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Abstract We briefly outline the information-theoretic
(I-T) approaches to valid inference including a review of
some simple methods for making formal inference from all
the hypotheses in the model set (multimodel inference).
The I-T approaches can replace the usual t tests and
ANOVA tables that are so inferentially limited, but still
commonly used. The I-T methods are easy to compute and
understand and provide formal measures of the strength of
evidence for both the null and alternative hypotheses,
given the data. We give an example to highlight the
importance of deriving alternative hypotheses and repre-
senting these as probability models. Fifteen technical
issues are addressed to clarify various points that have
appeared incorrectly in the recent literature. We offer
several remarks regarding the future of empirical science
and data analysis under an I-T framework.

Keywords AIC . Evidence . Kullback–Leibler
information .Model averaging .Model likelihoods .Model
probabilities . Model selection .Multimodel inference

Introduction

The broad theoretical concepts of information and entropy
provide the basis for a new paradigm for empirical science.
Good science is strategic and an excellent strategy begins
with Chamberlin's (1890) “multiple working hypotheses.”
This principle encourages hard thinking to identify the
alternative science hypotheses: H1, H2, …, HR. The careful
identification of this a priori set of hypotheses is very
important and is at the center of the science issue (see
Elliott and Brook 2007). In the past, it has been standard
practice to define a single alternative hypothesis and a null
hypothesis but this procedure can be improved upon. We
suggest that investigators make a major effort to think hard
about the science question and then define several plausible
alternative hypotheses—inferences are conditional on this
set of alternatives. For example, Hall (2004) provides a nice
set of alternatives for explanations of avian duetting; the
next step would be to gather appropriate data and evaluate
the strength of evidence for the hypothesized models.

Chamberlin said little about how one might evaluate the
relative worth of these alternatives other than wanting a
“measure of probability on one side or the other”
(Chamberlin 1890, p. 758). Perhaps he would have been
content if there existed a simple way to rank the
alternatives. New methods, based on Kullback–Leibler
(K-L) information, provide a formal relative strength of
evidence for each of the alternative hypotheses. Obtaining
quantitative measures of the strength of evidence for each
hypothesis (Hi) represents the fundamental methodological
issue in empirical science and, appropriately, can be
considered an important advance for the life sciences,
including behavioral ecology.

Quantitative measures of the strength of evidence are
central to empirical science; however, one is hard pressed to
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find this word or the concept in books on applied or
theoretical statistics. The concept of strength of evidence
seems almost “new” in the life and social sciences.
Traditional methods have focused on “testing” null hypoth-
eses based on test statistics and their associated P values.
From the P value comes an arbitrary judgment concerning
“statistical significance” and dichotomous ruling about the
rejection of, or failure to reject, the null hypothesis. For
several reasons, P values do not constitute a basis for
formal evidence (see Royall 1997). The new I-T methods
are not a test in any sense; rather they represent a very
different methodology for empirical science. The I-T
methods provide a formal, fundamentally sound, approach
of developing an a priori set of hypotheses and then a
quantification of the data-based evidence for, and ranking
of, each hypothesis. This is followed by interpretation of
the results in the face of model selection uncertainty and
this is one aspect of multimodel inference.

The twentieth century brought quantification and math-
ematical models into the process of science. The quantifi-
cation of the set of alternative hypotheses provides many
important advantages. Thus, it is necessary to derive a
mathematical model (g) for each of the R hypotheses: g1,
g2, …, gR. Ideally, there is a one-to-one mapping of the R
hypotheses with their models. This allows one to treat each
hypothesis and its model as synonymous. The quantifica-
tion also brings in a large measure of rigor in the process of
science.

A general theory of “information” developed rapidly
during the 1940s. The concept of “information” was
quantified and this provided a series of enormous break-
throughs affecting modern society (see Hobson and Cheng
1973, Guiasu 1977, Soofi 1994, Jessop 1995, and Cover
and Thomas 2006 for background). Kullback and Leibler
(1951) worked in the war effort to develop ways to break
codes and their results are most relevant to this review. At
the same time, Shannon (1948) was developing a mathe-
matical theory of communication. Today society is still
benefiting from this broad theory (e.g., cell phone and GPS
technology). Information theory was linked to statistical
theory in the early 1970s by Hirotugu Akaike in a series of
groundbreaking papers (e.g., Akaike 1973, 1974, 1977,
1981a, b, 1983a, b).

