its P metabolism 1462 and its tolerance and/or preference for NH_4^+ , *Microcystis* appears well adapted to the current 1463 1464 environment of the Bay Delta where pH values fluctuate and can become elevated on episodic bases, and where N:P ratios have inceased over time. 1465

Broad surveys have been undertaken to assess relationships between cyanobacteria and 1466 water-column N:P ratios. Some of these surveys have included all cyanobacteria (including the 1467 N₂- fixing species), others only *Microcystis*. Downing et al. (2001) examined data from 99 lakes 1468 from around the world and reported that total P or total N were better predictors of cyanobacteria 1469 1470 than N:P ratios. Others have shown that low N:P ratios can favor cyanobacteria (e.g., Smith, 1983; Stahl-Delbanco et al., 2003). Microcystis is able to tolerate elevated N:P ratios, and thus its 1471 dominance under high N:P ratios may also reflect the decline in other species without such 1472 tolerances. Cyanobacteria do not have to grow faster at elevated N:P than at lower N:P values to 1473 become abundant; they merely have to grow faster than competing species groups (Glibert, 1474 2010). Clearly, there is great plasticity in the ability of cyanobacteria to grow in a wide range of 1475 environments, including elevated N:P environments. It is also possible that some cyanobacteria, 1476 such as Synechococcus, flourish under high levels of water-column P (c.f., Finkel et al., 2010), 1477 1478 while others, such as *Microcystis*, are especially good at sequestering P, leading to negative

1481 Summary of Part III

correlations.

Conceptually the relationships between changes in pH and altered salinity and the major biogeochemical processes are summarized in Fig. 42, while the changes over time and the shift in dominant biogeochemical processes are depicted in Fig. 43. While the interactions among the biogeochemistry and biology and their changes over time are complex, the important point is the interconnectedness of these relationships. This analysis suggests that these changes in biological communities are not a result of stochastic events but, rather, the result of a cascade of changes in biogeochemistry resulting from the major driver, changes in nutrient loading over time. Reductions in P loading from external sources drive the system toward increased importance of sediment dynamics and thus sediments as a source of P. The food webs that are supported are thus different from those supported when the water column is the source of P. Macrophytes, such as *Egeria*, and *Microcystis* are physiologically well adapted to these altered nutrient flux regimes. The communities of fish change accordingly.

- 1495 PART IV: COMPARATIVE ECOSYSTEMS

The changes over time in the Bay Delta have been described as uniquely complex, driven primarily by the wide range in effects of invasive species and alterations in habitat (e.g., Alpine and Cloern, 1992, Bennett and Moyle, 1996; Cohen and Carlton, 1998; Kimmerer, 2004). This notion of unique complexity for the Bay Delta is not supported by the following analysis of other aquatic systems. Instead, the information illustrates similarities with the Bay Delta in terms of 1)

1508

Reviews in Fisheries Science

ו ר		
2		
3		
4		
5		
6		
7		
8		
q		
1	0	
1	1	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	פ	
1	0	
	3	
2	U	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
<u>_</u>	7	
2 2	0	
2	ð	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
ຈ	5	
2	6	
5 0	7	
3	1	
3	8	
3	9	
4	0	
4	1	
4	2	
4	3	
å	4	
т Л	5	
+	C C	
4	0	
4	1	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5	Δ	
5		
5	0	
D	6	
5	7	
5	8	
5	9	

changes in state from a system with high chlorophyll *a* and high pelagic productivity to one
dominated by macrophytes, or vice versa, as a function of nutrient loading; 2) invasions of
bivalves following P removal; 3) associations between high macrophyte production, invasive
bivalves, piscivorous fish, and *Microcystis* growth, and/or 4) reductions in invasive species
following targeted nutrient reduction measures.

Lake Washington

A classic example of a system that has sustained shifts to new stable states following P 1509 removal is Lake Washington. This large, deep lake (surface area 8,959 ha; 32.2 km long x 2.4 1510 km wide; maximum depth 65 m, mean depth ~18 m, with ~128 km of shoreline; Koehler et al., 1511 2006) is surrounded by the city of Seattle, Washington, USA, and historically was degraded by 1512 1513 major sewage inputs (Edmondson, 1996). In 1922, a diversion was created to carry the raw sewage from 30 outfalls away from the lake into nearby Puget Sound, and algal blooms and fish 1514 kills soon abated. However, in 1930 sewage effluents began to be discharged into the lake again, 1515 this time from treatment plants in outlying communities, and ~76 million liters of sewage 1516 without nutrient removal had been discharged daily into the lake over the period from 1930 to 1517 1518 1962. Hypoxia increased along with blooms of noxious cyanobacteria, mostly as potentially toxic *Planktothrix* (formerly *Oscillatoria*) *rubescens* and various N₂- fixing species. 1519 1520 In the 1960s, Seattle and the surrounding communities adopted zero sewage discharge 1521 policies for Lake Washington. Removal of P from effluent was undertaken, and P levels declined precipitously (Krebs, 2008). By 1970 phytoplankton growth had decreased to levels that had not 1522

1524 aesthetics. Zooplankters such as *Daphnia* spp. became increasingly abundant (Edmondson and

been seen since the early 1950s, along with obvious improvements in water quality and

60

1523

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

Litt, 1982). This increase was enhanced in part by an increase in longfin smelt that consume a major *Daphnia* predator, the opossum shrimp *Neomysis mercedis*, which declined sharply. The decline in *Neomysis* in Lake Washington, like that in the Bay Delta, corresponded with the period of P removal. It should be noted that these changes, influenced by ecological stoichiometry, are also being modified by influences of global warming, which is now uncoupling the influence of the "keystone" grazer *Daphnia* on phytoplankton and cyanobacteria are again on the increase in Lake Washington (Winder and Schindler 2004a,b). With increased warming of the upper water column, daphnids are beginning to decline. Ecological stoichiometric changes and climate change synergistically affect food web structure. Potomac River, Chesapeake Bay The Potomac River has undergone many similar changes to those in the San Francisco Estuary (Table 2, Fig. 44). The Potomac River has been heavily impacted by nutrient inputs for over a century, with cyanobacterial blooms evident in the 1930s (Krogmann et al., 1986). Nutrient inputs to the Potomac have been strongly affected by management actions (Table 2), starting with treatment that removed 75% of point-source P loading by 1976, and with a P detergent ban, so that there was a total decrease of more than 95% from peak levels (Jaworski and Romano 1999). Nitrification was added to the treatment plant processing in the early to mid

1543 1980s, resulting in decreased NH_4^+ loading, and from the early 1990s to the present, effluent

loading has decreased more than 50% from the early 1990s to the present (Jaworski and Romero,

1545 1999; Jaworski et al., 2007).

An invasion by *Corbicula fluminea* was first noted in the mid-1970s, and its abundance peaked in the late 1980s, exceeding 2,500 individuals m⁻² (Dresler and Cory, 1980; Phelps, 1548 1994). Its abundance subsequently declined, coincident with the efforts to remove N from

Reviews in Fisheries Science

effluent (Phelps, 1994; Cummins et al., 2010; Fig.44A). Its presence in the 1980s was associated
with declines in phytoplankton abundance due to the grazing pressure it imposed (Cohen et al.,
1984).

When N:P ratios increased in the late 1970s, chlorophyll a declined and submersed vegetation increased. Hydrilla verticillata, an invasive species, expanded its range shortly after P removal and this was associated with a decrease in water-column chlorophyll a (Rybicki and Landwehr, 2007; Ruhl and Rybicki, 2010; Fig. 44B). The extent of *Hydrilla* coverage was directly related to the N:P ratios of the effluent (Fig. 44C). After the nitrification-denitrification system was installed at that treatment plant several years later, the relative abundance of this exotic species declined while the abundance of native grasses and vegetation increased (Ruhl and Rybicki, 2010).

Microcystis, which had been a major component of the phytoplankton assemblage in the 1561 1960s, declined in abundance with the installation of more advanced sewage treatment in the 1562 1970s. However, over time, *Microcystis* returned. The percent of samples collected in which 1563 >10% of the phytoplankton cells were *Microcystis* was also highly correlated with the N:P ratio 1564 in the total load of nutrients to the river (Tango et al., unpubl. data; Fig. 44D).

Fish composition also changed over time, and some of these changes can be related to nutrient stoichiometry. Bay anchovy decreased and both spottail shiner and largemouth bass increased (http://www.dnr.state.md.us/fisheries/juvindex/index.asp#Indices) in proportion to N:P ratios that reflected changes in either total nutrient loads or effluent (Fig. 44E,F). Overall, the ratio of pelagic:demersal fish declined (Kemp et al., 2005; www.noaa.chesapeakebay.net) and these changes related to the N:P ratio in the effluent (Jaworski et al., 2007; Fig. 44G).

1572 Hudson River

> Point source nutrient loading to the Hudson has been contentious for many decades (Brosnan et al., 2006). Peak loading of N and P occurred in the 1930s, with a rate of ~125 tonnes d^{-1} and ~13 tonnes d^{-1} , respectively. Secondary treatment plants were constructed in the 1980s. and N loads decreased by $\sim 30\%$. Reductions in P by $\sim 60\%$, from a maximum of 36 mt d⁻¹ in the 1970s, was achieved by the 1990s through secondary treatment and P removal from detergents. The exception to these river nutrient trends is the lower Hudson, where, loads of both N and P *increased* due to the Ocean Dumping Ban Act of 1988, which required several municipalities to cease ocean disposal, and from New York City's use of a P-based buffer to reduce pipe corrosion (O'Shea and Brosnan, 2000; Brosnan et al., 2006). The total N and P loads to the Hudson are now on the order of 43 x 10^3 tons N yr⁻¹ and 4.8 x 10^3 tonnes P yr⁻¹, of which 53% of the N and 77% of the P are from point source discharges (Howarth et al., 2006).

> The Hudson, like the Bay Delta, has been heavily impacted by invasive species. The dominant species of concern include the zebra mussel, black bass, water chestnut, Atlantic rangia (Rangia cuneata), and the Asian shore crab (Hemigrapsus sanguineus) (Strayer, 2006). These species "came from Europe or the Great Lakes through shipping activities, the Erie Canal, or deliberate introduction" (Strayer, 2006, p. 296). Zebra mussels were first detected in the Hudson in 1991 and by 1992, when P reductions had been implemented, were well established (Strayer, 1992). Their impact on the chlorophyll a and zooplankton populations of the river was large, and planktivorous fish soon became food limited (Caraco et al., 1997; Pace et al., 1998, Strayer, 2006). Annual May-October chlorophyll *a* dropped from ~20 μ g L⁻¹ to ~4 μ g L⁻¹ after 1993 when zebra mussels were well established (Cole and Caraco, 2006). Common copepods in the Hudson now include two cyclopoids, Diacyclops bicuspidatus thomasi and Halicyclops sp. (Pace

Reviews in Fisheries Science

1595 and Lonsdale, 2006).

Increases in largemouth bass and bluegill have been observed since nutrients have changed and, analogous to the Bay Delta, the length of American shad has decreased since P removal and zebra mussel invasion (Stanne et al., 2007). There have also been large increases in water chestnut (*Eleocharis dulcis*), an aggressive macrophyte that was first observed in the Hudson in the 1930s. It has especially increased during recent decades, with "larger beds reaching 10-100 hectares in extent" (Strayer, 2006, p. 302). In these dense beds, oxygen depletion occurs (Caraco and Cole, 2002). The small estuarine invasive clam, Rangia, was first detected in 1988 and has spread significantly since that time (Strayer, 2006). Overall, the Hudson has displayed a trajectory of responses similar to those of the Bay Delta, with a shift from a productive pelagic system to one dominated by benthic production. These changes were all accelerated in the Hudson in the early to mid-1990s when P removal measures were most significant. The ratio of N:P loads from all sources to the Hudson also increased from the early 1970s to the mid-1990s (Howarth et al., 2006). Microcystis is now a concern in the Hudson River as well (Fernald et al., 2007). It had

been problematic years earlier, but disappeared from the river soon after zebra mussels invaded (Smith et al., 1998). Laboratory studies indicated that it was preferentially grazed by the mussels (Baker et al., 1998; Baker and Levinton, 2003). Recent phytoplankton record reveals that *Microcystis* blooms have returned, and by 2005 it contributed more than 45% of the total summer algal biomass (Fernald et al., 2007). The recent reports have linked these blooms to increased temperature, but the pattern is also consistent with an altered biogeochemical pathway of nutrient cycling following the increased dominance of both macrophytes and zebra mussels.

1618 The Laurentian Great Lakes and other U.S. Lakes

Lake Ontario has been well monitored for several decades and changes in nutrient loading and trophic dynamics are well characterized. Point source reductions in P began in this system in the late 1970s, and phytoplankton assemblage composition abruptly changed. The largest declines were noted in chlorophytes, dinophytes, bacillariophytes and cryptophytes (Nicholls et al., 2002). More than a decade later, zebra mussels became established and community composition changed in favor of smaller-sized phytoplankton species, including *Microcystis* (Nicholls et al., 2002; Mills et al., 2003). The zooplankton community shifted, as well, to increased abundance of cyclopoids and *Daphnia* (Mills et al., 2003). In fact, *Daphnia*, which comprised less than 15% of the zooplankton community prior to P removal, increased to 30-50% after P removal (Mills et al., 2003). Water-column N:P ratios in the early 1970s were near Redfield proportions, but now exceed 50 (reviewed by Mills et al., 2003). Medeiros and Molot (2006) similarly correlated the increase in microcystin cyanotoxins in Lake Ontario with the reduction in total P from the major municipal treatment plant, but they raised the possibility that other geochemical changes, including increases in iron, additionally may have occurred. Both invasion by zebra mussels and a shift from planktivorous to piscivorous fish were also associated with the reduction in P, including a dramatic decrease in rainbow smelt (Mills et al., 2003).

The same pattern of *Microcystis* increase after zebra mussel invasion was observed in western Lake Erie and in Saginaw Bay of Lake Huron (Lavrentyev et al., 1995; Budd et al., 2001). In contrast to the feeding studies of the zebra mussels in the Hudson River (Baker et al., 1998; Baker and Levinton, 2003), in Saginaw Bay *Microcystis* was not grazed by zebra mussels, and this has been inferred as one of the causative mechanism for the expansion in *Microcystis* in

Reviews in Fisheries Science

1641 more recent years (Fishman et al., 2010).

In Lakes Huron and Erie, this relationship was attributed to selective rejection of *Microcystis* in zebra mussel pseudofeces (Vanderploeg et al., 2001). In a survey of 61 lakes in Michigan, a strong association between invasive zebra mussels and *Microcystis* was observed, but only for lakes with P levels less than 25 μ g L⁻¹ (Raikow et al., 2004). Knoll et al. (2008, p. 448), in a follow-up to the Raikow et al. (2004) study, found that in 39 lakes in southern Michigan, those with zebra mussels had, "3.3 times higher microcystin concentrations and 3.6 times higher biomass of *Microcystis*." Although they did not clearly identify a specific mechanism leading to this relationship, ecological stoichiometric hypotheses were invoked, relating the relative retention of P, and excretion of N by the mussels as one factor that would enhance this relationship. It is not surprising, considering that ecological stoichiometry and biogeochemistry collectively appear to promote invasions, that zebra mussels and *Microcystis* blooms are predicted to continue to expand into such "oligomesotrophic" systems (Raikow et al. 2004).

The reduction in external P loadings during the 1970s followed by exotic mussel species invasions in the 1980s has affected benthic algal production, as well as phytoplankton, in the Great Lakes. In a manner analogous to *Microcystis*, which first declined and then increased years later following external P reductions, the benthic green filamentous alga *Cladophora* also proliferated after external P reductions. As summarized by Burkholder (2009), "As a 'poster child' of the 1960s ecology movement in the United States, *Cladophora glomerata* [and likely other *Cladophora* species] focused international attention on the west basin of Great Lake Erie where it proliferated in response to phosphorus pollution, then drifted into shore in rotting masses from major seasonal die-offs that were sometimes measured in tonnes of fresh weight
2	
3	
4	
5	
õ	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
.∪ ว∩	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
22	
20	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
Δ7	
ті Л0	
40	
49	
50	
51	
52	
53	
54	
55	
00	
26	
57	
58	
59	
60	

1

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

and Bonvechio, 2006). Nutrients, especially P, were removed from this system in the late 1980s

1664 [Bootsma et al. 2005, and references therein; Higgins et al., 2006]....From the 1960s through the early 1980s, massive growth of *Cladophora* characterized the rocky shorelines of Lakes Erie and 1665 Ontario, as well as localized areas of Lakes Michigan and Huron....Research indicated that 1666 elevated inorganic phosphorus [P_i] concentrations were the most important cause of the blooms, 1667 and led to multi-billion dollar upgrades in wastewater treatment plants and detergent P bans. TP 1668 1669 and *Cladophora* markedly decreased in the lower Great Lakes. The Great Lakes recently have become a *Cladophora* story of 'déjà vu.' Ironically, dissolved P_i concentrations during the 1670 spring season have increased again in nearshore waters throughout Lake Erie since the late 1980s 1671 1672 from metabolic wastes and feces of mass invasions of exotic zebra mussels and quagga mussels (Dreissena bugensis), which now dominate the nearshore benthic environment. Recent surveys 1673 have indicated that the mean peak biomass of *Cladophora* is similar to historic values in Lake 1674 1675 Erie during the 1960s-1970s, and shorelines along portions of Lakes Ontario, Michigan, and Huron are again being fouled by rotting *Cladophora* growth." 1676 In the lower San Francisco Estuary, *Cladophora* bloomed sporadically in the 1970s (e.g., 1677 Luoma and Cloern 1982). However, filamentous algae in the Bay Delta are not routinely 1678 assessed and, thus, trends over time cannot be quantified, although *Cladophora* is known to be 1679 present (e.g. Cohen, 1998; Anderson, 2003) 1680 1681 Florida Lakes 1682 Many Florida lakes have undergone very similar changes to those of the Bay Delta. West 1683 Lake Tohopekaligo, central Florida, well known for its exceptional bass fishing, has had 1684 enormous changes in community composition and in nutrients over the past 20 years (Bonvechio 1685

Reviews in Fisheries Science

due largely to sewage treatment upgrades. Water-column N:P ratios increased (James et al.
2007). *Hydrilla* emergence soon followed, with a change from 0-83% coverage (Bonvechio and
Bonvechio, 2006). Total phytoplankton chlorophyll *a* concentrations declined in the lake. In
Lakes Wales and Baldwin, other *Hydrilla*-infested lakes, largemouth bass, black crappies and
sunfish species all are common (Colle and Shireman, 1980; Bonvechio and Bonvechio, 2006). *Microcystis* is common in many of these Florida lakes as well and has been for many years
(Bugham et al. 1971).

In a re-analysis of data on the relationship between aquatic macrophytes and largemouth bass in 56 lakes in northern and central Florida (data of Hoyer and Canfield, 1996), a significant correlation was found between percent cover by macrophytes and the molar TN:TP ratio (Fig. 45).

Florida also provides an example of the reversal of eutrophication following nutrient removal. Tampa Bay is considered a restoration success story following the removal of nutrients from wastewater effluent. Nitrogen loads in the 1970s were approximately 8200 tonnes annually (Greening and Janicki, 2006). The estuary was heavily impacted by these nutrients, with phytoplankton and macroalgal blooms, hypoxic and anoxic conditions and depauperization of the benthos, as well as a significant loss of native seagrass (Greening and Janicki, 2006). Over the subsequent decade, N in sewage effluents was reduced 90%, to 3 mg L⁻¹; N loads from fertilizer manufacturing operations were reduced and stormwater regulations also were improved to reduce N loads (Johansson and Greening, 2000). By the early 1990s, N loads were reduced by more than half of the 1970s levels. Since these reductions, chlorophyll a target levels have been reached, and native seagrass has begun to recover; indeed, seagrass acreage has increased 25% (Greening and Janicki, 2006).

In Lake Apopka, Florida, in the 1940s, there was an overgrowth of macrophytes, and fish were abundant. When PO_4^{3-} increased due to PO_4^{3-} mining, the lake became turbid and production shifted from the benthos to the pelagic (Bachmann et al., 1999). While there is considerable controversy regarding the development of the hypereutrophic state in Lake Apopka in the 1940s and whether it was gradual or episodic (e.g., Bachmann et al., 1999; Schelscke et al., 2000; Schumate et al., 2002), there is no disagreement that the food web shifted when the lake shifted from macrophyte to algal dominance in response to P loading.

1718 European Lakes and Estuaries

In the Ebro River Estuary, where an 18-year time series of nutrients and biota have been examined, significant changes in the food web have occurred as nutrient loadings have changed. From the mid-1980s to the mid-1990s, P loading rates were consistently high, and NH₄⁺ loading increased. Both dropped precipitously in the mid-1990s (Ibáñez et al., 2008). For P, this drop was from ~2.8 kt y^{-1} to <0.5 kt y^{-1} . However, total N load did not decrease to the same extent because $NO_3^{-}+NO_2^{-}$ loads were not reduced. Consequently, mean values of DIN:DIP increased over 4-fold from the early 1990s to the mid-2000s. Total water chlorophyll a declined by ~10-fold, macrophyte production increased, sediment retention and transparency increased, and invasive bivalves increased, including Dreissena polymorpha and Corbicula fluminea (Ibáñez et al., 2008). These changes were attributed to the reduction in P loads (Ibáñez et al., 2008). In the Dutch Delta, Lake Veere provides another example of system change upon PO_4^{3-} removal; when PO_4^{3-} was reduced, following the restoration of exchange with the tidal marine eastern Scheldt, there was an increase in bivalves among other ecosystem changes (Wijnhoven et al., 2010). In another example of the relationship between P reduction and zebra mussels, a study of

Reviews in Fisheries Science

the recovery of eutrophication in Lake Velume, The Netherlands, showed that zebra mussels expanded following P reduction (Ibelings et al., 2007). The zebra mussels in turn, like the macrophytes, acted as keystone species, further structuring the food web including fish. Lakes in southern Sweden have shown similar patterns: Lake Krankesjön shifted to a clear state when P was reduced, with a concomitant expansion of pondweed and piscivorous fish, while Lake Tåkern displayed a reduction in submersed vegetation, and increased chlorophyll a when nutrients, especially P, increased (Blindow et al., 2006; Hargeby et al., 2007). Zebra mussels were also highly associated with *Microcystis* in 47 sites in lakes in northern Ireland and all of these lakes had toxic blooms (Mooney et al., 2010). These studies further support the notion that feedback mechanisms help to stabilize systems in new states.

1744 Summary of Part IV

The general trajectory of responses of the comparative systems described here are summarized in Table 3. Most of the changes in invasions of zebra mussels occurred in the late 1990s in the US (Fig. 46), the period coinciding with the most rapid removal of P throughout much of the US and Europe. It is possible that the similarity of these trends is coincidence – that serendipity resulted in these systems having similar food webs when nutrients were altered, and/or that similar ballast water pressures were exerted across the oceans at similar times. In addition, more classical explanations such as differences in food availability and cover (e.g., Crowder and Cooper, 1982; Colle et al., 1987) may explain the associations between macrophytes and centrarchids. However, the physiology of the resident organisms and biogeochemical pathways lends support to the premise that similar trophic structure, including the appearance of *Microcystis*, in many of these systems resulted from similar nutrient dynamics,

biogeochemistry and food web interactions that resulted, in turn, from changes in stoichiometry and the relative abilities of different types of organisms to either sequester nutrients and/or tolerate those (e.g., NH_4^+) in excess.

1760 PART V: ECOLOGICAL STOICHIOMETRY AND PREVAILING VIEWPOINTS

The interpretation of changes in the food web structure of the Bay Delta as a function of stoichiometric changes in nutrients is seemingly at odds with many of the prevailing perspectives of how this system has become stressed over time. Nutrients have not been linked to the decline in fish or the change in species dominance at all levels for multiple reasons. Nixon and Buckley (2002), in a review of the relationships between nutrient loadings and fish production, discussed the evolution of the concept of linking nutrients to fish, and tracked how this concept generally fell out of favor. Among the reasons cited was the recognition that "the last 100 years of marine research revealed a much richer and more complex marine environment than anyone working in the 1900 could have imagined, ultimately leading to the conclusion by Micheli (1999) that there is "...virtually no link between nutrient delivery or availability and secondary production in marine coastal waters" (Nixon and Buckley, 2002, p.784). This rich complexity of effects has led to a range of interpretations with respect to changes in the food web in the Bay Delta, most of which have not involved the notion of nutrient control.

Nutrients have recently been considered in the context of potential inhibition of diatoms by NH_4^+ (Wilkerson et al. 2006; Dugdale et al., 2007). The possibility of 'bottom up' control of fish populations in the Bay Delta has been largely dismissed for several reasons: most nutrients are at levels that saturate phytoplankton growth; phytoplankton growth is considered to be

Page 78 of 236

Reviews in Fisheries Science

regulated primarily by light limitation (Cole and Cloern, 1984); NH₄⁺ is generally a preferred form of nitrogen for phytoplankton uptake; the pH of the receiving waters is generally in the range that prevents formation of the toxic NH₃; and NH₄⁺ levels are typically below the criteria considered by the U.S. Environmental Protection Agency (EPA) to be toxic to aquatic organisms (McCarthy et al., 1977; Millero, 2006; Jassby, 2008; U.S. EPA, 2009). In addition, some analyses of nutrient effects have considered only total N or P and chlorophyll a, rather than nutrient form and phytoplankton composition (e.g., Jassby, 2008). As a consequence, relationships between nutrients, production or food web effects have been ambiguous (Jassby 2008). Moreover, because many physical, chemical and biological factors potentially influence and modify other factors, the system as a whole is considered highly complex. Thus, prior efforts that used standard multifactor correlative analyses of the ecosystem data have not been successful at identifying causality with any degree of certainty (Bennett and Moyle, 1996; Sommer et al., 2007, Mac Nally et al., 2010, Thompson et al., 2010). Prevailing views about changes in the Bay Delta food web emphasize invasive species, light limitation of primary production, potential inhibition by NH₄⁺, alteration in flows, including export pumping, alterations in habitat, and climate change as major stressors (Linville et al., 2002; Davis et al., 2003; Lehman, 2004; Lehman et al., 2005; Bennett, 2005; Sommer et al., 2007; Jassby, 2008, Baxter et al., 2010). Both the prevailing viewpoints and the stoichiometric viewpoint underscore that the system is stressed and complex. The prevailing views are examined here in comparison to stoichiometric interpretations. The effects of climate act synergistically with many of these stressors in the Bay Delta and elsewhere (e.g., Lehman, 2000; Burkholder et al., 2006, Paerl et al., 2006; Cloern et al., 2007; Paerl and Scott, 2010).

Food web changes in the Bay Delta ecosystem largely have been interpreted in the context of invasive species introductions (e.g., Alpine and Cloern, 1992; Cohen and Carlton, 1995, 1998; Kimmerer et al., 1994; Kimmerer, 2004). From the copepods *Pseudodiaptomus* and *Limnoithona* to *Corbula*, *Egeria*, *Microcystis* and others, the system has been heavily changed by altered trophodynamics. These species have been introduced by various mechanisms – ballast water, inadvertent introductions from bait or ornamental organisms, and the rate of introductions is large. Our premise here, however, is that without alterations in nutrient biogeochemistry, these organisms most likely would not have become established. Nutrients thus provide a mechanism whereby "invasional meltdown" can be accelerated (Simberloff and Von Holle 1999). The invasion of clams has often been considered to be the major factor modifying the primary production in this system (Alpine and Cloern, 1992; Jassby et al., 2002, 2003; Kimmerer, 2004). While there is little doubt that invasive species can alter ecosystems (Elton 1958), it is now also recognized that "it is difficult to separate the effects of exotic species on ecosystems from those triggered by other anthropogenic stressors" (Vitousek et al., 1996; Martin and Valentine, 2010). This review has raised the hypothesis that anthropogenic stressors in the form of changing nutrient loads, from simultaneous reductions in P and increases in N loading, led to conditions favorable for the establishment of invasive macrophytes and bivalves. Their establishment, in turn, led to conditions favorable to cyanobacterial blooms and altered fish communities. Thus, the ultimate driver was a change in nutrient loads. While species may be introduced from non-native habitats via many mechanisms, they can only become established when the nutrient biogeochemistry is favorable for their success. Introduction of species alone is not sufficient for them to become established.

1825 Light Limitation of Primary Producers

Dissolved nutrients generally have been perceived to play, at most, a minor role in controlling the succession of biota in the Bay Delta over the last 30 years and that primary production is considered to be mainly controlled by light. This notion stems from a number of modeling studies of phytoplankton productivity as applied to the San Francisco Estuary (Cloern et al., 1995; Cloern, 1999; Jassby et al., 2002). The results of the models indicated that over much of the estuary, particularly the upper estuary, ambient nutrient concentrations over the last \sim 30 years were generally well in excess of the demand for those nutrients given the available light in the water column to drive photosynthesis: i.e., the phytoplankton were strongly lightlimited and not nutrient-limited for growth. The models of Cloern (Cloern et al., 1995; Cloern 1999) were developed to simulate phytoplankton primary productivity in the San Francisco Bay Estuary based on the availability of resources (light and nutrients) in the system and empirical 'physiological' relationships. The influence of nutrients was formulated using assumptions of uptake kinetics with respect to ambient concentrations and an interactive term with light harvesting to account for photoacclimative changes in chlorophyll *a*:carbon (Chl:C) ratios under different nutrient stress levels. The models were parameterized using mean relationships from large datasets (Cloern 1999). Importantly, however, the wide plasticity in nutrient uptake kinetics between species and within species under varying growth conditions was not considered (e.g., Rhee, 1973; Burmaster and Chisholm, 1979; Gotham and Rhee, 1981; Goldman and Glibert, 1982, 1983; Morel, 1987). A subsequent model developed by Jassby et al. (2002), which did not include a nutrient term, exhibited good fidelity with independent productivity measurements, suggesting that primary productivity was independent of nutrients in the system. Therefore, the models have been taken to be substantially accurate in the limited context of

1848 distinguishing light from nutrient limitation of C production by the phytoplankton.

Do these phytoplankton productivity model results really indicate that there are minimal nutrient effects on the phytoplankton assemblage of the Bay Delta? A fundamental premise of the previous modeling approaches was that primary production of reduced C is the principal factor that links phytoplankton to the grazer community and upper trophic levels. This is a conventional approach for determining the amount of energy (as reduced C) that would be available to upper trophic levels, but it ignores the transfer of elements other than C. It is analogous to studying nutrition by only counting calories. In contrast, within the context of ecological stoichiometry, it is the processing and transfer of N and P by and through the phytoplankton assemblage that drives the fitness of species at higher trophic levels (Sterner and Elser, 2002; Allen and Gillooly, 2009; Schoo et al., 2010; Malzahn et al., 2010). No insight into these aspects of community response can be drawn from the existing, carbon-based primary production models. As illustrated in the analyses above, nutrients that are at levels normally taken to be saturating or near-saturating do influence the elemental composition of the phytoplankton and therefore affect, differentially, the transfer of N and P to upper trophic levels. Although the Redfield ratio is often used to infer elemental composition in phytoplankton, the actual elemental composition of microalgae in culture and phytoplankton in nature is highly variable (Geider and LaRoche, 2002; Finkel et al., 2010). Extreme ratios are observed in cultured cells that have experienced limitation of either N or P (Rhee, 1978; Goldman et al., 1979; Geider and La Roche, 2002) reflecting a non-homeostatic 'luxury consumption' response which is characteristic of microalgae (Goldman and Glibert, 1983). Significantly, under nutrient-replete growth conditions (i.e. saturating ambient concentrations), variation in the N:P ratio of microalgae can be on the order of 3-4-fold (5 to 19 mol N:mol P;

Reviews in Fisheries Science

1871 Geider and LaRoche 2002; Finkel et al., 2010).

The extent to which this variation is related to algal species (or taxonomic groups) or to plasticity in the N:P ratio as a function of growth condition is debated (e.g. Quigg et al., 2003; Leonardos and Geider, 2004a,b; Finkel et al., 2010). While C flow through the ecosystem may control rates of primary production, N and P availability and form may control species composition and trophic transfer. This concept is similar to that proposed by Malone et al. (1996), and has been illustrated in Chesapeake Bay and Moreton Bay, Australia (Malone et al., 1996; Glibert et al. 2006b): the same nutrients do not necessarily regulate biomass and productivity.

1881 Potential Inhibition of Diatoms by NH_4^+

The potential inhibition of shellfish and fish by high levels of NH_4^+ and, under levels of high pH, NH₃, was described in Part III, although, with few exceptions, these effects have been considered to be small in the Bay Delta.

