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STATISTICAL EXAMINATION OF RESERVOIR-INDUCED SEISMICITY

By GREGORY B. BAECHER AND RALPH L. KEENEY

ABSTRACT

The two purposes of this work are to better understand the correlates of
reservoir-induced seismicity (RIS) and to develop a model for predicting RIS
from reservolr charactenstics. Data from 29 reservoirs associated with RIS and
205 reservoirs not associated are analyzed using statistical discriminant analy-
sis. These analyses show significant correlations between RIS and reservoir
depth and between RIS and reservoir volume, but lesser correlations of RIS with
stress and with geology. Data on fauit activity are too few to allow inferences of
correlation.

A prediction model based on discriminant analysis and calibrated by the data
provides a rough estimate of the probability of RIS for specific sites, This model
does not allow precise estimates, but it does distinguish between probabilities
of RIS In the range of, say 30 per cent from those of 5 per cent. The base-rate
frequency of RIS, knowing nothing more than that reservoir depth exceeds 92 m
(deep and very deep reservoirs), is about 14 per cent. Given the most favorable
set of reservoir attributes, the present model would reduce this probability to
about 3 per cent. Given the least favorabie, the model would increase this
prabability to almost 70 per cent. The standard deviation of the larger estimates
is on the order of 12 per cent (absolute).

1. INTRODUCTION

There has been increasing interest over the past decade in the occurrence of
reservoir-induced seismicity (RIS) (e.g., Milne, 1976), and during the past few years,
a large data base has been gathered (Packer et al., 1979). This data base has been
carefully assembled to identify those reservoirs generally agreed to have induced
seismic activity, and to specify characteristics of those reservoirs based on design
documents, individual inspection, or published sources to associate geological and
engineering characteristics with them. To the date of the present analysis, this
compilation has required several person-years of effort.

Professional interest has focused recently on attempts to understand RIS through
modeling. That is, by reasoning from first principles, geomechanics has been used to
explain RIS and in the future may be used to predict its occurrence. A complemen-
tary way to study the phenomenon is empirical, by analyzing the historical record.
Few attempts in this second direction have been reported that systematically
evaluate existing data and address the significance of inferences drawn from the
data. The present study was an attempt to do so. Specifically, the objectives of the
study were

1. to better understand the phenomena of RIS through analysis of the historical

record, and

2. to develop a model to predict the likelihood of RIS occurrence for specific sites.
No one approach to analyzing RIS provides a definitive answer. The intent of the
present work is to complement other approaches and to provide one more step
toward a rational procedure for dealing with a difficult problem. As with any
empirical analysis, conclusions reported here are based on the current historical
data base.

563

1



564

e v a@E-

GREGORY B. BAECHER AND RALPH L. KEENEY

This paper is organized in four subsequent sections. Section 2 describes the data
base. Section 3 presents the data analysis. Section 4 presents three preliminary
models to predict RIS, and section 5 discusses the quality of the data.
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2. THE DAaTAa BASE

There are approximately 11,000 reservoirs in the world. Because of the effort
necessary to collect data on 11,000 reservoirs, the study focused on three subsets:
deep and very deep reservoirs; very large reservoirs; and reservoirs with reported
cases of RIS (Figure 1). The reservoirs were characterized with respect to five
attributes: depth; volume; stress state; presence of active faulting; and geology.
These attributes were chosen because they are thought to correlate with RIS, and
because data are usually available to classify a particular reservoir. Other attributes,
like fluid pressures at depth, were not used because they cannot be evluated from
commonly existing records.

Attribute definitions are shown in Table 1. Depth and volume are self-explanatory.
Stress refers to the orientation of principal stresses. Extensional means the
minor principal stress is vertical; compressional means the major principal stress is
vertical; shear means the intermediate principal stress is vertical. Faulting refers to
whether active faulting was or was not observed in the vicinity of the reservoir prior
to reported RIS. Geology refers to predominant local formations, sedimentary,
igneous, or metamorphic. The procedure for classifying individual dams and an
extended discussion of the documentary support are given by Packer et al. (1979).

TABLE 1
DEFINITION FOR RESERVOIR ATTRIBUTE STATES
State
Attnibute
1 2 3 4
Depth d: very deep d: deep d; shallow d, not known
(over 150 m) (92 to 150 m) (less than 92 m)
Volume v very large v; large vy small v; not known
fover 100 X (12 to 100 x {less than 12 X
10°m’) 10°m") 10°'m*)
Stress State 8): extensional s: compressional 8y shear s; not known
Fault Actiity /i active fault f: no actwve faults f; not known
present present
Geology & =sedimentary g, metamorphic £ 1gneous &4 not known

The abbreviations used 1n the tables are: d, depth; v, volume; s, stress state, [, fault activity, and g,
geology.

Classification of seismic events as reservoir induced was made only after study of
individual records. Because these records are at times incomplete, and at times
conflicting, each classification was reviewed by a project team of geologists, seis-
mologists, and geotechnical engineers. The reservoirs classified in this study as
having induced seismicity and used in subsequent statistical analyses, are listed in
Table 2. Reservoir-induced events of Richter magnitude 3 or greater were considered
macroseismic; those less than 3 were considered microseismic.

