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Summary of Coastal Geologic Evidence
for Past Great Earthquakes

at the Cascadia Subduction Zone

Brian E Atwater, Alan R. Nelson, John J. Clague, Gary A. Carver,

David K. Yamaguchi, Peter T. Bobrowsky, Joanne Bourgeois, Mark E. Darienzo,
Wendy C. Grant, Eileen Hemphill-Haley, Harvey M. Kelsey, Gordon C. Jacoby,
Stuart P: Nishenko, Stephen P. Palmer, Curt D. Peterson, and Mary Ann Reinhart

Earthquakes in the past few thousand years have left signs of land-level change,
tsunamis, and shaking along the Pacific coast at the Cascadia subduction zone.
Sudden lowering of land accounts for many of the buried marsh and forest soils at
estuaries between southern British Columbia and northern California. Sand layers
on some of these soils imply that tsunamis were triggered by some of the events
that lJowered the land. Liquefaction features show that inland shaking
accompanied sudden coastal subsidence at the Washington-Oregon border about
300 years ago. The combined evidence for subsidence, tsunamis, and shaking
shows that earthquakes of magnitude 8 or larger have occurred on the boundary
between the overriding North America plate and the downgoing Juan de Fuca and
Gorda plates. Intervals between the earthquakes are poorly known because of
uncertainties about the number and ages of the earthquakes. Current estimates for
individual intervals at specific coastal sites range from a few centuries to about one
thousand years.
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INTRODUCTION

Earthquakes of magnitude 8 or larger—great earthquakes—pose a recently discovered
hazard to the northwestern United States and southwestern Canada. The earthquakes would
occur at the Cascadia subduction zone, an offshore and onshore region over 1,000 km long
where several oceanic plates descend eastward beneath the North America plate (Figs. 1, 2).
Great earthquakes are not part of the region’s documentary history, which begins about A.D.
1790. But as shown in this report, great Cascadia earthquakes have occurred in the past few
thousand years, most recently about A.D. 1700.

The purposes of the report are to summarize coastal geologic evidence about the past
occurrence of great Cascadia earthquakes, and to present broad ranges of magnitudes and
recurrence intervals consistent with this evidence. The report makes only brief mention of
other kinds of evidence that bear on Cascadia’s great-carthquake potential

The reference list is divided into four sections. The first three sections comprise
citations about prehistoric earthquakes at the Cascadia subduction zone: articles in refereed
journals and books (cited with prefix A), other reports (B), and abstracts (C). The fourth
section lists additional cited reports (D). All these references had been released or were in
press by June 1994, when this report was submitted to Earthquake Spectra.

SIGNS OF PAST EARTHQUAKES

The main evidence for prehistoric earthquakes at the Cascadia subduction zone
consists of coastal strata indicative of sudden lowering of land (sudden subsidence). Some of
these strata are associated with evidence for tsunamis, and there is also evidence that seismic
shaking accompanied the sudden subsidence.

SUDDEN SUBSIDENCE

Buried marsh or forest soils record sudden subsidence at more than a dozen estuaries
between Clayoquot Sound, British Columbia, and the Eel River, California (A2, A4, A5, A7,
AlO, Al5, Al6, Al17, A30, A32, A34, A35, B, B4, BI3, BI5, Bi6, B22, B23, Cl, C2, (4, C5,
C6, C18) (Figs. 1, 2). Plant fossils and sediment types show that the burial of one or more
soils at many of the estuaries resulted from at least 2 m of sudden subsidence. The
subsidence allowed tides to deposit mud on land that was previously at or above high-tide
level (Fig. 3a). At least at Willapa Bay and the Copalis River, Washington, such subsidence
records tectonic lowering of the entire landscape, not just shaking-induced compaction of
unconsolidated deposits (A2, A4).

