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Abstract

When inundated by floodwaters, river floodplains provide critical habitat for many species of

fish and wildlife, but many river valleys have been extensively leveed and floodplain wet-

lands drained for flood control and agriculture. In the Central Valley of California, USA,

where less than 5% of floodplain wetland habitats remain, a critical conservation question is

how can farmland occupying the historical floodplains be better managed to improve bene-

fits for native fish and wildlife. In this study fields on the Sacramento River floodplain were

intentionally flooded after the autumn rice harvest to determine if they could provide shal-

low-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus

tshawytscha). Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g) were reared on two

hectares for six weeks (Feb-March) between the fall harvest and spring planting. A subsam-

ple of the fish were uniquely tagged to allow tracking of individual growth rates (average

0.76 mm/day) which were among the highest recorded in fresh water in California. Zoo-

plankton sampled from the water column of the fields were compared to fish stomach con-

tents. The primary prey was zooplankton in the order Cladocera, commonly called water

fleas. The compatibility, on the same farm fields, of summer crop production and native fish

habitat during winter demonstrates that land management combining agriculture with con-

servation ecology may benefit recovery of native fish species, such as endangered Chinook

salmon.

Introduction

Seasonal inundation of floodplains drive important hydrologic and geomorphic processes that

provide substantial trophic benefits to river ecosystems [1, 2]. In California’s Central Valley

more than 95% of pre-development floodplain habitats have been leveed and drained, primar-

ily for flood control or conversion to agriculture [3]. Levees alter riverine topography, inter-

rupt natural flow regimes and sever hydrologic, sediment, nutrient and fish connectivity

between river channels and adjacent floodplain wetlands [4]. Today, the Central Valley is a
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patchwork of agricultural lands and communities located on former floodplain wetlands

which are now separated from rivers by high, steep levees [5] and only inundate when flood-

waters spill into managed floodways or when levees fail during severe storms. As a conse-

quence, access to ancestral floodplain habitats by juvenile salmon and other native fishes has

been greatly diminished.

Generally, a species’ abundance is greatest towards the center of its geographic range and

declines toward the periphery [6]. At the extreme southern limit of the distribution of Chinook

salmon (Oncorhynchus tshawytscha), the Central Valley might, therefore, be expected to be

marginal habitat for the species. Instead, the Central Valley was home to one of the largest and

most diverse stocks of Chinook salmon [7]. Highly productive and diverse rearing habitats in

both freshwater and marine environments are likely part of the explanation for these unexpect-

edly robust and diverse populations.

Prior to European settlement of the Central Valley, winter and spring floodwaters guided

millions of young fall-run Chinook salmon, only a few centimeters long, out of the river

channels and onto valley floodplains. Juvenile salmon presumably reared for 1–3 months

on productive floodplains, growing rapidly in the process [8]. Declining flows, increases in

water temperature and clarity and other cues likely triggered outmigration before floodplains

became hydrologically disconnected from stream channels [9]. Sheltered from the current of

the main river and supplied with abundant food resources, young salmon that rear on flood-

plains and other off-channel habitats tend to be larger and in better physical condition that

those that rear in the main channel of rivers [10–13]. The extensive photic zone created by

large surface areas of shallow floodplain inundation enhances phytoplankton biomass [14–16],

zooplankton growth [17, 18], and drift invertebrate biomass [10, 19, 20]. High density of food

resources in these shallow, off channel habitats likely contributes to successful foraging and

enhanced fish growth. Across many species of anadromous salmonids (e.g., Atlantic salmon

Salmo salar, steelhead O. mykiss, Chinook salmon O. tshawytscha) substantial scientific evi-

dence indicates that body size at ocean entry is an important, if not the primary, indicator of

an individual’s probability of returning from the ocean to spawn [21–23]. The rapid growth

facilitated by gaining access to floodplain habitats may therefore be critical to conserving self-

sustaining populations of Central Valley salmonids [24].

Taken together, the evidence suggests that Central Valley floodplains inundated in midwin-

ter and early spring are a vital habitat link between the upstream gravel beds where salmon

spawn and the ocean where they spend the majority of their lives. This study attempted to

mimic, on winter-fallowed rice fields, the natural extent and duration of shallow inundation of

floodplain habitats that took place in the Central Valley pre-development. The density of

invertebrate food resources on which juvenile salmon are foraging in these “managed agricul-

tural floodplains” are similar to those documented on the few relatively natural functioning

floodplains left in the Central Valley [11]. Which is to say that the habitats and food densities

documented in this study are akin to those under which Central Valley salmon stocks evolved

and to which they are adapted. There is therefore, little reason to believe that re-exposing

salmon to their ancestral habitat conditions would result in compensatory growth or other

related concerns about rapid growth.