3. ANALYSIS OF THE DATA

The data were first examined to determine relationships between single attributes
states and the occurrence of RIS. In particular, two data sets were studied: the set
of reservoirs that was deep, very deep, or very large; and the set of reservoirs that
was only deep or very deep. The first set contained 29 instances of RIS and 205
instances of no RIS; the second contained 28 instances of RIS and 172 instances of
no RIS. Numbers (and frequencies) of occurrence of attribute states and sampling
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variances are shown in Table 3 for these two data sets. For instance, in the first data
set 10 of the 29 reservoirs with RIS were categorized as very deep (34 per cent).

For the set of 234 reservoirs that are either deep, very deep, or very large, the
frequency of RIS given no specific knowledge of the reservoir itself is 0.12. This is
simply the number of RIS cases (29) divided by the total number of such reservoirs.
For the second data set, the corresponding frequency is 0.14.

For each attribute taken individually, the frequencies of various states are differ-
ent for the RIS and non-RIS reservoirs. Assuming the present data are a sample of
all possible reservoirs, the best (maximum likelihood) estimates of the frequencies
for all possible reservoirs are given in Table 3. Let “p” be the frequency of a

TABLE 2

RESERVOIRS CLASSIFIED A8 HAVING INDUCED SEISMICITY THAT
WERE USED IN THE STATISTICAL ANALYSIS

1. Akosomba Main, Lake Volta Ghana

2. Almendra Spain

3. Benmore New Zealand
4. Blowering Austraha
5. Canelles Spain

6. Contra, Lake Vogorno Switzerland
7. Emosson Switzerland
8. Eucumbene Austraha
9. Grancarevo Yugoslavia
10. Hoover, Lake Mead USA

11 Jocassee USA

12 Kanba Zambia/Rhodesia
13. Keban Turkey

14. Koyna, Shivan Sagar Lake India

15. Kremasta Greece

16 Kurobe Japan

17. La Cohilla Spain

18. Manicougan 3 Canada

19. Monteynard France
20. Nurek USSR
21. Oroville USA

22. Pieve d1 Cadore Italy

23. Schlegeis Austna

24, Shasta USA
25. Talbingo Australia
26. Vajont Italy
27. Vouglans France
28 Warragamba, Lake Burragorang Australia
29 Xinfengjiang China

particular attribute state for individual reservoirs. Because of statistical fluctuation
in data, estimates of the parameter p may vary from one data set to the next.
Adopting a Bernoulli model, the sampling variance of these fluctuations is p (1 —
p)/n, where “n” is the number of data in the set. Thus, for example, because 10 of
the 29 RIS reservoirs were very deep, the best estimate of p, denoted 3, is 0.34, and
hence, of 1 — p, is 0.66. The variance V[p] associated with p is (0.34)(0.66)/29 =
0.0077 so that the standard deviation, which is the square root of the variance, is
0.088. Strictly, this means, that if 34 per cent of all reservoirs inducing seismicity
were very deep, then the expected frequency in our sample would also be 34 per
cent, but this might vary with a standard deviation of 0.088. More roughly, if data
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TABLE 3
RELATIONSHIPS OF ATTRIBUTE STATES TO RIS
State
No of Reservours
1 2 3

(a) Likelihoods of Attribute States for RIS and Non-RIS—Independent Case*

Ris Data
Depth 29 10 (0.34) 18 (0.62) 1 (0.04)
Volume 29 7{0.24) 11 (0.38) 11 (0.38)
Stress State 29 4 (0.14) 18 (0.62) 7(0.24)
Fault Activity 7 7 (1.00) 0 (0.00)
Geology 28 13 (0.46) 8 {0.29) 7 (0.25)
Non-RIS Data
Depth 204 27 (0.13) 144 (0.71) 33 (0.16)
Volume 205 52 (0.25) 36 (0.18) 117 (0.57)
Stress State 203 34 0.17) 138 (0.68) 31 (0.15)
Fault Activity 6 4 (067 2 (0.33)
Geology 165 57 (0.35) 64 (0.39) 44 (0.26)
(b) Likelihoods of Attribute States for RIS and Non-RIS—Independent Case}
RIS Data
Depth 28 10 (0.36) 18 (0.64) 0
Volume 28 6 (0.22) 11 (0.39) 11 (0.39)
Stress State 28 4(0.14) 18 (0.64) 6 (0.22)
Fault Activity 8 6 (10) 0 (0.00)
Geology 27 13 (0.48) 8 (0.30) 6 (0.22)
Non-RIS Data
Depth 171 27 (0.18) 144 (0.84) 0
Volume 171 18 (0.11) 36 (0.21) 117 (0.68)
Stress State 171 33 (0.19) 109 (0.64) 29 {0.17)
Fault Activity 6 4 (0.67) 2 (0.33)
Geology 143 44 (0.31) 60 (0.42) 39 (0.27)

(c) Sampling Vanance of Attribute Likelihoods—Independent Case}
RIS Data (X 10°%)