The effect of NH₄⁺ on diatom production has received considerable recent attention in the Bay Delta (e.g., Wilkerson et al. 2006, Dugdale et al., 2007; Van Nieuwenhuyse, 2007; Jassby, 2008; Glibert, 2010). Many diatoms physiologically prefer, and in some cases require, nitrate (NO_3) over NH_4^+ . This is the fundamental basis of the discrimination between bew and regenerated production (*sensu* Dugdale and Goering, 1969). NO₃⁻ may be used in the energy balance of these cells (Lomas and Glibert 1999). However, most algae physiologically prefer NH_4^+ . Some of the first observations that NH_4^+ is assimilated by algae first, and only then does NO_3^- get assimilated, were from batch culture experiments in the 1930's, 40's and 50's (e.g., Ludwig 1938, Harvey 1953). Some of the early field demonstrations of this phenomenon were

by MacIsaac and Dugdale (1969, 1972), followed by research in the Chesapeake by McCarthy et al. (1975, 1977). In the San Francisco Bay, Wilkerson et al. (2006) and Dugdale et al. (2007), based on enclosure experiments, found that diatoms grew only after NH4+ concentrations were drawn down to <4 μ M (0.056 mg L⁻¹). When NH₄⁺ is present in high concentrations, it can become inhibitory to NO₃⁻ uptake

(Syrett and Morris, 1963; Eppley et al. 1969; Conway et al., 1976). The analysis provided herein is consistent with a physiological inhibition of diatoms. Diatoms declined in direct proportion to the increase in NH₄⁺ over time, but further experimental data would be required to evaluate cause-and-effect of the patterns shown here (Fig. 13). The mechanisms of NO₃⁻ inhibition by NH_4^+ have long been known, although there is still much to be understood about species specific differences. Active NO₃⁻ reductase (the enzyme involved in NO₃⁻ reduction in the cell) is generally not formed when NH₄⁺ is present (Syrett, 1981). In some cells there is a reversible inactivation of NO₃⁻ reductase after addition of NH₄⁺. In other cells, an irreversible inactivation of NO_3^- reductase (NR) occurs with NH_4^+ addition. The difference depends on species, cell growth conditions, and whether the addition of NH₄⁺occurs in the light (when NR is active) or dark (when NR is inactive). There is much yet to be learned about the species differences, time scales and physiological regulation of this interaction.

1912 Food Limitation

Food limitation of the food web has been invoked by numerous researchers (Bennett and Moyle, 1996; Jassby et al. 2002, 2003), ultimately linked to the declines in chlorophyll *a*. The Jassby et al. (2002) analysis compared nutrient values from the long-term monitoring data to average nutrient uptake kinetics by phytoplankton and found that classic "limitation" occurred in

Reviews in Fisheries Science

<1% of the samples. The authors interpreted this information to mean that if nutrients were in excess, they would have no impact on production. Such an approach, however, fails to recognize that species shifts occur under different nutrient regimes – even in the absence of classic limiting conditions – and that these shifts have propagating effects through the food web. There is no lack of food in the Bay Delta, but there is a lack of food of the nutritional quality that would support planktivorous fish. Moreover, quantifications of food quality on the basis of C is an incomplete perspective. Detrital C appears to be abundant (e.g., Müller- Solger et al., 2002), but this may result in metabolic costs to consumers, including altered metabolic rate and growth rate (Plath and Boersma, 2001; Hessen and Andersen 2008). Disposal of excess C appears to have major impacts on organismal fitness, and like the other stoichiometric arguments posed above, can affect ecological interactions at the ecosystem level (Hessen and Andersen, 2008).

1929 Variations in Flow and Habitat Suitability

Of considerable interest to resource managers in the Bay Delta have been the effects of hydrologic changes on pelagic fish (e.g., Nichols et al., 1986; Jassby et al., 1995; Kimmerer, 2002; Moyle et al., 2010). The question of relationships between hydrology and biodiversity are also of importance in many systems (e.g., Ferreira et al., 2009). In the Bay Delta, flow is rigorously managed and measured by the location where salinity is equal to 2, measured as the distance from the Golden Gate Bridge ("X2"; Jassby et al., 1995; Kimmerer, 2004). It has been thought that regulation of flow will lead to improved conditions for endangered fish. Relationships have been reported between X2 and chlorophyll a, Eurytemora, Acartia, rotifers, mysids, bay shrimp, and various fish species, including delta smelt, longfin smelt, splittail and starry flounder (Kimmerer, 2002). Interestingly, these relationships were noted to change after

1987.

Nutrients provide a mechanism for these relationships and why they changed with time: X2 is strongly correlated with PO_4^{3-} , TP and NH_4^+ (Fig. 46). Thus, when the nutrients changed due to changes in loading, the relationships with X2 changed. The time course of the interconnected changes in biogeochemistry and trophodynamics shown herein suggest that while flow may have been an important mechanism of nutrient dilution or supply in prior decades, increases in flow that occurred in the early 1990s did not result in a recovery of the food web because the biogeochemistry of the system had changed. Given the auto-correlative nature of X2 and nutrients, interpretations of effects of flow-related relationships should also consider the potential for ecological stoichiometric relationships to provide the mechanistic explanation. Changes in nutrients also suggest why relationships between fish abundance and X2 changed around 1987: this was a time of rapid change in nutrient loads. A relationship has also been developed between X2 and a habitat index for delta smelt, an index which uses salinity, turbidity, and temperature to define the spatial distribution of habitat suitability. This index explained 26% of the variability in delta smelt over the past 3 decades (Feyrer et al., 2010). Interestingly, the authors note that additional abiotic factors might add

likely increase our estimates of suitable habitat – they could only reduce them" (Feyrer et al.,
2010). The habitat index, like that of X2, is highly correlated with nutrients (Fig. 46); thus,

more explanatory power to their model, "but it should be noted that these other factors would not

inclusion of nutrients should increase rather than decrease the confidence in identifying suitable
habitat. Nutrients do explain the changes in phytoplankton and zooplankton well (Figs. 18-21)
and, in turn, these changes have strong correlations with delta smelt. A recent analysis of the

1962 factors contributing to the decline in delta smelt underscores food limitation of that species,

Reviews in Fisheries Science

1963 linked to changes in zooplankton composition over time (Miller et al., in review).

1964 Moyle et al. (2010) has suggested that variability and disturbance are required to reestablish the native fish populations. They argue that the changes over time in fish populations 1965 are the result of, "an altered physical environment in which the Delta has become simplified into 1966 1967 a channelized conveyance system to support export of fresh water from and through the Estuary 1968 during summer and to reduce freshwater outflows at other times of year. Suisun Bay and Suisun Marsh have become essentially a brackish water system, while San Francisco Bay has become 1969 more consistently a marine system, as shown by fish distributions" (Moyle et al., 2010). This 1970 1971 notion is based on the premise that when disturbance is low, the system moves to an equilibrium where those species whose competitive abilities are low may be lost (Krebs, 2008). Interestingly, 1972 in aquatic systems, homeostasis tends to dampen the effects of disturbance (Krebs, 2008). Our 1973 1974 focus here on nutrients and Moyle et al.'s (2010) focus on physical habitat both recognize that changes have led to altered stable states structured by keystone species and "ecological 1975 engineers." Moyle et al. (2010) acknowledge that water quality is important in multiple ways, 1976 1977 that their analysis is highly speculative, that freshwater brings many of the nutrients required to fertilize the food web, and that excessive nutrients, including effluent from large treatment plants 1978 needs to be addressed. 1979

1980

1981 *Exports of Water*

A significant amount of the water supply for the State of California is extracted from the Bay Delta, via extensive pumps, aqueducts, and other engineering infrastructure (Brown et al., 2009). Fish declines have been associated with water extractions, as fish become entrained in the pumping facilities. Water restrictions in recent years, however, have not led to the expected

change in fish populations, based on the assumption that export pumping was the cause of fish declines. Because exports are generally related to freshwater flow, being higher when flow is greater, there are correlations between exports and nutrients, the strongest of which is with TP (R^2 for exports and TP = 0.206, p<0.05, not shown). Years of higher flow, hence years of higher exports, have lower TP. If planktivorous fish are less successful at sequestering P when it is comparatively low, then exports would appear to have a relationship with the decline in these fish. However, as was the case for X2 and the index of habitat, these measures are all correlated with nutrient availability. Given that nutrients affect fish size and all aspects of their metabolism and fitness, correlations between exports and fish abundance may be strengthened when fish are stressed. They may become more susceptible to other stressors.

1997 Summary of Part V

The trajectory of responses to nutrients has set in motion a cascade of interacting effects. Thus, to varying degrees, nutrients, flow, X2, invasive species and climate change are all related to the observed changes in the food web and it is not surprising that some of these relationships are statistically significant. The trajectory of responses to changing nutrients over time provides a new conceptual model for the decline in pelagic species in recent years, the POD. The current conceptual understanding is based on multiple factors ranging from predation and water exports (top down control), to prior abundance levels (life history and density-dependent effects), to changes in the physical and chemical environment to changes in food availability and quality (Sommer et al. 2007, Baxter et al., 2010). In contrast, the stoichiometric interpretation suggests that many of these factors and changes are linked (Fig. 48). Nutrient changes, and the biochemical changes that follow as a consequence, alter the environment to make it conducive to

Page 88 of 236

Reviews in Fisheries Science

1 2		
2 3 4	2009	invasive species, and differential nutrient metabolism and homeostasis drives the system away
5 6 7	2010	from planktivores to piscivores. The stoichiometric interpretation underscores that nutrient
7 8 9	2011	control – especially N control – is central to the recovery of the endangered pelagic fish.
10 11	2012	
12 13 14	2013	PART VI: CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS
15 16	2014	
17 18 10	2015	Conclusions
20 21	2016	Elemental stoichiometry and alternate stable state theory provide a unifying framework
22 23	2017	for understanding the complexity of responses not only in the San Francisco Bay Delta but also
24 25 26	2018	more generally in many comparative systems. Ecological stoichiometry affects systems by
27 28	2019	setting elemental constraints on the growth of organisms. This, in turn, affects the relationships
29 30	2020	between predators and prey, and they, in turn, modulate the environment through nutrient
31 32 33	2021	regeneration which differs from organism to organism based on their elemental requirements.
34 35	2022	Growth also alters the physical and chemical environment through pH changes, habitat
36 37 38	2023	alteration, light environment, and substrate, among other factors. These factors become powerful
39 40	2024	regulators of the food web in a complex interactive fashion. An overarching driver is the
41 42	2025	importance of bottom up control. Top-down control can be considered as a secondary effect, that
43 44 45	2026	is, a consequence of altered nutrients. This interpretation is consistent with Ware and
46 47	2027	Thompson's (2005) insights from a broad survey of the relative contributions of "bottom-up" vs.
48 49	2028	"top-down" factors that potentially control fish catch in the coastal waters of the western U.S.;
50 51 52	2029	they, too, reported that bottom-up factors were the most important. This interpretation does not
53 54	2030	preclude strong top-down control of selected component organisms. The distinction is that, at the
55 56 57	2031	overall ecosystem level, the structuring of species is affected by alterations in nutrients.

3 4	2032	The powerful similarity in responses by the comparative systems described here supports
5 6 7	2033	the need for a new phase of understanding of nutrient loading impacts. In Cloern's (2001) Phase
7 8 9	2034	III model of eutrophication, interactions of multiple stressors and nutrients result in complex
10 11	2035	interactions and changes in plankton and benthic communities (Fig. 2). We have shown several
12 13	2036	common responses of complex aquatic ecosystems to increased or sustained N loading and
14 15 16	2037	concomitant P reductions. These commonalities, including reduced levels of chlorophyll a,
17 18	2038	increased SAV (particularly macrophyte) growth and a shift in dominance to large, piscivorous
19 20	2039	fish, have been, in some cases, interpreted as oligotrophication (e.g., Anderson et al., 2005;
21 22 23	2040	Collos, 2009). However, an additional feature that these ecosystems have in common is
24 25	2041	susceptibility to invasive species, particularly bivalve molluscs. Systems in which either N or P,
26 27 28	2042	but not both, are controlled are in a unique trophic state, neither eutrophic nor oligotrophic; they
20 29 30	2043	have been forced into a state of <i>stoichiotrophic imbalance</i> . Stoichiotrophic imbalance can occur
31 32	2044	throughout the eutrophication process, but the nutrient and trophodynamics that become
33 34 35	2045	established represent a different state than that which develops along the eutrophic continuum.
36 37	2046	Ecological stoichiometry thus provides the basis for understanding how and why
38 39	2047	nutrients may be important regulators of trophodynamics even when they are not at levels
40 41 42	2048	normally taken to be limiting for phytoplankton production. Moreover, stoichiometric regulation
43 44	2049	can be important for food web dynamics even when changes in these nutrients and their ratios
45 46	2050	are not widely divergent from Redfieldian proportions.
47 48 49	20511.	The trajectory of ecosystem responses illustrated here suggest that as nutrient
50 51	2052	stoichiometry changed over time, and the system simultaneously shifted from high flow to low
52 53	2053	flow to high flow, it did not return to the same condition (e.g., Fig. 34). While complex, the Bay
55 56 57 58	2054	Delta is not uniquely complex among estuaries or, indeed, among aquatic ecosystems (Kimmerer

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

Reviews in Fisheries Science

(2004). Nutrient enrichment can destabilize the dynamics of consumers, the "paradox of enrichment" (Naddafi et al. 2009), and this appears to have occurred in the Bay Delta in a manner similar to other systems. When flow returned to high levels after the mid-1980s drought, bivalves had become established and the biogeochemistry of the system was altered relative to pre-drought conditions. A new stable state had emerged, setting in place the conditions that accelerated further ecosystem change. The new condition no longer provided the same relationships between fish abundance and flow as had the earlier condition; nutrient effects overwhelmed flow effects. The analysis here extends that of Glibert (2010), who also examined both NO_3 : NH_4^+ ratios and N:P ratios and their effects on the food web in the Bay Delta. Using cumulative sums of variability analyses (CUSUM; e.g., Page, 1954) applied to nutrient changes, as well as major trophic components, Glibert (2010) conceptualized three different major food webs over time: a diatom-*Eurytemora*-delta smelt period prior to 1982; a mixed phytoplankton (cryptophytes-green algae-other flagellates)-Pseudodiaptomus-bass-shad period from 1982 to ~2000; and a cyanobacteria-Limnoithona-silverside-largemouth bass-sunfish period post-2000. CUSUM comparative curves provide visually accentuated patterns, allowing interpretations of commonalities in timing of shifts in variables. Comparison of CUSUM curves allowed visualization of how long different components of the food web exhibited similar trends relative to their long-term means (Glibert, 2010). Both sets of analyses (this study and Glibert, 2010) showed strong correlations between changes in the food web and nutrients. Both also demonstrated changes in fish populations as a function of DIN:P and NH₄⁺; and both identified the timing of these changes. The stoichiometric and biogeochemical constraints presented above

2077 provide the mechanisms for why these food webs changed as they did. Regressions of CUSUM

curves and those of raw data do not give the same value, and would not be expected to. Yet, the