Developments from information and statistical theory
allow a quantification of the strength of evidence for each
of the alternative hypotheses in the set. These results have
lead to several powerful new approaches to empirical
science. Our objectives in this paper are to briefly review
the fundamentals of the “information-theoretic” or “I-T”
approaches and to show how these easily extend to making
formal inferences from all the models in the set (i.e.,
multimodel inference). This is followed by an ecological
example and clarification of 15 technical issues that have

arisen in the literature. We then offer some contrasts
between the traditional null hypothesis testing approach
and the array of I-T approaches. We conclude with some
predictions about the future of empirical science under an
I-T framework.

This paper is meant to be an overview of the central
aspects of the I-T approaches. However, we do not provide
much of the underlying theory or discuss many of the finer
points as these issues are given in detail by Burnham and
Anderson (2002) and explained in the brief tutorial book by
Anderson (2008). We must assume that the reader has some
knowledge of and, perhaps, experience with the I-T
approaches and a reasonable background in statistical
concepts (e.g., least squares “regression,” expected values,
measures of precision, goodness-of-fit assessment). Without
this background, not all points can be easily understood;
this is not meant to be a first introduction to this subject
(such as Anderson 2008 is), but is intended to provide a
brief overview and references for additional study (see
papers by Garamszegi 2010, and Symonds and Moussalli
2010, for introductory material).

Fundamentals

The new class of approaches is called “information-
theoretic” because it is based on K-L information (Burnham
and Anderson 1992, 2001, 2002, 2004). We give an
overview of the main issues in the material to follow. K-L
information as applied here represents the information lost
when model gi is used to approximate full reality (f).
Another view of this is the distance between model gi and
full reality. In either case, it seems compelling that one
would want to select the model in the set of R models that
minimizes K-L information loss. That is, we want the
model from within the model set that loses the least
information about full reality, hence, the model that is
closest to full reality in the current model set (Fig. 1).
Formally, K-L information can be expressed as a differ-
ence between two statistical expectations (Burnham and
Anderson 2002, p. 58 and Anderson 2008, p. 52–7). The
first such expectation cannot be computed or estimated but
is constant across models and can be removed. The
relevant term is the second expectation, E[log(g(x|θ))],
where E is the expectation operator, log is the natural
logarithm, x represents the response variable to be
predicted by the model (x represents hypothetical data),
and θ represents a vector of unknown parameters. This
second term also cannot be computed or estimated.

However, in a famous paper published in 1973, Akaike
found that if a second expectation was taken over an
estimated θ then that quantity could be estimated and this
result provided the link between K-L information and the
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maximized log-likelihood (a fundamental quantity in
mathematical statistics, written as log Lð Þ). The concept of
likelihood is fundamental to statistical theory (see Edwards,
1992, Azzalini 1996, Severini 2000, and Pawitan 2001).
Akaike's key finding focused on the double expectation,

E E log g x bq��� ðyÞ
� �� �h in o

where y represents data and bq ¼ bq yð Þ
� �

is the vector of
parameter estimates based on these data. Akaike found that
for large sample sizes (n) this double expectation can be
estimated very simply as log Lð Þ � K, where K is a
correction for asymptotic bias and is merely the total
number of estimable parameters in the model. That is,

E E log g xjbqðyÞ� �� �h in o
¼ log Lð Þ�K:

Akaike multiplied both terms by −2 to get his
AIC ¼ �2log Lð Þ þ 2K. The term �2log Lð Þ is well known
among statisticians as the “deviance;” Akaike no doubt
thought of AIC as simply “deviance plus 2K” and many
software packages provide the deviance as part of the
standard output.

Operationally, one computes AIC for each of the R
models and selects the model with the smallest AIC value
as “best.” Such a model is “best” in the sense of
minimizing K-L information loss. Full details of the
derivation from K-L information to AIC are given in
Burnham and Anderson (2002, chapter 7), while Anderson
(2008, chapter 3) provides a simplified sketch of this
derivation.

A second order bias correction for AIC was derived by
Sugiura (1978) and Hurvich and Tsai (1989) and is
important to use in practice, particularly when sample sizes
are small as often applies to behavioral studies. This
criterion is denoted as AICc to make it distinct from AIC,

AICc ¼ AICþ 2K K þ 1ð Þð Þ= n�K�1ð Þ:
As sample size (n) increases, AICc converges to AIC.
In the case of ordinary least squares regression or

analysis of variance,

log Lð Þ ¼ � n=2ð Þlog RSS=nð Þ;
thus

AICc ¼ nlog RSS=nð Þ þ 2K þ 2K K þ 1ð Þð Þ= n�K�1ð Þ;
where RSS denotes the residual sum of squares from the
fitted model.

AICc implicitly has additive unknown constants that do
not depend upon the fitted model. Thus, it is the AICc
differences, Δ values or simply Δs, that are pivotal for
ranking the models according to K-L information loss (or
distance).