Depth 7.7 (8.2) 8.1 (8.2) 1.0
Volume 6.3 (56.9) 8.1 (85) 8.1 (8.5)
Stress State 4.2 (4.3) 8.1(8.2) 6.3 (6.1)
Fault Activity - —
Geology 89 (92 74 (78) 6.7 (6.4)
Non-RIS Data (x10~%)
Depth 0.66 (0 78) 1.0 (0.78) 0.66
Volume 0.92 (0.55) 0.72 (0.97) 1.2 (1.9)
Stress State 070 (0.90) 11(L3) 0.63 (0.85)
Fault Activity 37.0 (37.0) 37.0 (37.0) —_
Geology 1.4 (1.5) 14 (1.7) 12(1.4)

* This section summarizes the deep, very deep, or very large reservoir data. The frequency of reservoirs
having an attribute state is in parentheses,

t This section sumrmarizes deep or very deep reservoir data only The frequency of reservoirs having
an attribute state 1s in parentheses

% Numbers in parentheses in this section refer to deep or very deep data set. The others refer to the
deep, very deep, or very large data set.

1
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were available on a very large number of reservoirs, there is approximately an 85
per cent (for large sample sizes, the sampling distribution of 5 approaches normality,
and therefore, probabilities can be taken from tables of the normal distribution)
chance that the frequency of very deep reservoirs among the RIS set would be
between 0.34 minus one standard deviation and 0.34 plus one standard deviation (or
from 0.25 to 0.43).

Sampling variances for the data of Table 3, a and b, are shown in c. The variances
are uniformly smaller for the non-RIS set. This simply reflects the difference in
sample sizes. Because the present analysis is based on techniques of classical
estimation, empty data cells yield estimates where p equals zero. For example, of

TABLE 4
DaATA To EXAMINE ATTRIBUTE CORRELATIONS”
RIS Non-RIS
d 4 3 3 d 1111 6
d 7 83 d: 106 26 13
da ——1 dg — — 33
Vs Uz U vy Uz Ui
d 3 6 2 d 4 17 b
d 3 13 2 d; 26 91 28
d 1 00 d 2 29 1
8 8 & 8 8 &
v 21 4 nm 11 9 17
V2 3 4 4 U2 5 11 16
vu 2 3 6 vy 28 4 25
8 8 & & & &
&8s 2 3 2 $5 2 4 5
2 9 6 3 52 79 19 40
8 0 2 2 8 16 13 5
s R 0 v Uz 0
ss 3 2 2 s 13 8 4
2 4 49 8 256 43 43
s 0 2 2 s 5 11 9
& & & T & B &
d 26 3 d 2 12 9
d2 4 3 10 d; 37 48 36
da 1 0 0 da 5 4 13
& & & 8 & &

* Cell frequencies show numbers of reservoirs having paired combi-
nations of attributes.

the RIS sites having data on fault activity, all seven were active (fi). Therefore,
A(f:|RIS) = 0, and V[p] = 0. This is an aberration of the statistical techniques
used. Because of the small sample size, one should be most careful in drawing
conclusions from this circumstance.

Correlations among attributes. Statistical procedures were used to test whether
apparent pair-wise correlations among attributes were significant. For lack of data,
faulting was excluded; thus, correlations of six possible pairs were tested for both
the RIS and non-RIS reservoirs (Table 4).

Table 5 illustrates the procedure using depth and volume for the 28 deep and very
deep RIS reservoirs, since data were not available on all shallow dams. Of these, 18
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are deep and 10 are very deep. Consequently, the estimated frequency of very deep
dams is 10/28, and of deep dams 18/28. Similarly, for this group of 28 RIS cases, the
frequency of very large reservoirs is 6/28, of large reservoirs 11/28, and of small
reservoirs 11/28. Were depth and volume unrelated, the frequency of reservoirs
being both very deep and very large would be 10/28 times 11/28. Multiplying this
times the number of reservoirs (i.e., 28) gives 3.93, the expected number of very
deep and very large reservoirs given no correlation between the attributes. This
number is shown in parentheses in Table 5 beside the original data.

To examine whether there is a correlation, the observed occurrences are compared
to those predicted assuming independence. One way to do this is with a x? goodness-
of-fit test using the statistic

y=-2logy — v

n* I I niy
)

r 8
I n™]] n,™
J

where n,, is the number of occurrences in cell ij of the table, n, and n; are the
number of occurrences along the row i and column j, respectively, and n is the total

TABLE §

ILLusTRATIVE TEST OF INDEPENDENCE BETWEEN T'WO
ATTRIBUTES USING A CONTINGENCY TABLE®

Valume

Uy s th a,

d 4214 3(393) 3(3.93) 10
Depth d; 7(3.86) 8(7.07 8(7.07 18

n 8 11 1 n=128

* The data in each cell is the actual number of reser-
voirs with the corresponding state description. The num-
bers mn parentheses indicate the expected number of res-
ervoms assuming no correlation between depth and vol-
ume,

number of occurrences. Were the attributes independent, the statistic y would be
distributed as a x* distribution with [(r ~ 1)(s — 1)] degrees of freedom, where r and
s are the number of rows and columns, respectively (Kendall and Stuart, 1973).
Thus, the observed value of this statistic can be compared with tables of x? to
determine its probability of exceedance for independent attributes. If the observed
occurrences were very unlikely given independence, one would conclude that the
attributes were in fact correlated.