Although most Central Valley floodplains have been cut off from river channels by levees, a

key feature of regional flood protection is the integration of intentionally inundated flood

basins into flood management infrastructure. Known as “bypasses,” these managed floodplains

are used to shunt floodwater away from cities and key infrastructure [25]. When the Yolo

Bypass (the largest of the Central Valley bypasses) does flood, young salmon successfully use

the inundated floodplain for rearing during downstream migration [10, 19, 26]. Dry-season

land use within the Yolo Bypass is primarily agricultural and is serviced by extensive irrigation
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and drainage infrastructure. During winter and spring flooding these bypass farmlands are

known to be one of the habitats used by rearing salmon [26]. Use of floodplain habitat by juve-

nile salmonids in the Central Valley’s current configuration is limited by three major factors:

1) very little inundated floodplain remains, 2) although they constitute the majority of remain-

ing floodplains, managed bypass floodways inundate relatively infrequently, 3) because they

are designed and graded to drain rapidly, residency times of floodwaters are shortened on

bypasses. Thus when bypasses do flood, fish only have a short time available for floodplain

rearing.

Increasingly, Sacramento Valley rice fields are being managed to provide alternative habitat

for waterfowl and shorebirds [27–29]. Managed inundation of agricultural fields during the

non-growing season has shown that Central Valley rice fields can function as ecological surro-

gates for lost natural wetland habitats and can aid in the recovery of waterbird populations

[30]. This study investigates how intentional winter inundation of agricultural fields on a his-

torical floodplain might be used to benefit native fish. Specifically, our study was designed to

test if post-harvest rice fields flooded from irrigation canals during the winter non-growing

season could function as rearing areas for juvenile Chinook salmon. We tested this hypothesis

by rearing juvenile fall run Chinook salmon (a federal species of special concern) in a post-har-

vest rice field on the Yolo Bypass near Sacramento, California in February and March of 2012.

Environmental conditions proved sufficient for fish survival as evidenced by rapid growth and

robust body condition.

Methods

Study location

At 24,000 hectares, the Yolo Bypass is the Central Valley’s largest contiguous floodplain still

regularly inundated by floodwaters [19]. Flooding occurs in two out of three years on average,

typically between the months of December and April but flood events vary from several days

to months in duration. As a result, the bypass represents one of the most frequent large-scale

connections of river and floodplain left in the Central Valley. The seasonal wetlands of the

Yolo Bypass provide critical rearing habitat for juvenile Chinook salmon [10] and are a vital

component of the Pacific Flyway, a migration pathway used by 20% of North America’s water-

fowl [31].

Located approximately 8 km west of the city of Sacramento, the Yolo Bypass occupies a

portion of the historical flood basin in the region. The current configuration is a partially lev-

eed basin that is seasonally inundated from the Sacramento River via simple weirs and local

tributaries. It functions to prevent damaging floods by bypassing high flows around the Sacra-

mento Metropolitan Area, thereby relieving pressure on urban levees during high flow events.

The bypass area is covered by floodway easements held by the State of California, making all

other land uses subservient to flood control. A major land use in the Yolo Bypass is agriculture,

with rice the primary crop. Additionally, wild rice, tomatoes, corn, safflower and melons are

grown and substantial areas are managed as irrigated pasture or kept fallow. Extensive areas

within the bypass are also managed for waterfowl habitat and hunting.

The study was located on the Knaggs Ranch (38.698431˚ N, -121.658506˚ W; Fig 1), an agri-

cultural parcel in the northern Yolo Bypass with a total acreage of 670 hectares. All studies

were done with the knowledge and cooperation of the landowners. A drainage canal called the

Knights Landing Ridge Cut enters the Knaggs property at its northwest corner. This canal was

built early in the 20th century to direct floodwaters in the Colusa Basin to flow into the Yolo

Bypass. Currently 636 hectares of the ranch are farmed to rice and irrigated with water from

the Knights Landing Ridge Cut, supplemented with groundwater from on-site wells.
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Fig 1. Location of Yolo Bypass and important landmarks including Knaggs Ranch.

https://doi.org/10.1371/journal.pone.0177409.g001
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The study year 2012 was relatively dry with no Sacramento River overflow into Yolo Bypass.