Δi ¼ AICci�AICcmin; for i ¼ 1; 2; . . . ;R:

Here, AICcmin denotes the minimum of the AICc values
for the R models. These Δ values are on a continuous scale
of information and are interpretable regardless of the
measurement scale and whether the data are continuous or
discrete or categorical. Models with Δ values above about
9–11 have relatively little support (Table 2, and Fig. 2); that
is, these models lose too much information about full
reality relative to some other models in the set. Going
further, Δ values greater than, say, 20 have essentially no
empirical support. The Δ values are the key to I-T
approaches and corresponding multimodel inference.

The procedure is simple to both understand and
compute. One computes AICc and Δ values for each
hypothesis and selects the one with the smallest information
loss or smallest distance from full reality as the best
hypothesis and obtains a ranking of the rest.

The (relative) likelihood of each model i, given the data,
L gijdatað Þ can be denoted as just ‘i These model like-

0         1        2        4        8        16       32 …                         …increasing values…                            ∞ 

Δ AICc 

Fig. 2 Plausible hypotheses are identified by a narrow region in the
continuum where Δ< perhaps four to seven (black and dark grey).
The evidence in the light grey area is inconclusive and value
judgments for hypotheses in this region are equivocal. Implausible
models are shown in white, Δ> about 14

K-L Information Δ AICC

 

Fig. 1 Kullback–Leibler information is shown (at left) as the
distances (di) between full reality (f) and the various models (gi).
The Δ values (right) provide the estimated distance of the various
models to the best model (in this case, model g2). These values are on
the scale of information irrespective of the scale of measurement or
type of data. The Δ values are simple to compute, allow a quick
ranking of the models, and are the key to multimodel inference
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lihoods provide a formal strength of evidence for each of
the models in the set and are easy to compute,

‘i ¼ L gijdatað Þ ¼ exp �ð1=2Þ$ið Þ:
These quantities allow evidentiary statements such as,

for example, given the data, “hypothesis H4 is 22 times
more likely than H2.” Such inferences are very useful (e.g.,
“Model g3 is 1,178 times better supported by the data than
model g6”).

The probability of each model gi, given the data and the
R models, is also simple to compute as a measure of
strength of evidence,

wi ¼ Prob model gi datajf g ¼ ‘i=
XR
j¼1

¼ ‘j:

These quantities would have been the envy of Cham-
berlin and allow statements such as “the probability of H4 is
0.78, while the probability of H2 is 0.015.” Clearly, the data
support H4 in this example.

Finally, one can take ratios of either the model like-
lihoods or model probabilities for any two models i and j to
compute an “evidence ratio.” In the example just above, the
evidence ratio for H4 versus H2 is 0.78/0.015=52: the
empirical support for H4 is 52 times that of H2. This
evidence might be judged to be “strong”. The quantitative
evidence is represented by the model likelihoods, model
probabilities, and evidence ratios; these are the science
results. Then a value judgment is made as the results are
interpreted and qualified. Such value judgments attempt to
explain the science result. The word “significant” is to be
avoided as it implies the older approaches and implies a
dichotomy (reject or not) that is not appropriate.

The Δ values for any given model are linked to the
evidence ratio for the best model as exp{−(1/2)Δ} and a
sample of these are summarized in Table 1. For example, if a

model in question has aΔ value of 11, then its evidence ratio
compared to the best model is approximately 245. That is,
the evidence is 245 times stronger for the best model relative
to the model in question. People might often judge this
evidence to be very strong, other people might choose
another word; however, both judgments are based on the
same quantitative evidence, an evidence ratio of 245 to 1.

In summary, the evidence for each model in the set can
be quantified using model likelihoods, model probabilities,
and evidence ratios. Note, however, that the Δ values are
central as they are on the scale of information. The fact that
information can be quantified has proven to be very useful
(Fig. 2).

Multimodel inference

In many cases there is substantial model selection uncer-
tainty; the analyst is uncertain as to which is actually the
K-L “best” model. This uncertainty is quantified by the
model probabilities (e.g., the best model has only proba-
bility 0.47). Often, a particular model is estimated to be the
best of those in the model set; however, there may be
substantial uncertainty over this selection. In addition, there
is usually information in the second, third, fourth, and other
models that is not captured by the best model. Thus, basing
inference only on the model estimated to be the K-L best
represents poor practice. This thinking leads to the concept
that inferences should often be based on all the models in
the a priori set, not just the one estimated to be best.