For depth and volume, given RIS, (he statistic y calculated from the data in Table
5 using (1) is 0.38. There are 2 degrees of freedom associated with this test. From a
x’ table, one observes that x* with 2 degrees of freedom is less than 5.99 ninety-five
per cent of the time. Hence, it is not at all unlikely to obtain a statistic of 0.38 in this
case. Consequently, using this discrete data, one can conclude that depth and
volume are not strongly correlated for the RIS cases.

x° statistics for each attribute pair for both the RIS and non-RIS sets are shown
in Table 6. Associated degrees of freedom are shown in parentheses. Based on these
analysis, the data do not support conclusions of dependence between any attribute

| W —
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pair, given either RIS or non-RIS, with the possible exception of depth-volume.
Even, this latter dependence is only weakly supported in the discrete data.

Unlike the other attributes, data on depth and volume for the 200 deep or very
deep reservoirs were available as continuous variables. Normal regression analyses
were performed to examine whether correlations between depth and volume were
masked by the discrete assignments of Table 1. The results indicate weak correla-
tions in both cases. The correlation coefficient between depth and the logarithm of
volume for the RIS case was 0.07 and for the non-RIS case 0.22. Given the respective
size of the data sets, 28 and 172, only the latter is significant at the 95 per cent level
based on the £ statistics reported in Table 6.

Relationship of microseismicity and macroseismicity at RIS sites. Attribute
differences between sites which have had only microseismicity and those which
have had macroseismicity were investigated using significance tests. Using the data

TABLE 6
TESTS OF INDEPENDENCE FOR ATTRIBUTE PAIRS

¢ Statistics for Discrete Attnbute Combinations®

Depth Volume Stress Faulting Geology
Depth 36 ) 9 — 5.7 (4)
Volume 0.38 (2) 5.7 (4) -— 45 (4) Non-RIS
Stress 0.60 (4} 2.38 (4) —_ 44 (4)
Faulting - - —_ —
Geology 2.7 (4) 0.63 (4) 18(4) —
RIS
RIS Case Non-RIS Case

Correlations of Depth and Volume from Regression Analysis on Confinuous Data

0.07 for 28 reservoirs 0.22 for 172 reservoirs
tzs = 0.36 tin=294

toss2e = 1.706 toss170 = 1.646

Not significant at 95% Significant at 85%

* Degrees of freedom associated with each test is indicated in parentheses beside the associated
statistic. A statistic greater than 9.49 1s significant at the 95 per cent level of confidence for 4 degrees of
freedom, and a statistic greater than 5.99 1s significant at that confidence level with 2 degrees of freedom

in Table 7, the test is based on the squared deviations from expected frequencies
using the statistic

(nuk - nhpxpj)2
nyppy

which, assuming independence, has a x? distribution with 2 ( — 1)(s — 1) degrees of
freedom where r and s are the numbers of rows and columns, respectively, 72, 18 the
number of occurrences in cell zj of data & with & = 1 referring to the macroseismic
data and % = 2 the microseismic data, n, is the number in data table &, n is the total
number in both tables, and
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and

n,
PJ=22_M'

PR

Resulting x? statistics for the associated 8 degrees of freedom are shown adjacent to
the data in Table 7. None of the differences are significant at the 90 per cent
confidence level.

Shallow compared to deep and very deep RIS sites. Attributes associated with
shallow sites reporting RIS and those associated with deep and very deep sites

TABLE 7
DATA AND STATISTICS TO COMPARE MICROSEISMICITY AND MAcRrOSEIsMICITY RIS RESERVOIRS®

Macroseismic RIS Microsesmic RIS s m::tu: 4

d, 1 0 3 dy 311 1004
dz 4 7 3 d; 110
d; 5 2 1 ds 3 20
vy 2 U u Uy U

d 211 d 0 4 1 11.18
d: 29 3 dz 020
ds 2 4 2 d; 1 31
8 8 S3 8 8 &

d 211 d 1 2 2 969
d: 8 3 3 d» 1 01
d) 2 4 2 ds 2 1 2
&5 8 & & & &

vy 3 31 v 001 796
vz 3 4 2 v2 1 30
U3 0 7 3 vs 061
S2 82 & T8 & 8

v 4 1 2 ) 010 964
Us 2 4 3 U2 2 11
v 6 3 1 U 21 4
& & & & & &

8 21 3 83 011 652
82 8 4 2 82 4 1 4
$1 | 2 31 s 010
& B B 8 & &

* Cell frequencies show numbers of reservoirs having pawed combinations of attributes
+ There are 8 degrees of freedom associated with each test A statistic greater than 13 4 15 ssgmificant
at the 90 per cent level and greater than 15.5 is sigmficant at the 95 per cent level.