This provided an opportunity to examine the potential for managed inundation of agricultural

lands to improve rearing conditions for young salmon. Previous studies have reported on

the successful use by juvenile salmon of Central Valley floodplain habitats inundated during

natural flood events [10, 11]. We hypothesized that farm fields intentionally inundated during

winter using water from irrigation canals could provide similar aquatic habits to natural flood-

plains where salmon growth, condition, and survival would all be relatively high. Second,

we predicted that different agricultural habitat types in the field would result in differential

growth, condition, or survival.

The two ha field (Fig 2) contained four substrate types: newly ploughed soil (disced), rice

stubble cut to an average of 5 cm (low stubble), rice stubble cut to a length of 35 cm (long

stubble), and annual herbaceous vegetation (fallow). Two 3 x 4.5m enclosures were placed

on each substrate type (eight total) so that fish could be recaptured in order to compare sub-

strate-specific growth rates. Enclosures were walled with 1.2 m high extruded plastic fencing

(3 mm opening mesh) trenched into the soil and open to the sky. Enclosures were haphazardly

placed along a depth gradient in the field from 23 cm to 69 cm (Fig 2). Water was gravity fed

into the field at its southwestern corner and drained on its eastern side. Both inlet and outlet

were screened with the same material as the enclosures. Flow rates fluctuated according to

water elevation in the irrigation supply canal, ranging from 0 to 0.08 cubic meters per second.

During the course of the experiment, fish could have escaped on three occasions: once erosion

Fig 2. Map of agricultural substrates in the approximately two-hectare experimental field. Shading represents different agricultural substrates.

Background matrix (white) was short stubble. Arrows represent direction of water flow.

https://doi.org/10.1371/journal.pone.0177409.g002
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caused a small opening beneath the inlet fish screen and twice waves generated by high winds

breached small portions of the levee.

Water temperatures were recorded at 10-minute intervals using Onset HOBO loggers

(Bourne, Mass., USA) installed within the field directly adjacent to the inlet and outlet. Dis-

solved oxygen, electrical conductivity, pH and turbidity were measured with a YSI multi-

parameter sonde every 1–3 days.

Source and sampling of Chinook salmon

Juvenile Chinook salmon were reared in winter and early spring in a post-harvest 2-hectare

rice field (Fig 2). Approximately 10,218 juvenile fish, averaging 48 mm and 1.1 g (n = 50), were

planted into the inundated field on January 31, 2012 for an initial density of 5,000 fish/hectare

(0.5 fish/m2). These densities were comparable to prior observations of wild fish during natural

flood events in Yolo Bypass [26]. Fish were removed on March 12, 2012. All fish were obtained

from the Feather River Hatchery, where their adipose fins were clipped and tagged using half-

length decimal coded-wire tags (Northwest Marine Technology, Inc., Washington) to identify

them as a unique group. Fish were transported to the experimental site using a fish transport

truck equipped with aerators.

Two hundred and ninety-nine fish were implanted with 8 mm passive integrated transpon-

der (PIT) radio frequency identification tags (Biomark, Boise Idaho, USA) at the field site,

allowing us to track performance of individual fish. One hundred thirty-nine PIT-tagged fish

were released into the flooded field to swim freely (mean fork length 48.7 ± 0.2mm and weight

1.10 ± 0.01 g), while the remaining 160 PIT-tagged fish were placed into the eight enclosures

(mean fork length 47.7 ± 0.2mm and weight 1.10 ± 0.07 g)–two enclosures per habitat type, 20

fish per enclosure. Enclosure stocking density was 1.5 fish/m2.

Enclosures allowed reliable recapture of individual salmon in order to track and compare

individual growth rates across depth and substrate. Parallel biweekly measurements of free-

swimming PIT-tagged fish captured via beach seine provided an experimental control to

examine whether the effects of rearing in enclosures (foraging efficiency, stocking density,

etc.) substantially altered growth rates. Fish in enclosures were recaptured every two weeks for

the six-week duration of the study using Seine nets. After 42 days, the field was drained into a

perennial channel that connects to the Sacramento River (Fig 1). Fish were captured in a mesh

trap and counted as they exited the field. A subsample of 50 fish without PIT tags and all PIT-

tagged fish were measured for fork length (mm ± 1) and weighed using an Ohaus Scout Pro

field balance (g ± 0.01). Weights were taken with the scale placed on level ground in a closed

clear plastic box to minimize measurement error caused by wind or motion.