The first approach is called model averaging (see
Hoeting et al. 1999 for background and discussion from a
Bayesian viewpoint) and this can be best understood from
the viewpoint of prediction. Let

_

Yi be the predicted value
from the ith model, where i=1, 2, … R, given fixed values
of the predictor variables. A model-averaged prediction can
be computed as a weighted mean where the weights are the
model probabilities,

_

Y¼
PR
i¼1

wi
_
Yi :

Other approaches to multimodel inference include
simple ways to compute measures of precision that include
a variance component for model selection uncertainty,

varðY_Þ ¼
XR
i¼1

wi var Y
_

i gij
� �

þ Y
_

i�Y
_

i

 !2
8<:

9=;:

There are approaches to averaging model parameters;
these are outlined in Burnham and Anderson (2002, pp.
150–153) and Anderson (2008, section 5.1). General
methods also exist for ranking the relative importance of

Δj Evidence ratio

2 2.7

4 7.4

6 20.1

8 54.6

9 90.0

10 148.4

11 244

12 403

13 665

14 1,097

15 1,808

20 22,026

50 72 billion

Table 1 A summary of the
strength of evidence for the
best model versus model j in
terms of its Δ value
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predictor variables in large regression or discriminant
function analyses, and for computing confidence sets on
models (details are provided in Burnham and Anderson
2002, chapter 4).

Empirical science in the twenty-first century will
increasingly rely on multimodel inference. Models in the
life sciences are nearly always oversimplified and it is not
reasonable to make inference based on only the one model
estimated to have been the best (i.e., “best” in the sense of
K-L information). Rather, there are a host of advantages in
making inference from a weighted combination of results
from all the models in the set. Estimates of precision must
account for model selection uncertainty or else confidence
coverage will often be well below the nominal level (given
a frequentist's interpretation of confidence limits). Appro-
priate estimates of precision that account for model
selection uncertainty are easily done in the I-T framework.

After the data have been carefully analyzed, one can
review the quantitative evidence and consider some
qualifying value judgments to help understand and interpret
the evidence. At that point new hypotheses are often
formulated, based on the results from the a priori efforts.
We encourage such further analysis of the existing data;
however, the new results stem from post hoc analyses and
the process must be admitted and the results treated with
additional caution. We encourage consideration of post hoc
alternatives and analyses but they should follow the a priori
steps and be fully explained in publications.

Science can move at a fast pace if the set of alternatives
“evolves” by: (1) discarding hypotheses judged to be
implausible, (2) refining hypotheses that seemed plausible,
and (3) adding new and perhaps more sophisticated
alternative hypotheses by more thinking and synthesis
(see e.g., Platt 1964). Of course, new data are required at
each step of this evolution. Science is always “asking for
more.”

A hypothetical example

Here we present a hypothetical example meant to present a
simplified overview of the process through hypothesis
generation to data collection to analysis in an I-T
framework. We draw on the extensive literature concerning
extra-pair paternity (EPP) in birds to illustrate the I-T
approach. Based on observations of a small number of
subfamilies of birds, Lack (1968) estimated that 90% of
bird species' mating system was “monogamous,” which
describes an exclusive social and sexual “pair bond” of one
female and one male over some period of time. Since
Lack's work, researchers have documented extra-pair
copulations (EPCs), in a wide range of species, from
bluebirds to albatrosses. The advent of molecular techni-
ques has lead to the recognition that these EPCs can lead to
extra-pair fertilizations with EPP accounting for, on
average, 11% of young produced in socially monogamous
birds (see Griffith et al. 2002 for a recent review).

Studies dedicated to understanding EPP in birds have
examined a diversity of behavioral and ecological correlates
to parentage at both inter- and intraspecific levels (Griffith
et al. 2002, Westneat and Stewart 2003, and Neudorf 2004
provide overviews); these factors are not typically consid-
ered in concert as multiple competing hypotheses, and often
no formal ranking or strength of evidence for the various
hypotheses is presented. Here, we recast the science
question about extra-pair paternity to present an example
of how workers in the behavioral sciences might undertake
a research program using an I-T approach.

Imagine a socially monogamous bird species where male
care is essential; without the male's efforts at incubation,
provisioning the young, or other caretaking, reproductive
success for a breeding bout is zero. From molecular work
on samples collected during a pilot field season, we also
know that about 20% of young are extra-pair so that a

Table 2 A selection of ecological factors that could be predictors of the occurrence of extra-pair paternity in birds

Factors Link to extra-pair paternity Example(s)

Male age (X1) EPY more likely in nests with younger males Schmoll et al. 2007

EPY more likely in nests with older males Perreault et al. 1997

Male body size/condition (X2i, X2ii) EPY less likely in nests with larger males or males in better
‘condition’