reporting RIS were also examined for differences. Proceeding as above, x? statistics
for pairs of attributes involving volume, stress, and geology were calculated. Corre-
sponding data tables for the various pairs of attributes are shown in Table 8 with
x* statistics and associate degrees of freedom. The only significant distinction
between shallow RIS and deep/very deep RIS reservoirs was for the volume and
stress pair of attributes. This was significant at the 95 per cent confidence level.
These attributes may also be significantly different for non-RIS reservoirs, but data
on shallow non-RIS reservoirs were not completely available.
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4. A PRELIMINARY MoDEL oF RIS

This section provides an initial model for assessing the probability of RIS given
various attribute states. First, the probability of RIS, given the state of only one
attribute, is examined to give a feeling for the association of different attribute states
and RIS. This information is combined in a model, which assumes probabilistic
independence of the attributes, to calculate the probability of RIS given states of all
the attributes. Because of the correlation between depth and volume implied by
analyses of Table 6, a second model was developed for estimating the probability of

TABLE 8
SHaLLow CoMPARED TO DEEP aND VERY DeEP RIS RESERVOIRS®
Shallow Reservotrs {d)) Deep/Very Deep Reservors (d,; or d.)

Relationship Between Attribute Pairs

8 012 8 2 1 2 x? = 10.55
82 4 21 8 8 3 5 X590 = 134
8 0 21 8; 220

& 82 & & 8 8
U3 3 3 2 va 5 1 3 x?=1732
v 1 21 va 3 3 3 X500 =134
th 0 01 v 4 21

& & & &1 8 &
Y 0 6 2 vs 07 2 x?=2028
vs 310 va 1 6 2 ofes = 155
O 0 01 " 331

8 &8 8 8 8 &

Single Attribute Differences

8 3 4
82 7 16 x:=042
8 3 5 X350 =178
N 8 9
v 4 9 X' =34
v) 1 7 X390 =178
& 4 12
2 5 6 x’=138
& 4 7 Xieo =178

* Cell frequencies show numbers of attributes having paired attribute states.

RIS given this dependence. In particular, two specific cases were analyzed. One
based on correlation between discrete depth and volume, and the other based on
correlations between continuous depth and volume. The final subsection shows
typical calculations of the probability of RLS using all three models: the independent
model; the dependent-discrete model; and the dependent-mixed (discrete/continu-
ous) model.

Single attribute model. Knowing the state of one attribute, e.g., depth d,, it is
possible to calculate the conditional probability of RIS, denoted as P(RIS|d,), using
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Bayes' theorem

P(RIS)P(d;|RIS)
P(RIS)P(d,|RIS) + P(RIS)P(d,| RIS)

where P(RIS) and P(RIS) are the prior probabilities of RIS and non-RIS, respec-
tively, and P(d.| RIS) and P(d,|RIS) are the conditional frequencies (i.e., like-
lihoods) of depth d; given RIS and non-RIS, respectively.

For the 234 deep, very deep, or very large reservoirs, there are 29 cases of RIS.
Thus, the prior probability P(RIS) is 29/234 = 0.12. Consequently, the probability
of non-RIS is 0.88. Using this and the data of Table 2, the probability of RIS given
any specific state of a single attribute can be calculated. To illustrate, for a very
deep reservior (D = d,), equation (2) becomes

P(RIS|d\) = (2)

P(RIS)P(d,| RIS
P(RIS|d,) = (RISIP@|RIS)
P(RIS)P(d\|RIS) + P(RIS)P(d, | RIS)
_ (0.12)(0.34)
(0.12)(0.34) + (0.88)(0.13)
= 0.26. (3)
TABLE 9
CONDITIONAL PROBABILITIES OF RIS GIVEN ONLY ONE
ATTRIBUTE®
State
Attnbute
1 2 3
Depth 027(024) 011(010) 0.03(0)
Volume 0.12(022) 023¢(021) 0.09(0.07)
Stress State 010(011) 012(0.14) 0.18(0.17)
Fault Activity 018(020) 00(0.0) —
Geology 016 (020) 0.10(0.10) 0.12(012)

* The numbers not in parentheses are based on the
deep, very deep, and/or very large data set. Conditional
probabilities in parentheses are based on deep or very
deep data only.

The number 0.26 is referred to as the conditional probability of RIS, given that the
reservoir is very deep. This and all the analogous conditional probabilities are shown
in Table 9. From this information, it appears that the main attribute indicating
whether a particular site is a RIS candidate is depth. [Faulting appears to be
excellent for discrimination since the conditioned probability of RIS given no active
faults in the vicinity is zero. However, because this is based on such a small set of
data (seven RIS cases and six non-RIS cases), the result has little statistical
meaning.] Volume is the information next most discriminating. Stress and geology
attributes are not nearly such strong indicators, since within the data set, the
conditional frequencies of these attributes given RIS and non-RIS are rather similar.