_	
2	
~	
3	
Λ	
4	
5	
~	
6	
-	
1	
0	
0	
a	
3	
10	
11	
40	
12	
10	
13	
14	
15	
16	
47	
17	
18	
10	
19	
.0	
20	
~~~	
21	
$2^{2}$	
22	
22	
20	
24	
25	
2	
26	
27	
21	
28	
20	
29	
~~	
30	
24	
31	
20	
JΖ	
33	
34	
~ -	
35	
26	
30	
37	
01	
38	
~~	
39	
10	
40	
⊿1	
-+ 1	
42	
43	
11	
44	
45	
-10	
46	
47	
10	
48	
10	
49	
50	
51	
52	
52	
03	
51	
04	
55	
20	
56	
57	
57	
50	
58	
58 59	
58 59	

1

2078

2079 CUSUM analyses and the raw data comparisons provided here show common trends and provide similar conclusions. Understanding the system from a mechanistic, biogeochemical, and 2080 physiological perspective, one could make the case that it was inevitable that diatoms declined 2081 under conditions of high  $NH_4^+$  loads, that the copepod population became dominated by a 2082 cyclopoid and that macrophytes and cyanobacteria would proliferate when P was reduced but 2083  $NH_4^+$  loads remained and that other associated changes would follow. Comparisons across 2084 systems have provided even more powerful evidence of commonalities in changes in food webs 2085 2086 when nutrient stoichiometry is altered. The conclusion is that P control, without concomitant N control, has unintended 2087 consequences. As seen for the Bay Delta here and in previous analyses (Van Nieuwenhuyse, 2088 2007) and in the comparative systems describe above, P reductions do result in a decline in 2089 chlorophyll a. Where cyanobacterial blooms had previously been problematic, they declined 2090 initially, as in the Potomac River. However, once benthic primary producers take hold, and their 2091 productivity increases, the sediment pump of stored P begins to provide this nutrient in sufficient 2092 quantities that organisms such as *Microcystis* can become established, or re-established. If the 2093 system is also one receiving N in the form of  $NH_4^+$ , only those organisms able to tolerate high 2094 concentrations are apparently able to thrive. These organisms include cyanobacteria, the 2095 cyclopoids and the piscivorous fish. Thus, it appears that it is the interplay of P sequestration 2096 and NH₄⁺ tolerance that results in new dominants. Once the sediment pump of P has become 2097 established, the system can be viewed as having reached a tipping point, one in which further 2098 reductions in P will likely only result in an exacerbation of the problem. One can therefore 2099 2100 envision two control strategies. One would involve increasing P load, and the other decreasing

Page 92 of 236

### **Reviews in Fisheries Science**

the N load. Increasing P contains the risk of pushing the system in the direction of a classical eutrophied system, with concomitant increase in oxygen-stressed waters and unfavorable changes in the benthic community. Reductions in N is the other strategy. Reductions in N (and especially  $NH_4^+$ ) will allow those organisms otherwise intolerant of  $NH_4^+$  (or intolerance for other organisms that tolerate  $NH_4^+$ , e.g. dinoflagellates), from diatoms to fish, to compete. The challenge for managers is how to recognize when such a tipping point has occurred and when aggressive P reductions will therefore be counter-productive. This conclusion therefore is in contradiction with those of Carpenter (2008) and Schindler et al. (2008), who view P reductions as the sole solution to eutrophication, but confirms that of Howarth and Paerl (2008), Conley et al. (2009) and Paerl (2009), who view both N and P control to be necessary. Control of P works to a point, but appears not to be able to overcome the biogeochemical pumping of P in systems when sediments are laden with P. Initial responses, such as chlorophyll a and bloom reductions in response to P control may give managers a false sense of success. But, once the threshold of biogeochemical control has been crossed, more P control is not the solution. State shifts have often been illustrated by marble-in-cup diagrams (e.g., Scheffer et al., 1993, 2001; Amemiya et al., 2007). The likelihood of an ecosystem (marble) being moved to a new state (new cup) is a function of system resilience. When the dynamic structure of the ecosystems is changed, restoration of the original stable state is much more difficult, if possible. Changes in nutrient loading can be a destabilizing factor in trophodynamics. Predictions of the potential success of "habitat" restoration for native species have been difficult (Brown, 2003). Without consideration of nutrients in the Bay Delta, such restoration efforts will likely remain unpredictable. Reconstruction of habitat is under consideration because it had been thought that fish were "habitat limited" due to the hydrological changes and severe loss of tidal wetlands in

	2124	the Bay Delta (Kimmerer et al., 2005; Feyrer et al., 2010). More habitat is thought to be
	2125	beneficial in exporting C. However, if the habitat is in a reach of the Bay Delta where N:P favors
	2126	cyanobacteria and macrophytes, return of native fish that depend on plankton, such as diatoms
)	2127	with a different nutritional requirements and content, will be unlikely.
<u>}</u> }	2128	The analysis further supports the nutrient regulation hypotheses advanced by Wilkerson
, 5	2129	et al. (2006), Dugdale et al. (2007), and Van Nieuwenhuyse (2007). While Wilkerson et al.
3	2130	(2006) and Dugdale et al. (2007) have suggested that the controlling nutrient is N, especially
)	2131	$\rm NH_4^+$ inhibition of $\rm NO_3^-$ uptake by diatoms, Van Nieuwenhuyse (2007) hypothesized that P
2	2132	limitation of phytoplankton developed over time. The biogeochemical regulations of these fluxes
5	2133	are intertwined. These findings underscore that without reductions in N loads, restoration of the
) 7 8	2134	food web leading to pelagic delta smelt will be difficult at best (Glibert 2010).
) )	2135	It is encouraging that restoration efforts in the Potomac are showing evidence of
2	2136	reduction in exotic species and a return of more native vegetation following the reduction in
>   	2137	wastewater N (Ruhl and Rybicki 2010). Similarly, a 57% reduction in N loading in Tampa Bay
) ,	2138	between the 1980s and 2002 led to extensive recovery of native seagrasses, and a similar
} }	2139	recovery was observed for Sarasota Bay following a 46% reduction in its N loading (Johansson
2	2140	and Greening, 2000; Tomasko et al., 2005; Ralph et al., 2006). New requirements for effluent
3	2141	removal from the major wastewater treatment plant on the Sacramento River call for reductions
5 5 7	2142	in N loading from the current 14 tonnes day ⁻¹ to 8 tonnes day ⁻¹ (2.2 mg L ⁻¹ NH ₄ ⁺ + 10 mg L ⁻¹
3	2143	$NO_3^{-}$ , at a permit capacity of 181 mgd) in the coming decade through implementation of
)	2144	nitrification and denitrification (Central Valley Regional Water Quality Control Board 2010).
- 3 1	2145	This would result in a significant drop in effluent DIN:TP ratios. Riverine N:P is not expected to
5	2146	change to this extreme, however, due to other nutrient loading sources (Sobota et al., 2009).
,		

### **Reviews in Fisheries Science**

2		
3 4	2147	Elemental stoichiometry provides the theory, and the Potomac River and Tampa Bay provide
5 6 7	2148	examples, that the Bay Delta's food web will likely be altered favorably under this projected
8 9	2149	nutrient regime. Inasmuch as P levels are approximately what they were in the early 1970s when
10 11 12	2150	the food web supported fishes such as delta smelt, it is N that must be reduced, rather than P that
13 14	2151	should be increased, to achieve this balance.
15 16 17	2152	
18 19	2153	Implications
20 21	2154	A number of broader implications emerge from this analysis.
22 23 24	2155	(1) The patterns in invasions of species in the Bay Delta and the comparative systems
25 26	2156	described herein are generally supportive of the emerging concept that invasions are not strictly
27 28	2157	stochastic events, but that environmental changes interact with vectors of invasion to enhance
29 30 31	2158	their success (e.g., Hobbs, 2000; Kolar and Lodge, 2000). There have been numerous other
32 33	2159	examples where ecosystems disturbance has been associated with the opportunity for species to
34 35 36	2160	colonize and for populations to expand (Hobbs and Huenneke, 1992; Hobbs, 2000). That the
37 38	2161	pattern of trophic cascade is similar in systems ranging from the Bay Delta to the Potomac
39 40	2162	River to the lower Great Lakes and elsewhere is powerful confirmation of the similar paths that
41 42 43	2163	systems undergo in biogeochemistry and biological interactions when nutrients are altered.
44 45	2164	Changes in land use, nutrient loading, and climate-related changes have all been associated with
46 47 48	2165	successful species invasions (Carlton 2000). To this list we add the interacting effects of P
40 49 50	2166	reductions and static or increasing N loads.
51 52	2167	(2) There has been much debate about nutrient regulation and limitation, most
53 54 55	2168	recently in a set of papers about the potential importance of N vs. P in estuaries (Schindler et al.,
56 57 58 59	2169	2008; Schindler and Hecky, 2008; Howarth and Paerl, 2008, Carpenter, 2009; Conley et al.,

2009). Schindler argued that P is the limiting nutrient in lakes, and therefore eutrophication can be controlled by controlling that nutrient. Others have argued for the need for control of both nutrients in estuarine and freshwater systems (e.g., Paerl et al., 2004; Howarth and Marino, 2006; Howarth and Paerl, 2008; Conley et al., 2009; Paerl, 2009). The synthesis provided here bears on this argument in several ways. Nitrogen is no longer the limiting nutrient in many estuarine systems; it is the excess of N loading that is of concern, not its lack of supply. Reductions in P have indeed reduced chlorophyll a levels in many systems, and this change in phytoplankton biomass has frequently been referred to as oligotrophication. However, systems rarely can be restored to pre-eutrophic conditions (Burkholder, 2001a,b). Moreover, the shift to an alternate stable state does not *a priori* mean that the system is returned to its natural, un-eutrophied, state because that system may be much more susceptible to invasions of nonindigenous species. Nutrient ratios do matter, especially at the level of community dynamics and structure, and as P has been controlled without the concomitant control of N, the change in N:P can alter food web dynamics and biogeochemistry. While individual species and processes respond to single nutrients, the relative proportion of N and P collectively alters metabolism, species composition, and food webs.

(3) In what has become a much-referenced paper in a very short period of time,
Duarte et al. (2008) discussed the pathways of return of an ecosystem following nutrient removal
- the "Return to Neverland" (sensu the children's story of Peter Pan and Wendy). They surveyed
the literature for systems that have undergone nutrient loading and nutrient reductions to
determine if there were common patterns. The trajectories of response were complex and varied.
Duarte et al. attributed this to "shifting baselines," recognizing that systems have changed due to
invasions, extinctions, overfishing, climate change and other factors; thus, any expectation that

### **Reviews in Fisheries Science**

3	
4	
5	
6	
7	
י פ	
0 0	
9 10	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 //1	
-+ i // 2	
4Z 40	
40 11	
44 15	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
ວ/ ເດ	
58	
59	
60	

the system will return to that which it was decades before is a flawed assumption. They did not,
however, differentiate those systems where stoichiometry had been altered. Despite the
difficulty in predicting exactly how individual systems will respond, Duarte et al. (2008, p 6)
underscore that "efforts to reduce nutrient inputs to eutrophied coastal ecosystems have indeed
delivered important benefits by either leading to an improved status of coastal ecosystems or
preventing damages and risks associated to further eutrophication." A stoichiometric perspective
aids our understanding of how systems return to a new – or altered – stable state.

(4) Global change patterns suggest that acidification of the oceans and its effects on 2200 2201 physiology and biodiversity is a major emerging issue (e.g., Fabry et al., 2008; Hendriks et al., 2010; Kroeker et al., 2010; Vézina and Hoegh-Guildberg, 2010 and references therein). Shown 2202 here, as well as in many other reports (Pedersen, and Hansen, 2003a,b; Søderberg and Hansen, 2203 2204 2007), highly productive aquatic systems are, instead, sustaining alkalinification. The consequences for biogeochemical and related trophic dynamic changes at high pH are as large as 2205 those at reduced pH values. The range of pH fluctuations under highly productive systems, up to 2206 several pH units, is much higher than what is occurring and expected under acidification. Effects 2207 of variable pH must be better understood across the range of environmentally relevant pH values, 2208 2209 including the alkaline range.

(5) One of the most common "currencies" of trophodynamic studies is C. Many studies normalize rates or mass to C. When food quality (i.e., nutritional content) is linked to food web outcome, however, feedback effects and nutrient biogeochemical processes also play large roles in species success. Indeed, it has been suggested that food quality is a measure of grazer success, and that low food quality (as measured by high C:N or high C:P ratios) should dampen predator-prey relationships (Hessen 1997). Food quality is also important to consider in

detritus-based food webs. Detritivores consume the least nutritionally balanced foods and thus have lower growth rates than their planktivorous or piscivorous counterparts (Sterner and Elser, 2002). In keeping with this notion for the Bay Delta, Sobczak et al. (2005) found that while detritus may support a significant fraction of the heterotrophic metabolism of the system, it did not seem to support pelagic food webs leading to higher trophic levels. The findings here suggest that strengthened insights may be gained by use of additional denominators – that P and N "currency" yields insights not found with C "currency." While productivity is a function of C, community composition is more strongly linked to N and P. Conceptualizing all change as a function of C transfer and productivity may lead to a flawed conclusion that productivity, biomass, and species composition are all regulated by a single element (MacIntyre and Flecker, 2010). (6)Many trophic interactions are interpreted in the context of the requirements by grazers for acquisition of particular fatty acids, as a measure of the food quality of algae (e.g., Ågren et al., 1990; Coutreau and Sorgeloos, 1997; Weers and Gulati 1997). However, cellular biochemical constituents, including lipids and proteins, are strongly influenced by the elemental composition of the cells. While some cyanobacteria may be able to alter their phospholipid content in relation to P stress (Van Mooey et al. 2009), for example, some green algae have been shown to have higher lipid content under P limitation (e.g., Kilham et al. 1997). Stoichiometry of N and P may be a better determinant of food quality than lipid content. (7)Cyanobacteria may do well at both ends of the Redfield spectrum. Most previous focus on P reductions has been based on the assumption that N limitation will lead to cyanobacterial blooms because many cyanobacterial species are capable of N₂ fixation; thus, if N-limiting conditions do not occur, cyanobacteria blooms may be reduced or avoided (e.g.,

imway@uconn od

#### **Reviews in Fisheries Science**

Downing et al., 2001). However, *Microcystis* often occurs in *high* N:P ambient conditions, making it an enigmatic bloom former under the prevailing assumption that high N:P will drive the ecosystem away from cyanobacteria. Its success apparently is a function of its ability to garner its requisite P from enhanced biogeochemical cycling. Stoichiometric homeostasis (Fig. 5) may be yet another explanation for release of nutrient-rich toxins, not only by *Microcystis*, but potentially by other harmful algal species, including dinoflagellates. (8) Various indices and metrics have been developed to measure eutrophication status (e.g., Llansó et al., 2003; Corbett et al., 2005; Buchanan et al., 2005; Lacouture et al., 2006; Bricker et al., 2007; Williams et al., 2010; US EPA, 2010). However, virtually all of these indices are measures of the classic symptoms of eutrophication - increase in chlorophyll a, decline in SAV, extent of hypoxia, or HABs. There are as yet no quantitative indices of the impacts of altered stoichiometry. As noted above, systems that are manipulated stoichiometrically through removal of one, but not both nutrients, are neither eutrophic nor oligotrophic. Application of the traditional eutrophication indices will lead to the erroneous conclusion that these systems are not nutrient stressed. A new suite of indicators needs to be developed to more accurately characterize these systems. Such indicators will need to vary depending on which end of the stoichiometric continuum a system may lay. For systems with high N:P ratios, these indicators could include extent of coverage of SAV by invasive macrophytes, decline in chlorophyll a, extent of cyanobacteria blooms, bivalve invasions, and piscivore/planktivore abundance, calanoid/cyclopoid ratios, and sediment release of P and N, as examples. (9) The alternate stable states that have been documented here and in comparative 

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

systems suggest that there may be additional societal considerations about which state is

preferred. The Bay Delta management arena has coped with societal implications of water use with regard to protections of an endangered species. Shown here is a dichotomy of stable states of fish communities. Saving the endangered delta smelt will be at the cost of success of many of the recreational fish species that the public enjoys, such as largemouth bass. To save delta smelt will require that the system be returned to one that has many characteristics of a eutrophic system, with higher chlorophyll *a* levels, higher turbidity, and less benthic vegetation. Most communities that are coping with systems in altered stable states are attempting to shift to a system with more piscivores, not fewer, and clearer water, not more turbid. (10)Regulation of a single nutrient without recognition of the role of nutrient stoichiometry serves to displace in space the impacts of eutrophication (Fisher et al., 1992; Hagy et al., 2004; Paerl et al. 2004). While production and chlorophyll *a* biomass may be held in check in the river or estuary due to P limitation, the N is displaced downstream where it eventually intercepts adequate levels of P to form blooms, either in the estuarine reach of the system – or even offshore (Fig. 49). Such effect has been documented for the Neuse River Estuary, the mesohaline reach of Chesapeake Bay and southern Baltic Sea in the Sweden archipelago region; eutrophication effects increased in these areas when P reduction strategies were put in place upstream (Fisher et al., 1992; Paerl et al., 2004). Many marine HABs are increasing (GEOHAB, 2006; Heisler et al., 2008), and even those species that were previously thought to be unrelated to nutrient pollution, such as *Noctiluca scintillans*, the classic "red tide" former, have recently been found to be associated with offshore transport of excess N, mediated through N cycling and trophic transfer (Harrison et al., in press). Thus, in a transect from an N-impacted river to the sea, stoichiometric proportions change significantly, and when P is controlled upstream, algal blooms are displaced either downstream or offshore. Dilution does not solve the problem, it just

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

displaces it.

relationships directly.

(1)

and seasonally within the Bay Delta?

**Recommendations for Further Study** 

While compelling, the ecological stoichiometric model raises many questions that need

further analysis in the San Francisco Estuary. The synthesis provided herein is based on a

reconstruction of biogeochemical and trophic interactions based on historical data. Using

comparative systems, it was shown that similar dynamics have developed in other systems

affected by similar stressors. A "weight of evidence" approach, from trend analysis to

physiological and biogeochemical mechanisms, steeped in ecological theory, was used to

construct the scenarios of change described here. However, regulation of the food web by

nutrient controls is directly testable, and there is much that needs to be explored to test these

importance of nutrients and nutrient processes that were understudied in the San Francisco

In 1985, Cloern and Nichols outlined a number of research questions regarding the

Estuarine system. Although some progress has been made on some of these issues, many remain.

These include, "sediment dynamics and transport, primary production of benthic microalgae,

microzooplankton, sources and fates of toxic contaminants (particularly organic compounds),

nutrient budgets, and riverine inputs of organic material" (Cloern and Nichols, 1985, p. 236).

In 2011, many of the same research questions can be outlined, including:

virtually all aspects of microbial ecology and biogeochemistry, the nature and role of

1 2	
2 3 4	2285
5 6 7	2286
, 8 9	2287
10 11	2288
12 13	2289
14 15 16	2290
17 18	2291
19 20 21	2292
21 22 23	2293
24 25	2294
26 27 20	2295
20 29 30	2296
31 32	2297
33 34	2298
35 36 37	2299
38 39	2300
40 41	2301
42 43 44	2302
45 46	2303
47 48 40	2304
49 50 51	2305
52 53	2306
54 55	2307
วง 57 58	
59	

60

(2) To what extent do the common dinoflagellates of the Bay Delta produce toxins

What are the dynamics of sediment nutrient fluxes and how do they vary spatially

2	
2 3 4	230
5 6 7	230
7 8 9	231
10 11	231
12 13	231
14 15 16	231
17 18	231
19 20	231
21 22 22	231
23 24 25	231
26 27	231
28 29	231
30 31 32	232
33 34	232
35 36	232
37 38	232
39 40 41	232
41 42 43	232
44 45	232
46 47	232
48 49 50	232
50 51 52	232
53 54	232
55 56	233
58 59	
60	

and if so, what organisms and life stages are particularly susceptible? Are delta smelt larvae )8 among those potentially affected? How does nutrient stoichiometry alter the toxicity of these )9 dinoflagellates? 0

(3) What are the organic sources of nutrients, and how does their stoichiometry 1 compare to the inorganic forms presented here? How do they vary spatially and temporally? 2 How do they contribute to the nutrition of the primary producers? 3 (4) How do rooted versus floating invasive macrophytes differ in their alteration of 4 biogeochemical fluxes of nutrients, and how does this vary with nutrient stoichiometry? How 5 6 does the metabolism of these plants compare to that of native vegetation? (5) What are the seasonal and spatial patterns in abundance of bacteria? What is the 7 stoichiometry of bacteria, and does it change over time? 8 9 (6) What is the stoichiometry of the microzooplankton and does it change over time and space? 20 (7)What is the biomass stoichiometry of the fishes of the Bay Delta? Do fish of 21 varying species change in growth rate and size in relation to varying quality of nutrients in their 22 diet? 23 (8) Do stoichiometric changes or changes in flow have a greater effect on fish 24 metabolism? 25 (9) How does the stoichiometry of the invasive fauna compare with that of native 26 species? 27 (10)What are the synergistic effects of stoichiometric changes in ambient nutrients 28 29 and other stressors on the Bay Delta food web, such as changes in temperature, pH, or light?

30 Answers to these questions, attainable through studies in controlled laboratory or

## **Reviews in Fisheries Science**

2 3		
4 5	2331	mesocosm settings or field measurements, would greatly advance understanding about the
5 6 7	2332	factors controlling the food web of San Francisco Estuary and would advance the knowledge
8 9	2333	base and tools for managers to make informed decisions regarding the future of the Bay Delta.
10 11	2334	
12 13	2335	
14 15 16	2336	Acknowledgments
17 18	2337	The ideas presented herein were first presented by PMG in July 2010 as an invited lecture
19 20 21	2338	for the U.S. National Academy of Sciences Committee on Sustainable Water and Environmental
22 23	2339	Management in the California Bay Delta. We sincerely thank F. Brewster, R. Dugdale, L. Fryer,
24 25	2340	B.J. Miller, T. Mongan, M. McGuire, A. Parker, E. Van Nieuwenhuyse, and F. Wilkerson for
26 27 28	2341	their assistance with, helpful discussions about, or input into, various aspects of the data
29 30	2342	presented or this analysis. J. Hawkey provided graphic and editorial assistance for which we are
31 32 33	2343	grateful. This is contribution number xxxx from the University of Maryland Center for
34 35	2344	Environmental Science. Support for this work was provided by the State Water Contractors and
36 37	2345	San Luis & Delta- Mendota Water Authority, the Metropolitan Water District, NSF grants MCB-
38 39 40	2346	0818276 (PMG), OCE- 0727488 (TMK), and MD Sea Grant R/EH-9 (JCC)
40 41 42	2347	
43 44	2348	
45 46 47	2349	References
48 49	2350	Adams, N., and D. Bealing. Organic pollution: Biochemical oxygen demand and ammonia, pp.
50 51	2351	264-285. In: Handbook of Ecotoxicology, Vol. 2 (Calow, P., Ed.). Oxford: Blackwell
52 53 54	2352	Scientific (1994).
55 56		
57 58		
59 60		101

2	
3 4	2
5	
6 7	4
8	2
9 10	
11	2
12	_
13 14	4
15 16	2
10	
18 10	4
20	2
21	
22 23	2
24	~
25 26	-
27	2
28 29	~
30	4
31 32	2
33 24	
34 35	2
36	2
37 38	
39	2
40 41	-
42	-
43 44	2
45	_
46 47	4
48	2
49 50	
51	2
52 53	~
54	4
55 56	2
57	
58 59	
60	

2353 Ågren, G. I. The C:N:P stoichiometry of autotrophs—theory and observations. *Ecol. Lett.*, 7: 185-191 (2004). 2354 Ågren, G., L. Lundstedt, M. Brett, and C. Forsberg. Lipid composition and food quality of some 2355 freshwater phytoplankton for cladoceran zooplankters. J. Plankt. Res., 12: 809-818 (1990). 2356 Alabaster, J. S., and R. Lloyd. Water Quality Criteria for Freshwater Fish, 2nd edition. London: 2357 Butterworth (1982). 2358 Allan, J. D. An analysis of seasonal dynamics of a mixed population of *Daphnia*, and the 2359 associated cladoceran community. Freshwater Biol., 7: 505-512 (1977). 2360 Allen, A.P., and J. Gillooly. Towards and integration of ecological stoichiometry and the 2361 metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett., 12: 369-384 2362 (2009).2363 Allen, E. D., and D. H. N. Spence. The differential ability of aquatic plants to utilize the 2364 inorganic carbon supply in fresh waters. New Phytol., 87: 269-283 (1981). 2365 Alonso, A., and J. A. Camargo. Toxic effects of unionized ammonia on survival and feeding 2366 activity of the freshwater amphipod Eulimnogammarus toletanus (Gammaridae, Crustacea). 2367 Bull. Environ. Contam. Toxicol., 72: 1052–1058 (2004). 2368 Alpine, A. E., and J. E. Cloern. Trophic interactions and direct physical effects control 2369 phytoplankton biomass and production in an estuary. *Limnol. Oceanogr.*, **37**: 946-955 2370 (1992). 2371 Amemiya, T., T. Enomoto, A. G. Rossberg, T. Tamamoto, Y. Inamoi, and K. Itoh. Stability and 2372 dynamical behavior in a lake-model and implications for regime shifts in real lakes. Ecol. 2373 Model., 206: 54-62 (2007). 2374 2375 Andersen, J. H., L. Schlüter, and G. Ærtebjerg. Coastal eutrophication: Recent developments in

## **Reviews in Fisheries Science**

1		
2 3 4	2376	definitions and implications for monitoring strategies. J. Plankt. Res., 28(7): 621-628
5 6 7	2377	(2006).
7 8 9	2378	Andersen, J. M. Nitrogen and phosphorus budgets and the role of sediments in six shallow
10 11	2379	Danish lakes. Archiv fur Hydrobiologia, 74: 528-550 (1974).
12 13 14	2380	Anderson, D. A., J. M. Burkholder, W. Cochlan, P. M. Glibert, C. Gobler, Heil, R. Kudela, T.
15 16	2381	Parsons, V. Trainer, and G. Vargo. Harmful algal blooms in the United States: Linkages to
17 18	2382	eutrophication. Harmful Algae, 8: 39-53 (2008).
20 21	2383	Anderson, D. M., P. M. Glibert, and J. M. Burkholder. Harmful algal blooms and eutrophication:
22 23	2384	Nutrient sources, composition, and consequences. Estuaries, 25: 704-726 (2002).
24 25 26	2385	Anderson, L. W. J. Egeria invades the Sacramento-San Joaquin Delta. Aquat. Nuisance Species
27 28	2386	Digest., <b>3</b> : 37-40 (1999).
29 30	2387	Anderson, L. W. J. A review of aquatic weed biology and management research conducted by
31 32 33	2388	the United States Department of Agriculture - Agricultural Research Service. Pest Manage.
34 35	2389	Sci., <b>59</b> : 801-813 (2003).
36 37 29	2390	Anderson, N. J., E. Jeppesen, and M. Sondergaard. Ecological effects of reduced nutrient loading
30 39 40	2391	(oliogotrophication) on lakes: An introduction. Freshwater Biol., 50: 1589-1593 (2005).
41 42	2392	Arnott, D. L., and M. J. Vanni. Nitrogen and phosphorus recycling by the zebra mussel
43 44 45	2393	(Dreissena polymorpha) in the western basin of Lake Erie. Can. J. Fish. Aquat. Sci., 53:
46 47	2394	646-659 (1996).
48 49	2395	Arrigo, K. R. Marine microorganisms and global nutrient cycles. <i>Nature</i> , <b>437</b> : 349-355 (2005).
50 51 52	2396	Asano, M., and M. Ito. Comparative biochemical studies on aquatic animals: II. Phosphorus
53 54	2397	turnover of the freshwater fish and shellfish. Tohoku J. Agricul. Res., VII: 291-302 (1956).
55 56 57 58 59 60	2398	Atwater, B. F., S. G. Conard, J. N. Dowden, C. W. Hedel, R. L. MacDonald, and W. Savage.

2		
3 4	2399	History, landforms, and vegetation of the estuary's tidal marshes, pp. 347-385. In: San
5 6 7	2400	Francisco Bay: The Urbanized Estuary. (Conomos, T. J., Ed.). San Francisco, CA: Pacific
8 9	2401	Division of the American Association for the Advancement of Science (1979).
10 11	2402	Bachman, R. W., M. V. Hoyer, and D. E. Canfield, Jr. The restoration of Lake Apopka in
12 13 14	2403	relation to alternative stable states. <i>Hydrobiologia</i> , <b>394</b> : 219-232 (1999).
15 16	2404	Bailey, E.M. M. Owens, W. R. Boynton, J. C. Cornwell, E. Kiss, P. W. Smail, H. Soulen, E.
17 18	2405	Buck, M. Ceballos. Sediment Phosphorus Flux: pH Interactions in the Tidal Freshwater
19 20 21	2406	Potomac River Estuary Final Report. Technical Report Series No.TS-505-06-CBL Ref. No.
21 22 23	2407	[UMCES] CBL06-005 of the University of Maryland Center for Environmental Science
24 25	2408	(2006).
26 27 28	2409	Baker, S. M. and J. S. Levinton. Selective feeding by three native North American freshwater
29 30	2410	mussels implies food competition with zebra mussels. <i>Hydrobiologia</i> , <b>505</b> : 97-105 (2003).
31 32	2411	Baker, S. M., J. S. Levinton, J. P. Kurdziel, and S. E. Shumway. Selective feeding and
33 34 35	2412	biodeposition by zebra mussels and their relation to changes in phytoplankton composition
36 37	2413	and seston load. J. Shellfish Res., 17: 1207-1213 (1998).
38 39	2414	Baldia, S. F., A. D. Evangelista, E. V. Aralar, and A. E. Santiago. Nitrogen and phosphorus
40 41 42	2415	utilization in the cyanobacterium Microcystis aeruginosa isolated from Laguna de Bay,
43 44	2416	Philippines. J. Appl. Phycol., <b>19</b> : 607-613 (2007).
45 46	2417	Bange, H. W. Gaseous nitrogen compounds (NO, N2O, N2, NH3) in the ocean. In: Nitrogen in
47 48 49	2418	the Marine Environment (Capone, D. G., D. A. Bronk, M. R. Mulholland, and E. J.
50 51	2419	Carpenter, Eds.). London: Elsevier (2008).