Zooplankton samples

To assess the zooplankton community in the experimental field, zooplankton net tows were

conducted at four randomly assigned locations within the field. At each location a 30 cm diam-

eter, 153 μm zooplankton net attached to five meters of rope was thrown the full five-meter

distance and retrieved four times. One throw in each of the cardinal directions. Zooplankton

density was calculated as the number of individuals per cubic meter of water sampled where

sample water volumes are equal the area of the mouth of the net multiplied by the distance

towed. Sampling was performed on February 14 and 27. All samples were preserved in a solu-

tion of 95% EtOH. Due to the density of crustaceans within the zooplankton samples sub-sam-

pling was employed. Samples were rinsed through a 150 μm mesh and then emptied into a

beaker. The beaker was filled to the desired volume, depending on the number of individuals

within the sample, and then sub-sampled with a 1 mL large-bore pipette. If densities were still
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too great for enumeration, the sample was divided using a Folsom zooplankton splitter. The

volume and number of aliquots removed was recorded and used to obtain total estimates of

zooplankton. Zooplankton samples were sorted until more than 300 individuals were counted.

Zooplankton were enumerated and identified with the aid of a dissecting microscope at

four times magnification. Zooplankton were identified to order or family using keys from per-

tinent ecological literature [32, 33].

Stomach contents

At the end of the study period, three fish per enclosure and 10 free-swimming fish were col-

lected for diet analysis. Fish were euthanized in the field via directed concussive impact to cra-

nial foci (as per UC Davis animal care protocol #17137) and immediately placed on ice to be

utilized for subsequent stomach content analysis. Collected samples were kept in a freezer at

UC Davis at -10˚C until being thawed for analysis, at which time stomachs were removed and

the contents were emptied into water filled slide trays. The contents were identified and enu-

merated as explained in the zooplankton methods section above.

Statistical analysis

Apparent growth rate of free-swimming (non PIT-tagged) fish was calculated as the difference

of sample means for both lengths and weights taken on the day fish were planted (n = 50) and

when the field was drained (n = 98). Individually marked (PIT tagged) fish were analyzed by a

repeated measures analysis. Post hoc comparisons were performed using the Tukey-Kramer

method for multiple testing. Statistical significance was declared at the 0.05 level. All statistical

analysis was done in JMP pro v. 10.0.2 (SAS Institute Inc.). Relation of length to weight is

reported as Fulton’s index of body condition (K), calculated as 100,000 times weight in grams

divided by the cube of fork length in mm [34].

Ethics statement

All necessary permits were obtained for the described field collections and experiments (Cali-

fornia Department of Fish and Game Scientific Collecting permit # SC-12677). This study was

carried out in accordance with the protocol approved by the Institutional Animal Care and

Use Committee of the University of California at Davis (permit #17137).

Results

Physical conditions

Water temperatures were highly variable. This was expected based on the large area of shallow,

low-velocity habitat. During certain periods, the outlet was colder than the inlet by as much as

1–2˚C, likely due to evaporative cooling from periodic high winds (Fig 3). Temperatures dur-

ing the study were within suitable limits for Chinook salmon [35].

Turbidity remained high and variable throughout the study period, likely due to fine sedi-

ments remaining in suspension due to water turbulence generated by wind. Readings near the

outlet of the field ranged from as low as 30 to as high as 837 NTU during short-term spikes

(Fig 3). Dissolved oxygen remained high throughout the study with occasional spikes, also

likely attributable to mixing driven by strong winds (Fig 3).

Zooplankton

Cladocerans were the most abundant taxa in the zooplankton community during both sample

periods (Fig 4) with densities of 4,511 individuals/m3 on February 14th and 4,150 ind./m3 on
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Fig 3. Water quality and wind speeds for the duration of the 2012 study. (a) Turbidity and Dissolved Oxygen, (b) Inlet and Outlet

Temperatures, and (c) Wind Speed.

https://doi.org/10.1371/journal.pone.0177409.g003
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February 27th (n = 4 per sampling period). Copepods (including both copepodids and adults)

were the second most abundant taxa with densities of 4,017 ind./m3 during the first sample

period and 1,903 ind./m3 during the second. Ostracods densities dropped between the two

sample periods from 1,603 ind./m3 to 311 ind./m3. Rotifers densities ranged from 1,147 ind./

m3 on the 14th of February to 163 ind./m3 on February 27th.

Stomach contents

Cladocerans comprised 92% of stomach contents of free-swimming fish sampled on Feb. 24th

(n = 6), 90% for free-swimming fish (n = 29) collected on March 13th and 87% for enclosure-

reared fish (n = 48) collected on March 13th (Fig 4). Ostracods, copepods and dipterans (in

descending order of abundance) compromised the remaining proportion of taxa found in

salmon stomachs (Fig 4).