Multi-atiribute model. Analogous to (2), considering all the attributes simulta-
neously,

P(RIS,|d,v,s, [, 8) =

P(RIS)P(d, v, 5, f, g| RIS) _
P(RIS)P(d, v, 5, f, g| RIS) + P(RIS)P(d, v, 5, f, g| RIS)’

)

R PVM) TN SN N GUNENS MR MR emimmnis o memsamet Siisisn————"“——"=—SS—S_—"“tea (- (s gg! 11 S R i T OROO T §ohn L T T TSI T T WO Y I T L (00 (A VI ——
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and

P(RIS|d,v,5,f,8) =

P(RIS)P(d, v, s, f, g| RIS)
P(RIS)P(d, v, s, f, 8| RIS) + P(RIS)P(d, v, s, f, g| RIS)

where P(RIS/d, v, s, f, g) is the conditional probability of RIS given the combination
of states d, v, s, f, g. Dividing (4) by (5) yields

P(RIS|d,v,s,f,8) _
P(RIS|d,v,s,f, &)

[P(RIS)][P(d. v, 8 f, 8| RIS) ] -
P(RIS)ILP(d, v, s, f, g| RIS)
P(RIS)

———LR(d,v,s,1,8), (6
P(RIS) d,vs/f,8) (6)

which in words says, “the conditional odds of RIS equals the prior odds of RIS
multiplied by the likelihood ratio for the given states.” Equations (4) and (6) are the
bases of the models.

Preliminary model of RIS assuming probabilistic independence. Assuming prob-
abilistic independence among all attributes, the conditional probabilities of (4) and
(5) become

P(d, v, s, f,g|RIS) = P(d|RIS)P(v|RIS)P(s| RIS)P(f|RIS)P(g|RIS) (7)
and
P(d, v, 5 f,g| RIS) = P(d| RIS)P(v| RIS)P(s| RIS)P(f| RIS)P(g| RIS), (8)

respectively. The terms P(d|RIS)/P(d|RIS) are referred to as individual like-
lihood ratios. They are calculated from Table 2 and displayed in Table 10a. To use
the independent model, one substitutes the information of Table 10, along with the
prior probabilities of RIS and non-RIS, into (7) and (8) and then into either (4) or
(6). Examples are included at the end of this section.

Obviously, using the two data sets of Table 10 yield different prior probabilities
and likelihoods. However, the prior probabilities and likelihoods change such that
the estimate of the probability of RIS using (7) and (8) is unchanged.

Models of RIS assuming dependence between depth and volume. A model very
similar to that above holds even if probabilistic independence between volume and
depth is not assumed. The result is that

P(d, v, s, f, g| RIS) = P(d, v|RIS)P(s| RIS)P(f| RIS)P(g| RIS) 9)

and

P(d, v, s, f, g| RIS) = P(d, v| RIS)P(s| RIS)P(f| RIS)P(g| RIS)  (10)

where P(d, v,| RIS) means the joint probability that depth is d and volume is v,
given that RIS occurred.
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For the discrete case, this information can be estimated directly from the first
data sets of Table 4, concerning depth and volume. For instance, for the 29 cases of
RIS, three were both very deep and large (ie, D = di and V = v,). Thus, the
frequency of this combination given RIS is estimated as 3/29 or 0.11. In a similar
manner, one can estimate the probability of a very deep and large reservoir given
non-RIS to be 11/204 or 0.06. The likelihood ratio for the dy, vz combination is the
ratio of these numbers (Table 10b). .

Equations (9) and (10) are useful for calculating the probability of RIS given
discrete, although dependent, information on volume and depth. A similar model
was developed treating (log) volume and depth as continuous variables. For the
deep and very deep reservoirs, regression analyses were performed for both the RIS

TABLE 10
LixeLiROOD RaTIOS*
State
1 2 3
{a) Independent
Depth 2.62 (2.26) 0.87 (0.76) 0.21
Volume 0.95 (2.04) 215(187) 0.66 (0.57)
Stress 0.82 (0.74) 0.91 (1.0) 1.58 (1.29)
Fault Activity 1.50 (1.50) 0.0 (0.0) -_—
Geology 1.34 (1.65) 074 (071) 0.94 (0.81)
Velume
Small Large Very
Large
(b) Dependent Discrete Case—Depth and Volume
very deep 2.56 (2.22) 1.92 (1.67) 4.22 (3.66)
Depth depth deep 0.46 (0.40) 2.25 (1.95) 1.62 (141)
shallow — —_ 0.21

(c) Dependent Continuous Case—Depth and Volumet

LR(d, v) = fn(d, v|pa = 141, p. 8 3.21; 04 = 48.8, 0, = 1.0, p = 0.2)
’ fuld, v pa = 124, pto = 2,78; 04 = 26.8, 0, = 0.88, p = 0.2)"
* The likelihood ratios in parentheses are based on deep and very deep reservoir data only.
+f~(.| ) mndicates a normal distribution with parameters as given following the vertical sign.

and non-RIS cases to fit bivariate, normal distributions with dependence between
the two attributes. Using these two distributions, one obtains the relative likelihoods
of the occurrence of a particular d and v pair for the RIS and non-RIS cases. This
likelihood ratio LR (v, d) is given in Table 10c. One can use the likelihoods from the
continuous data in model (6) to calculate the relative conditional probabilities (odds)
of RIS to non-RIS for a particular reservoir. Because these probabilities must sum
to 1, it is easy to calculate the conditional probability of RIS from this information.