52 53	2420	Barko, J. W., and R. M. Smart. Mobilization of sediment phosphorus by submerged freshwater
55 56	2421	macrophytes. Freshwater Biol., 10: 229-238 (1980).
57 58		
59 60		10

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

## **Reviews in Fisheries Science**

1 2		
- 3 4	2422	Baxa, D. V., T. Kurobe, K. A. Ger, P. W. Lehman, and S. J. Teh. Estimating the abundance of
5 6	2423	toxic Microcystis in the San Francisco Estuary using quantitative real-time PCR. Harmful
7 8 9 10 11	2424	<i>Algae</i> , <b>9</b> : 342-349 (2010).
	2425	Baxter, R., R. Breuer, L. Brown, L. Conrad , F. Feyrer, S. Fong, K. Gehrts, L. Grimaldo, B.
12 13	2426	Herbold, P. Hrodey, A. Mueller-Solger, T. Sommer, and K. Souza. Interagency ecological
14 15 16	2427	program 2010 pelagic organism decline work plan and synthesis of results. Interagency
17 18	2428	Ecological Program for the San Francisco Estuary. Available from
19 20	2429	<www.water.ca.gov docs="" finalpod2010workplan12610.pdf="" iep=""> (2010).</www.water.ca.gov>
21 22 23	2430	Bennett, W. A. Critical assessment of the delta smelt population in the San Francisco Estuary,
24 25 26 27 28 29 30	2431	California. San Francisco Est. Watershed Sci., 3(2): article 1. Available from
	2432	<escholarship.org 0725n5vk="" item="" uc=""> (2005).</escholarship.org>
	2433	Bennett, W. A., and P. B. Moyle. Where have all the fishes gone? Interactive factors producing
31 32	2434	fish declines in the Sacramento-San Joaquin Estuary, pp. 519-542. In: San Francisco Bay:
33 34 35	2435	The Ecosystem (Hollibaugh, J. T., Ed.). San Francisco, CA: Pacific Division of the
36 37	2436	American Association for the Advancement of Science (1996).
38 39	2437	Berman, T., and D. A. Bronk. Dissolved organic nitrogen: A dynamic participant in aquatic
40 41 42	2438	ecosystems. Aq. Microb. Ecol., <b>31</b> : 279-305 (2003).
43 44	2439	Bidigare, R. R. Nitrogen excretion by marine copepods, pp. 385-409. In: Nitrogen in the Marine
45 46 47	2440	Environment (Carpenter, E. J., and D. G. Capone, Eds.). New York: Academic Press (1983).
48 49	2441	Blindow, I., G. Andersson, A. Hargeby, and S. Johansson. Long-term pattern of alternate stable
50 51	2442	states in two shallow eutrophic lakes. Freshwater Biol., 30: 159-167 (1993).
52 53 54	2443	Blindow, I., A. Hargeby, J. Meyercordt, and H. Schubert. Primary production in shallow lakes-
55 56 57 58	2444	a paradox of enrichment? Limnol. Oceanogr., 51: 2711-2721 (2006).
59 60		10.

Boersma, M. The nutritional quality of P-limited algae for Daphnia. Limnol. Oceanogr., 45: 1157-1161 (2000). Boersma, M., N. Aberle, F. M. Hantzsche, K. L. Shoo, K. H. Wiltshire, and A. M. Malzahn. Nutritional limitation travels up the food chain. Internat. Rev. Hydrobiol., 93: 479-488 (2008).Boersma, M., and C. Kruetzer. Life at the edge: Is food quality really of minor importance at low quantities? Ecology, 83: 2552-2561 (2002). Boersma, M., and K. H. Wiltshire. Gut passage of phosphorus-limited algae through Daphnia: Do they take up nutrients in the process? Arch. Hydrobiol., 167: 1-4 (2006). Bonvechio, K., and T. F. Bonvechio. Relationship between habitat and sport fish populations over a 20-year period at West Lake, Florida. N. Am. J. Fish. Manage., 26: 124-133 (2006). Bootsma, H. A., E. B. Young, and J. A. Berges. Temporal and spatial patterns of *Cladophora* biomass and nutrient stoichiometry in Lake Michigan, pp. 81-88. In: Cladophora Research and Management in the Great Lakes. Milwaukee, WI: Great Lakes Water Institute Special Report No. 2005-01 (2005). Bostrom, C., and E. Bonsdorff. Zoobenthic community establishment and habitat complexity-the importance of seagrass shoot-density, morphology and physical disturbance for faunal recruitment. Mar. Ecol. Prog. Ser., 205: 123-138 (2000). Bouley, P., and W. J. Kimmerer. Ecology of a highly abundant, introduced cyclopoid copepod in a temperate estuary. Mar. Ecol. Prog. Ser., 324: 219-228 (2006). Bowes, G. Aquatic plant photosynthesis: Strategies that enhance carbon gain, pp. 79-89. In: Plant Life in Aquatic and Amphibian Habitats (Crawford, R. M. M., Ed.). Special Publication Number 5 of the British Ecological Society. Oxford: Blackwell Scientific

(1987).

1

2	
3	2468
4 5	
5 6 7	2469
8	2470
9 10	
11	2471
12 13 14	2472
15 16	2473
17 18	2474
19 20	2475
21	
22 23	2476
24 25	2477
26 27	2478
28 29 30	2479
30 31	2480
32 33	2400
34 35	2481
36 37	2482
38 39	2483
40 41	2484
42	2404
43 44	2485
45 46	2486
47 48 40	2487
49 50 51	2488
52	
53 54	2489
55 56	2490
57	
วช 59	
60	

2469	Bowes, G., and M. E. Salvucci. Plasticity in the photosynthetic carbon metabolism of submersed	
2470	aquatic macrophytes. Aquat. Bot., 34: 233-266 (1989).	
2471	Boynton , W. R., J. H. Garber, R. Summers, and W. M. Kemp. Inputs, transformations, and	
2472	transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries,	
2473	<b>18</b> : 285-314 (1995).	
2474	Boynton, W. R., J. Hagy, J. Cornwell, W. M. Kemp, S. Greene, M. Owens, J. Baker, and R.	
2475	Larsen. Nutrient budgets and management actions in the Patuxent River estuary, Maryland.	
2476	Estuaries Coasts, <b>31(4)</b> : 623-651 (2008).	
2477	Breitburg, D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal	
2478	fishes and fisheries. <i>Estuaries</i> , <b>25</b> : 767-781 (2002).	
2479	Breitburg, D. L., J. G. Sanders C. G. Gilmour, C. A. Hatfield, R. W. Osman, G. F. Riedel, S. P.	
2480	Seitzinger, and K. G. Sellner. Variability in responses to nutrients and trace elements, and	
2481	transmission of stressor effects through an estuarine food web. Limnol. Oceanogr., 44: 837-	
2482	863 (1999).	
2483	Brett, M. T. Comment on "Possibility of N or P limitation for planktonic cladocerans: An	
2484	experimental test" (Urabe and Watanabe) and "Nutrient element limitation of zooplankton	
2485	production" (Hessen). Limnol. Oceanogr., 38: 1333-1337 (1993).	
2486	Bricker, S. B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner.	
2487	Effects of nutrient enrichment in the Nation's estuaries: A decade of change. NOAA Coastal	
2488	Ocean Program Decision Analysis Series No. 26. Silver Spring, MD: National Center for	
2489	Coastal Ocean Science, 328 pp. (2007).	
2490	Bricker, S. B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner.	
2 3 4	2491	Effects of nutrient enrichment in the nation's estuaries: A decade of change. Harmful Algae,
----------------	------	--------------------------------------------------------------------------------------------------------------
5	2492	<b>8</b> : 21-32 (2008).
7 8 9	2493	Britto, D. T., and H. J. Kronzucker. NH4 ⁺ toxicity in higher plants: A critical review. J. Plant
10 11	2494	Physiol., 159: 567-584 (2002).
12 13 14	2495	Brooks, B., T. M. Riley, and R. D. Taylor. Water quality of effluent dominated ecosystems:
15 16	2496	Ecotoxicological, hydrological and management considerations. Hydrobiologia, 556: 365-
17 18	2497	379 (2006).
19 20 21	2498	Brosman, T. M., A. Stodddard, and L. J. Hetling. Hudson River sewage inputs and impacts: Past
22 23	2499	and present, pp. 335-348. In: The Hudson River Estuary (Levinton, J. S., and J. R.
24 25	2500	Waldman, Eds.). New York: Cambridge University Press (2006).
26 27 28	2501	Brown, L.R. An introduction to the San Francisco Estuary tidal wetlands restoration series. San
29 30	2502	Francisco Estuary and Watershed Sci. Available from
31 32 33	2503	<http: 68x2819m="" escholarship.org="" item="" uc=""> (2003).</http:>
33 34 35	2504	Brown, L. R., W. Kimmerer, and R. Brown. Managing water to protect fish: A review of
36 37	2505	California's environmental water account, 2001–2005. Environ. Mgmt., 43: 357-368
38 39 40	2506	(2009).
40 41 42	2507	Brown, L. R., and D. Michniuk. Littoral fish assemblages of the alien-dominated Sacramento-
43 44	2508	San Joaquin Delta, California, 1980-1983 and 2001-2003. Estuaries Coasts, 30: 186-200
45 46 47	2509	(2007).
48 49	2510	Brown, T. Phytoplankton community composition: The rise of the flagellates. IEP Newsletter,
50 51	2511	<b>22</b> : 20-28 (2010).
52 53 54	2512	Brylinsky, M. Release of dissolved organic matter by some marine macrophytes. Mar. Biol., 39:
55 56	2513	213-220 (1977).
57 58 50		
60		108

### **Reviews in Fisheries Science**

2 3 4	2514	Buchanan, C., R. V. Lacouture, H. G. Marshall, M. Olson, and J. M. Johnson. Phytoplankton
5 6	2515	reference communities for Chesapeake Bay and its tidal tributaries. Estuaries, 28: 138-159
7 8 9	2516	(2005).
10 11	2517	Budd, J. W., A. M. Beeton, R. P. Stumpf, D. A. Culver, and W. C. Kerfoot. Satellite
12 13 14	2518	observations of Microcystis blooms in western Lake Erie and Saginaw Bay, Lake Huron.
15 16	2519	Verh. Internation. Verein, Limnol., 27: 3787-3793 (2001).
17 18	2520	Bugham, D. L., M. V. Hoyer, and D.E. Canfield, Jr. Survey of toxic algal (microcystin)
19 20 21	2521	distribution in Florida lakes. Lake Reservoir Manage., 25: 264-275 (2009).
22 23	2522	Burdidge, D. J., and R. C. Zimmerman. Impact of sea grass density on carbonate dissolution in
24 25	2523	Bahamian sediments. Limnol. Oceanogr., 47: 1751-1763 (2002).
20 27 28	2524	Burkholder, J. M. Beyond algal blooms, oxygen deficits and fish kills: Chronic, long-term
29 30	2525	impacts of nutrient pollution on aquatic ecosystems, pp. 103-126. In: Waters in Peril
31 32 33	2526	(Bendell-Young, L., and P. Gallaugher, Eds.). Norwell, MA: Kluwer Academic Publishers
34 35	2527	(2001a).
36 37	2528	Burkholder, J. M. Eutrophication and oligotrophication, pp. 649-670. In: Encyclopedia of
38 39 40	2529	Biodiversity, Vol. 2 (Levin, S., Ed.). New York, NY: Academic Press (2001b).
40 41 42	2530	Burkholder, J.M. Harmful algal blooms. In: Encyclopedia of Inland Waters (Likens, G.E., Ed).
43 44	2531	New York: Elsevier, (2009).
45 46 47	2532	Burkholder, J. M., D. A. Dickey, C. Kinder, R. E. Reed, M. A. Mallin, G. Melia, M. R. McIver,
48 49	2533	L. B. Cahoon, C. Brownie, N. Deamer, J. Springer, H. Glasgow, D. Toms, and J. Smith.
50 51	2534	Comprehensive trend analysis of nutrients and related variables in a large eutrophic estuary:
52 53 54	2535	A decadal study of anthropogenic and climatic influences. Limnol. Oceanogr., 51: 463-487
55 56 57	2536	(2006).
58 59 60		109

2		
3 4	2537	Burkholder, J. M., H. B. Glasgow, and J. E. Cooke. Comparative effects of water-column nitrate
5 6 7	2538	enrichment on eelgrass Zostera marina, shoalgrass Halodule wrightii, and widgeongrass
7 8 9	2539	Ruppia maritima. Mar. Ecol. Prog. Ser., 105: 121-138 (1994).
10 11	2540	Burkholder, J. M., P. M. Glibert, and H. Skelton. Mixotrophy, a major mode of nutrition for
12 13	2541	harmful algal species in eutrophic waters. Harmful Algae, 8(1): 77-93 (2008).
14 15 16	2542	Burkholder, J. M., K. M. Mason, and H. B. Glasgow, Jr. Water-column nitrate enrichment
17 18	2543	promotes decline of eelgrass (Zostera marina L.): Evidence from seasonal mesocosm
19 20	2544	experiments. Mar. Ecol. Prog. Ser., 81: 163-178 (1992).
21 22 23	2545	Burkholder, J. M., and S. E. Shumway. Bivalve shellfish aquaculture and eutrophication. In:
24 25	2546	Shellfish and the Environment (Shumway, S. E., Ed.). New York, NY: Wiley (2011).
26 27 28	2547	Burkholder, J. M., D. Tomasko, and B. W. Touchette. Seagrasses and eutrophication. J. Exp.
29 30	2548	Mar. Biol. Ecol., <b>350</b> : 46-72 (2007).
31 32	2549	Burmaster, D. E., and S. W. Chisholm. A comparison of two methods for measuring phosphate
33 34 35	2550	uptake by Monochrysis luteri Droop grown in continuous culture. J. Exp. Mar. Biol. Ecol.,
36 37	2551	<b>39</b> : 187-202 (1979).
38 39	2552	Butow, B., D. Wynne, and E. Tel-Or. Seasonal and environmental influences on antioxidative
40 41 42	2553	protection in Peridinium gatunense in Lake Kinneret. J. Appl. Physiol., 8: 403-407 (1996).
43 44	2554	Bykova, O., A. Laursen, V. Bostan, J. Bautista, and L. McCarthy. Do zebra mussels (Dreissena
45 46 47	2555	polymorpha) alter lake water chemistry in a way that favors Microcystis growth? Sci. Total
48 49	2556	Environ., <b>371</b> : 362-372 (2006).
50 51	2557	Byrne, R. A., T. H. Dietz, and R. F. McMahon. Ammonia dynamics during and after prolongs
52 53 54	2558	emersion in the freshwater clam Corbicula fluminea (Muller) (Bivalvia: Corbiculacea). Can.
55 56	2559	<i>J. Zool.</i> , <b>69</b> : 676-680 (1991a).
57 58		
59 60		110

### **Reviews in Fisheries Science**

1 2		
- 3 4	2560	Byrne, R. A., B. N. Shipman, N. J. Smatresk, T. H. Dietz, and R. F. McMahon. Acid-base
5 6 7	2561	balance during emergence in the freshwater bivalve Corbicula fluminea. Physiol. Zool., 64:
7 8 9	2562	748-766 (1991b).
10 11	2563	Calabrese, A. Effect of acids and alkali on survival of bluegills and largemouth bass. U.S.
12 13 14	2564	Bureau of Sport Fisheries and Wildlife Technical Paper, No. 42 (1969).
15 16	2565	California Department of Boating and Waterways (CDBW). 1998 summary of operations-
17 18	2566	water hyacinth chemical control program. Sacramento, CA: CDBW (1998).
19 20 21	2567	Camargo, J. A., and A. Alonso. Ecological and ecotoxicological effects of inorganic nitrogen
22 23	2568	pollution in aquatic ecosystems: A global assessment. Environ. Internat., 32: 831-849
24 25 26	2569	(2006).
20 27 28	2570	Caraco, N. F., and J. J. Cole. Contrasting impacts of a native and alien macrophyte on dissolved
29 30	2571	oxygen in a large river. Ecol. Appl., <b>12(5)</b> : 1496-1509 (2002).
31 32 33	2572	Caraco, N. F., J. J. Cole, and G. E. Likens. Evidence for sulphate-controlled phosphorus release
34 35	2573	from sediments of aquatic systems. Nature, 341(6240): 316-318 (1989).
36 37	2574	Caraco, N. F., J. J. Cole, P. A. Raymond, D. L. Strayer, M. L. Pace, S. E. G. Findlay, and D. T.
38 39 40	2575	Fischer. Zebra mussel invasion in a large, turbid river: Phytoplankton response to increased
41 42	2576	grazing. <i>Ecology</i> , <b>78</b> : 588-602 (1997).
43 44 45	2577	Carignan, R., and R. J. Flett. Postdepositional mobility of phosphorus in lake sediments. Limnol.
45 46 47	2578	<i>Oceanogr.</i> , <b>26</b> : 361-366 (1981).
48 49	2579	Carlton, J. T. Global change and biological invasions in the oceans, pp. 31-54. In: Invasive
50 51 52	2580	Species in a Changing World (Mooney, H. A., and R. J. Hobbs, Eds.). Washington, DC:
52 53 54	2581	Island Press (2000).
55 56		
57 59		
วช 59		

2		
3 4	2582	Carlton, J. T., J. K. Thompson, L. E. Schemel, and F. H. Nichols. Remarkable invasion of San
5 6 7	2583	Francisco Bay (California, USA) by the Asian clam, Potamocorbula amurensis. 1. Invasion
7 8 9	2584	and dispersal. Mar. Ecol. Prog. Ser., 66: 81-94 (1990).
10 11	2585	Carlton, R. G., and R. G. Wetzel. Phosphorus flux from lake sediments: Effect of epipelic algal
12 13	2586	oxygen production. Limnol. Oceanogr., 33: 562-570 (1988).
14 15 16	2587	Carmichael, W. W. Cyanobacteria secondary metabolites—the cyanotoxins. J. Appl. Bacteriol.,
17 18	2588	72: 445-459 (1992).
19 20	2589	Caron, D.A. and J.C. Goldman. Protozoan nutrient regeneration, pp. 283-306. In: Ecology of
21 22 23	2590	Marine Protozoa (Capriulo, G.E., Ed.). Oxford. (1990)
24 25	2591	Caron, D. A., J. C. Goldman, O. K. Andersen, and M. R. Dennett. Nutrient cycling in a
26 27	2592	microflagellate food chain: II. Population dynamics and carbon cycling. Mar. Ecol. Prog.
28 29 30	2593	Ser., <b>24</b> : 243-254 (1985).
31 32	2594	Carpenter, S. R. Phosphorus control is critical to mitigating eutrophication. <i>Proc. National Acad.</i>
33 34	2595	Sciences, <b>105</b> : 11039-11040 (2008).
35 36 37	2596	Carpenter, S. R., and W. A. Brock. Rising variance: A leading indicator of ecological transition.
38 39	2597	<i>Ecol. Lett.</i> , <b>9</b> : 311-318 (2006).
40 41	2598	Carpenter, S. R., W. A. Brock, J. J. Cole, J. F. Kitchell, and M. L. Pace. Leading indicators of
42 43 44	2599	trophic cascades. <i>Ecol. Lett.</i> , <b>11</b> : 128-138 (2008).
45 46	2600	Carr, G. M., and P. A. Chambers. Macrophyte growth and sediment phosphorus and nitrogen in a
47 48	2601	Canadian prairie river. Freshwater Biol., <b>39</b> : 525-536 (1998).
49 50 51	2602	Central Valley Regional Water Quality Control Board. Issue Paper. Aquatic Life and Wildlife
52 53	2603	Preservation Related Issues, Proposed NPDES Permit Renewal for Sacramento Regional
54 55	2604	County Sanitation District Sacramento Regional Wastewater Treatment Plant (2010).
50 57 58		
59 60		112

1 2		
- 3 4	2605	Chainbo, P., G. Silva, M. F. Lane, J. L. Costa, T. Pereira, C. Azeda, P. R. Almeida, I. Metelo,
5 6 7	2606	and M. J. Costa. Long-term trends in intertidal and subtidal benthic communities in response
7 8 9	2607	to water quality improvement measures. Estuaries Coasts, 33: 1314-1326 (2010).
10 11	2608	Chambers, R. M., J. W. Fourqurean, J. T. Hollibaugh, and S. M. Vink. Importance of
12 13 14	2609	terrestrially-derived, particulate phosphorus to phosphorus dynamics in a west coast estuary.
15 16	2610	Estuaries, 18: 518-526 (1995).
17 18	2611	Checkley, D. M., and C. A. Miller. Diel patterns of feeding and excretion by a planktonic
19 20 21	2612	copepod, Acartia tonsa. Bull. Mar. Science, 43: 845-846 (1988).
22 23	2613	Cloern, J. E. The relative importance of light and nutrient limitation of phytoplankton growth: A
24 25	2614	simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquatic Ecol., 33: 3-16
26 27 28	2615	(1999).
29 30	2616	Cloern, J. E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol.
31 32 22	2617	<i>Prog. Ser.</i> , <b>210</b> : 223-253 (2001).
33 34 35	2618	Cloern, J. E., C. Grenz, and L. Vidergar-Lucas. An empirical model of the phytoplankton
36 37	2619	chlorophyll:carbon ratio—the conversion factor between productivity and growth rate.
38 39 40	2620	<i>Limnol. Oceanogr.</i> , <b>40</b> : 1313-1321 (1995).
41 42	2621	Cloern, J.E., A.D. Jassby, J.K. Thompson, and K.A. Hieb. A cold phase of the East Pacific
43 44 45	2622	triggers new phytoplankton blooms in San Francisco Bay. Proc. Nat. Acad. Sci. 104: 18561-
45 46 47	2623	18565 (2007).
48 49	2624	Cloern, J. E., and F. H. Nichols. Time scales and mechanisms of estuarine variability, a synthesis
50 51 52	2625	from studies of San Francisco Bay. Hydrobiologia, 129: 229-237 (1985).
52 53 54	2626	Cohen, A. N. Ships' ballast water and the introduction of exotic organisms into the San
55 56 57 58 59 60	2627	Francisco Estuary: Current problem status and management options. Report for California

2	
3	2628
4	2020
5	2629
0 7	2027
8	2630
9	2050
10	2631
11	2031
12	2622
13	2032
14	2622
16	2633
17	
18	2634
19	
20	2635
21	
22	2636
23	
25	2637
26	
27	2638
28	
29	2639
30 31	
32	2640
33	
34	2641
35	
36	2642
37	2012
38 20	2643
40	2043
41	2644
42	2044
43	2615
44	2043
45	2646
40 ⊿7	2646
48	2647
49	2647
50	
51	2648
52	
53 54	2649
54 55	
56	2650
57	
58	
59	

1

Bay Delta Authority, Sacramento, CA. Richmond, CA: San Francisco Estuary Institute
(1998).
Cohen, A. N., and J. T. Carlton. *Nonindigenous aquatic species in a United States Estuary: A case study of the biological invasions of the San Francisco Bay and Delta*. Washington, DC:

2633 Cohen, A. N., and J. T. Carlton. Accelerating invasion rate in a highly invaded estuary. *Science*,

**26**34 **279**: 555-558 (1998).

U.S. Fish & Wildlife Service (1995).

- 2635 Cohen, R. R. H., P. V. Dresler, E. J. P. Phillips, and R. L. Cory. The effect of the Asiatic clam,
   2636 *Corbicula jluminea*, on phytoplankton of the Potomac River, Maryland. *Limnol. Oceanogr.*,
   2637 **29(l)**: 170-180 (1984).
- Cole, B. E., and J. E. Cloern. Significance of biomass and light availability to phytoplankton
  productivity in San Francisco Bay. *Mar. Ecol. Prog. Ser.*, **17**: 15-24 (1984).
- 2640 Cole, J. J., and N. F. Caraco. Primary production and its regulation in the tidal-freshwater
- 2641 Hudson River, pp. 107-120. In: *The Hudson River Estuary* (Levinton, J. S., and J. R.
- 2642 Waldman, Eds.). New York, NY: Cambridge University Press (2006).
- Colle, D. E., and J. V. Shireman. Coefficients of condition of largemouth bass, bluegill, and
   redear sunfish in *Hydrilla*-infested lakes. *Trans. Amer. Fish Soc.*, **109**: 521-531 (1980).
  - Colle, D. E., J. V. Shireman, W. T. Haller, J. C. Joyce, and D. E. Canfield, Jr. Influence of
  - *Hydrilla* on harvestable sport fish populations, angler use, and angler expenditures at Orange
    Lake, Florida. *N. Am. J. Fish. Manage.*, **7**: 410-417 (1987).
- Collos, Y., B. Bec, C. Jauzein, E. Abadie, T. Laugier, J. Lautier, A. Pastoureaud, P. Souchu, and
  A. Vaque. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate
  in Thau Lagoon, southern France. *J. Sea Res.*, 61: 68-75 (2009).

### **Reviews in Fisheries Science**

1 2		
2 3 4	2651	Compton, J. S., D. J. Mallinson, C. R. Glenn, G. Filippelli, K. Follmi, G. Shields, and Y. Zanin.
5 6 7	2652	Variations in the global phosphorus cycle, pp. 21-33. In: Marine Authigenesis: From Global
8 9	2653	to Microbial (Glenn, C. R. et al., Eds.). Society of Sedimentary Geology Special Publication
10 11	2654	Number 66 (2000).
12 13 14	2655	Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C.
15 16	2656	Lancelot, and G. E. Likens. Controlling eutrophication: Nitrogen and phosphorus. Science,
17 18	2657	<b>323</b> : 1014-1015 (2009).
19 20 21	2658	Conrad, J. L., K. L. Weinersmith, M. J. Young, D. de Carion, P. Crain, D. J. Harris, M. C.
22 23	2659	Ferrari, E. Hestir, M. Santos, S. Ustin, P. B. Moyle, and A. Sih. Rising abundance of
24 25 26	2660	largemouth bass in the littoral zone of Sacramento-San Joaquin Delta: The role of Egeria
26 27 28	2661	densa. Interagency Ecological Workshop, Sacramento, May 2010. Abstract (2010).
29 30	2662	Conroy, J. D., W. J. Edwards, R. A. Pontius, D. D. Kane, H. Zhang, J. F. Shea, J. N. Richey, and
31 32 33	2663	D. A. Culver. Soluble nitrogen and phosphorus excretion of exotic freshwater mussels
34 35	2664	(Dreissena spp.): Potential impacts for nutrient remineralization in western Lake Erie.
36 37	2665	Freshwater Biol., 50: 1146-1162 (2005).
38 39 40	2666	Conway, H. L., P. J. Harrison, and C. O. Davis. Marine diatoms grown in chemostats under
41 42	2667	silicate or ammonium limitation: II. Transient response of Skeletonema costatum to a single
43 44	2668	addition of the limiting nutrient. Mar. Biol., 35: 187-199 (1976).
45 46 47	2669	Corbett, C. A., P. H. Doering, K. A. Madley, J. A. Ott, and D. A. Tomasko. Using seagrass
48 49	2670	coverage as an indicator of ecosystem condition, pp. 229-245. In: Ecological Indicators
50 51	2671	(Bortone, S. A., Ed.). Boca Raton, FL: CRC Press (2005).
52 53 54	2672	Cornwell, J. C., and M. S. Owens. Quantifying sediment nitrogen releases associated with
55 56	2673	estuarine dredging. Aquat. Geochem., (in review).
57 58 59 60		115

2		
3 4	2674	Coutteau, P., and P. Sorgeloos. Manipulation of dietary lipids, fatty acids and vitamins in
5 6 7	2675	zooplankton cultures. Freshwater Biol., 38: 501-512 (1997).
7 8 9	2676	Crowder, L. B., and W. E. Cooper. Habitat structural complexity and the interaction between
10 11	2677	bluegills and their prey. <i>Ecology</i> , <b>63</b> : 1802-1813 (1982).
12 13	2678	Cummins, J. C. Buchanan, C. Haywood, H. Moltz, A.Griggs, R. C. Jones, R. Kraus, N. Hitt, R.
14 15 16	2679	V. Bumgardner. Potomac Basin Large River Environmental Flow Needs. ICPRB Report 10-
17 18	2680	3. Interstate Commission on the Potomac River Basin (2010).
19 20	2681	Dao, TS., LC. Do-Haong, and C. Weigand. Cyanobacteria from Tri An Reservoir, Vietnam,
21 22 23	2682	and toxicity of cyanobacterial compounds to Daphnia magna. 14 th International Conference
24 25	2683	on Harmful Algae, Hersonissos-Crete, Greece, November 2010. Abstract (2010).
26 27 28	2684	Davis, J. A., and C. E. Boyd. Concentrations of selected elements and ash in bluegill (Lepomis
20 29 30	2685	macrochirus) and certain other freshwater fish. Trans. Am. Fish. Soc., 107: 862-867 (1978).
31 32	2686	Davis, J. A., D. Yee, J. N. Collins, S. E. Schwarzbach, and S. N. Luoma. Potential for increased
33 34 35	2687	mercury accumulation in the estuary food web. San Francisco Estuary Watershed Sci., 1(1).
36 37	2688	Available from <escholarship.org 9fm1z1zb="" item="" uc=""> (2003).</escholarship.org>
38 39	2689	Deegan, L. A. Lessons learned: The effects of nutrient enrichment on the support of nekton by
40 41 42	2690	seagrass and salt marsh ecosystems. Estuaries, 25: 727-742 (2002).
43 44	2691	DeYoe, H. R., E. J. Buskey, and F. J. Jochem. Physiological response of Aureoumbra lagunensis
45 46 47	2692	and Synechococcus sp. to nitrogen addition in a mesocosm experiment. Harmful Algae, 6:
48 49	2693	48-55 (2007).
50 51	2694	Dickman, E. M., J. M. Newell, M. J. Gonzalez, and M. J. Vanni. Light, nutrients, and food-chain
52 53 54	2695	length constrain plankton energy transfer efficiency across multiple trophic levels. Proc.
55 56	2696	Nat. Acad. Sci., 105: 18408-18412 (2008).
57 58 59		

1 2		
2 3 4	2697	Dodds, W. K. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient
5 6 7	2698	status of surface waters. J. N. Amer. Benthol. Soc., 22: 171-181 (2003).
7 8 9	2699	Dodds, W. K. Eutrophication and trophic state in rivers and streams. Limnol Oceanogr., 51: 671-
10 11	2700	680 (2006).
12 13	2701	Dolan, J. R. Phosphorus and ammonia excretion by planktonic protists. Mar. Geol., 139: 109-122
14 15 16	2702	(1997).
17 18	2703	Doney, S. C. The growing human footprint on coastal and open ocean biogeochemistry. Science,
19 20 21	2704	<b>328</b> : 1512-1516 (2010).
22 23	2705	Downing, J. A., S. B. Watson, and E. McCauley. Predicting cyanobacterial dominance in lakes.
24 25	2706	Can. J. Fish. Aquat. Sci., 58: 1905-1908 (2001).
26 27 28	2707	Drake, J. C., and S. I. Heaney. Occurrence of phosphorus and its potential remobilization in the
29 30	2708	littoral sediments of a productive English lake, Freshwat. Biol., 17: 513-23 (1987).
31 32	2709	Dresler, P. V., and R. L. Cory. The Asiatic clam, Corbicula fluminea (Müller), in the tidal
33 34 35	2710	Potomac River, Maryland. Estuaries, 3: 150-152 (1980).
36 37	2711	Duarte, C. M., D. J. Conley, J. Carstensen, and M. Sánchez-Camacho. Return to Neverland:
38 39 40	2712	Shifting baselines affect eutrophication restoration targets. Estuaries Coasts, 32(1): 29-36
40 41 42	2713	(2008).
43 44	2714	Dugdale, R. C., and J. J. Goering. Uptake of new and regenerated forms of nitrogen in primary
45 46 47	2715	productivity. <i>Limnol. Oceanogr.</i> , <b>12</b> : 196-206 (1967).
48 49	2716	Dugdale, R. C., F. P. Wilkerson, V. E. Hogue, and A. Marchi. The role of ammonium and nitrate
50 51	2717	in spring bloom development in San Francisco Bay. Estuar. Coast. Shelf Sci., 73: 17-29
52 53 54	2718	(2007).
55 56 57 58 59	2719	Duggins, D. O., J. E. Eckman, and A.T. Sewell. Ecology of understory kelp environments. 2.

2		
3 4 5	2720	Effects of kelps on recruitments of benthic invertebrates. J. Exp. Mar. Biol. Ecol., 143: 27-
5 6 7	2721	43 (1990).
, 8 9	2722	Edmondson, W. T. The Uses of Ecology. Lake Washington and Beyond. Seattle, WA: University
10 11	2723	of Washington Press (1996).
12 13	2724	Edmondson, W. T., and S. E. B. Abella. Unplanned biomanipulation in Lake Washington.
14 15 16	2725	<i>Limnologica</i> , <b>19</b> : 73-79 (1988).
17 18	2726	Edmonson, W. T., and A. H. Litt. Daphnia in Lake Washington. Limnol. Oceanogr., 27: 272-
19 20	2727	293 (1982).
21 22 23	2728	Elser, J. Biological stoichiometry: A chemical bridge between ecosystem ecology and
24 25	2729	evolutionary biology. Amer. Nat., 168 (suppl): S25-S35 (2006).
26 27	2730	Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. Hobbie, W.
28 29 30	2731	Fagan, J. Schade, J. Hood, and R. W. Sterner. Growth rate-stoichiometry couplings in
31 32	2732	diverse biota. <i>Ecol. Lett.</i> , <b>6</b> : 936-943 (2003).
33 34 35	2733	Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T.
36 37	2734	Ngal, E. W. Seabloom, J. B. Shurin, and J. E. Smith. Global analysis of nitrogen and
38 39	2735	phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.
40 41 42	2736	<i>Ecol. Lett.</i> , <b>10</b> : 1135-1142 (2007).
43 44	2737	Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandl, S.
45 46 47	2738	S. Kilham, E. McCauley, K. L. Schultz, E. H. Stemann, and R. W. Sterner. Nutritional
47 48 49	2739	constraints in terrestrial and freshwater food webs. Nature, 408: 578-580 (2000a).
50 51	2740	Elser, J. J., R. W. Sterner, A. E. Galford, T. H. Chrzanowski, D. L. Findlay, K. H. Mils, M. J.
52 53 54	2741	Pateson, M. P. Stainton, and D. W. Schindler. Pelagic C:N:P stoichiometry in a eutrophied
55 56 57 58	2742	lake: Responses to a whole-lake food-web manipulation. <i>Ecosystems</i> , <b>3</b> : 293-307 (2000b).
59 60		118

1 2		
3 4	2743	Elser, J. J., and J. Urabe. The stoichiometry of consumer-driver nutrient recycling: Theory,
5 6	2744	observations, and consequences. Ecology, 80: 735-751 (1999).
7 8 9 10 11 12 13 14 15 16 17 18	2745	Eppley, R. W., J. L. Coatsworth, and L. Solórzano. Studies of nitrate reductase in marine
	2746	phytoplankton. Limnol. Oceanogr., 14: 194-205 (1969).
	2747	European Environment Agency (EEA). Source apportionment of nitrogen and phosphorus inputs
	2748	into the aquatic environment. Copenhagen: EEA Report No. 7, 48 pp. (2005).
	2749	Fabry, V.J., C. Langdon, J. P. Barry, S. C. Doney, M. A. Green, J. M. Guinotte, R. Jahnke, K. S.
19 20	2750	Johnson, E. V. Thuesen. Present and Future Impacts of Ocean Acidification on Marine
21 22 23	2751	Ecosystems and Biogeochemical Cycles. Report of the Ocean Carbon and Biogeochemistry
24 25 26 27 28	2752	Scoping Workshop on Ocean Acidification Research. Available from <http: td="" www.us-<=""></http:>
	2753	ocb.org/publications/OCB_OA_rept.pdf > (2008).
29 30	2754	FAO/UNEP. Report of the FAO/UNEP meeting on the effects of pollution on the marine
31 32	2755	ecosystem. Rome: FAO Fish Rep. No. 352, 20 pp. (1986).
33 34 35	2756	Feijoo, C., M. E. Garcia, F. Momo, and J. Tpja. Nutrient absorption by the submerged
36 37	2757	macrophyte Egeria dense Planch: Effect of ammonium and phosphorus availability in the
38 39	2758	water column on growth and nutrient uptake. <i>Limnetica</i> , <b>21</b> : 93-104 (2002).
40 41 42	2759	Fernald, S. H., N. F. Caraco, and J. J. Cole. Changes in cyanobacterial dominance following the
43 44	2760	invasion of the zebra mussel Dreissena polymorpha: Long-term results from the Hudson
45 46 47	2761	River Estuary. <i>Estuaries Coasts</i> , <b>30</b> : 163-170 (2007).
47 48 49	2762	Ferreira, J. G., J. H. Andersen, A. Borja, S. B. Bricker, J. Camp, M. Cardoso da Silva, E. Garces,
50 51	2763	A. S. Heiskanen, C. Humborg, L. Ignatiades, C. Lancelot, A. Menesguen, P. Tett, N.
52 53 54	2764	Hoepffner, and U. Claussen. Marine Strategy Framework Directive Task Group 5 Report:
55 56 57 58	2765	Eutrophication. JRC Scientific and Technical Reports EUR 24338EN (2010).
59		

2	
3	2766
4	2700
5	2767
6 7	2707
/ 8	07(0
9	2768
10	
11	2769
12	
13	2770
14	
15	2771
16	
17	2772
18	2112
19	0770
20	2113
21	
22	2774
23	
25	2775
26	
27	2776
28	
29	7777
30	2111
31	
32	2778
33	
34 25	2779
36	
37	2780
38	
39	2781
40	
41	2782
42	2702
43	0700
44	2783
45	
46	2784
47	
48	2785
49 50	
50	2786
52	'
53	2787
54	2,07
55	
56	
57	
58	
59	
60	

2766	Ferreira, J. G., W. J. Wolff, T. C. Simas, and S. B. Bricker. Does biodiversity of estuarine
2767	phytoplankton depend on hydrology? Ecol. Model., 187: 513-523 (2005).
2768	Feyrer, F., K Newman, M. Nobriga, and T. Sommer. Modeling the effects of future outflow in
2769	the abiotic habitat of an imperiled estuarine fish. Estuaries Coasts, 34(1): 120-128 (2010).
2770	Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quiqq, T. A. Rees, and J. A. Raven. Phytoplankton in a
2771	changing world: Cells size and elemental stoichiomtery. J. Plankt. Res., 32: 119-137 (2010).
2772	Findlayson, B. J. Water hyacinth: Threat to the Delta? Outdoor California, 44: 10-14 (1983).
2773	Fisher, T. R., E. R. Peele, J. W. Ammerman, and L. W. Harding Jr. Nutrient limitation of
2774	phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser., 82: 51-63 (1992).