Growth of Free-swimming fish

Upon completion of the 42-day experiment, the mean length and weight of free-swimming

PIT-tagged fish were 78.0 ± 0.5 mm (all variances expressed as standard error) and 5.74 ± 0.11

g, respectively (n = 50). These values represent mean growth rates of 0.70 ± 0.01 mm/d and

0.11 ± 0.01 g/d. Fulton’s condition factor was 1.21 ± 0.01. An unknown number of fish

escaped. Consequently, estimates of survival during the study period could not be derived. Of

the approximately 10,218 fish stocked into the study area, 5,835 (~57%) were recovered.

Apparent growth of free-swimming fish (not PIT-tagged) was 0.76 ± 0.01 mm/d (n = 50).

Growth of enclosure-reared fish

One hundred and thirteen fish were recovered from enclosures but weight data was corrupted

by scale malfunction in two instances so that only 111 could be used in weight calculations.

Fig 4. Proportion of zooplankton taxa found in (from left to right) the water column of the flooded rice

field on February 14th (n = 4), Feb 27th (n = 4), the stomach contents of free-swimming juvenile

Chinook salmon collected on Feb. 24th (n = 6) and March 13th (n = 19) and the stomach contents of

enclosure-reared (e) juvenile Chinook salmon collected on March 13th (n = 48).

https://doi.org/10.1371/journal.pone.0177409.g004
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Mean length and weight of enclosure-reared fish at study’s end were 75 mm ± 0.3 (n = 113),

and 5.05 ± 0.07 g (n = 111), respectively, representing mean growth rates of 0.68 ± 0.01 mm/d

(n = 113), and 0.10 ± 0.00 g/d (n = 111). Growth rates varied significantly between enclosures

(length, P< 0.01; weight, P < 0.01) and substrate treatment (length, P < 0.01; weight, P <

0.01). Tukey post hoc revealed these effects to be driven by poor growth performance in enclo-

sures one (low stubble) and three (long stubble) (Fig 5). Mean Fulton’s condition factor was

1.18 ± 0.01 and was not significantly different across substrates (P = 0.09) or by enclosure

(P = 0.12).

Discussion

Prior to development, Central Valley floodplains were regularly inundated multiple times a

year and stayed wet for prolonged periods. In contrast, modern bypass floodplains are de-

signed to inundate only during large flood events and are engineered and graded for rapid

Fig 5. Growth rates (mm/d, g/d) of juvenile Chinook salmon across the experimental enclosures. Dotted line represents mean value for all

enclosures.

https://doi.org/10.1371/journal.pone.0177409.g005
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drainage, dramatically reducing inundation duration compared to natural conditions. Man-

aged inundation of winter fields appears to mimic the natural prolonged residence times and

hydrologic patterns under which Central Valley salmon stocks evolved and to which they are

adapted. Creation of an artificial flood on a managed agricultural floodplain appears to have

supported a robust aquatic food web and provided floodplain habitat conditions conducive to

rapid growth of juvenile salmon.

While this study demonstrates the potential to reconcile management of agricultural work-

ing landscapes with recovery of Chinook salmon populations, the results do not detract from

the need to restore suitable natural (i.e., non-agricultural) off-channel salmon habitats wher-

ever feasible to maintain life history diversity. Considerably more work is needed to develop

specific management strategies that increase floodplain benefits to juvenile Chinook salmon.

Examples of issues to be resolved in the future include: 1) improving salmon floodplain access

by increasing connectivity between floodplains and rivers; 2) evaluating use of water retention

infrastructure to extend the duration of flood events; 3) determining habitat types that maxi-

mize food web production, salmon growth, and survival; 4) determining whether some man-

aged conditions could create adverse water effects or enhance predation; and 5) determining

how all four Central Valley runs of wild Chinook salmon, steelhead (O. mykiss) and native cyp-

rinid minnows can benefit from floodplain management.