There is little geologic evidence for earthquake-induced uplift along the Pacific coast
at the Cascadia subduction zone except in northern California, where wave-cut platforms have
emerged within the past 10,000 years (A9, AI5, A27, B6, B7, B18, C9, C10, C11). The most
recent uplift accompanied a magnitude-7.1 earthquake on April 25, 1992. This earthquake,
which may have occurred at the boundary between the North America and Gorda plates
(A33), raised 25 km of the Cape Mendocino coast by as much as 1.5 m (A9). Evidence for
uplift in the past 10,000 years has also been reported from Cape Blanco, Oregon (A24), from
western Vancouver Island (A14, A19, Bi4), and from Puget Sound (A8). But recent work
shows that the uplift at Cape Blanco is questionable (C7), and that the uplift on western
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Vancouver Island has been punctuated by earthquake-induced subsidence (A10). The uplift at
Puget Sound accompanied one or more shallow inland earthquakes that did not necessarily
coincide with plate-boundary slip (A4, AS8).

Some parts of the Cascadia subduction zone contain thick bodies of tidal-marsh peat
that preclude sudden subsidence or uplift greater than /2 m in the past few thousand years.
Such peat probably built upward apace with a gradual rise of the sea and (or) a gradual fall of
the land. It has been found along the Strait of Georgia and northern Puget Sound (A18, A25,
B2, B8) and in the seaward part of the Siuslaw River estuary of southern Oregon (A30, A32,
B4) (Figs. 1, 2). The peat shows that sudden coastal subsidence greater than Y2 m extended
neither eastward into the Strait of Georgia and northern Puget Sound (A25, BS8) nor
southward, as an uninterrupted belt of coastal subsidence, into southern Oregon. The thick
peat along the Siuslaw River may mark a lateral margin of such a subsidence belt (A35), or it
may indicate that sudden subsidence in southern Oregon was localized along synclines in the
North America plate (A30, A32).

TSUNAMIS

Some of the buried soils indicative of sudden subsidence are covered by sand layers
suggestive of tsunamis. Such sand layers have been found beneath coastal lowlands in British
Columbia (A10, A1l, A12), Washington (A2, A4, A7, B17, C20, C21), and Oregon (Al16, Al7,
B4, B9, B11, C4, C5, C7). Deposition of the sand probably coincided with subsidence of the
underlying soil; the sand rests rests directly on the soil and is overlain by intertidal mud. In
some cases the sand surrounds growth-position stems and leaves of herbaceous plants that had
been living on the soil before it subsided (A7, A10). The preservation of these plant remains
implies close coincidence between the event that caused the soil to subside and the surge of
water that covered the soil with sand. Such coincidence would be expected of an earthquake
that causes a coast to subside while generating a tsunami in the adjacent ocean (Fig. 3b).

SHAKING

Seismic shaking produced liquefaction features less than 3,000 years old near
Vancouver, British Columbia (A13, A25); along the Washington-Oregon border at the
Columbia River estuary (BI, B20, C15, CI6); about 70 km east of Grays Harbor, Washington
(B20, C12); and near Portland (C22) and Cape Blanco (C7), Oregon. Earthquakes also
appear to have produced liquefaction features probably tens of thousands to hundreds of
thousands of years old in coastal Washington and Oregon (C19); turbidity-current deposits
less than 8,000 years old in deep-sea channels off Washington and Oregon (A1); and enigmatic
bodies of intruded and extruded sand about 1,000 years old at the Copalis River, Washington
(A4). In addition, prehistoric earthquakes probably triggered landslides and subaqueous mass
movements in British Columbia (B3), Washington (A21, A23), and Oregon (B11).

Of the various kinds of evidence for prehistoric shaking at the Cascadia subduction
zone, only the liquefaction features along the lower Columbia River provide strong evidence
that onshore shaking accompanied sudden land-level change along the Pacific coast. These
features, identified 30-60 km inland from the coast, include sand that erupted onto tidal
swamps about 300 years ago at or near a time of sudden subsidence (Fig. 3c) (B, B20, C15).
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Liquefaction features are rare in gravelly alluvium of southwestern Washington (B20,
CI12). Little is known about conditions required to produce liquefaction features in this
material.