2775	Fishman, D. B., S. A. Adlerson, H. A. Vanderploeg, G. L. Fahnensteil, and D. Scavia.
2776	Phytoplankton community composition of Saginaw Bay, Lake Huron, during the zebra
2777	mussel ( <i>Dreissena polymorpha</i> ) invasion: A multivariate analysis. J. Great Lakes Res., 36:
2778	9-19 (2010).
2779	Flores, I., C. Teh, M. Kawaguchi, S. Lesmeister, C. Foe, and S. Teh, 2010. Acute and chronic
2780	toxicity of ammonia on Pseudodiaptomus forbesi. Sacramento, CA: Bay-Delta Science
2781	Conference September 27-29, 2010. Abstract (2010).
2782	Flynn, K. J. How critical is the critical N:P ratio? J. Phycol., 38: 961-970 (2002).
2783	Flynn, K. J. Ecological modeling in a sea of variable stoichiometry: Dysfunctionality and the
2784	legacy of Redfield and Monod. Prog. Oceanogr., 84(1-2): 52-65 (2009).
2785	Fourqurean, J. W., and J. C. Zieman. Phosphorus limitation of primary production in Florida
2786	Bay: Evidence from C:N:P ratios of dominant seagrass Thalassia testudinum. Limnol.
2787	Oceanogr., <b>37</b> : 161-171 (1992).

1	
2 3	
4	
5 6	
7	
8 0	
9 10	
11	
12 13	
14	
15 16	
17	
18	
19 20	
21	
22	
23 24	
25	
26 27	
28	
29	
30 31	
32	
33 34	
35	
36	
37 38	
39	
40 41	
42	
43	
44 45	
46	
47	
40 49	
50	
51 52	
53	
54	
55 56	
57	
58	

2788	Fulton, R. S. III. Predation, production and the organization of an estuarine copepod community.
2789	J. Plank. Res., 6: 399-415 (1984).
2790	Furimsky, M., S. J. Cooke, C. D. Suski, Y. Wang, and B. L. Tufts. Respiratory and circulatory
2791	responses to hypoxia in largemouth bass and smallmouth bass: Implications for "live-
2792	release" angling tournaments. Trans. Amer. Fish. Soc., 132: 1065-1075 (2003).
2793	Gacia, E., and C. M. Duarte. Sediment retention by a Mediterranean Posidonia oceanica
2794	meadow: The balance between deposition and resuspension. Est. Coast. Shelf Sci., 52: 505-
2795	514 (2001).
2796	Gacia, E., C. M. Duarte, N. Marbà, J. Terrados, H. Kennedy, M. Fortes, and N. H. Tri. Sediment
2797	deposition and production in SE-Asia seagrass meadows. Estuar. Coast. Shelf Sci., 56: 909-
2798	919 (2003).
2799	Gainey, L. F. The response of the Corbiculidae (Mullusca: Bivalvia) to osmotic stress: The
2800	cellular response. Physiol. Zool., 51: 79-91 (1978).
2801	Galloway, J. N., and E. B. Cowling. Reactive nitrogen and the world: 200 years of change.
2802	<i>Ambio</i> , <b>31</b> : 64-71 (2002).
2803	Galloway, J. N., E. B. Cowling, S. P. Seitzinger, and R. H. Socolow. Reactive nitrogen: Too
2804	much of a good thing? <i>Ambio</i> , <b>31</b> : 60-63 (2002).
2805	Geider, R. J., and J. La Roche. Redfield revisited: Variability of C:N:P in marine microalgae and
2806	its biochemical basis. Eur. J. Phycol., <b>37</b> : 1-17 (2002).
2807	GEOHAB. Global Ecology and Oceanography of Harmful Algal Blooms, Harmful Algal Blooms
2808	in Eutrophic Systems (Glibert, P., Ed.). Paris and Baltimore: IOC and SCOR. 74 pp. (2006).
2809	Ger, K. A., P. Arneson, C. R. Goldman and S. J. The. Species specific differences in the
2810	ingestion of Microcystis cells by the calanoid copepods Eurytemora affinis and

2		
3 4	2811	Pseudodiaptomus forbesi. J. Plank Res., <b>32(10)</b> : 1479-1484 (2010).
5 6	2812	Giraudet H., JL. Berthon, and B. Buisson. A comparison of the daily alkaline phosphatase
7 8 9	2813	activity of a cyanobacterium (Microcystis aeruginosa) and a diatom (Synedra capitata),
10 11	2814	<i>Biochem.</i> , <b>320</b> : 451-58 (1997).
12 13	2815	Glennie, E. B., C. Littlejohn, A. Gendebien, A. Hayes, R. Palfrey, D. Sivil, and K. Wright.
14 15 16	2816	Phosphates and alternative detergent builders—final report. EU Environment Directorate,
17 17 18	2817	WRc Ref. UC 4011. Swindon, UK: WRc plc (2002).
19 20	2818	Glibert, P. M. Interactions of top-down and bottom-up control in planktonic nitrogen cycling.
21 22 22	2819	<i>Hydrobiologia</i> , <b>363</b> : 1-12 (1998).
23 24 25	2820	Glibert, P. M. Long-term changes in nutrient loading and stoichiometry and their relationships
26 27	2821	with changes in the food web and dominant pelagic fish species in the San Francisco
28 29 30	2822	Estuary, California. Rev. Fish. Sci., 18(2): 211-232 (2010).
31 32	2823	Glibert, P. M., J. I. Allen, L. Bouwman, C. Brown, K. J. Flynn, A. Lewitus, and C. Madden.
33 34	2824	Modeling of HABs and eutrophication: Status, advances, challenges. J. Mar. Systems, 83(3-
35 36 37	2825	<b>4</b> ): 262-275 (2010a).
38 39	2826	Glibert, P. M., D. M. Anderson, P. Gentien, E. Granéli, and K. G. Sellner. The global, complex
40 41	2827	phenomena of harmful algal blooms. Oceanography, 18(2): 136-147 (2005a).
42 43 44	2828	Glibert, P. M., J. Boyer, C. Heil, C. Madden, B. Sturgis, and C. Wazniak. Blooms in Lagoons:
45 46	2829	Different from those of river-dominated estuaries, pp. 91-113. In: Coastal Lagoons: Critical
47 48 40	2830	Habitats of Environmental Change (M. Kennish, M., and H. Paerl, Eds.). Taylor and Francis
49 50 51	2831	(2010b).
52 53	2832	Glibert, P. M., and J. M. Burkholder. The complex relationships between increasing fertilization
54 55 56	2833	of the earth, coastal eutrophication and proliferation of harmful algal blooms, pp. 341-354.
57 58		
59 60		122

3 4	2834	In: Ecology of Harmful Algae (Granéli, E., and J. Turner, Eds.). Springer (2006).
5 6 7	2835	Glibert, P. M., D. J. Conley, T. R. Fisher, L. W. Harding, Jr., and T. C. Malone. Dynamics of the
7 8 9	2836	1990 winter/spring bloom in Chesapeake Bay. Mar. Ecol. Prog. Ser., 122: 22-43 (1995).
10 11	2837	Glibert, P. M., and J. C. Goldman. Rapid ammonium uptake by marine phytoplankton. Mar.
12 13	2838	<i>Biol. Letts.</i> <b>2</b> : 25-31 (1981).
14 15 16	2839	Glibert, P. M., J. Harrison, C. Heil, and S. Seitzinger. Escalating worldwide use of urea—A
17 18	2840	global change contributing to coastal eutrophication. <i>Biogeochem.</i> , 77: 441-463 (2006a).
19 20 21	2841	Glibert, P. M., C. A. Heil, D. Hollander, M. Revilla, A. Hoare, J. Alexander, and S. Murasko.
21 22 23	2842	Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial
24 25	2843	bloom in Florida Bay. Mar. Ecol. Prog. Ser., <b>280</b> : 73-83 (2004).
26 27 28	2844	Glibert, P. M., C. A. Heil, J. M. O'Neil, W. C. Dennison, and M. J. H. O'Donohue. Nitrogen,
29 30	2845	phosphorus, silica and carbon in Moreton Bay, Queensland, Australia: Differential limitation
31 32	2846	of phytoplankton biomass and production. <i>Estuaries Coasts</i> , <b>29</b> : 107-119 (2006b).
33 34 35	2847	Glibert, P. M., C. A. Miller, C. Garside, M. R. Roman, and G. B. McManus. NH4 ⁺ regeneration
36 37	2848	and grazing: Interdependent processes in size-fractionated ¹⁵ NH ₄ ⁺ experiments. <i>Mar. Ecol.</i>
38 39	2849	<i>Prog. Ser.</i> , <b>82</b> : 65-74 (1992).
40 41 42	2850	Glibert, P. M. S. Seitzinger, C. A. Heil, J. M. Burkholder, M. W. Parrow, L. A. Codispoti, and V.
43 44	2851	Kelly. The role of eutrophication in the global proliferation of harmful algal blooms: New
45 46 47	2852	perspectives and new approaches Oceanography, 18(2): 198-209 (2005b).
48 49	2853	Goldman, J. C., D. A. Caron, O. K. Andersen, and M. R. Dennett. Nutrient cycling in a
50 51	2854	microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Prog. Ser., 24: 231-242
52 53 54	2855	(1985).
55 56 57 58	2856	Goldman, J. C., and P. M. Glibert. Comparative rapid ammonium uptake by four species of
59 60		123

2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
20
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
-10 //7
+1 40
48
49
50
51
52
53
54
55
55
56
57
58
59

1

2857

marine phytoplankton. Limnol. Oceanogr. 27: 814-827 (1982).

Goldman, J. C., and P. M. Glibert. Kinetics of inorganic nitrogen uptake, pp. 233-274. In:
 *Nitrogen in the Marine Environment* (Carpenter, E. J., and D. G. Capone, Eds.). Academic
 Press (1983).

Goldman, J. C., J. J. McCarthy, and D. G. Peavey. Growth rate influence on the chemical
composition of phytoplankton in oceanic water. *Nature*, 279: 210-215 (1979).

2863 Gopal, B. Aquatic Plant Studies. 1. Water Hyacinth. New York: Elsevier Publishing (1987).

2864 Gotham, I. J., and G.-Y. Rhee. Comparative kinetics studies of phosphate-limited growth and

2865 phosphate uptake in phytoplankton in continuous culture *J. Phycol.*, **17**: 257-265 (1981).

2866 Granéli, E., N. Johansson, and R. Panosso. Cellular toxin contents in relation to nutrient

2867 conditions for different groups of phycotoxins, pp. 321-324. In: Harmful Algae (Reguera,

B., J. Blanco, M. L. Fernandez, and T. Wyatt, Eds.). Paris, France: Xunta de Galicia and
Intergovernmental Oceanographic Commission of UNESCO (1998).

2870 Gray, J. S. Pollution induced changes in populations. *Philos. Trans. R. Soc. Lond. B*, 286: 5452871 561 (1979).

Green, D. P. J., J. C. Trexler, J. L. Lorenz, C. C. McIvor, and T. Philippi. Spatial patterns of fish
 communities along two estuarine gradients in southern Florida. *Hydrobiologia*, 569: 387 399 (2006).

# Greening, H. and A. Janicki. Toward reversal of eutrophic conditions in a subtropical estuary: Water quality and seagrass response to nitrogen loading reductions in Tampa Bay, Florida, USA. *Environ. Manage.*, 38: 163-178 (2006).

2878 Grimm, N. B., S. E. Gergel, W. H. McDowell, E. W. Boyer, C. L. Dent, P. Groffman, S. C. Hart,

2879 J. Harvey, C. Johnston, E. Myorga, M. E. McClain, and G. Pinay. Merging aquatic and

### **Reviews in Fisheries Science**

1 2		
- 3 4	2880	terrestrial perspectives of nutrient biogeochemistry. Oecologia, 137: 485-501 (2003).
5 6	2881	Ha, J. H., T. Hidaka, and H. Tsuno. Quantification of toxic Microcystis and evaluation of its
7 8 9	2882	dominance ratio in blooms using real-time PCR. Envir. Sci. Technol., 43: 812-818 (2009).
10 11	2883	Haertel-Borer, S. S., D. M. Allen, and R. F. Dame. Fishes and shrimps are significant sources of
12 13	2884	dissolved inorganic nutrients in intertidal salt marsh creeks. J. Exper. Mar. Biol. Ecol., 311:
14 15 16	2885	79-99 (2004).
17 18	2886	Hagy, J. D., W. R. Boynton, C. W. Keefe, and K. V. Wood. Hypoxia in Chesapeake Bay, 1950-
19 20 21	2887	2001: Long-term change in relation to nutrient loading and river flow. Estuaries, 27: 634-
21 22 23	2888	658 (2004).
24 25	2889	Hall, E. K., F. Maixner, O. Franklin, H. Daims, A. Richter and T. Battin. Linking microbial and
26 27 28	2890	ecosystem ecology using ecological stoichiometry: A synthesis of conceptual and empirical
29 30	2891	approaches. <i>Ecosystems</i> , doi: 10.1007/s10021-010-9408-4 (2010).
31 32	2892	Hallegraeff, G. M. A review of harmful algal blooms and their apparent global increase.
33 34 35	2893	Phycologia, <b>32</b> : 79-99 (1993).
36 37	2894	Hargeby, A., I. Blindow, and G. Andersson. Long-term patterns of shifts between clear and
38 39 40	2895	turbid states in Lake Krankesjon and Lake Takern. <i>Ecosystems</i> , <b>10</b> : 28-35 (2007).
40 41 42	2896	Harlin, M. M. 1993. Changes in major plant groups following nutrient enrichment, pp. 173-187.
43 44	2897	In: Eutrophic Shallow Estuaries and Lagoons (McComb, J., Ed.). Boca Raton, FL: CRC
45 46 47	2898	Press, Inc. (1993).
48 49	2899	Harrison, P. J., K. Furuya, P. M. Glibert, J. Xu, H. B. Liu, K. Yin, J. H. W. Lee, and D. M.
50 51 52	2900	Anderson. Geographical distribution of red and green Noctiluca scintillans. Chinese J.
52 53 54	2901	Oceanol. Limnol., (in press).
55 56		
57 58 50		
60		125

1 2		
3 4	2902	Hartzell, J. L., and T. E. Jordan. Shifts in relative availability of phosphorus and nitrogen along
5 6 7	2903	estuarine salinity gradients. Biogeochem., doi: 10.1007/s10533-010-9548-9 (2010).
7 8 9	2904	Harvey, H. W. Recent Advances in the Chemistry and Biology of Seawater. Cambridge, UK:
10 11	2905	Cambridge University Press (1945).
12 13 14	2906	Hassett, R. P., B. Cardinale, L. B. Stabler, and J. J. Elser. Ecological stoichiometry of N and P in
15 16	2907	pelagic ecosystems: Comparison of lakes and oceans with emphasis on the zooplankton-
17 18	2908	phytoplankton interaction. Limnol. Oceanogr., 42: 648-662 (1997).
19 20 21	2909	Heath, R. T. Zebra mussel migration to inland lakes and reservoirs: A guide for lake managers.
22 23	2910	Kent State University report to Ohio Sea Grant College Program.
24 25	2911	Heck, K. L., Jr., and R. J. Orth. Predation in seagrass beds, pp. 537-570. In: Seagrasses: Biology,
26 27 28 29 30 31 32 33 34 35 36 37 38	2912	Ecology and Conservation (A. W. D. Larkum, R. J. Orth, and C. M. Duarte, Eds.). The
	2913	Netherlands: Springer (2006).
	2914	Hecky, R. E., and P. Kilham. Nutrient limitation of phytoplankton in freshwater and marine
	2915	environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr.,
	2916	33: 796-822 (1988).
38 39 40	2917	Heil, C. A., M. Revilla, P. M. Glibert, and S. Murasko. Nutrient quality drives phytoplankton
40 41 42 43 44 45 46 47 48 49 50 51 52	2918	community composition on the West Florida Shelf. Limnol. Oceanogr., 52: 1067-1078
	2919	(2007).
	2920	Heisler, J., P. Glibert, J. Burkholder, D. Anderson, W. Cochlan, W. Dennison, Q. Dortch, C.
	2921	Gobler, C. Heil, E. Humphries, A. Lewitus, R. Magnien, H. Marshall, K. Sellner, D.
	2922	Stockwell, D. Stoecker, and M. Suddleson. Eutrophication and harmful algal blooms: A
52 53 54	2923	scientific consensus. Harmful Algae, 8: 3-13 (2008).
55 56		
57 58 50		
60		126

### **Reviews in Fisheries Science**

1 2			
3 4	2924	Hendrixson, H. A., R. W. Sterner, and A. D. Kay. Elemental stoichiometry of freshwater fishes	
5 6 7	2925	in relation to phylogeny, allometry and ecology. J. Fish. Biol., 70: 121-140 (2007).	
8 9	2926	Henriks, I.E., C.M. Duarte, and M. Álvarez. Vulnerability of marine biodiversity to ocean	
10 11	2927	acidification: A meta-analysis. Estuarine, Coastal and Shelf Sci., 86: 157-164 (2010)	
12 13 14	2928	Hessen, D. O. Stoichiometry in food webs—Lotka revisited. Oikos, 79: 195-200 (1997).	
15 16	2929	Hessen, D. O., and T. R. Anderson. Excess carbon in aquatic organisms and ecosystems:	
17 18 19	2930	Physiological, ecological, and evolutionary implications. <i>Limnol. Oceanogr.</i> , <b>53</b> : 1685-169	6
20 21	2931	(2008).	
22 23	2932	Hestir, E. L., S. Khanna, M. E. Andrew, M. J. Santos, J. H. Viers, J. A. Greenberg, S. S.	
24 25 26	2933	Rajapakse, and S. L. Ustin. Identification of invasive vegetation using hyperspectral remote	e
27 28	2934	sensing in the California Delta ecosystem. Remote Sens. Environ., 112(11): 4034-4047	
29 30 31	2935	(2008).	
32 33	2936	Hestir, E. L., D. Schoellhamer, T. Morgan-King, J. Greenberg, and S. Ustin. Turbidity declines	
34 35	2937	and submerged aquatic vegetation expansion in the Sacramento-San Joaquin Delta.	
36 37 38	2938	Sacramento, CA: Bay-Delta Science Conference September 27-29, 2010. Abstract (2010).	
39 40	2939	Higgins, S. N., R. E. Hecky, and S. J. Guildford. Environmental controls of <i>Cladophora</i> growth	1
41 42 42	2940	dynamics in eastern Lake Erie: Application of the <i>Cladophora</i> growth model (CGM). J.	
43 44 45	2941	<i>Great Lakes Res.</i> , <b>32</b> : 629-644 (2006).	
46 47	2942	Hobbs, R. J. Land use changes and invasions, pp. 55-64. In: Invasive Species in a Changing	
48 49 50	2943	World (Mooney, H. A., and R. J. Hobbs, Eds.). Washington, DC: Island Press (2000).	
51 52	2944	Hobbs, R. J., and L. F. Huenneke. Disturbance, diversity and invasion: Implications for	
53 54 55	2945	conservation. Conserv. Biol., 6: 324-337 (1992).	
56 57 58 59 60	2946	Hodgkiss, I. J. The N:P ratio revisited. In: Prevention and Management of Harmful Algal	27

2		
3 4	2947	Blooms in the South China Sea (Ho, K. C., and Z. D. Wang, Eds.). School of Science and
5 6	2948	Technology, the Open University of Hong Kong (2001).
7 8 9	2949	Hodgkiss, I. J., and K. C. Ho. Are changes in N:P ratios in coastal waters the key to increased red
10 11	2950	tide blooms? Hydrobiologia, 852: 141-147 (1997).
12 13	2951	Holmes, S. P., and N. Miller. Aspects of the ecology and population genetics of the bivalve
14 15 16	2952	Corbula gibba. Mar. Ecol. Prog. Ser., <b>315</b> : 129-140 (2006).
17 18	2953	Howarth, R. W. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev.
19 20	2954	<i>Ecol.</i> , <b>19</b> : 89-110 (1988).
21 22 23	2955	Howarth, R. W., and R. Marino. Nitrogen as the limiting nutrient for eutrophication in coastal
24 25	2956	marine ecosystems: Evolving views over three decades. Limnol. Oceanogr., 51: 364-376
26 27 28	2957	(2006).
20 29 30	2958	Howarth, R. W., R. Marino, D. P. Swaney, and E. W. Boyer. Wastewater and watershed
31 32	2959	influences on primary productivity and oxygen dynamics in the Lower Hudson River
33 34 35	2960	Estuary, pp. 121-139. In: The Hudson River Estuary (Levinton, J. S., and J. R. Waldman,
36 37	2961	Eds.). New York: Cambridge University Press (2006).
38 39	2962	Howarth, R. W., and H. Paerl. Coastal marine eutrophication: Control of both nitrogen and
40 41 42	2963	phosphorus is necessary. Proc. Nat. Acad. Sci., 105(49): E103 (2008).
43 44	2964	Howarth, R. W., K. Ramakrishna, E. Choi, R. Elmgren, L. Martinelli, A. Mendoza, W.
45 46 47	2965	Moomaw, C. Palm, R. Boy, M. Scholes, and Z. Zhao-Liang. Nutrient management,
48 49	2966	responses assessment, pp. 295-311. In: Ecosystems and Human Well-being. Vol. 3, Policy
50 51	2967	Responses, the Millennium Ecosystem Assessment. Washington, DC: Island Press (2005).
52 53 54	2968	Howarth, R. W., A. Sharpley, and D. Walker. Sources of nutrient pollution to coastal waters in
55 56 57 58 59	2969	the United States: Implications for achieving coastal water quality goals. <i>Estuaries</i> , <b>25</b> : 656-
60		128

1 2		
- 3 4	2970	676 (2002).
5 6	2971	Hoyer, M. V., and D. E. Canfield, Jr. Largemouth bass abundance and aquatic vegetation in
7 8 9	2972	Florida lakes: An empirical analysis. J. Aquat. Plant Manage., 34: 23-32 (1996).
10 11	2973	Hrs-Brenko, M. The basket shell, Corbula gibba Olivi, 1792 (Bivalve Mollusks) as a species
12 13 14	2974	resistant to environmental disturbances: A review. Acta Adriatica, 47: 49-64 (2006).
14 15 16	2975	Huesemann, M. H., A. D. Skillman, and E. A. Crecelius. The inhibition of marine nitrification by
17 18	2976	ocean disposal of carbon dioxide. Mar. Pollut. Bull., 44(2): 142-148 (2002).
19 20 21	2977	Ibáñez, C., N. Prat, C. Duran, M. Pardos, A. Munné, R. Andreu, N. Caiola, N. Cid, H. Hampel,
22 23	2978	R. Sánchez, and R. Trobajo. Changes in dissolved nutrients in the lower Ebro River: Causes
24 25	2979	and consequences. Limnetica, 27: 131-142 (2008).
26 27 28	2980	Ibelings, B. W., R. Portielje, E. H. R. R. Lammens, R. Noordhuis, M. S. van den Berg, W.
29 30	2981	Joosse, and M. L. Meijer. Resilience of alternative stable states during the recovery of
31 32 33	2982	shallow lakes from eutrophication: Lake Veluwe as a case study. <i>Ecosystems</i> , <b>10</b> : 4-16
34 35	2983	(2007).
36 37	2984	Irigoien, X., K. J. Flynn, and R. P. Harris. Phytoplankton blooms: A 'loophole' in
38 39 40	2985	microzooplankton grazing impact? J. Plankt. Res., 27: 313-321 (2005).
40 41 42	2986	Ives, A. R., and S. R. Carpenter. Stability and diversity of ecosystems. Science, 317: 58-62
43 44	2987	(2007).
45 46 47	2988	James, R. T., K. O'Dell, and V. H. Smith. Water quality trends in Lake Tohopekaliga, Florida,
48 49	2989	USA: Responses to watershed management. J. Amer. Water Res. Assoc., 30: 531-546
50 51 52	2990	(2007).
52 53 54	2991	Jassby, A. Phytoplankton in the upper San Francisco Estuary: Recent biomass trends, their
55 56	2992	causes and their trophic significance. San Francisco Estuary and Watershed Science.
57 58 50		
60		129

2	
3 4	299
5 6	299
7 8 0	299
9 10 11	299
12 13	299
14 15	290
16 17	200
18 19	299
20 21	300
22 23	300
24 25 26	300
20 27 28	300
29 30	300
31 32	300
33 34	300
35 36 27	300
38 39	300
40 41	200
42 43	300
44 45	301
46 47	301
48 49	301
50 51 52	301
52 53 54	301
55 56	301
57 58	
59 60	

Available from <escholarship.org/uc/item/71h077r1> (2008).

- Jassby, A. D., and J. E. Cloern. Organic matter sources and rehabilitation of the Sacramento-San
  Joaquin Delta (California, USA). *Aq. Conservation: Mar. Freshwater Ecosys.*, 10: 323-352
  (2000).
- Jassby, A. D., J. E. Cloern, and B. E. Cole. Annual primary production: Patterns and mechanisms
  of change in a nutrient-rich tidal ecosystem. *Limnol. Oceanogr.*, 47: 698-712 (2002).
- Jassby, A. D., J. E. Cloern, and A. Müller- Solger. Phytoplankton fuels Delta food web. *Calif. Agric.*, **57(4)**: 104-109 (2003).
- Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armor, J. E. Cloern, T. M. Powell, J. R.
   Scubel, and T. J. Vendlindski. Isohaline position as a habitat indicator for estuarine
   populations. *Ecol. Appl.*, 5: 272-289 (1995).
- Jaworski, N., and W. Romano. A historical analysis of eutrophication in the Potomac Estuary.
   In: *Tidal Potomac Integrative Analysis Project* (Buchanan, C., Ed.). Washington, DC:
- ³⁴ 3006 ICPRB, 268 (1999).
- 3007 Jaworski, N., W. Romano, and C. Buchanan. The Potomac River Basin and its estuary:
- 3008 Landscape loadings and water quality trends 1895-2005. Available from
- 3009 <www.PotomacRiver.org> (2007).
- Jensen, H. S., and F. O. Andersen. Importance of temperature, nitrate, and pH for phosphate
   release from sediments of four shallow, eutrophic lakes. *Limnol. Oceanogr.*, **39**: 577-589
   3012 (1992).
  - Jeyasingh, P. D., and L. J. Weider. Phosphorus availability mediates plasticity in life-history
     traits and predator-prey interactions in *Daphnia*. *Ecol. Lett.*, 8: 1021-1028 (2005).
  - 3015 Jeyasingh, P. D., and L. J. Weider. Fundamental links between genes and elements: evolutionary

2		
2 3 4	3016	implications of ecological stoichiometry. Mol. Ecol., 16: 4649-4661 (2007).
5 6 7	3017	Johansson, J. O. R., and H. S. Greening. Seagrass restoration in Tampa Bay: a resource-based
7 8 9	3018	approach to estuarine management, pp. 279-293. In: Seagrasses: Monitoring, Ecology,
10 11	3019	Physiology and Management (Borton, S.A., Ed.). New York: CRC Press (2000).
12 13 14	3020	Jónasdóttir, S. H., T. Kiørboe, K. W. Tang, M. St. John, A. W. Visserm E. Saiz, and H. G. Dam.
15 16	3021	Role of diatoms in copepod production: Good, harmless or toxic? Mar. Ecol. Prog. Ser.,
17 18	3022	<b>172</b> : 305-308 (1998).
19 20 21	3023	Jones, C., J. Lawton, and M. Shachak. Organisms as ecosystem engineers. Oikos, 69: 373-386
21 22 23	3024	(1994).
24 25	3025	Jordan, T. E., J. C. Cornwell, W. R. Boynton, and J. T. Anderson. Changes in phosphorus
26 27 28	3026	biogeochemistry along an estuarine salinity gradient: the iron conveyer belt. Limnol.
29 30	3027	Oceanogr., <b>53</b> : 172-184 (2008).
31 32	3028	John, E. H., and K. J. Flynn. Modelling changes in paralytic shellfish toxi content of
33 34 35	3029	dinoflagellates in response to nitrogen and phosphorus supply. Mar. Ecol. Prog. Ser., 225:
36 37	3030	147-160 (2002).
38 39	3031	Josselyn, M. N., and J. A. West. The distribution and temporal dynamics of the estuarine
40 41 42	3032	macroalgal community of San Francisco Bay. Hydrobiologia, <b>129</b> : 139-152 (1985).
43 44	3033	Justic, D., N. N. Rabalais, R. E. Turner, Q. Dortch. Changes in nutrient structure of river-
45 46 47	3034	dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar.
47 48 49	3035	Coastal Shelf Science, <b>40(3)</b> : 339-356 (1995).
50 51	3036	Kagaami, M., and J. Urabe. Phytoplankton growth rate as a function of cell size: An
52 53 54	3037	experimental test in Lake Biwa. Limnology, 2: 111-117 (2001).
55 56 57 58 59	3038	Kemp, W. M., and W. R. Boynton. Benthic-pelagic interactions: Nutrient and oxygen dynamics,
60		131

2		
3 4	3039	pp. 149-221. In: Oxygen Dynamics in the Chesapeake Bay: A Synthesis of Recent Research
5 6 7	3040	(Smith, D. E., M. Leffler, and G. Mackiernan, Eds.). College Park, MD: Maryland Sea Grant
7 8 9	3041	Book (1992).
10 11	3042	Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C.
12 13	3043	Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G.
14 15 16	3044	Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith, and J. C. Stevenson.
17 18	3045	Eutrophication in Chesapeake Bay: Historical trends and ecological interactions. Mar. Ecol.
19 20 21	3046	<i>Prog. Ser.</i> , <b>303</b> : 1-29 (2005).
21 22 23	3047	Khanna, S., M. J. Santos, and S. Ustin. Synergistic effects of disturbance and control in the
24 25	3048	decline of Eichhornia crassipes in the Sacramento-San Joaquin Delta. American
26 27 28	3049	Geophysical Union Annual Meeting, December 2009. Abstract (2009).
29 30	3050	Kilham, S. S., D. A. Kreeger, C. E. Goulden, and S. G. Lynn. Effects of nutrient limitation on
31 32	3051	biochemical constituents of Ankistrodesmus falcatus. Freshwater Biol., 38: 591-596 (1997).
33 34 35	3052	Kimmerer, W. J. Effects of freshwater flow on abundance of estuarine organisms: Physical
36 37	3053	effects or trophic linkages? Mar. Ecol. Prog. Ser., 243: 39-55 (2002).
38 39	3054	Kimmerer, W. J. Open water processes of the San Francisco Estuary: From physical forcing to
40 41 42	3055	biological responses. San Francisco Estuary and Watershed Sci., 2. Available from
43 44	3056	<escholarship.org 9bp499mv="" item="" uc=""> (2004).</escholarship.org>
45 46 47	3057	Kimmerer, W.J., J.H. Cowan, Jr., L.W. Miller and K.A. Rose. Analysis of an estuarine striped
48 49	3058	bass population: Influence of density-dependent mortality between metamorphosis and
50 51	3059	recruitment. Can, J. Fish. Aq. Sci. 57: 478-486 (2000).
52 53 54	3060	Kimmerer, W. J., N. Ferm, M. H. Nicolini, and C. Peñalva. Chronic food limitation of egg
55 56 57 58 59	3061	production in populations of copepods of the genus Acartia in the San Francisco Estuary.
60		132

1 2		
- 3 4	3062	Estuaries, <b>28</b> : 541-550 (2005).
5 6	3063	Kimmerer, W. J., E. Gartside, and J. J. Orsi. Predation by an introduced clam as the probable
7 8 9	3064	cause of substantial declines in zooplankton in San Francisco Bay. Mar. Ecol. Prog. Ser.,
10 11	3065	<b>113</b> : 81-93 (1994).
12 13	3066	Kimmerer, W., A. Parker, J. Thompson, G. McManus, J. York, A. Gould, V. Greene, U.
14 15 16	3067	Lidstrom, A. Slaughter, and T. Ignoffo. The pelagic foodweb of the upper San Francisco
17 18	3068	Estuary: Changing conditions and changing understanding. Sacramento, CA: Bay-Delta
19 20 21	3069	Science Conference September 27-29, 2010. Abstract (2010).
22 23	3070	Kiørboe, T. Phytoplankton growth rate and nitrogen content: Implications for feeding and
24 25	3071	fecundity in a herbivorous copepod. Mar. Ecol. Prog. Ser., 55: 229-234 (1989).
26 27 28	3072	Klausmeier, C. A., E. Litchman, T. Daufresne, and S. A. Levin. Optimal N:P stoichiometry of
29 30	3073	phytoplankton. <i>Nature</i> , <b>429</b> : 171-174 (2004).
31 32 33	3074	Knoll, L. B., O. Sarnelle, S. K. Hamilton, C. E. H. Kissman, A. E. Wilson, J. B. Rose, and M. R.
33 34 35	3075	Morgan. Invasive zebra mussels (Dreissena polymorpha) increase cyanobacterial toxin
36 37	3076	concentrations in low-nutrient lakes. Can. J. Fish Aquat. Sci., 65: 448-455 (2008).
38 39 40	3077	Koehler , M. E., K. L. Fresh, D. A. Beauchamp, J. R. Cordell, C. A. Simenstad, and D. E. Seiler.
40 41 42	3078	Bioenergetics of lake-rearing juvenile Chinook salmon in Lake Washington. Trans. Amer.
43 44	3079	Fish. Soc., 135: 1580-1591 (2006).
45 46 47	3080	Kolar, C., and D. M. Lodge. Progress in invasion biology: Predicting invaders. Trends Ecol.
48 49	3081	<i>Evol.</i> , <b>16</b> : 199-204 (2001).
50 51	3082	Krebs, C. An Ecological World View. Berkeley, CA: University of California Press. 574 pp.
52 53 54	3083	(2008).
55 56		
57 58 59		

2		
3 4	3084	Kroeker, K.J., R.L. Kordas, R.M. Crimm and G.G. Singh. Review and synthesis: Meta-analysis
5 6 7	3085	reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett.
7 8 9	3086	<b>13</b> , DOI: 10.1111/j.1461-0248.2010.01518.x (2010).
10 11	3087	Krogmann, D.W., R. Butalla, and J. Sprinkle. Blooms of cyanobacteria on the Potomac River.
12 13	3088	<i>Plant Physiol.</i> , <b>80</b> : 667-671 (1986).
14 15 16	3089	Kurtz, J., N. Detenbach, V. D. Engle, K. Ho, L. M. Smith, S. J. Jordan, and D. Campbell.
17 18	3090	Classifying coastal waters: Current necessity and historical perspective. Estuaries Coasts,
19 20	3091	<b>29</b> : 107-123 (2006).
21 22 23	3092	Lacouture, R. V., J. M. Johnson, C. Buchanan, and H. G. Marshall. Phytoplankton index of
24 25	3093	biotic integrity for Chesapeake Bay and its tidal tributaries. Estuaries Coasts, 29: 598-616
26 27	3094	(2006).
28 29 30	3095	Lara, M. V., P. Casati, and C. S. Andreo. CO ₂ -concentrating mechanisms in <i>Egeria dense</i> , a
31 32	3096	submersed aquatic plant. Physiol. Plantarum, 115: 487-495 (2002).
33 34 35	3097	Latimer, J. S., and S. A. Rego. Empirical relationship between eelgrass extent and predicted
36 37	3098	watershed-derived nitrogen loading for shallow New England estuaries. Estuar. Coastal
38 39	3099	Shelf Sci., doi:10.1016/j.ecss.2010.09.004 (2010).
40 41 42	3100	Lauritsen, D. D., and S. C. Mozley. Nutrient excretion by the Asiatic clam Corbicula fluminea. J.
43 44	3101	North Am. Benthol. Soc., 8: 134-139 (1989).
45 46	3102	Lavrentyev, P. J., W. S. Gardner, J. F. Cavaletto, and J. U. R. Beaver. Effects of the zebra mussel
47 48 49	3103	(Dreissena polymorpha Pallas) on protozoa and phytoplankton from Saginaw Bay, Lake
50 51	3104	Huron. J. Great Lakes Res., 21: 545-557 (1995).
52 53 54	3105	Legendre, L., and F. Rassoulzadegan. Plankton and nutrient dynamics in marine waters. Ophelia,
54 55 56	3106	<b>14</b> : 153-172 (1995).
57 58		
59 60		134

Page 136 of 236

### **Reviews in Fisheries Science**

1 2		
3 4	3107	Lehman, E. Seasonal occurrence and toxicity of Microcystis in impoundments of the Huron
5 6	3108	River, Michigan, USA. Water Res., 41: 795-802 (2007).
7 8 9	3109	Lehman, P. W. The influence of climate on mechanistic pathways that affect lower food web
10 11	3110	production in northern San Francisco Bay Estuary. Limnol. Oceanogr., 27: 311-324 (2004).
12 13	3111	Lehman, P. W., G. Boyer, C. Hall, S. Walker, and K. Gehrts. Distribution and toxicity of a new
14 15 16	3112	colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California.
17 18	3113	Hydrobiologia, <b>541</b> : 87-99 (2005).
19 20 21	3114	Lehman, P. W., G. Boyer, M. Stachwell, and S. Walker. The influence of environmental
21 22 23	3115	conditions on seasonal variation of Microcystis abundance and microcystins concentration in
24 25	3116	San Francisco Estuary. Hydrobiologia, 600: 187-204 (2008).
26 27 28	3117	Lehman, P. W., S. J. The, G. L. Boyer, M. L. Nobriga, E. Bass, and C. Hogle. Initial impacts of
29 30	3118	Microcystis aeruginosa blooms on the aquatic food web in the San Francisco Estuary.
31 32	3119	Hydrobiologia, <b>637</b> : 229-248 (2010).
33 34 35	3120	Lehtoranta, J., P. Ekholm, and H. Pitkänen. Coastal eutrophication thresholds: A matter of
36 37	3121	sediment microbial processes. Ambio, 38(6): 303-308 (2009).
38 39 40	3122	Leonardos, N., and R. J. Geider. Responses of elemental and biochemical composition of
40 41 42	3123	Chaetoceros muelleri to growth under varying light and nitrate:phosphate supply ratios and
43 44	3124	their influence on critical N:P. Limnol. Oceanogr., 49: 2105-2114 (2004a).
45 46 47	3125	Leonardos, N., and R. J. Geider. Effects of nitrate:phosphate supply ratio and irradiance on the
48 49	3126	C:N:P stoichiometry of <i>Chaetoceros muelleri</i> . Eur. J. Phycol., <b>39</b> : 173-180 (2004b).
50 51	3127	Lewis, W. M., Jr., and W. W. Wurtsbaugh. Control of lacustrine phytoplankton by nutrients:
52 53 54	3128	Erosion of the phosphorus paradigm. Internat. Rev. Hydrobiol., 93: 446-465 (2008).
55 56 57 58 59	3129	Lin, H-P., P. Thuet, J. P. Trilles, R. Mounet-Guillaume, and G. Charmantier. Effects of ammonia
60		135

2 3 4	3130	on survival and osmoregulation of various development stages of the shrimp Penaeus
5 6	3131	japonicus. Mar. Biol., <b>117</b> : 591-598 (1993).
7 8 9	3132	Lindemuth, T. Linking nutrients to severe Delta eutrophication, 2009/2010 findings. Sacramento,