Yezerinac and Weatherhead 1997

Currie et al. 1999

Genetic similarity of social mates (X3) EPY more likely when social mates are genetically similar
(female have EPCs with less similar males to avoid
inbreeding)

Eimes et al. 2005; but see Schmoll
et al. 2005

Food availability (X4) EPY more likely in nests on territories with high food
abundance

Hoi-Leitner et al. 1999

Dominance status of male (X5) EPY more likely in nests with low-status males Mennill et al. 2004

Female prospects for other mating
opportunities (X6)

EPY more likely as female opportunities for EPC increase Brylawski and Whittingham 2004

Territory quality (X7) EPY more likely in nests on low quality territories Rubinstein 2007
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portion of males are not the genetic fathers of the chicks
they raise each breeding bout (e.g., per season, per clutch).
Which measurable ecological conditions (covariates, to be
denoted “X”) predict the occurrence of extra-pair young
(EPY) in nests of a sample of our example species?

Ideally the data for this effort have not yet been collected
and we can place considerable effort into hard thinking (this
stage may take many months) to develop an ecologically
meaningful a priori set of models—hypotheses predicting
how and when EPP occurs in nests of our example species.
In addition, we might consult the literature and experts in
the field to broaden the catalog of alternative hypotheses
(Table 2). In light of pilot data and additional careful
consideration, we may omit particular explanations from
the model set because they are not plausible or feasible or
we may consider additive models or interactions of various
predictors (see also Dochtermann and Jenkins 2010, for
more on developing the a priori hypothesis set). In this
example, we have developed a model set of 14 ecologically
plausible hypotheses for the occurrence of EPY in nests of
our species (Table 3). We also include the intercept-only
model as a baseline for comparison. As an upper limit, R,
the number of models, should be less than the expected
sample size.

In this simplified example, we begin with the set of
factors that we found to be important in the literature, our
own experience, and in talking with expert colleagues

(Table 2). After careful thinking (and some heated
discussion among us), we omitted male age, genetic
similarity, and female prospects from our list. For example,
we excluded male age because a demographic study that a
colleague conducted showed that most of the individuals
from our example species of bird reproduce at the age of
2 years, leaving very few at other ages with which to
evaluate the importance of age on the probability of EPY.
Genetic similarity was excluded for this first analysis
because we found during our pilot season that these birds
are often secretive during copulations making it difficult to
identify a candidate set of males (e.g., EPC partners for
females) from whom to try to assign paternity (note that
there are several excellent cases in the literature where it
has been possible to assign paternity [e.g., Richardson and
Burke 2001]). Similarly, we omitted female prospects
because of our concerns in being certain we could
accurately measure opportunities for EPCs (i.e., available
males that are not the social mate). Additional information
from the first season's data collection and modeling effort
or from ancillary studies may prompt us to reconsider these
variables again later. Thus, the set of science hypotheses
may “evolve” and analyses of the new evolved model set
can be performed using newly collected data.

We included these four factors of interest in linear
models where the covariate is related to the logit of the
response variable, parentage of the youngster. We then
considered additive models of pairs of predictor variables.
For example, after more thought, territory quality and food
availability seemed similarly important so both of those
covariates were related to the response variable in an
additive generalized linear model. In considering data from
our pilot study, we found that male status and territory
quality were very tightly correlated, perhaps because the
highest ranking males could secure the best quality
territories. We omitted additive models including both of
these variables together in the same model because we
think they are redundant (see e.g., Freckleton 2010) Lastly,
we considered interactions between pairs of the variables
and added to our model set interactive models of body size
with male dominance status, body size with territory
quality, and food availability with territory quality (Table 3).
For example, the thinking for the model with the interaction
of food availability with territory quality was that the effect
food availability has on the probability of having an EPY in
the nest differs for nests from different territory qualities.
While complex, we may want to examine a three-way
interaction in subsequent years if, for example, food is very
abundant in the first year and not others, perhaps because of
unusually high levels of precipitation in the first year.

With the model set in hand, we recommend further
consulting with knowledgeable colleagues, the literature,
and a statistician before collecting data to clarify issues of

Table 3 A model set for the example examining ecological factors
and extra-pair paternity in a hypothetical bird species