EARTHQUAKE MAGNITUDE

GREAT EARTHQUAKES ON THE PLATE BOUNDARY

The boundary between the North America plate and the Juan de Fuca and Gorda
plates is a giant thrust fault with a widely acknowledged but historically unrealized potential
for generating earthquakes of magnitude 8 or larger (D6, D18). This potential has been
inferred geophysically from comparison with other subduction zones (D7, D19) and from
geodetic and heat-flow evidence that the Cascadia subduction zone is accumulating energy
that could be released in future plate-boundary earthquakes (D5, D9, D13, D20).

Great plate-boundary earthquakes probably account for most, but not necessarily all,
of the prehistoric land-level changes, tsunamis, and shaking mentioned above. As shown in
the following paragraphs, such earthquakes are compatible with coastal geologic evidence
bearing on the location and size of ruptures, potential amounts of seismic displacement, and
intensity of inland shaking.

Rupture Location

Rupture at the plate boundary provides a simple explanation for sudden coastal
subsidence during the past few thousand years at the Cascadia subduction zone. The plate
boundary should have been active during this interval because it accommodates present-day
convergence between plates (D7). A plate-boundary rupture could have caused sudden
coastal subsidence by elastically thinning the North America plate (A2, A16, A20); such
thinning explains the sudden subsidence, during the great 1964 Alaska earthquake, of a largely
coastal area 800 km long and 100 km wide in south-central Alaska (D7, DI15). Plate-
boundary rupture also could have caused localized subsidence along shallow folds and faults in
the North America plate (A15, A20, A26, A30); the 1964 earthquake was accompanied by
movement on upper-plate structures at the Gulf of Alaska (D15).

Rupture Area

Because a magnitude-8 earthquake ruptures an area of about 10,000 km® (D23), a
plate-boundary rupture 50 km wide and 200 km long at the Cascadia subduction zone would
probably correspond to an earthquake of this size. Likewise, a magnitude-9 Cascadia
earthquake would probably entail plate-boundary rupture averaging 100 km wide along the
1,000 km between central Vancouver Island and Cape Mendocino (D7, D19).

Rupture Width. Geophysicists have estimated that seismic ruptures at least 40-100
km wide could occur at the boundary between the Juan de Fuca and North America plates.
These estimates are based on geodetic and heat-flow data (D5, D9, D13, D20).

Ruptures tens of kilometers wide are consistent with the extent of sudden subsidence
measured perpendicular to the central part of the Cascadia subduction zone. The width of
rupture during a great subduction-zone earthquake can resemble the extent of the resulting
subsidence measured perpendicular to the subduction zone, as shown by historical earthquakes
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in Japan (D1), Chile (D2, D16), and Alaska (DI15). At the Cascadia subduction zone, sudden
subsidence about 300 years ago extended east-west, perpendicular to the subduction zone, for
no less than 35 km at Grays Harbor, 25 km at Willapa Bay, and 30 km at the Columbia River
(A4, B1). These east-west distances appear limited by the extent of tidal wetlands suitable for
recording the subsidence, not by the extent of the subsidence itself.

Ruptures tens of kilometers wide also accord with the scarcity of evidence for
earthquake-induced uplift along the Pacific coast of Washington and Oregon. In the 1980s
this scarcity, along with modest uplift of marine terraces tens of thousands to hundreds of
thousands of years old, led some earth scientists to conclude that great Cascadia earthquakes
may not have occurred in the past 10,000 years or more (A37, A38, C23). However, modern
great earthquakes at some subduction zones have been accompanied by little or no coastal
uplift (A3) and have occurred in areas of long-term net uplift as slow as at the Cascadia
subduction zone (A28). No widespread coastal uplift accompanied the great 1960 earthquake
in southern Chile, which instead caused sudden subsidence along nearly 1,000 km of Chilean
coast above the landward part of a seismic rupture 100-150 km wide (D2, D16).