10 11	3133	CA: Bay-Delta Science Conference September 27-29, 2010. Abstract (2010).
12 13 14	3134	Linville, R. G., S. N. Luoma, L. Cutter, and G. A. Cutter. Increased selenium threat as a result of
15 16	3135	invasion of the exotic bivalve Potamocorbula amurensis into the San Francisco Bay Delta.
17 18 10	3136	Aquat. Toxicol., 57: 1-2 (2002).
20 21	3137	Litke, D.W. Review of phosphorus control measures in the United States and their effects on
22 23	3138	water quality, U.S. Geological Survey Water-Resources Investigations Report 99-4007, 38
24 25 26	3139	p. (1999).
20 27 28	3140	Liu, H., E. A. Laws, T. A. Villareal, and E. J. Buskey. Nutrient-limited growth of Aureoumbra
29 30	3141	lagunensis (Pelagophyceae) with implications for its capability to outgrow other
31 32 33	3142	phytoplankton species in phosphate-limited environments. J. Phycol., 37: 500-508 (2001).
34 35	3143	Llansó, R. J., D. M. Dauer, J. H. Volstad, and L. C. Scott. Application of the benthic index of
36 37	3144	biotic integrity to environmental monitoring in Chesapeake Bay. Envir. Monit. Assess., 81:
30 39 40	3145	163-174 (2003).
41 42	3146	Lomas, M. W., and P. M. Glibert. Temperature regulation of nitrate uptake: A novel hypotheses
43 44 45	3147	about nitrate uptake and reduction in cool-water diatoms. <i>Limnol. Oceanogr.</i> , 44: 556-572
46 47	3148	(1999).
48 49	3149	Lucas, L. V., J. E. Cloern, J. K. Thompson, and N. E. Monsen. Functional variability of habitats
50 51 52	3150	within the Sacramento-San Joaquin Delta: Restoration implications. Ecol. Appl., 12: 1528-
53 54	3151	1547 (2002).
55 56 57 58 59 60	3152	Ludwig, C. A. The availability of different forms of nitrogen to a green alga (Chlorella). Amer. J. 136

1 2		
- 3 4	3153	<i>Bot.</i> , <b>25</b> : 448-458 (1938).
5 6 7	3154	Lund, J., E. Hanak, W. Fleenor, R. Howitt, J. Mount, and P. Moyle. Envisioning futures for the
7 8 9	3155	Sacramento-San Joaquin Delta. Public Policy Institute of California, San Francisco,
10 11	3156	California (2007).
12 13	3157	Luoma, S. N., and J. E. Cloern. The impact of waste-water discharge on biological communities
14 15 16	3158	in San Francisco Bay, pp. 137-160. In: San Francisco Bay—Use and Protection.
17 18	3159	Kockelman, W. J., T. J. Conomos, and A. E. Leviton, Eds.). San Francisco, CA: Pacific
19 20 21	3160	Division, American Association for the Advancement of Science (1982).
21 22 23	3161	MacIntyre, H. L., M. W. Lomas, J. Cornwell, D. J. Suggett, C. J. Gobler, E. W. Koch, and T. M.
24 25	3162	Kana. Mediation of benthic-pelagic coupling by microphytobenthos: An energy-and
26 27 28	3163	material-based model for initiation of blooms of Aureococcus anophagefferens. Harmful
29 30	3164	<i>Algae</i> , <b>3</b> : 403-437 (2004).
31 32	3165	MacIsaac, J. I., and R. C. Dugdale. The kinetics of nitrate and ammonia uptake by natural
33 34 35	3166	populations of marine phytoplankton. Deep-Sea Res., 16(1): 45-57 (1969).
36 37	3167	MacIsaac, J. I., and R. C. Dugdale. Interactions of light and inorganic nitrogen in controlling
38 39 40	3168	nitrogen uptake in the sea. Deep-Sea Res., 19: 209-232 (1972).
40 41 42	3169	Mac Nally, R., J. R. Thompson, W. J. Kimmerer, F. Feyrer, K. B. Newman, A. Sih, W. A.
43 44	3170	Bennett, L. Brown, E. Fleishman, S. D. Culberson, and G. Castillo. An analysis of pelagic
45 46 47	3171	species decline in the upper San Francisco Estuary using multivariate autoregressive
48 49	3172	modeling (MAR). Ecol. Appl., doi: 10.1890/09-1724 (2010).
50 51	3173	Madden, C. J., R. Smith, E. Dettmann, J. Kurtz, W. Nelson, N. Detenbeck, J. Latimer, and S.
52 53 54	3174	Bricker. Estuarine typology development and application, pp. 27-42. In: Nutrient in
55 56	3175	Estuaries: A Summary Report of the National Estuarine Experts Workgroup (Glibert, P. M.,
57 58		
60		137

2		
3 4	3176	C. J. Madden, W. Boynton, D. Flemer, C. Heil, and J. Sharp, Eds.). U.S. EPA. Available
5 6 7	3177	from
, 8 9	3178	<yosemite.epa.gov \$file="" a75f92297fb33a3d852577f50054cbc4="" nu<="" sab="" sabproduct.nsf="" td=""></yosemite.epa.gov>
10 11	3179	trients+in+Estuaries+November+2010.pdf> (2010).
12 13 14	3180	Malone, T. C. Algal size, pp. 433-464. In: The Physiological Ecology of Phytoplankton (I.
15 16	3181	Morris, Ed.). Berkeley, CA: University of California Press (1981).
17 18	3182	Malone, T. C., D. J. Conley, T. R. Fisher, P. M. Glibert, L. W. Harding, and K. G. Sellner. Scales
20 21	3183	of nutrient-limited phytoplankton productivity in Chesapeake Bay. Estuaries, 19: 371-385
22 23	3184	(1996).
24 25 26	3185	Malzahn, A. M., N. Aberle, C. Clemmesen, and M. Boersma. Nutrient limitation of primary
20 27 28	3186	producers affects planktivorous fish condition. Limnol. Oceanogr., 52: 2062-2071 (2007).
29 30	3187	Malzahn, A. M., F. Hantzsche, K. L. Schoo, M. Boersma, and N. Aberle. Differential effects of
31 32 33	3188	nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia,
34 35	3189	<b>162</b> : 35-48 (2010).
36 37	3190	Marba, N., M. Holmer, E. Gacia, and C. Barron. 2006. Seagrass beds and coastal
38 39 40	3191	biogeochemistry, pp. 135-157. In: Seagrasses: Biology, Ecology and Conservation (A. W.
41 42	3192	D. Larkum, R. J. Orth, and C. M. Duarte, Eds.). The Netherlands: Springer (2006).
43 44 45	3193	Marre, M. T., E. Amicucci, L. Zingarelli, F. Albergoni, and E. Marre. The respiratory burst and
43 46 47	3194	electrolyte leakage induced by sulfhydryl blockers in <i>Egeria densa</i> are associated with H ₂ O ₂
48 49	3195	production and are dependent on Ca+ influx. <i>Plant Physiol.</i> , <b>118</b> : 1379-1387 (1998).
50 51 52	3196	Marshall, H. G., K. K. Nesius, and M. Lane. Long-term phytoplankton trends and related water
53 54	3197	quality trends in the lower Chesapeake Bay, Virginia, U.S.A. Environ. Monit. Assess., 81:
55 56	3198	349-360 (2003).
57 58 59		

Page 140 of 236

### **Reviews in Fisheries Science**

1 2		
- 3 4	3199	Martí, E., and F. Sabater. High variability in temporal and spatial nutrient retention in
5 6 7	3200	Mediterranean streams. Ecology, 77:854-869 (1996).
7 8 9	3201	Martin, C. W., and J. F. Valentine. Impacts of habitat-forming exotic species on estuarine
10 11	3202	structure and function: An experimental assessment of Eurasian Milfoil. Estuaries Coasts,
12 13 14	3203	doi: 10.1007/s12237-010-9274-5 (2010).
14 15 16	3204	Mateo, M. A., J. Cebrian, K. Dunton, and T. Mutchler. Carbon flux in seagrass ecosystems, pp.
17 18	3205	159-162. In: Seagrasses: Biology, Ecology and Conservation (Larkum, A.W.D., R. J. Orth,
19 20 21	3206	and C. M. Duarte, Eds.). New York, NY: Springer (2006).
22 23	3207	McCarthy, J. J., W. R. Taylor, and J. L. Taft. The dynamics of nitrogen and phosphorus cycling
24 25 26	3208	in the open waters of the Chesapeake Bay, pp. 664-691. In: Marine Chemistry in the
26 27 28	3209	Coastal Environment (Church, T. M., Ed.). Washington, DC: American Chemical Society
29 30	3210	(1975).
31 32 33	3211	McCarthy, J. J., W. R. Taylor, and J. L. Taft. Nitrogenous nutrition of the plankton in the
34 35	3212	Chesapeake Bay. 1. Nutrient availability and phytoplankton preferences. Limnol. Oceanogr.,
36 37	3213	<b>22</b> : 996-1011 (1977).
38 39 40	3214	McClelland, J. W., and I. Valiela. Changes in food web structure under the influence of
41 42	3215	increased anthropogenic nitrogen inputs to estuaries. Mar. Ecol. Prog. Ser., 168: 259-271
43 44 45	3216	(1998).
45 46 47	3217	McGlathery, K. J., K. Sundback, and I. C. Anderson. Eutrophication in shallow coastal bays and
48 49	3218	lagoons: The role of plants in the coastal filter. Mar. Ecol. Prog. Ser., 348: 1-18 (2007).
50 51 52	3219	McIntyre, P. B., and A. Flecker. Ecological stoichiometry as an integrative framework in stream
53 54	3220	fish ecology. Amer. Fish. Soc. Symposium, 73: 539-558 (2010).
55 56 57 58 59 60	3221	Medeiros, A. S., and L. A. Molot. Trends in iron and phosphorus loading to Lake Ontario from

2		
3 4	3222	waste water treatment plants in Hamilton and Ontario. J. Great Lakes Res., 32: 788-797
5 6 7	3223	(2006).
7 8 9	3224	Meijer, ML., A. J. P. Raat, and R. W. Doef. Restoration by biomanipulation of the Dutch
10 11	3225	shallow, eutrophic Lake Bleiswijkse Zoom: First results. Hydrobiol. Bull., 23: 49-59 (1989).
12 13	3226	Merrell, J. R., and D. K. Stoecker. Differential grazing on protozoan microplankton by
14 15 16	3227	developmental stages of the calanoid copepod Eurytemora affinis Poppe. J. Plankton Res.,
17 18	3228	<b>20</b> : 289-304 (1998).
19 20 21	3229	Meybeck, M. Suspended matter in rivers and lakes. In: Global Freshwater Quality. A First
21 22 23	3230	Assessment (Meybeck, M., D. V. Chapman, and R. Helmer, Eds.). Oxford, MA: Blackwell
24 25	3231	(1989).
26 27 28	3232	Mieczan, T. Periphytic ciliates in three shallow lakes n eastern Poland: A comparative study
29 30	3233	between a phytoplankton-dominated lake, a phytoplankton-macrophyte lake and a
31 32	3234	macrophyte-dominated lake. Zool. Stud., 49: 589-600 (2010).
33 34 35	3235	Micheli, F. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic
36 37	3236	ecosystems. Science, 285: 1396-1398 (1999).
38 39	3237	Miller, C. A., and P. M. Glibert. Nitrogen excretion by the calanoid copepod Acartia tonsa:
40 41 42	3238	Results of mesocosm experiments. J. Plank. Res., 20: 1767-1780 (1998).
43 44	3239	Miller, W. J., B. F. J. Manly, D. D. Murphy, D. Fullerton, and R. R. Ramey. An investigation of
45 46 47	3240	factors affecting the decline of delta smelt (Hypomesus transpacificus) in the Sacramento-
48 49	3241	San Joaquin Estuary. Rev. Fish. Sci., (in review).
50 51	3242	Millero, F. J. Chemical Oceanography. Boca Raton, FL: Taylor and Frances. 496 pp. (2006).
52 53 54	3243	Mills, E. L., J. M. Casselman, R. Dermott, J. D. Fitzsimons, G. Gal, K. T. Holeck, J. A. Hoyle,
55 56 57 58 59	3244	O. E. Johannsson, B. F. Lantry, J. C. Makarewicz, E. S. Millard, I. F. Munawar, M.
60		140

1 2		
2 3 4	3245	Munawar, R. O'Gorman, R. W. Owens, L. G. Rudstam, T. Schaner, and T. J. Stewart. Lake
5 6 7	3246	Ontario: Food web dynamics in a changing ecosystem (1970-2000). Can. J. Fish. Aquat.
7 8 9	3247	<i>Sci.</i> , <b>60</b> : 471-490 (2003).
10 11	3248	Mitra, A., and K. J. Flynn. Promotion of harmful algal blooms by zooplankton predatory activity
12 13 14	3249	Biol. Lett., 2: 194-197 (2006).
15 16	3250	Moeller, R. E., J. M. Burkholder, and R. G. Wetzel. Significance of sedimentary phosphorus to a
17 18	3251	rooted submersed macrophyte (Najas flexilis) and its algal epiphytes. Aquat. Bot., 32: 261-
19 20 21	3252	281 (1988).
22 23	3253	Mooney, K. M., J. T. G. Hamilton, S. D. Floyd, R. H. Foy, and C. T. Elliott. Microcystins in
24 25 26	3254	Irish lakes: Interactions with environmental factors and the invasive zebra mussel Dreissena
26 27 28	3255	polymorpha. International Conference on Harmful Algae, Hersonissos-Crete, Greece,
29 30	3256	November 2010. Abstract (2010).
31 32 33	3257	Morel, F. M. M. Kinetic of nutrient uptake and growth in phytoplankton. J. Phycol., 23: 137-150
34 35	3258	(1987).
36 37	3259	Moriarty, D. J. W., R. L. Iverson, and P. C. Pollard. Exudation of organic carbon by the seagrass
38 39 40	3260	Halodule wrightii Aschers and its effects on bacterial growth in the sediment. J. Exper. Mar.
41 42	3261	<i>Biol. Ecol.</i> , <b>96</b> : 115-126 (1986).
43 44 45	3262	Mosisch, T. D., S. E. Bunn, and P. M. Davies. The relative importance of shading and nutrients
43 46 47	3263	on algal production in subtropical streams. Freshwater Biol., 46: 1269-1278 (2001).
48 49	3264	Moyle, P. B. Inland Fishes of California. Berkeley, CA: University of California Press. 502 pp.
50 51 52 53 54 55 56 57	3265	(2002).
58 59		
60		141

Moyle, P. B., W. A. Bennett, W. E. Fleenor, and J. R. Lund. Habitat variability and complexity

Available from <escholarship.ucop.edu/uc/item/0kf0d32x> (2010).

in the upper San Francisco Estuary. San Francisco Estuary and Watershed Science, 8(3).

2	
3 4	3266
5 6	3267
7 8	3268
9 10 11	3269
12 13	3270
14 15	3271
16 17	5271
18	3272
20 21	3273
22 23	3274
24 25	3275
26 27	3276
28 29 20	3277
30 31 32	3278
33 34	2270
35 36	3219
30 37	3280
38 39 40	3281
40 41 42	3282
43 44	3283
45 46	3284
47 48	3285
49 50	3286
51 52	5200
53 54	3287
55 56	3288
57 58	
59 60	

1

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

## Mugnier, C., E. Zipper, C. Goarant, and H. Lemonnier. Combined effect of exposure to ammonia and hypoxia on the blue shrimp *Litopenaeus stylirostris* survival and physiological response in relation to molt stage. Aquaculture, 274: 398-407 (2008). Müller- Solger, A. B., A. D. Jassby, and D. Müller-Navarra. Nutritional quality of food resources for zooplankton (Daphnia) in a tidal freshwater system (Sacramento-San Joaquin River Delta). Limnol. Oceanogr., 47: 1468-1476 (2002). Mulsow, S., and M. Grandjean. Incompatibility of sulfate compounds and soluble bicarbonate salts in the Rio Cruces waters: An answer to the disappearance of *Egeria densa* and blacknecked swans in a RAMSAR sanctuary. Ethics Sci. Environ. Polit., 2006: 5-11 (2006). Naddafi, R., P. Eklov, and K. Pettersson. Stoichiometric constraints do not limit successful invaders: Zebra mussels in Swedish Lakes. *PLoS ONE* 4(4): 35345. doi: 10.1371/journal.pone.0005345 (2009). National Research Council of the National Academies (NRC). A Scientific Assessment of Alternatives for Reducing Water Management Effects on Threatened and Endangered Fishes in California's Bay-Delta. Washington, DC: The National Academies Press. 104 pp. (2010).Newell, R. I. E. Ecological changes in Chesapeake Bay: Are they the result of overharvesting the Eastern oyster (*Crassostrea virginica*)?, pp. 536-546. In: Understanding the Estuary: Advances in Chesapeake Bay Research (Lynch, M. P., and E. C. Krome, Eds.). Gloucester

3288 Point, VA: Chesapeake Research Consortium Pub. 129 (CBP/TRS 24/88). (1988).

2		
3 4 5	3289	Nichols, F. H., J. E. Cloern, S. N. Luoma, and D. H. Peterson. The modification of an estuary.
5 6 7	3290	Science, 231: 567-573 (1986).
, 8 9 10 11 12 13 14 15 16 7 18 9 21 22 32 4 26 27 8 9 31 23 34 35 37 37	3291	Nicholls, K. H., L. Heintsch, and E. Cartney. Univariate step-trend and multivariate assessments
	3292	of the apparent effects of P loading reductions and zebra mussel on the phytoplankton of the
	3293	Bay of Quinte, Lake Ontario. J. Great Lakes Res., 28: 15-31 (2002).
	3294	Nielsen, L. B., K. Finster, D. T. Welsh, A. Donelly, R. A. Herbert, R. Wit, and B. A. Lomstein.
	3295	Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments
	3296	from Zostera noltii and Spartina maritime meaows. Environ. Microbiol,, 3: 63-71 (2001).
	3297	Nilsen, E. B., and M. L. Delaney. Factors influencing the biogeochemistry of sedimentary carbon
	3298	and phosphorus in the Sacramento-San Joaquin delta. Estuaries, 28: 653-663 (2005).
	3299	Nixon, S. W. Coastal marine eutrophication: A definition, social causes, and future concerns.
	3300	<i>Ophelia</i> , <b>41</b> : 199-219 (1995).
	3301	Nixon, S. W., and B. A. Buckley. "A strikingly rich zone"—Nutrient enrichment and secondary
	3302	production in coastal marine ecosystems. Estuaries, 25: 782-796 (2002).
	3303	Nyberg, P., H. Auvinen, E. Bergstrand, E. Degerman, O. Enderlein, and A. Fjä Lling.
38 39	3304	Siklo¨jeunderso¨kningar i Malaren 1991–97. PM 19980817. Fiskeriverket (1998).
40 41 42 43 44 45 46 47 48 49	3305	Oh, H-M., S. J. Lee, M-H. Jang, and B-D. Yoon. Microcystin production by Microcystis
	3306	aeruginosa in a phosphorus-limited chemostat. Appl. Envir. Microbiol., 66: 176-179 (2000).
	3307	Oh, H-M., S. J. Lee, JH. Kim, HS. Kim, and B-D. Yoon. Seasonal variation and indirect
	3308	monitoring of microcystin concentrations in Daechung Reservoir, Korea. Appl. Envir.
50 51	3309	Microbiol., <b>67</b> : 1484-1489 (2001).
52 53	3310	Orsi, J. J., T. E. Bowman, D. C. Marelli, and A. Hutchinson. Recent introduction of the
54 55 56 57	3311	planktonic calanoid copepod Sinocalanus doerrii (Centropagidae) from mainland China to
58 59		
2		
----------------------	------	----------------------------------------------------------------------------------------------------
3 4	3312	the Sacramento-San Joaquin Estuary of California. J. Plank. Res., 5: 357-375 (1983).
5 6 7	3313	Orsi, J. J., and T. C. Walter. Pseudodiaptomus fiorbesi and P. marinus (Copepoda: Calanoida),
7 8 9	3314	the latest copepod immigrants to California's Sacramento-San Joaquin estuary. Proceedings
10 11	3315	of the Fourth International Conference on Copepoda. Bull. Plank. Soc. Japan, special
12 13	3316	volume, 1991: 553-562 (1991).
14 15 16	3317	Orth, R. J., M. R. Williams, S. R. Marion, D. J. Wilcox, T. J. B. Carruthers, K.A. Moore, W. M.
17 18	3318	Kemp, W. C. Dennison, N. Rybicki, P. Bergstrom, and R. A. Batiuk. Long-term trends in
19 20 21	3319	submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality.
22 23	3320	Estuaries Coasts, <b>33</b> : 1144-1163 (2010).
24 25	3321	Ortiz-Rodriguez, R., and C. Weigand. Age related acute effects of microcystin-LR on Daphnia
20 27 28	3322	magna biotransformation and oxidative stress. 14 th International Conference on Harmful
29 30	3323	Algae, Hersonissos-Crete, Greece, November 2010. Abstract (2010).
31 32 33	3324	O'Shea, M. L., and T. M. Brosnan. Trends in indicators of eutrophication in Western Long Island
34 35	3325	Sound and the Hudson-Raritan Estuary. <i>Estuaries</i> , <b>23(6)</b> : 877-901 (2000).
36 37	3326	Pace, M. L., S. E. G. Findlay, and D. Fischer. Effects of an invasive bivalve on the zooplankton
38 39 40	3327	community of the Hudson River. Freshwater Biol., 38: 103-116 (1998).
41 42	3328	Pace, M. L., and D. J. Lonsdale. Ecology of the Hudson River zooplankton community, pp. 217-
43 44 45	3329	229. In: The Hudson River Estuary (Levinton, J. S., and J. R. Waldman, Eds.). New York,
46 47	3330	NY: Cambridge University Press (2006).
48 49	3331	Paerl, H. W. Controlling eutrophication along the freshwater-marine continuum: Dual nutrient
50 51 52	3332	(N and P) reductions are essential. <i>Estuaries Coasts</i> , <b>32</b> : 593-601 (2009).
53 54	3333	Paerl, H. W., K. L. Rossingnol, S. N. Hall, B. L. Peierls, and M. S. Wetz. Phytoplankton
55 56 57 58	3334	community indicators of short- and long-term ecological change in the anthropogenically
59 60		144

1 2		
- 3 4	3335	and climatically impacted Neuse River Estuary, North Carolina, USA. Estuaries Coasts, 33:
5 6 7	3336	485-497 (2010).
7 8 9	3337	Paerl, H. and J.T. Scott. Throwing fuel on the fire: synergistic effects of excessive nitrogen
10 11	3338	inputs and global warming on harmful algal blooms. Envir. Sci. Technol. 44: 7756-7758
12 13 14	3339	(2010).
14 15 16	3340	Paerl, H. W., L. M Valdes, A. R. Joyner, M. F. Pehler, and M. E. Lebo. Solving problems
17 18	3341	resulting from solutions: Evolution of a duel nutrient management strategy for the
19 20 21	3342	eutrophying Neuse River Estuary, North Carolina. Envir. Sci. Technol., 38: 3068-3073
22 23	3343	(2004).
24 25	3344	Page, E. S. Continuous inspection schemes. Biometrika, 41: 100-115 (1954).
26 27 28 29 30	3345	Park, S., and C. R. Goldman. Prediction of <i>Daphnia</i> production along a trophic gradient. J. Ecol.
	3346	Field Biol., <b>31</b> : 125-129 (2008).
31 32 32	3347	Peckham S. D., J. W. Chipman, T. M. Lillesand, and S. I. Dodson. Alternate stable states and
33 34 35	3348	shape of the lake trophic distribution. <i>Hydrobiologia</i> , <b>571</b> : 401–407 (2006).
36 37	3349	Pedersen, M.F. and P.J. Hansen. Effects of high pH on a natural marine planktonic community.
38 39 40	3350	<i>Mar. Ecol. Prog. Ser.</i> , <b>260</b> : 19-31 (2003a).
41 42	3351	Pedersen, M.F. and P.J. Hansen. Effects of high pH on the growth and survival of six marine
43 44	3352	heterotrophic protists. Mar. Ecol. Prog. Ser., 260: 33-41 (2003b).
45 46 47	3353	Peitros, J. M., and M. A. Rice. The impacts of aquacultured oysters, Crassostrea virginica
48 49	3354	(Gmelin, 1791) on water quality and sedimentation: Results of a mesocosm study.
50 51	3355	Aquaculture, <b>220</b> : 407-422 (2003).
52 53 54	3356	Persson, J., M.T. Brett, T. Vrede and J.L. Ravet. Food quantity and quality regulation of trophic
55 56 57 58 59	3357	transfer between primary producers and a keystone grazer (Daphnia) in pegalic freshwater
60		145

1 2		
3 4	3358	food webs. Oikos, 116: 1152-1163. (2007)
5 6 7	3359	Peterson, B. J., and K. L. Heck, Jr. Positive interactions between suspension-feeding bivalves
7 8 9	3360	and seagrass—a facultative mutualism. Mar. Ecol. Prog. Ser., 213: 143-155 (2001).
10 11	3361	Phelps, H. L. The Asiatic clam (Corbicula fluminea) invasion and system-level ecological
12 13 14	3362	change in the Potomac River Estuary near Washington, DC. Estuaries, 17: 614-621 (1994).
14 15 16	3363	Pilati, A., and M. J. Vanni. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos, 116:
17 18	3364	1663-1674 (2007).
19 20 21	3365	Plath, K., and M. Boersma. Mineral limitation of zooplankton: Stoichiometric constraints and
22 23	3366	optimal foraging. <i>Ecology</i> , <b>82:</b> 1260-1269 (2001).
24 25	3367	Poor, N. D. Effect of lake management efforts on the trophic state of a subtropical shallow lake
26 27 28	3368	in Lakeland, Florida, USA. Water Air Soil Poll., 207: 333-347 (2010).
29 30	3369	Prins, H. B. A., J. F. H. Snel, P. E. Zanstra, and R. J. Helder. The mechanisms of bicarbonate
31 32 22	3370	assimilation by the polar leaves of <i>Potamogeton</i> and <i>Elodea</i> . CO ₂ concentrations at the leaf
33 34 35	3371	surface. Plant Cell Environ., 5: 207-214 (1982).
36 37	3372	Quigg, A., Z. V. Finkel, A. J. Irwin, Y. Rosenthal, TY. Ho, J. R. Reinfelder, O. Schofield, F.
38 39 40	3373	M. M. Morel, and P. G. Falkowski. The evolutionary inheritance of elemental stoicheometry
40 41 42	3374	in marine phytoplankton. <i>Nature</i> , <b>425</b> : 291-294 (2003).
43 44	3375	Rabalais, N., R. E. Turner, D. Justic, Q. Dortch, W. J. Wisenman, Jr., and B. K. Senupta.
45 46 47	3376	Nutrient changes in the Mississippi River and system responses on the adjacent continental
48 49	3377	shelf. Estuaries, 19: 386-407 (1996).
50 51	3378	Raikow, D. F., O. Sarnelle, A. E. Wilson, and S. K. Hamilton. Dominance of the noxious
52 53 54	3379	cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra
55 56	3380	mussels. Limnol. Oceanogr., 49: 482-487 (2004).
57 58 59		

Page 148 of 236

1 2		
2 3 4	3381	Ralph, P. J., D. Tomasko, K. Moore, S. Seddon, and C. M. O. Macinnis-Ng. Human impacts on
5 6 7	3382	seagrasses: Eutrophication, sedimentation, and contamination, pp. 567-593. In: Seagrasses:
8 9	3383	Biology, Ecology and Conservation (Larkum, A. W. D., R. J. Orth, and C. M. Duarte, Eds.).
10 11	3384	The Netherlands: Springer (2006).
12 13 14	3385	Randall, D. J., and P. A. Wright. Ammonia distribution and excretion in fish. Fish Physiol.
15 16	3386	Biochem., <b>3</b> : 107-120 (1987).
17 18	3387	Raven, J. A. Energetic and Transport in Aquatic Plants. New York, NY: Alan R. Liss, Inc.
19 20 21	3388	(1984).
22 23	3389	Reddy, K. R., J. C. Tucker, and W. F. Debusk. The role of <i>Egeria</i> in removing nitrogen and
24 25 26	3390	phosphorus from nutrient enriched waters. J. Aquat. Plant Manage., 25: 14-19 (1987).
20 27 28	3391	Redfield, A. C. On the proportions of organic derivatives in sea water and their relation to the
29 30	3392	composition of plankton, pp. 176-192. In: James Johnstone Memorial Volume. Liverpool:
31 32 33	3393	University of Liverpool Press (1934).
34 35	3394	Redfield, A. C. The biological control of chemical factors in the environment. Amer. Scientist,
36 37	3395	<b>46</b> : 205-221 (1958).
30 39 40	3396	Reinertsen, H., A. Jensen, A. Langeland, and Y. Olsen. Algal competition for phosphorus: The
41 42	3397	influence of zooplankton and fish. Can. J. Fish. Aq. Sci., 43:1135-1141 (1986).
43 44 45	3398	Rengefors, K., and C. Legrand. Toxicity on <i>Peridinium aciculiferum</i> —an adaptive strategy to
46 47	3399	outcompete other winter phytoplankton? Limnol. Oceanogr., 46: 1990-1997 (2001).
48 49	3400	Rengefors, K., and C. Legrand. Broad allelopathic activity in Peridinium aciculiferum
50 51 52	3401	(Dinophyceae). J. Phycol., 42: 341-349 (2007).
53 54	3402	Rhee, GY., A continuous culture study of phosphate uptake, growth rate and polyphosphate in
55 56 57 58 59	3403	<i>Scenedesmus</i> sp. J. Phycol., <b>9</b> : 495-506 (1973).
60		147

2		
3 4	3404	
5 6	3405	
7 8 0	3406	]
9 10 11	3407	
12 13	3408	]
14 15	3409	
16 17 18	3410	
19 20	3411	
21 22	3412	
23 24	2412	
25 26 27	3413	
27	3414	-
29 30	3415	
31 32 32	3416	]
33 34 35	3417	
36 37	3418	
38 39	3419	]
40 41 42	3420	
42 43 44	3421	
45 46	3422	]
47 48	3423	
49 50 51	3424	
52 53	3425	
54 55	0.405	-
56 57	3426	-
58 59		
60		

Rhee, G.-Y. Phosphate uptake under nitrate limitation by *Scenedesmus* sp. and its ecological implications. J. Phycol., 10: 470-475 (1974). Rhee, G.-Y. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol. Oceanogr., 23: 10-25 (1978). Rice, M. A. The uptake of dissolved free amino acids by northern quahogs, *Mercenaria mercenaria* and its relative importance to organic nitrogen deposition in Narragansett Bay, Rhode Island. J. Shellfish Res., 18: 547-553 (1999). Richardson, K., and B. B. Jørgensen. Eutrophication: definition, history and effects, pp. 1-20. In: Eutrophication in Coastal Marine Ecosystems (Jørgensen, B. B., and K. Richardson, Eds.). Washington, DC: American Geophysical Union (1996). Rodriguez, R. B., and S. Thomaz. Photosynthetic and growth responses of *Egeria densa* to photosynthetic active radiation. Aquat. Bot., 92: 281-284 (2010). Roman, M. R., H. W. Ducklow, J. A. Fuhrman, C. Garside, P. M. Glibert, T. C. Malone, and G. B. McManus. Production, consumption, and nutrient cycling in a laboratory mesocosm. Mar. Ecol. Prog. Ser., 42: 39-52 (1988). Romero, J., K-S. Lee, M. Perez, M. A. Mateo, and T. Alcoverro. Nutrient dynamics in seagrass ecosystems, pp. 227-254. In: Seagrasses: Biology, Ecology and Conservation (A. W. D. Larkum, R. J. Orth, and C. M. Duarte, Eds.). The Netherlands: Springer (2006). Rosenberg, R. Benthic macrofaunal dynamics, production, and dispersion in an oxygen-deficient estuary of west Sweden. J. Exp. Mar. Biol. Ecol., 26: 107-133 (1977). Rosenfeld, J. K. Ammonium adsorption in nearshore anoxic sediments. *Limnol. Oceanogr.*, 24: 354-364 (1979).

1		
2 3 4	3427	smelt in the San Francisco estuary. Trans. Am. Fish. Soc., 136: 1577-1592 (2007).
5 6 7	3428	Rothenberger, M. B., J. M. Burkholder, and T. Wentworth. Multivariate analysis of
7 8 9	3429	phytoplankton and environmental factors in a eutrophic estuary. Limnol. Oceanogr., 54:
10 11	3430	2107-2127 (2009).
12 13 14	3431	Rudek, J., H. W. Paerl, M. A. Mallin, and P. W. Bates. Seasonal and hydrological control
15 16	3432	of phytoplankton nutrient limitation in the lower Neuse River Estuary, North Carolina. Mar.
17 18	3433	<i>Ecol. Prog. Ser.</i> , <b>75</b> : 133-142 (1991).
19 20 21	3434	Ruhl, H. A., and N. B. Rybicki. Long-term reductions in anthropogenic nutrients link to
22 23	3435	improvements in Chesapeake Bay habitat. Proc. National Acad. Sciences, 107(38): 16566-
24 25 26	3436	16570 (2010).
20 27 28	3437	Russo, R. C. Ammonia, nitrate and nitrite, pp. 455-471. In: Fundamentals of Aquatic Toxicology
29 30	3438	(Rand, G. M., and S. R. Petrocelli, Eds.). Washington, DC: Hemisphere Publishing Corp
31 32 33	3439	(1985).
34 35	3440	Rybicki, N. B., and J. M. Landwehr. Long-term changes in abundance and diversity of
36 37 28	3441	macrophyte and waterfowl populations in an estuary with exotic macrophytes and improving
30 39 40	3442	water quality. Limnol. Oceanogr., 52: 1195-1207 (2007).
41 42	3443	Santamaría, L., C. Dias, and M.J.M. Hootsmans. The influence of ammonia on the growth and
43 44 45	3444	photosynthesis of Ruppia drepanensis Tiñeo from Donana Natioanl Park (SW Spain).
46 47	3445	Hydrobiol., <b>275-276</b> : 475-486 (1994).
48 49	3446	Santos, M. J., L. W. Anderson, and S. L. Ustin. Effects of invasive species on plant communities:
50 51 52	3447	an example using submersed aquatic plants at the regional scale. Biol. Invasions, 13: 443-
53 54	3448	457 (2011).
55 56 57		
57 58 59		
60		149

2		
3 4	3449	Sarnelle, O., A. E. Wilson, S. K. Hamilton, L. B. Knoll, and D. F. Raikow. Complex interactions
5 6 7	3450	between the zebra mussel, Dreissena polymorpha, and the harmful phytoplankter,
7 8 9	3451	Microcystis aeruginosa. Limnol. Oceanogr., 50: 896-904 (2005).
10 11	3452	Scheffer, M., and S. R. Carpenter. Catastrophic regime shifts in ecosystems: Linking theory to
12 13 14	3453	observation. Trends Ecol. Evol., 18: 648-656 (2003).
15 16	3454	Scheffer, M., S. Carpenter, J. A. Foley, C. Folkes, and B. Walker. Catastrophic shifts in
17 18	3455	ecosystems. <i>Nature</i> , <b>413</b> : 591-596 (2001).
19 20 21	3456	Scheffer, M., H. Hosper, ML. Meijer, B. Moss, and E. Jeppesen. Alternative equilibria in
22 23	3457	shallow lakes. Trends Ecol. Evol., 8: 260-262 (1993).
24 25 26	3458	Scheffer, M., S. Szabo, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, and R.
20 27 28	3459	M. M. Roijackers, and R. J. M. Franken. Floating plant dominance as a stable state. Proc.
29 30	3460	Nat. Acad. Sci., 100: 4040-4045 (2003).
31 32 33	3461	Schelske, C. Wind or nutrients: Historical development of hypereutrophy in Lake Apopke,
34 35	3462	Florida. Arch. Hydrobiol. Spec. Issues Advanc. Limnol., 55: 543-563 (2000).
36 37	3463	Schindler, D. W. Eutrophication and recovery in experimental lakes: Implications for lake
38 39 40	3464	management. Science, 184: 897-899 (1974).
41 42	3465	Schindler, D. W. Evolution of phosphorus limitation in lakes. <i>Science</i> , <b>195</b> : 260-262 (1977).
43 44	3466	Schindler, D. W. Experimental studies of chemical stressors on whole lake ecosystems: Baldi
45 46 47	3467	Lecture. Verh. Int. Verein Limnol., 23: 11-41 (1988).
48 49	3468	Schindler, D. W. Experimental perturbations of whole lakes as tests of hypotheses concerning
50 51	3469	ecosystem structure and function. Oikos, 57: 25-41 (1990).
52 53 54	3470	Schindler, D. W. Whole lake experiments in the Experimental Lakes Area, pp. 122-139. In:
55 56 57 58 59	3471	Ecosystem Experiments: Scope 45 (Mooney, H. A., E. Medina, D. W. Schindler, ED.

1 2		
2 3 4	3472	Schulze, and B. H. Walker, Eds.). New York: John Wiley and Sons (1991).
5 6 7	3473	Schindler, D. W., and L. A. Eby. Stoichiometry of fishes and their prey: Implications for nutrient
7 8 9	3474	recycling. <i>Ecology</i> , <b>78</b> : 1816-1831 (1997).
10 11	3475	Schindler, D. W., and E. J. Fee. Experimental Lake Area: Whole-lake experiments in
12 13 14	3476	eutrophication. J. Fish. Res. Bd. Can., 31: 937-953 (1974).
15 16	3477	Schindler, D. W., and R. E. Hecky. Reply to Howarth and Paerl: Is control of both nitrogen and
17 18 10	3478	phosphorus necessary? Proc. Nat. Acad. Sci., 105(49): E104 (2008).
19 20 21	3479	Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G.
21 22 23 24 25 26 27 28	3480	Beaty, M. Lyng, and S. E. M. Kasian. Eutrophication of lakes cannot be controlled by
	3481	reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Nat. Acad.
	3482	<i>Sci.</i> , <b>105</b> : 11254-11258 (2008).
29 30	3483	Schindler, D. W., R. E. Hecky, and K. H. Mills. Two decades of whole lake eutrophication and
31 32 33	3484	acidification experiments, pp. 294-304. In: Experimental Manipulations of Biota and
34 35	3485	Biogeochemical Cycling in Ecosystems (Rasmussen, L., T. Brydges, and P. Mathy, Eds.).
36 37	3486	Brussels: Commission of the European Communities (1993).
38 39 40	3487	Schindler, D. W., R. H. Hessiein, and M. A. Turner. Exchange of nutrients between sediments
41 42	3488	and water after 15 years of experimental eutrophication. Can. J. Fish Aquat. Sci., 44(1): 26-
43 44 45	3489	33 (1987).
43 46 47	3490	Schoo, K. L., N. Aberle, A. M. Malzahn, and M. Boersma. Does the nutrient stoichiometry of