Model description Model notation

Male body size (‘body’) β0+β2iX2i

Food availability (‘food’) β0+β4X4

Male dominance (‘status’) β0+β5X5

Territory quality (‘territory’) β0+β7X7

Body+food b0 þ b2iX2i þ b4X4

Body+status b0 þ b2iX2i þ b5X5

Body+territory b0 þ b2iX2i þ b7X7

Food+status b0 þ b4X4 þ b5X5

Food+territory b0 þ b4X4 þ b7X7

Body+food+status b0 þ b2iX2i þ b4X4 þ b5X5

Body+food+territory b0 þ b2iX2i þ b4X4 þ b7X7

Body×status b0 þ b2iX2i þ b5X5 þ b2i;5 X2i
»X5ð Þ

Body×territory b0 þ b2iX2i þ b7X7 þ b2i;7 X2i
»X7ð Þ

Food×territory b0 þ b4X4 þ b7X7 þ b4;7 X4
»X7ð Þ

Intercept only β0

The models link the hypothesized predictor variables from Table 2
with the probability of having an extra-pair young in the nest. Each
model is a representation of the biological hypothesis of interest.
Models are of the form, logit [Prob(EPY)]=β0+βzXz, but the notation
is truncated here to list the intercept and response variables and their
relationship to each other, if applicable
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study and sampling design so that the data collected are
those most appropriate for addressing the hypotheses of
interest. This is particularly important given the methodo-
logical and logistical challenges that studying birds in the
wild presents (e.g., secretiveness, mobility, difficulty in
capture, environmental variability, etc.). After this hard
thinking and careful planning, relevant data to collect for
this example study would include measures of food
availability such as numbers of insects trapped per territory,
measures of territory quality, and behavioral observations to
establish male dominance status. All adults and young in
the study should be measured (for condition or body size
metrics) and small samples of blood obtained for DNA-
based molecular determinations of parentage and storage
for subsequent additional analyses. Importantly, measures
for all of the variables of interest are needed for each case
that will be considered in the analysis data set (i.e., the
same data will be included for each model).

In terms of analysis in this example, our predictor
variables are our metrics of territory quality, food availabil-
ity, male dominance status, and body size. The response
variable is proportion of the brood that is extra-pair. For
simplicity, assume our example species lays clutches of
only one egg, so the response, Y, will be binomial, Y=1 for
an EPY in the nest and Y=0 for a within-pair young in the
nest. The parameter of interest is the expected value of Y,
which is equivalent to the probability Y=1.

A good analysis strategy will be to use generalized linear
models (McCullagh and Nelder 1989) with a logit link (i.e.,
logistic regression) which is straightforward to implement
in many software packages (e.g., SAS, Statistica, R) and is
a standard, commonly used data analysis method. Other
model forms (e.g., quadratic or other nonlinear shapes) and
link functions (e.g., the complementary log–log link) might
also apply and these approaches can be applied when the
brood size is larger than 1 and thus the response variable is
the proportion of the brood that was extra-pair.

If values of AICc are not supplied by the software, then
it is a simple matter to calculate the AICcs and Δs from the
maximized log-likelihood (or “deviance”) as outlined
above. Model ranks, model probabilities, and evidence
ratios can then be calculated. The focus should be on the
alternative science hypotheses and models that carefully
reflect these. Given hard thinking and relevant data, the
computations are quite easy (once the model fit has been
accomplished.)

Technical issues

In general, we believe that the application of these new
approaches in the life sciences has gone fairly well in a
relatively short time period. However, we also note several

recent methodological papers published that contain some
misinformation. In this section, we will comment on a
number of technical issues where emphasis and clarification
might be helpful. The points below are not in any particular
order.

1. Hard thinking. Steidl (2007) notes that the I-T
approaches encourage, if not require, a person to
think hard about alternatives. In the past it has been all
too easy for a person to start with an interesting
research hypothesis and then produce a competing,
but usually trivial, null hypothesis. Then, it is only the
null that is the subject of the test. Thus, often the
uninteresting null is “rejected” and support is thrown
to the original hypothesis, but only by default. The
original science hypothesis is never tested. However,
if there was little or no a priori belief in the null, what
has been learned by its rejection?

2. Stepwise AIC. Stepwise regression is a very poor
procedure, although well known and often taught and
used (Whittingham et al. 2006). The technical reasons
for its poor performance are many, but include the
“multiple testing problem.” The analyst does not even
know the second best model when using one of the
test-based subset regression methods (Mundry and
Numm 2009). There are no model likelihoods or
model probabilities under this approach. One cannot
model average predictions or model parameters using
this traditional method. Finally, estimates of precision
cannot include model selection uncertainty; thus
confidence intervals will be too narrow and coverage
will not be at the nominal level.

Some computer software now implement a “step-
wise AIC” procedure that tries to avoid some of the
worst features of the traditional stepwise testing
procedure. We cannot recommend this approach as
there is no theory underlying the approach and its
properties are unknown. Finally, stepwise AIC
bypasses the hard thinking step that is so important
in empirical science. Instead, it is usually a strategy of
pretending to run all possible models while, in fact,
only a relatively few models are actually evaluated.