Typical calculations for the probability of RIS. The likelihood equation (6) can
be used to calculate the probability of RIS for all three cases: the independent case;
the dependent-discrete case; and the dependent-mixed case.

To illustrate, consider the proposed Auburn dam, which if built, would be a very

1wy
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deep, large reservoir in an extensional stress field, with active faulting present prior
to impoundment, and metamorphic geology (dy, v2, 81, fi, g2). For the independent
model, data from Table 10a is substituted into equations (7) and (8) and then into
(6) to calculate the probability of RIS as 0.35. Using the dependent-discrete model,
data from Table 10, a and b, is substituted into equations (9) and (10) and then into
(6) to find that the probability of RIS at Auburn as 0.17. Using the continuous model
for volume and depth (the depth of Auburn reservoir is taken as 183 m and its
volume 80 X 10° m?%), the likelihood ratios of Table 10, a and c, are substituted into
equation (6) to find the probability of RIS at Auburn to be 0.32. The basic data for
all three calculations is shown in Table 11. These conditional probabilities are the
same for both data sets as changes in the attribute likelihood are compensated by
changes in the prior probabilities.

TABLE 11
AUBURN ExaMPLE®
Attnbutes
Likelshood Ratio
Dependent
Statea Independent Dependent Maxed, Dhs-
Discrote Discreta crete/
Continuous
Very Deep 226
167 372
Large 1.87
Extensional 0.74 0.74 074
Active 150 1.50 1.50
Metamorphic 0.71 0.71 0.71
M= 333 1.32 293
Conditional Odds Rattio

* Prior odds ratio = 0 14/086 = 016
» Conditional odds ratio
mdependent = 0.16 X 3.33 = 0.53
dependent discrete = 0.16 X 1.32 = 0.21
dependent mixed = 0.16 X 2.93 = 047
 Conditional probability of RIS
) independent = 053/1.53 = 0.35
dependent discrete = 021/121 =0.17
dependent mixed = 047/1.47 = 0.32

* Based on deep and very deep data sets

There are several reasons for these answers to be different for the three models.
First, based on the discrete data, there seems some indication of statistical depen-
dence between volume and height. Therefore, some information about one is
redundant with information about the other, conditional on RIS or non-RIS data.
Consequently, treating them independently double counts this information, and a
higher probability is calculated by using the independent model than by using the
dependent-discrete model.

Second, when reservoir depth is categorized simply as deep or very deep, infor-
mation is lost. In particular, from Figure 1, almost 60 per cent of the very deep
reservoirs have experienced RIS. This is a strong indication that depth is related to
RIS. Since Auburn is not only very deep but quite a bit deeper than the cut-off for
very deep (i.e., it will be 183 m deep whereas the cut-off for very deep reservoirs is
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150 m, the continuous model simply includes this information and hence predicts a
higher likelihood of RIS.

To evaluate the precision of the estimate of 0.35 for the probability of RIS at
Auburn reservoir, a sampling variance of the estimate was calculated (Packer ef al.,
1979). To calculate this precision, the sampling variances of the marginal likelihoods
p., which is §,(1 — 5.)/n, are propagated through Bayes’ theorem using a Taylors
series expansion. The corresponding standard deviation is 0.14, implying that the
estimate is imprecise. Roughly and imprecisely, this means there is about a 68 per
cent chance that the probability of RIS at Auburn dam is the range 0.34 * 0.14.

Table 12 gives the predicted likelihood for the occurrence of RIS at San Luis
Dam and at dams which would be the most likely and least likely to induce
seismicity, based on the discrete analyses and the current data set.

TABLE 12
SampLE CALCULATIONS®
Likehhoed Ratio
San Lus Reservorwr (deep, Best Case (deep, small, Worst Case (very deep,
large, extensonal, active, extenmonal, no actvity, very large, ahear, active,
sedimentary) motamoyphsc) sedimentary)
Attmbutes
Discrete Discrete Dascrete
Indepen- Indepen- Indopen-
dent D::: :- dent D:pe n dent Depen-
ent dent
Depth 0.76 0.76 2.26
1.96 0.40 J.66
Valume 1.87 0.57 2.04
Stress 0.74 0.78 078 0.78 1.29 1.29
Faulting 1.50 1.50 1 t 1.60 160
Geology 1.65 1.56 0.71 0.71 1.55 1.5
= 245 3.55 0.24 0.22 138 11.0
Prior Odds Ratio 0.16 0.16 0.16 0.16 0.16 016
Conditional Odds Ratio 0.40 0.58 0.04 0.04 2.26 1.80
Conditional Probabulity 0.29 037 0.04 0.03 0.69 0.64
of RIS

* Shallow reservoirs not included.
1 Empty data cell with hkelihood ratio zero Because this 18 based on a very small data set, we assume
the likelihood ratio to be 1.0 in this calculation.