48 49	3491	primary producers affect the secondary consumer Pleurobrachia pileus? Aquat. Ecol., 44:
50 51 52	3492	233-242 (2010).
53 54	3493	Schramm, H. L., and K. J. Jirka. Epiphytic macroinvertebrates as a food resource for bluegills in
55 56 57 58	3494	Florida Lakes. Trans. Am. Fish. Soc., 118: 416-426 (1989).
59		

Schumate, B., C. L. Schelske, T. L. Crisman, and W. F. Kenney. Response of the cladoceran

2	
3	3495
4	0.70
5	3496
0 7	5470
8	2407
9	5497
10	<b>a</b> 400
11	3498
12	
13	3499
14	
15	3500
10	
18	3501
19	
20	3502
21	0002
22	3503
23	5505
24	2504
25	3504
26	
21	3505
20	
30	3506
31	
32	3507
33	
34	3508
35	
36	3509
२४ २४	
30	3510
40	2210
41	3511
42	5511
43	2512
44	3312
45	
46	3513
47 78	
49	3514
50	
51	3515
52	
53	3516
54	
55	3517
56	
ว/ 58	
59	
60	

1

community to trophic state change in Lake Apopke, Florida. J. Paeleolimnol., 27: 71-77 3496 (2002).3497 Seitzinger, S. P. The effect of pH on the release of phosphorus from Potomac Estuary sediments: 3498 Implications for blue-green algal blooms. Est. Coast. Shelf Sci., 33: 409-418 (1991). 3499 Seitzinger, S. P., J. A. Harrison, E. Dumont, A. H. W. Beusen, and A. F. Bouwman. Sources and 3500 delivery of carbon, nitrogen and phosphorous to the coastal zone: An overview of global 3501 nutrient export from watersheds (NEWS) models and their application. Global Biogeochem. 3502 3503 *Cycles*, **19**, GB4S01, doi:10.1029/2005GB002606 (2005). Seitzinger, S. P., C. Kroeze, A. F. Bouwman, N. Caraco, F. Dentener, and R. V. Styles. Global 3504 patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: Recent 3505 3506 conditions and future projections. Estuaries, 25: 640-655 (2002a). Seitzinger, S.P., R.W. Sanders, and R. Styles. Bioavailability of DON from natural and 3507 anthropogenic sources to estuarine plankton. Limnol. Oceanogr. 47(2):353-366. (2002b). 3508 Shapiro, J., and D. I. Wright. Lake restoration by biomanipulations, Round Lake, Minnesota-3509 the first two years. Freshwater Biol., 14: 371-383 (1984). 3510 Shaw, T. L. Acute toxicity of increased pH to the freshwater shrimp Paratya curvistris. New 3511 Zealand J. Mar. Freshwater Res., 15: 91-93 (1981). 3512 Shick, J. M., J. Widdows, and E. Gnaiger. Calorimetric studies of behavior, metabolism, and 3513 3514 energetic of sessile intertidal animals. Amer. Zool., 28: 161-181 (1988). Short, F. T., and D. M. Burdick. Quantifying eelgrass habitat loss in relation to housing 3515 development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries, 19: 730-739 3516 3517 (1996).

1 2		
2 3 4	3518	Shumate, B. C., C. L. Schelske, T. L. Crisman, and W. F. Kenney. Response of the cladoceran
5 6 7	3519	community to trophic state change in Lake Apopke, Florida. J. Paleolimnol., 27: 71-77
7 8 9	3520	(2002).
10 11	3521	Simberloff, D. Invasional meltdown 6 years later: Important phenomenon, unfortunate metaphor,
12 13 14	3522	or both? <i>Ecol. Lett.</i> , <b>9</b> : 912-919 (2006).
15 16	3523	Simberloff, D., and B. Von Holle. Positive interactions of nonindigenous species: Invasional
17 18 10	3524	meltdown? Biol. Invasions, 1: 21-32 (1999).
20 21	3525	Smayda, T. J. Primary production and the global epidemic of phytoplankton blooms in the sea: A
22 23	3526	linkage?, pp. 449-484. In: Novel Phytoplankton Blooms (Cosper, E. M., V. M. Bricelj, and
24 25 26	3527	E. J. Carpenter, Eds.). Coastal and Estuarine Studies No. 35. New York: Springer-Verlag
27 28	3528	(1989).
29 30 31	3529	Smayda, T. J. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global
32 33	3530	epidemic, pp. 29-40. In: Toxic Marine Phytoplankton, (Granéli, E., B. Sundstrom, L. Edler,
34 35	3531	and D. M. Anderson, Eds.). New York, NY: Elsevier (1990).
36 37 38	3532	Smayda, T. J. Autecology of bloom-forming microalgae: Extrapolation of laboratory results to
39 40	3533	field populations and the Redfield-Braarud debate revisited, pp. 215-270. In: Algal Cultures,
41 42 42	3534	Analogues of Blooms and Applications (Subba Rao, D., Ed.). New Delhi, India: Oxford and
43 44 45	3535	IBH Publishing Co. (2006).
46 47	3536	Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food.
48 49 50	3537	Cambridge, UK: The MIT Press (2001).
50 51 52	3538	Smith, L. H., and R. T. Cheng. Tidal and tidally averaged circulation characteristics of Suisun
53 54	3539	Bay, California. Water Resources Res., 23: 143-155 (1987).
55 56 57 58 59	3540	Smith, L. R., D. R. Franlin, and R. H. Kramer. Determination of factors influencing year class

1 2		
- 3 4	3541	strength in northern pike and largemouth bass. Report of the Minnesota Department of
5 6 7 8 9	3542	Natural Resources (1958).
	3543	Smith, T. E., R. J. Stevenson, N. F. Caraco, and J. J. Cole. Changes in phytoplankton community
10 11	3544	structure during the zebra mussel (Dreissena polymorpha) invasion of the Hudson River
12 13	3545	(New York). J. Plankton Res., 20: 1567-1579 (1998).
14 15 16	3546	Smith, V. H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake
17 18	3547	phytoplankton. Science, 221: 669-671 (1983).
19 20 21	3548	Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems—A global problem.
22 23	3549	Envir. Sci. Poll. Res., 10: 126-139 (2003).
24 25	3550	Smith, V. H. Responses of estuarine and coastal marine phytoplankton to nitrogen and
26 27 28	3551	phosphorus enrichment. Limnol. Oceanogr., 51: 377-384 (2006).
29 30	3552	Sobczak, W. V., J. E. Cloern, A. D. Jassby, B. E. Cole, T. S. Schraga, and A. Arnsberg. Detritus
31 32	3553	fuel ecosystem metabolism but not metazoan food webs in San Francisco Estuary's
33 34 35	3554	freshwater delta. <i>Estuaries</i> , <b>28</b> : 122-135 (2005).
36 37	3555	Sobota, D. J., J. A. Harrison, and R. A. Dahlgren. Influences of climate, hydrology, and land use
38 39 40	3556	on input and export of nitrogen in California watersheds. Biogeochem., doi:
40 41 42	3557	10.1007/s10533-009-9307-y (2009).
43 44	3558	Søderberg LM, and P.J. Hansen .Growth limitation due to high pH and low inorganic carbon
45 46 47	3559	concentrations in temperate species of the dinoflagellate genus Ceratium. Mar. Ecol. Prog.
48 49	3560	Ser., <b>351</b> : 103-112. (2007).
50 51	3561	Solís-Weiss, V., F. Aleffi, N. Bettoso, P. Rossin, G. Orel, and S. Fonda-Umani. Effects of
52 53 54	3562	industrial and urban pollution on the benthic macrofauna in the Bay of Muggia (industrial
55 56 57	3563	port of Trieste, Italy). Sci. Total Environ., 328: 247-263 (2004).
58 59 60		154

1 2		
- 3 4	3564	Sommer, T. R., C. Armor, R. Baxter, R. Breuer, L. Brown, M. Chotkowski, S. Culberson, F.
5 6 7	3565	Feyrer, M. Gingas, B. Herbold, W. Kimmerer, A. Müller-Solger, M. Nobriga, and K. Souza.
8 9	3566	The collapse of pelagic fishes in the upper San Francisco Estuary. Fisheries, 32: 270-277
10 11	3567	(2007).
12 13 14	3568	Spencer, W., and G. Bowes. Photosynthesis and growth of water hyacinth under CO ₂
15 16	3569	enrichment. Plant Physiol., 82: 528-533 (1986).
17 18 10	3570	Ståhl-Delbanco, A., LA. Hansson, and M. Gyllström. Recruitment of resting stages may induce
20 21	3571	blooms of Microcystis at low N:P ratios. J. Plankt. Res., 25: 1099-1106 (2003).
22 23	3572	Stanczykowska, A. Ecology of Dreissena polymorpha (Pall.) (Bivalvia) in lakes. Pol. Arch.
24 25 26	3573	<i>Hydrobiol.</i> , <b>24</b> : 461-530 (1977).
27 28	3574	Stanne, S.P., R.G. Panetta, and B.E. Forist. The Hudson: An Illustrated Guide to the Living
29 30 21	3575	River. New Burnswick, NJ: Rivergate Books (2007).
31 32 33	3576	Steele, J. H., J. S. Collie, J. J. Bisagni, D. J. Gifford, M. J. Fogarty, J. S. Link, B. K. Sullivan, M.
34 35	3577	E. Sieracki, A. R. Beet, D. G. Mountain, E. G. Durbin, D. Palka, and W. T. Stockhausen.
36 37 38	3578	Balancing end-to-end budgets of the Georges Bank ecosystem. Prog. Oceanogr., 74: 423-
39 40	3579	448 (2007).
41 42	3580	Sterner, R. W., and J. J. Elser. Ecological Stoichiometry: The Biology of Elements from
43 44 45	3581	Molecules to the Biosphere. Princeton, NJ: Princeton University Press. 439 pp. (2002).
46 47	3582	Sterner, R. W., and N. B. George. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid
48 49 50	3583	fishes. <i>Ecology</i> , <b>81</b> : 127-140 (2000).
50 51 52	3584	Stibor, H., O. Vadstein, S. Diehl, A. Glezleichter, T. Hansen, F. Hantzsche, A. Katechalis, K.
53 54	3585	Loseth, C. Peters, W. Roederer, M. Sandow, L. Sundt-Hansen, and Y. Olsen. Copepods act
55 56 57 58 59	3586	as a switch between alternative trophic cascades in marine pelagic food webs. <i>Ecol. Lett.</i> , <b>7</b> :
60		100

2
3
4
5
5
0
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
∠∪ ∩4
∠ I 00
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
77 15
40
40
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60

1

3587 321-328 (2004).

- Strayer, D. L. Alien species in the Hudson River Estuary, pp. 296-312. In: *The Hudson River Estuary* (Levinton, J. S., and J. R. Waldman, Eds.). New York, NY: Cambridge University
   Press (2006).
- 3591 Stumm, W., and J. J. Morgan. Aquatic Chemistry. New York, NY: Wiley-Interscience (1970).
- Sunda, W. G., E. Granéli, and C. J. Gobler. Positive feedback and the development and
  persistence of ecosystem disruptive algal blooms. *J. Phycol.*, 42: 963-974 (2006).
- 3594 Syrett, P. J. Nitrogen metabolism of microalgae, pp. 182-210. In: *Physiological Bases of* 
  - 3595 Phytoplankton Ecology (Platt, T., Ed.). Can. Bull. Fish Aquat. Sci., **210** (1981).
- Syrett, P. J., and I. Morris. The inhibition of nitrate assimilation by ammonium in *Chlorella*. *Biochim Biophys Acta*, 67: 566-575 (1963).
  - Tank, S. E., L. F. W. Lesack, and D. J. McQueen. Elevated pH regulates carbon cycling in lakes
    with high photosynthetic activity. *Ecology*, **90**: 1910-1922 (2009).
- 3600 Tanner, D. K., J. C. Brazner, and V. J. Brady. Factors influencing carbon, nitrogen, and
  3601 phosphorus content of fish from Lake Superior coastal wetland. *Can. J. Fish. Aquat. Sci.*,
  3602 57: 1243-1251 (2000).
- 3603 Tátrai, I., G. Boros, Á. I. György, K. Mátyás, J. Korponai, P. Pomogyi, M. Havasi, and T.
  3604 Kucserka. Abrupt shift from clear to turbid state in a shallow eutrophic, biomanipulated
  3605 lake. *Hydrobiologia*, 620: 149-161 (2009).
- Terry, K. L., E. A. Laws, and D. J. Burns. Growth rate variation in the N:P requirement of
  phytoplankton. *J. Phycol.*, **21**: 323-329 (1985).
- 3608 Thompson, J. R., W. J. Kimmerer, L. R. Brown, K. B. Newman, R. Mac Nally, W. A. Bennett,
  - F. Feyrer, and E. Fleishman. Bayesian change-point analysis of abundance trends for pelagic

Page 158 of 236

2		
3 4	3610	fishes in the upper San Francisco Estuary. Ecol. Appl., doi: 10.1890/09-0998 (2010).
5 6 7	3611	Thursby, G. B., and M. M. Harlin. Leaf-root interaction in the uptake of ammonia by Zostera
7 8 9	3612	marina. Mar. Biol., 72: 109-112 (1982).
10 11	3613	Tilman, D. Source competition between plankton algae: An experimental and theoretical
12 13	3614	approach. <i>Ecology</i> , <b>58</b> : 338-348 (1977).
14 15 16	3615	Toft, J. D., C. A. Simestad, J. R. Cordekk, and L. F. Grimaldo. The effects of introduced water
17 18	3616	hyacinth on habitat structure, invertebrate assemblages and fish diets. Estuaries, 26: 746-758
19 20 21	3617	(2003).
21 22 23	3618	Tomasko, D. A., C. A. Corbett, H. S. Greening, and G. E. Raulerson. Spatial and temporal
24 25	3619	variation in seagrass coverage in southwest Florida: Assessing the relative effects of
26 27 28	3620	anthropogenic nutrient load reduction and rainfall in four contiguous estuaries. Mar. Poll.
20 29 30	3621	Bull., <b>50</b> : 797-805 (2005).
31 32	3622	Tomasso, J. R., C. A. Goudie, B. A. Simco, and K. B. Davis. Effects of environmental pH and
33 34 35	3623	calcium on ammonia toxicity in channel catfish. Trans. Am. Fish. Soc., 109: 229-234 (1980).
36 37	3624	Touchette, B. W., and J. M. Burkholder. Review of nitrogen and phosphorus metabolism in
38 39 40	3625	seagrasses. J. Exp. Mar. Biol. Ecol., 250: 133-167 (2000).
40 41 42	3626	Tsukada, H., S. Tsujimaura, and H. Nakahara. Effect of nutrient availability on the C, N, and P
43 44	3627	elemental ratios in the cyanobacterium Microcystis. Limnology, 7: 185-192 (2006).
45 46 47	3628	Turner, R. E., and N. N. Rabalais. Suspended sediment, C, N, P, and Si yields from the
48 49	3629	Mississippi River Basin. Hydrobiologia, 511: 79-89 (2004).
50 51	3630	Turner, R. E., N. N. Rabalais, D. Justic, and Q. Dortch. Global patterns of dissolved N, P and Si
52 53 54	3631	in large rivers. Biogeochem., 64: 297-317 (2003).
55 56 57	3632	Udy, J. W., and W. C. Dennison. Physiological responses of seagrasses used to identify
58 59 60		157

2		
2 3 4	3633	anthropogenic nutrient inputs. Mar. Freshwater Res., 48: 605-614 (1997).
5 6 7	3634	U.S. Environmental Protection Agency (EPA). The national environmental benefits of the Clean
8 9	3635	Water Act. Progress made in the United States through the secondary treatment of waste
10 11	3636	water. EPA Report 842-K-93-001. Washington, DC: USEPA Office of Water (1993).
12 13	3637	U.S. Environmental Protection Agency (EPA). Draft 2009 update of aquatic life ambient water
14 15 16	3638	quality criteria for ammonia-freshwater. EPA Report 822-D-09-001. Washington, DC:
17 18	3639	USEPA Office of Water. Available from
19 20	3640	<www.epa.gov 2009update.pdf#45="" ammonia="" criteria="" waterscience=""> (2009).</www.epa.gov>
21 22 23	3641	U.S. Environmental Protection Agency (EPA). Nutrient In Estuaries: A Summary Report of the
24 25	3642	National Estuarine Experts Workgroup (Glibert, P., C. Madden, W. Boynton, D. Flemer, C.
26 27 28	3643	Heil, and J. Sharp, Eds.), Washington, DC: USEPA Office of Water. Available from
20 29 30	3644	<yosemite.epa.gov \$file="" a75f92297fb33a3d852577f50054cbc4="" nu<="" sab="" sabproduct.nsf="" td=""></yosemite.epa.gov>
31 32	3645	trients+in+Estuaries+November+2010.pdf> (2010).
33 34 35	3646	Vadstein O., H. Stibor, B. Lippert, K. Loseth, W Roederer, L. Sundt-Hansen, and Y. Olsen.
36 37	3647	Moderate increase in the biomass of omnivorous copepods may ease grazing control of
38 39	3648	planktonic algae. Mar. Ecol. Prog. Ser., 270: 199-207 (2004).
40 41 42	3649	Valiela, I., J. McClelland, J. Hauxwell, P.J. Behr, D. Hersh, and K. Foreman. Macroalgal blooms
43 44	3650	in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnol.
45 46 47	3651	Oceanogr., <b>42</b> : 1105-1118 (1997).
47 48 49	3652	Van de Waal, D. B., L. Tonk, E. Van Donk, H. C. P. Matthijs, P. S. Visser, and J. Huisman.
50 51	3653	Climate change and the impact of C:N stoichiometry on toxin production by harmful
52 53 54	3654	cyanobacteria. 14 th International Conference on Harmful Algae, Hersonissos-Crete, Greece,
55 56	3655	November 2010. Abstract (2010).
57 58		
59 60		158

2		
3 4	3656	Van de Waal, D. B., J. M. Verspagen, M. Lurling, E. Van Donk, P. M. Visser, J. Huisman. The
5 6 7	3657	ecological stoichiometry of toxins produced by harmful cyanobacteria: An experimental test
8 9	3658	of the carbon-nutrient balance hypothesis. Ecol. Lett., 12: 1326-1335 (2009).
10 11	3659	Van der Heide, T., E. H. van Nes, M. M. van Katwijk, M. Scheffer, A. J. Hendricks, and A. J. P.
12 13 14	3660	Smolders. Alternate stable states driven by density-dependent toxicity. <i>Ecosystems</i> , <b>13</b> : 841-
15 16	3661	850 (2010).
17 18 10	3662	van Donk, E., M. P. Grimm, R. D. Gulati, and J. P. G. Klein Breteler. Whole-lake food-web
20 21	3663	manipulation as a means to study community interactions in a small ecosystem.
22 23	3664	Hydrobiologia, <b>200/201(1)</b> : 275-289 (1990).
24 25 26	3665	van Katwijk, M. M., L. H. T. Vergeer, G. H. W. Schmitz, and J. G. M. Roelofs. Ammonium
20 27 28	3666	toxicity in eelgrass Zostera marina. Mar. Ecol. Prog. Ser., 157: 159-173 (1997).
29 30	3667	Van Mooey, B. A. S., H. F. Fredricks, B. E. Pedler, S. T. Dyhrman, D. M. Karl, M. Koblizek, M.
31 32 33	3668	W. Lomas, T. J. Mincer, L. R. Moore, T. Moutin, M. S. Rappe, and E. A. Webb.
34 35	3669	Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity.
36 37	3670	Nature, <b>458</b> : 69-72 (2009).
30 39 40	3671	Van Nieuwenhuyse, E. Response of summer chlorophyll concentration to reduced total
41 42	3672	phosphorus concentration in the Rhine River (Netherlands) and the Sacramento-San Joaquin
43 44 45	3673	Delta (California, USA). Can. J. Fish. Aq. Sciences, 64: 1529-1542 (2007).
45 46 47	3674	Vanderploeg, H. A., J. R. Liebig, W. W. Carmichael, M. A. Agy, T. H. Johengen, G. L.
48 49	3675	Fahnensteil, and T. F. Nalepa. Zebra mussel (Dreissena polymorpha) selective filtration
50 51 52	3676	promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can. J.
53 54	3677	Fish. Aquat. Sci., 58: 1208-1221 (2001).
55 56 57 58 59	3678	Vanni, M. J. Nutrient transport and recycling by consumers in lake food webs: Implications for
60		159

1 2		
3 4	3679	algal communities, pp. 81-91. In: Food Webs: Integration of Patterns and Process (G. Polis
5 6 7	3680	and K. Winemiller, Eds.). New York, NY: Chapman and Hall (1996).
8 9	3681	Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Ann. Rev. Ecol. Syst., 33:
10 11	3682	341-370 (2002).
12 13 14	3683	Vanni, M. J., A. S. Flecker, J. M. Hood, and J. L. Headworth. Stoichiometry of nutrient recycling
15 16	3684	by vertebrates in a tropical stream: Linking biodiversity and ecosystem function. Ecol. Lett.,
17 18	3685	5: 285-293 (2002).
19 20 21	3686	Vézina, A. O Hoegh-Guldberg Effects of ocean acidification on marine ecosystems. Mar. Ecol.
22 23	3687	<i>Prog. Ser.</i> , <b>373</b> : 199-201(2008).
24 25 26	3688	Vitousek, P. M., J. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H.
20 27 28	3689	Schlesinger, and G. D. Tilman. Human alteration of the global nitrogen cycle: causes and
29 30	3690	consequences. <i>Ecol. Appl.</i> , <b>7</b> : 737-750 (1997a).
31 32 33	3691	Vitousek, P. M., C. M. D'Antonio, L. L. Loope, and R. Westbrooks. Biological invasions as
34 35	3692	global environmental change. Am. Sci., 84: 468-478 (1996).
36 37	3693	Vitousek, P. M., H. A. Mooney, J. Lubchemko, and J. M. Mellilo. Human domination of Earth's
38 39 40	3694	ecosystem. Science, 277: 494-499 (1997b).
41 42	3695	Waiser, M. J., V. Tumber, and J. Holm. Effluent-dominated streams. Part I. Presence and effects
43 44 45	3696	of excess nitrogen and phosphorus in Wascana Creek, Saskatchewan, Canada. Environ.
46 47	3697	<i>Toxicol. Chem.</i> , <b>30(2)</b> : 496-507 (2011).
48 49	3698	Walve, J. and U. Larsson. Carbon, nitrogen and phosphorus stoichiometry of crustacean
50 51 52	3699	zooplankton in the Baltic Sea: implications for nutrient recycling. J. Plankt. Res. 21: 2309-
53 54	3700	2321 (1999).
55 56 57 58 59 60	3701	Wang, J., B. Liu, N. Guo, and P. Xie. Alkaline phosphatase activity in four <i>Microcystis</i>

3702	aeruginosa species and their responses to nonphenol stress. Bull. Envir. Contamin. Toxicol.,
3703	<b>76</b> : 999-1006 (2006).
3704	Wang, X., B. Qin, G. Gao, and H. W. Paerl. Nutrient enrichment and selective predation by
3705	zooplankton promote Microcystis (Cyanobacteria) bloom formation. J. Plankt. Res., 4: 457-
3706	470 (2010).
3707	Wanger, O. W. Findings of fact and conclusions of law re interim remedies re: delta smelt ESA
3708	remand and reconsultation. Case 1:05-cv-01207-OWW-GSA, Document 01561. United
3709	States District Court, Eastern District of California, Fresno, California (2007a).
3710	Wanger, O. W. Interim remedial order following summary judgment and evidentiary hearing.
3711	Case 1:05-cv-01207-OWW-GSA, Document 01560. United States District Court, Eastern
3712	District of California, Fresno, California (2007b).
3713	Ware, D. M., and R. E. Thompson. Bottom-up ecosystem trophic dynamics determine fish
3714	production in the Northeast Pacific. Science, <b>308</b> : 1280-1284 (2005).
3715	Wassmann, P. Cultural eutrophication: Perspectives and prospects, pp. 224-234. In: Drainage
3716	Basin Inputs and Eutrophication: An Integrated Approach (Wassmann, P., and K. Olli,
3717	Eds.). Norway: University of Tromsø. Available from <www.ut.ee eutr="" ~olli=""></www.ut.ee> (2005).
3718	Weers, P. M. M., and R. M. Gulati. Effects of the addition of polyunsaturated fatty acids to the
3719	diet on the growth and fecundity of <i>Daphnia galeata</i> . Freshwater Biol., <b>38(3)</b> : 721-729
3720	(1997).
3721	Werner, E. E., and D. J. Hall. Foraging efficiency and habitat switching in competing sunfishes.
3722	<i>Ecology</i> , <b>60</b> : 256-264 (1979).
3723	Weston, N. B., A. E. Giblin, G. T. Banta, C. S. Hopkinson, and J. Tucker. The effects of varying
3724	salinity on ammonium exchange in estuarine sediments of the Parker River, Massachusetts.
	<ul> <li>3702</li> <li>3703</li> <li>3704</li> <li>3705</li> <li>3706</li> <li>3707</li> <li>3708</li> <li>3709</li> <li>3710</li> <li>3711</li> <li>3712</li> <li>3713</li> <li>3714</li> <li>3715</li> <li>3716</li> <li>3717</li> <li>3718</li> <li>3717</li> <li>3718</li> <li>3719</li> <li>3720</li> <li>3721</li> <li>3720</li> <li>3721</li> <li>3722</li> <li>3723</li> <li>3724</li> </ul>

- 3725 *Estuaries Coasts*, **33**: 985-1003 (2010).
- 3726 Wetzel, R. G. *Limnology*, 3rd Edition. Orlando, FL: Academic Press (2001).
- Widdows, J., and J. M. Shick. Physiological responses of *Mytilus edulis* and *Cardium edule* to
  aerial exposure. *Mar. Biol.*, 85: 217-232 (1985).
- Wijnhoven, S., V. Escaravage, E. Daemen, and H. Hummel. The decline and restoration of a
  coastal lagoon (Lake Veere) in the Dutch Delta. *Estuaries Coasts*, 33(6): 1261-1278 (2010).
- Wilkerson, F. P., R. C. Dugdale, V. E. Hogue, and A. Marchi. Phytoplankton blooms and
  nitrogen productivity in the San Francisco Bay. *Estuaries Coasts*, 29: 401-416 (2006).
- 3733 Williams, M. R., S. Filoso, B. J. Longstaff, and W. C. Dennison. Long-term trends of water
- quality and biotic metrics in Chesapeake Bay: 1986-2008. *Estuaries Coasts*, **33**: 1279-1299
   (2010).
  - Winder, M., and A. D. Jassby. Shifts in zooplankton community structure: Implications for foodweb processes in the upper San Francisco Estuary. *Estuaries Coasts*, doi 10.1007/s12237-
- 4 3738 010-9342-x (2010).
  - Winder, M., and D. E. Schindler. Climate change uncouples trophic interactions in an aquatic
    ecosystem. *Ecology*, **85**: 2100-2106 (2004a).
- Winder, M., and D. E. Schindler. Climatic effects on the phenology of lake processes. *Glob. Change Biol.*, **10**: 1844-1856 (2004b).
- Winkler, G., J. J. Dodson, N. Bertrand, D. Thivierge, and W. F. Vincent. Trophic coupling across
  the St. Lawrence River estuarine transition zone. *Mar. Ecol. Prog. Ser.*, 251: 59-73 (2003).
  - 3745 Xie, L. Q., P. Xie, and H. J. Tang. Enhancement of dissolved phosphorus release from sediment
  - to lake water by *Microcystis* blooms—an enclosure experiment in a hypereutrophic,
- 3747 subtropical Chinese lake. *Envir. Poll.*, **122**: 391-399 (2003).

60

# **Reviews in Fisheries Science**

2		
3 4	3748	Yarrow, M., V. H. Marin, M. Finlayson, A. Tironi, L. E. Delgado, and F. Fischer. The ecology of
5 6 7	3749	Egeria densa Planchón (Liliopsida: Alismatales): A wetland ecosystem engineer? Rev. Chil.
7 8 9	3750	Hist. Nat., 82(2): 299-313 (2009).
10 11	3751	Ying, H., M. Burford, M. Whittle, and M. Doblin. Zooplankton impacts on cyanobacteria bloom
12 13	3752	development in an oligotrophic reservoir. International Conference on Harmful Algae,
14 15 16	3753	Hersonissos-Crete, Greece, November 2010. Abstract (2010).
17 18	3754	Ziegler, S., and R. Benner. Nutrient cycling in the water column of a subtropical seagrass
19 20 21	3755	meadow. Mar. Ecol. Prog. Ser., 188: 51-62 (1999).
22 23 24	3756	
25 26		
27 28 20		
29 30 31		
32 33		
34 35 36		
37 38		
39 40		
41 42 43		
44 45		
46 47		
48 49 50		
51 52		
53 54		
55 56 57		
58 59		

2 3 4 5	3757 3758	Table Legends
6 7	3759	
8 9 10	3760	Table 1. Sources of data used in this analysis and the time periods over which they were
10 11 12 13 14 15	3761	averaged.
	3762	
16 17	3763	Table 2. Time line of changes in the Potomac River subestuary. WWTP is wastewater treatment
18 19 20	3764	plant, most of which is discharged from the Blue Plains Facility.
21 22	3765	
23 24 25	3766	Table 3. Descriptive comparison of the major food webs changes in comparative systems after
25 26 27	3767	the reduction of P from the system and an associated increase in the N:P ratio. Further details of
28 29 20	3768	all of these changes are described more fully in text. Blank entries are those for which
30 31 32	3769	insufficient data are available to evaluate.
33 34 35		
36 37		
38 39 40		
40 41 42		
43 44		
45 46 47		
48 49		
50 51		
52 53		
54 55		
55 56		
57 58		
59 60		164

2 3 4 5 6	3770 3771	Figure Legends
7 8	3772	
9 10	3773	1. Map of the San Francisco Estuary and the Sacramento-San Joaquin Bay Delta. The
11 12	3774	region outlined in the box represents the region where virtually all of the stations examined in
13 14	3775	this paper were located. Stations D4 –D8 represent the stations where water chemistry data were
15 16 17	3776	used for this analysis.
18 19	3777	
20 21 22	3778	2. Modified conceptual diagram of the "phase III" model of eutrophication (Cloern, 2001)
23 24	3779	showing the complexity of interactions and effects of multiple stressors and eutrophication.
25 26	3780	
27 28 20	3781	3. (A) Schematic depiction of the relationship between phytoplankton cell size and the N:P
29 30 31	3782	ratio of their biomass. (B) Size dependence (cell volume, $\mu m^3$ ) of temperature-corrected growth
32 33	3783	rate (day ⁻¹ ) for a range of phytoplankton functional groups: diatoms (filled circles),
35 36	3784	dinoflagellates (open boxes) and other taxonomic groups (grey diamonds, a combination of
37 38	3785	cyanobacteria, chlorophyte, haptophyte, cryptophyte and various other groups). Line is the least-
39 40 41	3786	squares regression of all data (log $\mu = -0.06 \log V + 0.1$ ; $r^2 = 0.15$ ). This figure is reproduced
42 43	3787	from Finkel et al. (2010), J. Plank. Res., Oxford University Press, with permission. The data
44 45	3788	were compiled by T.A.V. Rees.
46 47 48	3789	
49 50	3790	4. Relative N and P content of cyprinind and centrarchid fish. Figure is modified and
51 52	3791	redrawn from Sterner and George (2000).
53 54 55	3792	
56 57 58 59	3793	5. Top: Schematic relationships between resource N:P and consumer N:P. Where resource
60		165 URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

(or prey) and consumer stocihiometry do not balance, it reflects either P or N sequestration by
the consumer. Bottom: Consumer biomass N:P and excretion N:P are expected to be negatively
related.

6. Expected changes in various components of the food web as the N:P ratio increases,based on ecological stoichiometry principles. The upper panel is a general depiction of trends inN:P ratios over time.

7. Time course of the change in freshwater outfow from the Bay Delta over time and the major changes in nutrients and the food web that have occurred. The arrows along the top of the graph depict the major time periods that are described in text. The first time period is from the start of the time series up to the time when the wastewater treatment plant discharge began. The second time period encompassed the period of major change in nutrients. The third time period is that taken to represent the period of the pelagic organism decline.

8. Changes over time in the major inorganic nutrients and inorganic nutrient ratios (log-transformed data) in the confluence to Suisun Bay from 1975-2005. Note that different nutrients changed in different periods of the time course, and thus the delineation of the time periods by symbols differs from those of subsequent graphs; the individual time periods highlight the periods of major change. For panels exhibiting total inorganic nitrogen (DIN) and total phosphorus (TP), the time course highlights 1975-1982 (circles), 1983-1992 (diamonds), and post-1992 (squares). For PO₄³⁻ and NH₄⁺: PO₄³⁻, the time course highlights the periods of 1975-1986 (circles), 1987-1999 (diamonds) and post-1999 (squares). For  $NH_4^+$ , the time course 

3826

1

## **Reviews in Fisheries Science**

2	
3	
4	
5	
5	
0	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
11 10	
10	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
36	
00	
37	
38	
39	
40	
41	
42	
42 42	
т.) ///	
44	
45	
46	
47	
48	
49	
50	
51 	
52	
53	
54	
55	
56	
50	
57	
ъX	

59

60

highlights the period of 1975-1982 (circles), and post 1982 (squares). Finally, for DIN:TP, the time course is shown as a continuous trend (squares). Coefficients of determination ( $\mathbb{R}^2$ ) of all time periods are shown; those indicated by bold are significant at p<0.05, those by bold italic are significant at p<0.01.

9. Change in concentrations of  $NH_4^+$ , TP, and DIN:TP over time in the effluent of the wastewater from the Sacramento Regional Wastewater Treatment Plant, located on the Sacramento River. Total loads have also increased over time. For  $NH_4^+$ , current loads are 14 tonnes day⁻¹.

10. Change in the abundance (log cells mL⁻¹) of the major classes of eukaryotic
phytoplankton and prokaryotic cyanobacteria in the lower Sacramento River to Suisun Bay
region from 1975-2005.

3830

11. Change in the concentration of chlorophyll a (log µg L⁻¹) and abundances of the major 3831 classes of eukarytotic phytoplankton and prokaryotic cyanobacteria (log cells mL⁻¹) over the time 3832 course. Coefficients of determination ( $\mathbb{R}^2$ ) are given for each major time period (1975-1986, 3833 circles; 1987-1999, diamonds; and post 1999, squares). Those indicated by bold are significant at 3834 p<0.05, those by bold italic are significant at p<0.01. The analysis indicates a significant change 3835 in abundance over one or more major time periods for diatoms (Bacillariophyceae), green algae 3836 (Chlorophyceae), cryptophytes (Cryptophyceae), dinoflagellates (Dinophyceae) and 3837 3838 cyanobacteria. In addition, the decline in chlorophyll a over the entire time course was significant ( $R^2$ =0.57, p<0.01). 3839

1 2		
- 3 4	3840	
5 6 7 8 9	3841	12. Change in the concentration of chlorophyll $a$ (µg L ⁻¹ ) and abundances of the major
	3842	classes of phytoplankton (log cells mL ⁻¹ ) over the time course as a function of TP (mg L ⁻¹ ) (all
10 11	3843	data log transformed). Coefficients of determination $(R^2)$ are given for the entire time course
12 13 14	3844	only, although the major periods are represented by different symbols (1975-1986, circles; 1987-
15 16	3845	1999, diamonds; and post 1999, squares). Those indicated by bold are significant at p<0.05,
17 18 10	3846	those by bold italic are significant at p<0.01. Coefficients of determination ( $R^2$ ) values in
20 21	3847	parentheses represent the respective relations with $PO_4^{3-}$ rather than TP. None of these
22 23	3848	regressions indicated a significant relationship ( $p > 0.05$ ).
24 25 26 27 28 29 30 31 32 33	3849	
	3850	13. As for Figure 8, except as a function of $NH_4^+$ (mg L ⁻¹ ) (all data log transformed). The
	3851	regressions for $NH_4^+$ versus total chlorophyll <i>a</i> , diatoms (Bacillariophyceae), and dinoflagellates
	3852	(Dinophyceae) indicated significant relationships.
34 35	3853	
36 37 39	3854	14. As for Figure 8, except as a function of DIN:TP (wt:wt) (all data log transformed). The
39 40	3855	regressions for DIN:TP ratios versus total chlorophyll a, diatoms (Bacillariophyceae), and
41 42	3856	dinoflagellates (Dinophyceae) indicated significant relationships.
43 44	3857	
45 46 47	3858	15. As for Figure 8, except as a function of $NH_4^+$ : $PO_4^{3-}$ (wt:wt) for the period of time only
48 49	3859	over which the change in this ratio was most significant (1987-1999) (all data log-transformed).
50 51 52	3860	Only the regression for NH ₄ ⁺ :PO ₄ ⁻³ ratio versus crytophytes (Cryptophyceae) indicated a