3. Δ>2 Rule. Some of the early literature suggested that
models were poor (relative to the best model), and
might be dismissed if they had Δ>2. This arbitrary
cutoff rule is now known to be poor, in general.
Models where Δ is in the 2–7 range have some
support and should rarely be dismissed (see Fig. 2).
Inference can be better based on the model like-
lihoods, probabilities, and evidence ratios and, in
general, based on all the models in the set. From
these quantitative measures one can then assign their
own value judgment if they wish.
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4. True models. A number of model selection methods,
and much research on model selection methods, rests
on the existence of a “true model” and that such a
model is in the a priori set. The simplest interpretation
of the “true model” is that the real data were actually
generated by this unknown model; alternatively, it is a
model that expresses full reality in all its aspects.
Models are only approximations, by definition if
nothing else. Surely no one would say full reality is
a model! Models are like maps, they can be useful at
various scales, but are never completely “true.” The
I-T approaches make no use of any such “true model”
but, instead, rely on estimates of the distances of
different models from full reality.

Related to this issue is the Bayesian Information
Criterion (BIC) which has been touted as being
“consistent.” Here the notion is that the criterion
identifies the true model with probability 1 as sample
size goes to infinity (Schwarz 1978). Of course, if the
true model is not in the set under consideration, there
is nothing to be consistent for. There are a host of
reasons why BIC is a poor criterion (Burnham and
Anderson 2004); we believe it should not be used with
real data. Unfortunately, several computer software
packages provide BIC in the output.

5. Mixing analysis paradigms. A common problem is
where authors use null hypothesis testing methods and
information-theoretic methods in the same analysis.
This has been advocated in the literature and we
strongly advise against it. Often people will rank the
hypotheses and the associated models using AICc and
then “test” to see if the best model is “significantly
better” than the second best model. It is not clear why
this might be interesting but it arises fairly often. We
make two points. Firstly, if this is a question of
interest, a simple evidence ratio of the two best
models is far more informative and theoretically
sound. Secondly, the theory is lacking for a traditional
test because one has no idea of the distribution of the
test statistic under the null (the null here is the second
best model) because data analysis has been done to
rank the top two models (using AICc). We strongly
recommend using one paradigm or the other, but not
mixing them in the same overall analysis.

6. The meaning of model probabilities. We have seen
some confusing definitions of the I-T model proba-
bilities, wi, in recent publications. The correct inter-
pretation is simple. Firstly, it must be clear that one of
the R models is, in fact, the theoretically best model in
a K-L information sense. Of course, the analyst does
not know which of the models in the set is actually
best, given only a single data set. We can estimate
which model is best and the model probabilities

quantify the probability of each model in the set being
that best model. If, for example, g3 is in fact the
theoretically K-L best model and the Prob (g3 |data)=
0.99 one can rest assured that g3 really is the best
model, given the data. Taking the example further, if
Prob (g3 |data)=0.43, then the analyst must realize that
there is considerable uncertainty in the data-based
selection of the best model. That is, if one had a
replicate data set from the same system, it may well be
that some other model would be estimated to be best.
Here, there is a lot of uncertainty as to which model is
actually the K-L best model. Model probabilities
under an I-T framework have no connection to a
supposed “true” model that is assumed to be in the
model set.

7. The meaning of a P value. The definition of a P value
might seem strained. One starts with experimental
data and then computes a test statistic that has a
known distribution by design (e.g., t or F or z or χ2).
A P value is then the probability that a test statistic
would be as large as, or larger than, the actual
computed test statistic, given the null. It is a “tail
probability” and for this reason (there are others) P
values are not evidence (Royall 1997). People often
want to “redefine” such P values to be the probability
of the null, given the data—this is seriously wrong
(see e.g. Sellke et al. 2001).

8. AIC only for two models. We have seen a recent book
that states that AICc can only be used to compare two
models. This is simply incorrect. Strengths of the I-T
approaches are the ability to deal effectively with
complex problems and the ability to make formal
inference from many models.

9. Nested and non-nested models. We have seen papers
that claim that AICc can only be used for nested
models and papers claiming it should be used only for
non-nested models. Neither of these claims are correct.