Rupture Length. Geologic dating of prehistoric sudden subsidence provides a direct
but imprecise measure of the lengths of past plate-boundary ruptures at the Cascadia
subduction zone. Such dating lacks the precision to prove that any single rupture extended
along hundreds of kilometers of coast. No geologic dating is likely to discriminate between a
magnitude-9 rupture and a series of adjacent, shorter ruptures if the shorter ruptures are as
nearly coincident as the pair of magnitude-8.5 earthquakes that occurred 32 hours apart along
a Japanese subduction zone in 1854 (D). But the most precise of the dating at the Cascadia
subduction zone could disprove the occurrence of a long rupture by showing differences in
age indicative of short ruptures several decades apart, such as the subduction-zone
earthquakes of magnitude 7%2-8 off Columbia and Ecuador in 1942 and 1979 (D11, D12).
Failure to detect such differences has strengthened the great-earthquake intepretation of
coastal subsidence that occurred at the Cascadia subduction zone about A.D. 1700.

Geologic dating of the most recent time of widespread sudden subsidence at the
Cascadia subduction zone shows that a single rupture, or a brief series of ruptures, extended
along hundreds of kilometers of the Pacific coast about A.D. 1700. Such extensive rupture
best explains the timing of tree death in forests killed by tidal submergence soon after sudden
subsidence (Fig. 3a) at the Copalis River and Willapa Bay, Washington; the Nehalem River,
Oregon; and Humboldt Bay, California (Figs. 1, 2). High-precision radiocarbon dating of
these subsidence-killed trees shows that the most recent sudden subsidence at Willapa and
Humboldt Bays, and probably also at the Copalis and Nehalem Rivers, occurred between A.D.
1680 and 1720 (A6, C2, C14). Less-precise radiocarbon dating of herbaceous plants killed
soon after subsidence (Fig. 3a) shows that the most recent subsidence postdates A.D. 1650 at
the six estuaries where such plants have been dated (Figs. 1, 2): the Copalis River and Willapa
Bay, Washington; and Netarts Bay, and the Nehalem, Salmon, and Coquille Rivers, Oregon
(C14). The most recent subsidence has also been dated to the late 1600s or early 1700s by
matching of ring-width patterns in subsidence-killed trees at Grays Harbor, Willapa Bay, and
the Copalis and Columbia Rivers, Washington (C24).

Numerical ages have provided little basis for estimating rupture lengths during earlier
times of sudden subsidence at the Cascadia subduction zone. In most cases the ages have
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geologic and analytical uncertainties that could obscure differences as large as several hundred
years.

Rupture lengths at the Cascadia subduction zone have been estimated indirectly
through comparison with other subduction zones and speculation about rupture-limiting
segmentation. Reliance on such evidence led to a recent proposal that maximum rupture
length at the Cascadia subduction zone is probably close to 250 or 450 km (D6).

Seismic Slip

Intervals between the geologically recorded earthquakes imply the release of many
meters of accumulated strain. The intervals estimated from coastal geology are mainly on the
order of centuries (see “Earthquake Recurrence” below), and about three centuries have
elapsed since the most recent of the great earthquakes. With convergence at the Cascadia
subduction zone averaging about 4 m per century (D17), three centuries of convergence yields
more than 10 m of potential seismic slip, five centuries about 20 m. By comparison, slip
during the 1960 Chile and 1964 Alaska earthquakes averaged about 20 m (D2, D15, DI16).

Although recurrence intervals measured in centuries thus imply large amounts of
seismic slip, the actual seismic slip at the Cascadia subduction zone should be smaller than the
product of convergence rate and recurrence interval. Part of the plate convergence at the
Cascadia subduction zone is probably consumed by permanent deformation within the North
America plate (A20), and part might be accommodated by aseismic slip at the plate boundary
(D10, D14).

Inland Shaking

Seismologists have estimated levels of ground motion that could result from great
Cascadia earthquakes. The estimates depend on analogy with historical earthquakes at other
subduction zones and on speculation about rupture location, rupture dimensions, and ground-
motion attenuation at the Cascadia subduction zone (D3, D4, D8, D24).