53 54	3861	significant relationship.
55 56	3862	16 Change in the abundance of the major groups or taxe classes of geoplanistan (individuals
57 58	3803	To. Change in the abundance of the major groups of taxa classes of zooplankton (Individuals
59 60		168

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

# **Reviews in Fisheries Science**

 $m^{-3}$ ) in the lower Sacramento River to Suisun Bay region from 1975-2005. 

17. Change in the abundance of the major groups or taxa of zooplankton (as organisms  $mL^{-1}$ . and as the ratio of Eurytemora/cyclopoids) over time (all data log transformed). Coefficients of determination ( $\mathbb{R}^2$ ) are given for each major time period (1975-1986, circles; 1987-1999, diamonds; and post 1999, squares). Those indicated by bold are significant at p<0.05, those by bold italic are significant at p<0.01. The analysis indicates significant changes over a major time period for all taxa except *Sinocalanus*, *Pseudodiaptomus*, and harpacticoids. However, over the entire time period (1975-2005), the changes in *Sinocalanus* and harpacticoids were significant  $(R^2=0.136, p<0.05, and R^2=0.622, p<0.01, respectively).$ 18. Change in the abundance of the major groups or taxa of zooplankton (as organisms  $mL^{-1}$ and as the ratio of *Eurytemora*/cyclopoids) over the time course as a function of TP (mg  $L^{-1}$ ) (all data log transformed). Coefficients of determination ( $\mathbb{R}^2$ ) are given for the entire data set only, although the major periods are represented by different symbols (1975-1986, circles; 1987-1999, diamonds; and post 1999, squares). Those indicated by bold are significant at p<0.05, those by bold italic are significant at p<0.01. Regression values in parentheses represent the respective relations with  $PO_4^{3-}$  rather than TP. The regressions for TP and/or  $PO_4^{-3}$  versus *Eurvtemora*. Sinocalanus, Acartia. Limnoithona Daphnia, Bosmina, and Neomysis indicated significant relationships. 

19. As for Figure 17, except as a function of  $NH_4^+$  (mg L⁻¹) (all data log transformed). All regressions indicated significant relationships except for NH₄⁺ versus *Acartia* and the ratio of 

20. As for Figure 17, except as a function of DIN:TP (wt:wt) (all data log transformed). All

regressions indicated significant relationships except for DIN:TP versus Daphnia and Bosmina.

2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
20 21
∠ I วว
22
23
24
25
26
27
28
29
30
31
32
22
33 24
34 05
35
36
37
38
39
40
41
42
43
44
45
40 46
40
41
48
49
50
51
52
53
54
55
56
57
50
50
59
60

1

3888

3889

3890

3891

3887 Eurytemora:cyclopoids.

21. As for Figure 17, except as a function of  $NH_4^+$ :  $PO_4^{3-}$  (wt:wt) for the period of time only 3892 over which the change in this ratio was most significant (1987-1999) (all data log transformed). 3893 All regressions indicated significant relationships except for  $NH_4^+$ :  $PO_4^{3-}$  versus 3894 *Pseudodiaptomus* and the ratio of *Eurytemora*:cyclopoids. 3895 3896 22. Conceptual diagram of the ecological stoichiometric relationship between different 3897 phytoplankton and zooplankton genera. The X axis represents the biomass N:P of the organisms. 3898 The wide arrow represents ingestion of the phototrophs by the grazer; the lighter arrow 3899 represents nutrient regeneration in the grazer's excretions. Note that the stoichiometry of the 3900 regenerated nutrients differs with zooplankton taxon and the N:P ratio of the food on which they 3901 3902 graze. 3903 23. Change in the abundance of *Corbula amurensis*, crabs (*Cancer magister* and *Eriocheir*) 3904 sinensis), shrimp (Crangon franciscorum and Crangon nigricauda, and Palaemon 3905 *macrodactylus*) over the time course and as a function of TP,  $NH_4^+$ , and DIN:TP ratios (all data 3906 log-transformed). Coefficients of determination ( $R^2$ ) are given for each major time period (1975-3907 1986, circles; 1987-1999, diamonds; and post 1999, squares) for the time course, and for the 3908 entire data set only as a function of nutrients. Those indicated by bold are significant at p<0.05, 3909 those by bold italic are significant at p<0.01. The analysis indicates a significant change in 3910

1

### **Reviews in Fisheries Science**

2
2
4
4
5
6
7
8
à
10
10
11
12
13
14
15
16
10
17
18
19
20
21
22
<u>~</u> ~
23
24
25
26
27
28
20
29
30
31
32
33
34
25
20
30
37
38
39
40
/1
רד ⊿ר/
42
43
44
45
46
47
48
40
49
50
51
52
53
54
55
55
56
57
58
59

abundance of the "crabs" grouping over the first major time period. In addition, over the entire time course (1975-2005), the changes in *Crangon* sp. and *Palaemon* sp. were significant ( $R^2$ = 0.51 and 0.654, p<0.01, respectively).

24. Change in the abundance of major fishes (data log transformed) over the time course. 3915 Coefficients of determination ( $\mathbb{R}^2$ ) are given for each major time period (1975-1986, circles; 3916 1987-1999, diamonds; and post 1999, squares). Those indicated by bold are significant at 3917 p < 0.05, those by bold italic are significant at p < 0.01. Data for delta smelt are shown based on the 3918 summer townet survey (STN) and the fall midwater trawl index (FMWT), while longfin smelt, 3919 splittail, striped bass and threadin shad.are from the FMWT index; yellowfin goby, and starry 3920 flounder are FMWT catch per tow data; and inland silversides, crappie, sunfish and largemouth 3921 3922 bass are relative abundances from beach seine data. The analysis indicates significant changes over one or more major time periods for 9 of the 12 taxa. Although changes were significant for 3923 individual time periods for striped bass, they were significant for the entire time course 3924  $(R^2=0.671, p<0.01).$ 3925

3926

3927

3928

3929

3930

3931

3932

3933

60

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

25. Change in the abundance of major fishes over the time course as a function of TP (mg

 $L^{-1}$ ) (all data log transformed). Coefficients of determination ( $R^2$ ) are given for the entire data set

only, although the major periods are represented by different symbols (1975-1986, circles; 1987-

respective relations with  $PO_4^{3-}$  rather than TP. Dashes lines represent the trends for the post 1999

data only. The regressions for TP and/or PO₄³⁻ versus delta smelt (STN but not FMWT), longfin

1999, diamonds; and post 1999, squares). Those indicated by bold are significant at p<0.05,

those by bold italic are significant at p<0.01. Regression values in parentheses represent the

smelt, splittail, vellowfin goby, starry flounder, crappie, sunfish, and largemouth bass indicate

significant relationships. 26. As for Figure 24, except as a function of  $NH_4^+$  (mg L⁻¹) (all data log-transformed). The regressions for  $NH_4^+$  versus longfin smelt, yellowfin goby, striped bass, and sunfish indicate significant relationships. 27. As for Figure 24, except as a function of DIN:TP ratio (wt:wt) (all data log-transformed). The regressions for DIN:TP ratio versus delta smelt (STN but not FMWT), longfin smelt, yellowfin goby, striped bass, silversides, starry flounder, sunfish and largemouth bass indicate significant relationship. 28. As for Figure 24, except as a function of  $NH_4^+$ :  $PO_4^{3-}$  ratio (wt:wt) (all data log transformed) for the period of time only over which the change in this ratio was most significant (1987-1999). The regressions for  $NH_4^+$ : PO₄⁻³ ratio versus delta smelt (STN but not FMWT data), longfin smelt, starry flounder, crappie, and sunfish indicate significant relationships. 29. Change in fish length indicated as a function of TP (mg  $L^{-1}$ ) and DIN:TP (wt:wt) (all nutrient data log transformed). Coefficients of determination ( $\mathbb{R}^2$ ) are given for the entire data set only. Those indicated by bold are significant at p<0.05, those by bold italic are significant at p<0.01. The regressions for length versus TP indicate significant relationships for longfin smelt, threadfin shad, and American shad; the regressions for length versus DIN:TP ratio indicate significant relationships for delta smelt (FMWT), threadfin shad, and American shad. 30. Comparisons between abundances of various food web components and diatom (Bacillariophyceae) abundance (units as previously given; all data log-transformed). Coefficients 

# **Reviews in Fisheries Science**

2		
3		
4		
5		
6		
0		
1		
8		
9		
1	n	
1	1	
1	1 0	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	1	
1	8	
1	9	
2	0	
2	1	
$\frac{1}{2}$	2	
2	<u>~</u>	
2	2	
2	4	
2	5	
2	6	
2	7	
2	Q	
2	0	
2	9	
3	U	
3	1	
3	2	
3	3	
3	4	
3	5	
2	e R	
2	7	
ა ი	1	
3	8	
3	9	
4	0	
4	1	
4	2	
۵	3	
1	1	
+	+	
4	5	
4	6	
4	7	
4	8	
4	9	
5	ñ	
5	1	
с С	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	1 0	
5	ð	
5	9	
6	0	

of determination  $(R^2)$  are given for the entire data set only, although the major periods are 3960 represented by different symbols (1975-1986, circles; 1987-1999, diamonds; and post 1999, 3961 squares). Those indicated by bold are significant at p<0.05, those by bold italic are significant at 3962 p<0.01. All regressions shown are significant. 3963 3964 31. Comparisons between abundances of various components of the food web and 3965 dinoflagellate (Dinophyceae) abundance (units as previously given; all data log-transformed). 3966 Coefficients of determination  $(\mathbf{R}^2)$  are given for the entire time course only, although the major 3967 periods are represented by different symbols (1975-1986, circles; 1987-1999, diamonds; and post 3968 1999, squares). Those indicated by bold are significant at p<0.05, those by bold italic are 3969 significant at p<0.01. All regressions shown are significant. 3970 3971 32. Comparisons between abundances of various food web components and abundance of the 3972 zooplankter *Eurytemora* or of total cladocerans (units as previously given; all data log-3973 transformed). Coefficients of determination ( $\mathbb{R}^2$ ) are given for the entire time course only, 3974 3975 although the major periods are represented by different symbols (1975-1986, circles; 1987-1999, diamonds; and post 1999, squares). Those indicated by bold are significant at p<0.05, those by 3976 bold italic are significant at p<0.01. All regressions shown are significant. 3977 3978

3979 33. Comparisons of the average planktivore and average piscivore abundance as a function 3980 of TP,  $NH_4^+$ , DIN:TP ratio, and  $NH_4^+$ :  $PO_4^{-3}$  ratio over the entire time course (all data log-3981 transformed). Coefficients of determination ( $R^2$ ) are given for the entire time course only. Those 3982 indicated by bold are significant at p<0.05, those by bold italic are significant at p<0.01. The 3983 regression analyses indicate significant relationships between planktivores and both  $NH_4^+$  and 3984 the DIN:TP ratio, and significant relationships between piscivores and TP, the DIN:TP ratio, and

ວ
2
3
4
5
6
-
1
8
9
10
10
11
12
13
14
15
10
16
17
18
19
13
20
21
22
23
24
24
25
26
27
20
28
29
30
31
22
32
33
34
35
36
30
37
38
39
10
40
41
42
43
44
15
45
46
47
48
10
43 50
50
51
52
53
55
ว4
55
56
57
50
วช
59
60

3986

3985 the  $NH_4^+$ :  $PO_4^{-3}$  ratio.

3987 34. Comparison of abundance of the major classes of phytoplankton, zooplankton and fish as a function of the Eurytemora/cyclopoid ratio for two periods of the time course: 1975-1983 3988 3989 (circles) and 1999-2005 (squares). These time periods represent the beginning years of the time course and the years encompassing as the Pelagic Organism Decline (POD) period. Coefficients 3990 of determination  $(R^2)$  are given for each major time period. Those indicated by bold are 3991 significant at p<0.05, those by bold italic are significant at p<0.01. The analysis indicates 3992 significant relationships between the Eurytemora: cyclopoids ratio and the DIN: DP ratio, 3993 cyanobacteria, Bosmina, and delta smelt (STN or FMWT data). 3994 3995 35. Pore water profiles of  $PO_4^{3-}$  and  $NH_4^+$  from May 2004 at Freestone Point on the Potomac 3996 River, Chesapeake Bay, USA. This figure illustrates the main characteristics of Potomac River 3997 pore water chemistry. Data are from Bailey et al. (2006). 3998 3999 4000 36. Schematic depiction of *Egeria densa* as an "ecosystem engineer". As *Egeria* increases, 4001 turbidity decreases, and light increases, Also, nutrients are taken up by the plants (but may be 4002 mobilized from the sediment; see text). Zooplankton increases due to the ability to find refuge 4003 from predation, but phytoplankton decrease due to zooplankton grazing. Figure redrawn from 4004 Yarrow et al. (2010). 4005 4006 37. Relationship between the concentration of  $PO_4^{3-}$  (mg L⁻¹) and the specific conductance 4007 ( $\mu$ mhos cm⁻¹). Data shown are bimonthly averages for the time series for a station located near 4008 the confluence. 4009

2		
3	4010	
4 5	4011	
6		
7 8	4012	38. Annual average pH for (A) various stations (from Suisun Bay to lower San Joaquin and
9 10	4013	upper Sacramento River) in the Bay Delta over time, and (B) mean of annual average pH of
11 12	4014	these stations over time. Panel C gives a snapshot of diel fluctuations in pH from 17 June to 1
13 14 15	4015	July, 2009, in the Grantline Canal, as measured from an <i>in situ</i> pH data sonde. Data are from
16 17	4016	http://bdat.ca.gov (panel A) and http://cdec.water.ca.gov/ (panel C).
18 19 20	4017	
20 21 22	4018	39. Change in rate of flux of $PO_4^{3-}$ from cores taken from a <i>Hydrilla</i> -dominated reach of the
23 24	4019	Potomac River, Chesapeake Bay, USA, and experimentally manipulated to alter the pH (data
25 26 27	4020	from Bailey et al. 2006).
28	4021	
29 30	4022	40. Annual abundance of <i>Corbula amurensis</i> (individuals m ⁻² ) at stations located from the
31 32 33	4023	confluence to Suisun Bay as a function of mean annual average pH. Coefficients of
34 35	4024	determination ( $\mathbb{R}^2$ ) was significant at p<0.01.
36	4025	
37 38 39	4026	41. Left: Relationship between the N:P atomic ratios and the concentrations of different
40 41	4027	microcystin toxins [MC-LR, MC-RR, and MC-(LR + RR)] of <i>Microcystis aeruginosa</i> grown in
42 43	4028	laboratory P-limited cultures. Right: The microcystin-production rate and microcystin content of
44 45 46	4029	M. aeruginosa at each growth rate in laboratory P-limited cultures. Figure reproduced from Oh et
47 48	4030	al. (2000), Appl. Envir. Microbiol. with permission.
49	4031	
50 51 52	4032	42. Conceptual diagram of the effect of altered pH and altered salinity on the processes of
53 54	4033	exchange of $PO_4^{3-}$ and $NH_4^+$ from the sediment to the water column. With a rise in pH, or a shift
55 56 57 58	4034	to higher salinity, sediment flux of $NH_4^+$ and $PO_4^{3-}$ increase via the mechanisms described in text.

pH also alters the equilibrium between  $NH_4^+$  and  $NH_3$ , leading to higher  $NH_3$  at high pHs.

43. Conceptual depiction of the change over time in major nutrients, flow, dominant biogeochemical processes, and the food web of the Bay Delta. The first panel represents the period from 1975 to ~1982, when flow was low, and diatoms and Eurytemora were the dominant phytoplankton and zooplankton, respectively, and smelt were common. The second panel represents the period from ~1982-1986 when flow was high, and  $NH_4^+$  was increasing. During this period the food web began to change. Under very low flow conditions, depicted by the third panel, and representing ~1987-1995, the NH₄⁺ load was high but PO₄³⁻ began to decrease. The food web also began to change significantly, with changes in the dominant phytoplankton and zooplankton, increasing abundance of macrophytes, increased importance of sediment nutrient processes, and increase in piscivores. Finally, post 1995,  $NH_4^+$  loads remain high, while  $PO_4^{3-}$ loads have decreased. Sediment biogeochemical processes are of increasing importance in nutrient processing, macrophyte production is important and piscivorous fish have increased. At the microbial level, *Microcystis* is more common and the zooplankton is dominated by Limnoithona. 

4052 44. Comparative nutrient and food web relationships for the Potomac River. Panel (A), the 4053 change in N:P ratio of all loads (filled squares), and of the wastewater effluent only (open 4054 squares) as a function of time from the mid 1960s to 2005. Indicated also on the time course is 4055 the first appearance of the invasive *Corbicula fluminea* clams, as well as its maximum 4056 abundance and the time when it began to decline. Data derived from Dresler and Cory (1980), 4057 Jaworski et al. (2007), and Cummins et al.(2010). Panel (B), the change in abundance of 4058 submersed aquatic vegetation, in this case dominated by *Hydrilla* (closed squares), and the

#### **Reviews in Fisheries Science**

change in chlorophyll *a* in the water column (open squares). Data derived from Jaworski et al. (2007). Panel (C), the relationship between the abundance of SAV (dominated by *Hydrilla*) and the N:P in the wastewater effluent. Data derived from Jaworski et al. (2007). Panel (D), the relationship between the frequency of occurrence of water column samples enriched with >10%*Microcystis* (by cell count) and the N:P in the total nutrient load. *Microcystis* data are courtesy of P. Tango, from Maryland Department of Natural Resources monitoring program data; nutrient data are from Jaworski et al. (2007). Panel (E), the abundance of Bay anchovy (log relative abundance as geometric mean catch per haul) as a function of N:P of the total nutrient load; panel (F), the abundance of spottail shiner (log relative abundance as geometric mean catch per haul) as a function of N:P in the effluent. Fish data from panels E and F are from Maryland Department of Natural Resources, Fisheries Service http://www.dnr.state.md.us/fisheries/, and nutrient data are from Jaworski et al. (2007). Panel (G), the ratio of pelagic:demersal fish as a function of the N:P ratio in the effluent. Fish data are from Kemp et al. (2005) and www.noaa.chesapekaebay.net and nutrient data are from Jaworski et al. (2007). 45. Relationship between the percent cover of Florida lakes by *Hydrilla* or other macrophytes and the molar N:P ratio. Data are derived from data of Hoyer and Canfield (1996). Coefficient of determination  $(R^2)$  is significant at p<0.05. Note that although a linear relationship is drawn, the data appear to suggest a rapid change at a molar ratio of  $\sim 100$ . 46. Change over time in the extent of the invasion of zebra mussels across the USA. Data are 

4081 from USGS (http://nas.er.usgs.gov/taxgroup/mollusks/zebramussel/).

o 7 4082

47. Comparison of the relationships between TP,  $PO_4^{3-}$ ,  $NH_4^+$ , and the DIN:TP ratio versus X2 (the isohaline where salinity = 2, measured as distance from the Golden Gate Bridge) and versus the habitat index (defined by salinity, temperature and turbidity relationships; Feyrer et al., 2010) for the time course from 1975-2005. Coefficients of determination ( $R^2$ ) are given for the entire data set. Those indicated by bold are significant at p<0.05, those by bold italic are significant at p<0.01. The analysis indicates significant relationships between X2 and TP,  $PO_4^{3-}$ , and  $NH_4^+$  concentrations, and significant relationships between the habitat index and  $PO_4^{-3}$ ,  $NH_4^+$ , and the DIN:TP ratio. 

4092 48. Comparison between the conceptual understanding of the factors related to the Pelagic
4093 Organic Decline (POD) as described by Sommer et al. (2007) and the conceptual understanding
4094 described in this analysis.

49. Conceptual diagram of a generalized estuary affected by high NH₄⁺ loading from a point source discharge, but with reduced P loads. The immediate impact zone has the potential to have strong negative impacts on organisms, either through direct toxicity or indirect inhibition effects. As the  $NH_4^+$  moves downstream, processes such as nitrification (depicted as an arrow from  $NH_4^+$ to  $NO_3^-$ ) may convert subtrantial amounts of N from  $NH_4^+$  to  $NO_3^-$ . If macrophytes are common in this reach of the system, recycling of P from the sediment may result in increased P availability, although numerous organisms may effectively take this up and sequester it. Moving further downstream into the brackish estuarine zone, nitrification may continue, resulting in increased availability of  $NO_3^-$  relative to  $NH_4^+$ . Together with P release from the sediments, and/or with inputs of P from oceanic sources, blooms of diatoms or other algae may occur in this region, and the excessive production may result in hypoxia, seagrass loss, etc. The effectiveness

### **Reviews in Fisheries Science**

of the estuarine filter (sensu Cloern 2001) will depend on the size of the estuarine, residence time, depth and many other factors. When N loading is very high, it will not all be effectively taken up in the riverine and estuarine segments, and will be exported offshore. The export may be in the form of dissolved (inorganic or organic) or particulate N. When sufficient P is available in offshore sources, additional blooms may develop. A succession of blooms may also occur, with increasing importance of mixotrophic organisms expected in such a progression.
Parameter	Units	Data Transformation	Temporal period averaged	Spatial area averaged	Source/Reference	
Water Quality						
Ambient nutrients	mg-N $L^{-1}$ , mg-P $L^{-1}$ , or $\mu M$	Log transformed	Average of all values March - November	EMP Stations D4, D6, D7, and D8	http://bdat.ca.gov/	
Turbidity	NTU	Normal	Average of all values March – November	EMP Stations D4, D6, D7, and D8	http://bdat.ca.gov/	
Conductivity	µmhos/cm	Normal	No averaging	EMP Station D24 at Rio Vista	http://bdat.ca.gov/	
рН		Normal	Average of all values March - November	EMP Stations D4, D6, D7, and D8	http://bdat.ca.gov/	
Effluent nutrient loads	mg-N L ⁻¹ or μM	Normal	Monthly or annual	Point source discharge	Central Valley Regional Water Quality Control Board	
<i>Phytoplankton</i> Total chlorophyll a	$\mu g L^{-1}$	Log transformed	Average of all values March - November	EMP Stations D4, D6, D7, and D8	http://bdat.ca.gov/	
Species composition	Cells mL ⁻¹	Log transformed	Average of all values March - November	EMP Stations D4, D6, D7, and D8	http://www.nceas.ucsb.edu/	
<b>Zooplankton</b> Species composition	no. m ⁻³	Log transformed	Average of all values March - November	Stations NZ028, NZO32, NZ042, NZ048, NZO54, NZO60, NZD06	http://www.nceas.ucsb.edu/	

no. m ⁻²	Log transformed	Average of all values of <i>Cancer</i> franciscorum, C. nigricauda and Palaemon macrodactylus March – November	Bay Study Stations 427 – 736, 837	http://www.nceas.ucsb.edu/
no. m ⁻³	Log transformed	Average of all values March – November	Stations NZ028, NZO32, NZ042, NZ048, NZO54, NZO60, NZD06	http://www.nceas.ucsb.edu/
no. m ⁻²	Log Transformed	Average of all values of <i>Cancer magister</i> and <i>Eriocheir sinensis</i> March – November	Bay Study Stations 427 – 736, 837	http://www.nceas.ucsb.edu/
count/grab	Log Transformed	Average of all values <i>Corbula amurensis</i> March – November	EMP Stations D4, D6, D7, and D8	http://bdat.ca.gov/
	Log Transformed	September – December	Stations 401 – 707, 801 – 804	http://www.nceas.ucsb.edu/
	Log Transformed	Index covers September – December Trawls		http://www.dfg.ca.gov/delt a/projects.asp?ProjectID=F MWT
	no. m ⁻² no. m ⁻³ no. m ⁻²	no. m ⁻² Log transformed no. m ⁻³ Log transformed no. m ⁻² Log Transformed count/grab Log Transformed Log Transformed	no. m ⁻² Log transformedAverage of all values of Cancer franciscorum, C. nigricauda and Palaemon macrodactylus March – Novemberno. m ⁻³ Log transformedAverage of all values March – Novemberno. m ⁻³ Log TransformedAverage of all values of Cancer magister and Eriocheir sinensis March – Novembercount/grabLog TransformedAverage of all values corbula amurensis March – NovemberLog TransformedSeptember – DecemberLog TransformedIndex covers September – December Trawls	no. m ⁻² Log transformedAverage of all values of Cancer franciscorum, C. nigricauda and Palaemon macrodactylus March – NovemberBay Study Stations 427 – 736, 837no. m ⁻³ Log transformedAverage of all values March – NovemberStations NZ028, NZO32, NZ042, NZ048, NZO54, NZO48, NZO54, NZO60, NZD06no. m ⁻² Log TransformedAverage of all values of Cancer magister and Eriocheir sinensis March – NovemberStations NZ028, NZO32, NZ042, NZ048, NZO54, NZO48, NZO54, NZO48, NZO54, NZO48, NZO54, NZO60, NZD06count/grabLog TransformedAverage of all values Corbula amurensis March – NovemberEMP Stations D4, D6, D7, and D8Log TransformedSeptember – DecemberStations 401 – 707, 801 – 804Log TransformedIndex covers September – December TrawlsStations 401 – 707, 801 – 804

Summer townet (STN) index		Log Transformed	Index covers June-July Trawls		http://www.dfg.ca.gov/delt a/projects.asp?ProjectID=T OWNET
FMWT Fish length	mm	Catch weighted average. (Reject years with counts <6)	September – December	Stations 401 – 707, 801 – 804	http://bdat.ca.gov/
Beach seine	Relative abundance	Log Transformed	September – December		http://bdat.ca.gov
Other Abiotic					
X2	km	Normal	Average of all values March - November	Distance of salinity =2 isohaline from Golden Gate Bridge	http://www.water.ca.gov/da yflow/
Exports	cfs	Normal	Average of all values March - November	Total SWP + CVP Pumping	http://www.water.ca.gov/da yflow/
				h 071	

Table 2. Time line of changes in the Potomac River subestuary. WWTP is wastewater treatment plant, most of which is discharged from the Blue Plains Facility.

Vaama	Environmental Change	Peferences		
~ rears	Environmental Change	References		
1900 - 1970	P Discharges from WWTP increase, peaking at $\sim 4.0 \cdot 10^6$ kg y ⁻¹ (100 kg m ⁻² y ⁻¹ ). Dissolved oxygen reaches minima ~1940.	(Jaworski and Romano 1999)		
Late 1970's	With tertiary treatment and a P detergent ban, WWTP discharges of P decrease to $1.0 \cdot 10^6$ kg y ⁻¹ by 1976,	(Jaworski and Romano 1999)		
	<i>Corbicula fluminea</i> invades river, with variable but often high abundance until the early 1990's	(Phelps 1994)		
Early to Mid 1980's	Nitrification added to WWTP leading to $NO_3^-$ discharge, rather than $NH_4^+$ . Large upswing in surface water dissolved oxygen.	(Jaworski et al. 2007; Ruhl and Rybicki 2010)		
1983-1991	Secondary drop in WWTP discharge of P to < 0.1 by 1986.	(Jaworski and Romano 1999)		
	SAV resurgence in the Potomac occurs, peaking with ~ 2000 ha of coverage dominated by <i>Hydrilla verticillata</i> .	(Rybicki and Landwehr 2007)		
1984-1986	Fish surveys suggest large and small mouth bass populations doubled with increasing SAV	(USEPA 1993)		
1986-present	SAV coverage decreased below peak levels, with low coverage in the mid-1990's and a resurgence in the early 2000's	(Orth et al. 2010)		
Mid 1990's	N loading from WWTP peaks at > $1 \cdot 10^7$ kg y ⁻¹	(Jaworski and Romano 1999)		
Early-1990's to present	N loading from WWTP decreases about 50% due to nitrification/denitrification	(Jaworski et al. 2007)		

Table 3. Descriptive comparison of the major food webs changes in comparative systems after the reduction of P from the system and an associated increase in the N:P ratio. Further details of all of these changes are described more fully in text. Blank entries are those for which insufficient data are available to evaluate.

	San Francisco Estuary	Potomac River	Hudson River	Great Lakes	Florida Lakes	Lake Washington	Ebro River
Phytoplankton	C					0	
Change in	Decrease	Decrease	Decrease	Decrease	Decrease	Decrease	Decrease
Chl a							
Change in	Increase	Initial decrease,	Initial decrease,	Initial decrease,		Decrease	
<i>Microcystis</i> occurrence		then resurgence	then resurgence	then resurgence			
Zooplankton							
Change in species	Increase in	Increase in	Increase in	Increase in		Increase in	
group	cyclopoids and cladocerans	cyclopoids and cladocerans	cyclopoids and cladocerans	cyclopoids and cladocerans		cyclopoids and cladocerans	
Fish							
Change in	Decrease in	Decrease in	Decrease in	Decrease in	Decrease in		
dominant	planktivores:	planktivores:	planktivores	planktivores:	planktivores:		
strategy	piscivores	detritivores		piscivores	piscivores		
Bivalves							
Change in	Increase in	Increase in	Increase in	Increase in			Increase in
dominant	Corbula	Corbicula,	Dreissena,	Dreissena			Dreissena,
species		Rangia	Rangia				Corbicula
Shrimp							
Change in	Decrease in					Decrease in	
dominant	Neomysis					Neomysis	
species							
Submerged							
Vegetation							
Change in	Increase	Increase	Increase		Increase		Increase
abundance							Hydrilla
Dominant species	Egeria.	Hvdrilla	Hvdrilla.		Hvdrilla		пуанна
r.	Eichornia	<u> </u>	Eleocharis				

. rishrine





Figure 1 254x190mm (96 x 96 DPI)





Figure 2 254x190mm (96 x 96 DPI)









Figure 3 190x254mm (96 x 96 DPI)



Figure 4 190x254mm (96 x 96 DPI)





Figure 5 190x254mm (96 x 96 DPI)



Figure 6 190x254mm (96 x 96 DPI)





Figure 8 190x254mm (96 x 96 DPI)



Figure 9 190x254mm (96 x 96 DPI)



Figure 10 190x254mm (96 x 96 DPI)



Log total Chlororphyll a 1.2 Log Cryptophyceae @°00  $R^2 = 0.479$ R² = 0.198 Ö 0.8 a  $R^2 = 0.014$  $\sim$ 0.4  $R^2 = 0.657$ do. 0.281 Log Bacillariophyceae Log Dinophyceae  $R^2 = 0.02$  $R^2 = 0.703$ Ċ  $R^2 = 0.075$  $R^2 = 0.001$  $R^2 = 1E-22$ -1 <u>era na na ma pren</u> а краз кай каз крате  $R^2 = 0.646$ Log Chlorophyceae R² = 1E-05 Log Cyanobacteria  $R^2 = 0.053$  $R^2 = 0.005$  $R^2 = 0.115$  $\Diamond$  $R^2 = 0.526$ 1970 1980 1990 Year

Figure 11 190x254mm (96 x 96 DPI)



Figure 12 190x254mm (96 x 96 DPI)







Figure 13 190x254mm (96 x 96 DPI)



Figure 14 190x254mm (96 x 96 DPI)



Figure 15 190x254mm (96 x 96 DPI)



Figure 16 190x254mm (96 x 96 DPI)





Figure 17 190x254mm (96 x 96 DPI)



Figure 18 190x254mm (96 x 96 DPI)



Figure 19 190x254mm (96 x 96 DPI)



Figure 20 190x254mm (96 x 96 DPI)



Log NH₄⁺:PO₄³⁻ (wt:wt)

Figure 21 190x254mm (96 x 96 DPI)



Figure 22 140x119mm (300 x 300 DPI)





Figure 23 254x190mm (96 x 96 DPI)



Figure 24 190x254mm (96 x 96 DPI)

 $R^2 = 0.332$ 

(0.034)

 $R^2 = 0.037$ 

(0.014)







(NLS) 2



Figure 26 190x254mm (96 x 96 DPI)



Figure 27 190x254mm (96 x 96 DPI)



Figure 28 190x254mm (96 x 96 DPI)



Figure 29 190x254mm (96 x 96 DPI)


Figure 30 190x254mm (96 x 96 DPI)

Log delta smelt (STN)  $R^2 = 0.589$ -1 Log delta smelt (FMWT)  $R^2 = 0.206$ Log longfin smelt  $R^2 = 0.288$ (FMWT) 3  $R^2 = 0.359$ Log striped bass (ago 1) 0,0 -1 -2 Log starry flounder -1 -2  $R^2 = 0.457$  $\propto$ -3 -1 Log Dinophyceae abundance

> Figure 31 190x254mm (96 x 96 DPI)



Figure 32 190x254mm (96 x 96 DPI)



Figure 33 190x254mm (96 x 96 DPI)



Figure 34 190x254mm (96 x 96 DPI)



Figure 35 190x254mm (96 x 96 DPI)



Figure 36 190x254mm (96 x 96 DPI)







Figure 37 190x254mm (96 x 96 DPI)



Figure 38 190x254mm (96 x 96 DPI)



Figure 39 190x254mm (96 x 96 DPI)



Mean annual average pH

Figure 40 190x254mm (96 x 96 DPI)



Y = 456.8X + 81.6 r² = 0.991 (hg g'¹ d'¹) MC-(LR + Y = 57.7X r² = 0.979 (R) 267.3 Microcystin (µg g⁻¹) MC-producing rate MC-RR Y = 31.9X - 5.4 r² = 0.955 c MC-LR Y = 25.8X - 262.0 r² = 0.968 . 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Growth rate (d⁻¹)

N:P ratio (atomic)

B Bn)

vstin

Figure 41 190x254mm (96 x 96 DPI)



Figure 42 187x85mm (300 x 300 DPI)



Figure 43 164x207mm (300 x 300 DPI)



Figure 44 190x254mm (96 x 96 DPI)



Figure 45 190x254mm (96 x 96 DPI)



Figure 46 190x254mm (96 x 96 DPI)



Figure 47 190x254mm (96 x 96 DPI)





Page 236 of 236



## Figure 49 232x212mm (300 x 300 DPI)