5. INTERPRETATION OF THE RESULTS

Several conclusions can be tentatively drawn from the results. First, from Table
9, it can be seen that of the five attributes, depth is the one which best discriminates
circumstances which may or may not lead to RIS. For very deep reservoirs, the
conditional probability of RIS is 0.27 and for shallow reservoirs it is 0.03. This range
is larger than for any other attribute. In interpreting this range, one should recognize
that the data set includes only deep, very deep, and/or very large reservoirs. Shallow
reservoirs that are not very large are not included in the analysis, and would of
course have a probability of RIS very near zero.

The next best attribute for distinguishing between RIS and non-RIS cases is
volume of the reservoir. Again, the present numerical results exclude shallow
reservoirs that are not very large. Were these included, both the likelihood ratios
and prior probabilities of RIS would compensatingly change.
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From Table 9, it can be seen that the conditional probability of RIS, given a large
reservoir, is 0.23, and the conditional probability of RIS, given a very large reservoir,
is 0.12. This seems inverted, but is merely an anomaly caused by including shallow
but very large reservoirs in the data set. There are 33 such dams for which there has
been no RIS and only one where there has been RIS, If one excludes these dams
from the data set, there are 18 very large dams without RIS and 6 with RIS.
Similarly, there are 36 large dams without RIS and 11 with RIS. Thus, the
conditional probability of RIS for a very large reservoir is 0.22, whereas for a large
reservoir it is still 0.21.

Based on the current data base the set of attributes, taking one attribute at a
time, most conducive to RIS is the following: a very deep, very large reservoir in a
shear stress zone with active faulting present prior to the reservoir’s existence and
in sedimentary formations (Table 12).

Because there are so few data on the presence of active faulting prior to the
existence of the reservoir, little can be concluded statistically about the relevance of
this attribute. It is difficult to ascertain that there are no active faults in an area.
However, if it were known for certain that no active faults existed in an area, the
probability of RIS would be reduced.

Examining Table 6, there seem no strong correlations among attributes condi-
tioned on the occurrence or on the nonoccurrence of RIS. The one exception is
possible correlation between depth and volume. This correlation, although weak, is
substantiated by the analysis of continuous data on depth and volume for non-RIS
sites.

The continuous analysis indicated the apparently strong relationship between the
likelihood of RIS and depth of the reservoir. One can almost see this relationship
simply by examining Figure 1. As a result of that relationship, the dependent-mixed
model seems the best of the three predictive models. It includes dependency between
depth and volume and uses the data as continuous variables. Of course, it is wholly
inappropriate to conclude that any of these models is “the” correct model.

From Table 7, there is no reason to conclude that the characteristics of reservoirs
experiencing microseismic and macroseismic events are distinguishable from each
other with regard to the five attributes in the analysis. Table 8 indicates essentially
no significant differences were found between shallow and deep/very deep reservoirs
experiencing RIS. Both of these conclusions, however, are based on a small data set
(38 cases of RIS).

A last, perhaps self-evident observation is that cause and effect relationships are
not implied by these analyses. For instance, higher pore pressures may be a real
cause of triggering RIS. Certain characteristics of geology and the reservoir are
simply more conducive for the build-up of pore pressure. It may also be that the
present attributes and RIS are correlated to yet unidentified causal attributes.

Appraisal of the data. Several comments about the data set are important to
understanding the results. In developing any data set, it was necessary to make
assumptions (see Packer et al, 1979). In all cases, there was an attempt to make
these professional judgments in a systematic and justifiable manner.

The first judgment was in selecting attributes to characterize the reservoirs. This
was based on the assumed correlation of the attributes with RIS and on data
availability. Other attributes might have been included (e.g., water level fluctuation,
pore pressure changes), but only for the difficulty of collecting such data.

The second judgment was in classifying reservoir sites. For some sites, detailed
information on local geology and stress is not available; consequently, geology and
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stress were presumed from regional information. Even depth and volume data may
in certain cases be inaccurate. However, errors of classification would not be thought
systematically biased.

The third judgment was in discrete classification. In particular, the conclusions
can be changed somewhat by choosing the volume and depth cut-offs differently.
For instance, from Figure 1 it can be seen that several reservoirs slightly over 150 m
had no RIS. Changing the cut-off for very deep reservoirs to 175 m from 150 changes
the conditional probability of RIS for very deep reservoirs to 0.40 from 0.27. Of
course,“very deep” now has a different meaning. The continuous variable model
circumvents this problem.

The final major judgment was in deciding whether particular reservoirs were
associated with RIS. This was based on available seismic records in the vicinities of
the sites. An attempt was made to identify temporal and spatial associations of
seismic activity with the filling, drawdown, and refilling of the reservoirs. However,
in many cases, there were no seismic records prior to the reservoir’s construction,
and no local seismic net to detect minor events. As with any statistical analysis,
results depend on current understanding of the historical record. As that understand-
ing changes, a reassignment of RIS cases may occur with corresponding changes in
the implications of the data.

For interpreting the present results, or any model of RIS, it is important to
maintain perspective. There is no method or methodology, nor could there be one,
which is completely objective for developing a model of the likelihood of RIS.
Professional judgments are always necessary. The ultimate goal of such models is to
clarify these professional judgments and to provide a basis for communication,
modification, and improvement to better understand the phenomenon of RIS.
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