The estimated ground motions have been tentatively compared with geologic evidence
for and against prehistoric shaking along the lower Columbia River. This evidence was found
consistent with ground motion from an offshore plate-boundary earthquake no smaller than
magnitude 7 (B10, B20, C16). Magnitude 7 is a lower bound because liquefaction along the
lower Columbia River may have occurred in denser sand (B1) and may have extended farther
inland (C22) than was assumed in the comparisons.

EARTHQUAKES ON FAULTS IN THE NORTH AMERICA PLATE

Earthquakes of magnitude 7 on faults within the North America plate provide an
alternative explanation for some of the prehistoric land-level change in northern California
(A15). There, nearshore and onshore faults have slipped within the past 10,000 years, and
coastal land has subsided suddenly within the past few thousand years along synclines that
approximately parallel youthful faults. Moreover, sudden subsidence along a syncline at
Humboldt Bay occurred within the same few-century interval as did surface-rupturing
earthquakes on the nearby Little Salmon fault, on three different occasions in the past 2,000
years (Al5, B5, B6, B7, B23). If the Little Salmon fault broke along its entire 100-km length,
most of which is offshore (Fig. 1), the rupture area could have been about 1,000 km2 (A15).
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Correlations between earthquake magnitude and rupture area (D23) suggest that such an
earthquake would have had an approximate magnitude of 7.

Earthquakes from the North America plate may also explain some of the sudden
subsidence farther north. The North America plate off the Pacific coast of Oregon and
Washington contains shallow faults on which slip has occurred during the past 10,000 years
(A20, B12, C3, C8, C25). Several of the Oregon estuaries with evidence for sudden
subsidence are located along the eastward projection of such offshore structures (A20, C8).
In addition, sudden subsidence during the past few thousand years at Yaquina and Coos Bays,
Oregon (A17, A30, A32, B4, C1, CI8) has occurred along synclines near and parallel to faults
that have probably slipped within the past 100,000 years (A26 , B2I). As noted above,
localization of subsidence along these synclines is among possible explanations for the thick
tidal-marsh peat at the intervening Siuslaw River (A30, A32).

EARTHQUAKE RECURRENCE

Intervals of hundreds of years and, possibly, more than a thousand years, have
separated successive earthquakes at specific sites along the Cascadia subduction zone (A4, A5,
AlS5, Al6, A30, A32, A34, B11, BI9, B22, B23, C4). The estimated intervals are imprecise
because of two kinds of problems:

(1) The number of earthquakes recorded geologically may differ from the number
that actually occurred. An overestimate could result where some buried soils record non-
seismic events, such as breaching of tide-restricting bars, changes in tidal-inlet shape, changes
in sediment supply, or rapid sea-level rise (A30, A32, C13). Such origins for buried soils may
complicate the earthquake-recurrence record at many of the estuaries; they need evaluation
through detailed studies of sediments and fossils (A22, A25, A31, BI3, CI3). An
underestimate could result where a buried soil has disappeared through oxidation (A4, A5) or
erosion (A30), or where a soil escaped burial through lack of tidal submergence (A4) or
sediment supply (430, A32).

(2) Errors in dating can approach or exceed the lengths of time between the inferred
earthquakes. The total uncertainty in the age assigned to an earthquake can include errors in
radiocarbon analysis, errors in converting radiocarbon age to calendric age, and errors in
estimating the difference between the age of an analyzed sample and the time of the
earthquake. At the Cascadia subduction zone the sum of such errors commonly amounts to
hundreds of years (A4, All, A29).

Such problems with the counting and dating of prehistoric earthquakes cast doubt on
reported geologic estimates of average recurrence intervals for great Cascadia earthquakes.
The reported estimates, which are between 400 and 600 years (A1, C17, D6), have unstated
uncertainties that may total many hundreds of years.
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