The great preponderance of growth studies of juvenile salmon in California have been con-

ducted on fish reared within the river channel (S1 Table). While the growth of juvenile Chi-

nook salmon in this study are among the most rapid ever recorded in the Central Valley (see

S1 Table for comparisons among other studies), they are similar to the few other studies that

have documented floodplain-specific growth. The mean growth rate of free-swimming fish in

our study (0.70 ± 0.01 mm/d) falls in between those recorded during natural flooding events

on the Yolo Bypass in 1998 (0.80+/-0.06 mm/d) and 1999 (0.55+/-0.06 mm/d). However,

because these studies relied on recapture of individuals downriver in the San Francisco Estuary

at Chipps Island, the relative contribution to growth from floodplain and estuarine habitats is

not known [10]. Penned juvenile Chinook salmon in our study grew at 0.68± 0.01 mm/d—

28% faster than those documented by using similar caging methods on complex natural habi-

tats of the Cosumnes River floodplain during a natural flood event [11].

Salmon in this study fed primarily on zooplankton, namely cladocerans. The salmon had a

higher relative abundance of cladocerans in their stomachs (92%) than was found in the zoo-

plankton community in the inundated rice field (52%). Similar results of selective feeding on

large bodied cladoceran species have been found for Chinook salmon in other studies where

salmon entered low gradient lentic environments [36–38]. The cladoceran community in the

experimental field was dominated by large bodied Simocephalus spp. The abundance, large

size, and slow movement of cladocerans may have led to more efficient prey capture than for

other potential prey species such as chironomid midges [39, 40]. Floodplain inundation

recruits terrestrial plant material into the aquatic environment, increases average daily temper-

atures and expands the photic zone, likely creating conditions conducive to increased phyto-

plankton biomass with resultant increases in zooplankton population growth rates, abundance

and densities.

Hatchery fish were used in this study because of the difficulty of obtaining permits for natu-

rally spawned fish. However, increased growth rates are likely to characterize all juvenile sal-

monids, irrespective of hatchery or in-river origin, that gain access to the abundant food

resources on inundated floodplains [41].

The relatively large size and good body condition of floodplain-reared out-migrants (Fig 6

and see Supporting Information for comparisons among other studies) is likely to be particu-

larly important because smaller individuals are more vulnerable to predation and other causes
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of size-dependent mortality [42]. Accumulated fat reserves resulting from floodplain rearing

may increase survival by buffering effects of subsequent poor foraging conditions encountered

during outmigration or upon arrival in the marine environment. Lack of access to floodplain

Fig 6. Representative juvenile Chinook salmon before (top) and after (middle) rearing for six weeks on the Knaggs Ranch experimental

agricultural floodplain on Yolo Bypass. Bottom picture is of a tagged Knaggs fish incidentally recaptured in a rotary screw trap in the Yolo Bypass Toe

Drain 13 miles downstream of the release site four weeks after the termination of the experiment.

https://doi.org/10.1371/journal.pone.0177409.g006
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habitats may also constrain resilience of Central Valley salmon stocks by condensing the range

of outmigration timing [43].

Rearing on Yolo Bypass provides an additional benefit by routing fish into the relatively

high quality habitat in the Northwest Delta and away from migration pathways into the central

Delta where mortality rates increase significantly due to higher predation, poor water quality,

and the possibility of entrainment in large water export pumps [44]. Floodplains are therefore

an important piece of the spatially and temporally diverse mosaic of riverine habitats needed

to facilitate the full range of life-history expression on which resilient, self-sustaining popula-

tions of salmon depend.

Conclusions

Previous studies in the Central Valley found that rearing in complex off-channel habitats dur-

ing natural inundation resulted in rapid growth of juvenile Chinook salmon [10, 11, 13]. How-

ever, very little of this type of habitat remains accessible to juvenile salmon.

Juvenile Chinook salmon given access to Yolo Bypass farm fields managed as winter flood-

plains grew at rates similar to those measured under natural flood conditions [10]. The overall

rapid growth and robust body condition of the salmon in this study demonstrates that winter

flooding of rice fields during the agricultural non-growing season can provide high quality

habitat for rearing juvenile Chinook salmon. These results suggest that changes to agricultural

management and infrastructure that increase the frequency and extend the inundation dura-

tion of bypass flood events could allow floodplain farm fields to serve as large-scale surrogates

for floodplain wetlands, which once were important salmon-rearing habitat.

This study also demonstrates the potential of managing a working agricultural landscape

for the combined benefits to fisheries, farming, flood protection, and native fish and wildlife

species [19, 27, 28]. This relatively balanced outcome allows native species to exploit working

agricultural lands as high-value habitat, thereby reconciling multiple resource management

and wildlife objectives. These results should have broad applicability for the management of

floodplains throughout California and beyond.

Supporting information

S1 Table. Available growth and condition factors for out-migrating Chinook salmon
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S1 Dataset. Fish growth, zooplankton abundance and stomach contents data from experi-
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