10. Why not just use the global model? It has been argued
that one should make inference from a model with all
the factors thought to be important (i.e., a “global
model”). This approach would seem to be simple and
avoid the complications of model selection. The first
serious drawback here is the lack of precision in the
estimated parameters. A given data set has only a
finite amount of information; each time a parameter
estimate is made, the information left is reduced.
Increasing the number of parameters eventually makes
the fitted model unstable and uninformative. The
probability of finding effects (factors) that are actually
spurious increases. New parameters are estimated but
with increasing uncertainty—this phenomenon is an
aspect of the Principle of Parsimony and is closely
related to the age-old notion of Occam's razor.
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A second serious drawback arises when, as is
common, the global model has many parameters in it
(dozens, sometimes hundreds). One has to resort to
analyzing the set of resultant parameter estimates, as if
they were now the data, in order to understand the
results of fitting the global model. In essence, one is
then fitting reduced-dimension models to the set of
(poorly estimated and correlated) global parameter
estimates. It is very demanding to do this efficiently
and validly. Indeed, the proper way to proceed is to fit
the corresponding reduced models (as special cases of
the global model) to the original data and do proper
multimodel inference. This latter approach facilitates
understanding of the information in the data; fitting
only a large global model generally fails as a strategy
for effective inference.

11. None of the hypotheses have merit. AICc ranks the
models in the set of alternatives; if none have merit,
the models are still ranked. Thus, one needs some
measure of the “worth” of either the global model or
the model estimated to be best. Thus, standard
statistical methods are needed to gauge this matter;
these include adjusted R2, goodness-of-fit tests, and
the analysis of regression residuals. We have seen
examples where the P value was 0.002 (“highly
significant”) but the R2 value was only 0.06. Clearly,
if only 6% of the variation in the response variable
was in common with the variation in the predictor
variables, then little has been learned, even if the P
value was “highly significant.” Hard thinking in
defining the alternative hypotheses is a guard against
the case where none of the hypotheses/models are of
any inferential value.

12. Relevant hypotheses and over use of P values. A
review of the papers published in Ecology and the
Journal of Wildlife Management indicated a serious
overuse and misuse of null hypothesis testing
(Anderson et al. 2000). Many authors discuss P
values as if they are evidential; they are not (see
Royall 1997). A number of papers reported on
hundreds of null hypothesis tests (e.g., as many as
408 P values in a single paper). Hundreds of the null
hypotheses were trivial and surely could be rejected
on simple a priori grounds. The key issue was the
failure to explore more relevant questions and to
report more informative summary statistics such as
the estimated effect size and measures of its precision
and evidence ratios.

13. Contingency Tables. Integer data (e.g., counts) are
often summarized as a contingency table and analyzed
using procedures that result in test statistics that are
asymptotically χ2 distributed. If the counts are at all
large, these tests are very powerful in rejecting the

null. However, one should not jump too fast in
claiming that these results indicate that something
important has been found. It is important to remember
that the alternative hypothesis is never tested. A
related issue here is the fact that many sets comprised
of count data are overdispersed. This is a bigger issue
than we can address here; however, Burnham and
Anderson (2002) provide a summary with references
to the primary literature.

14. AICc suggests this model fits the data best. This
statement is incorrect as models (even those within the
set) with still more parameters will often fit the data
better still. The concept of parsimony enters here and
AICc is suggesting that a particular model is best in
the sense of trading-off bias versus variance of the
fitted model parameters, for a given sample size (i.e.,
“best” in the K-L information sense).

15. Debate concerning model likelihoods and model
probabilities. There have been questions raised
concerning model likelihoods and model probabilities
in the I-T approaches. The claim has been that these
quantities are somehow “informal” or not based on
sound theory. Interestingly, some of the path to
understanding these issues comes fromBayesian results.

The concept of a likelihood for a fitted model seems
compelling. That is, the field of statistics ought to be
able to extend the useful idea of a “likelihood” (as data-
based evidence about something unknown) to models.
However, a likelihood is not a derived (as in a result of a
theorem) result. It seems Fisher intuited it, then proved
likelihood-based inference had good properties (e.g.,
second order efficiency and consistency). Extending the
concept to a model also seems to be a matter of finding
(intuiting) a reasonable result. However, using a
Bayesian framework can be quite helpful here.

Akaike explored this issue (and model probabilities,
to a limited extent) in several papers, most notably
Akaike (1979, 1985). Akaike (1979, p. 239) states, “…
it is natural to consider exp(-(1/2)AIC) as the “likeli-
hood” of the model determined by the method of
maximum likelihood.” He continues on page 242, “The
numerical results reported in this paper suggest that
exp(-(1/2)AIC) plays almost exactly the role of the
likelihood expected in a Bayesian procedure.” Akaike
(1978a, pp. 299–301) provides a Bayesian result
regarding the posterior model probabilities.

Also relevant is Akaike (1978b, p. 14), “If the
choice of one single model is not the sole purpose of
the analysis of the data the average of the models with
respect to the approximate posterior probability Cexp
{(−1/2)AIC(k)} will provide a better estimate of the
true distribution of Y.” In other words, the wi are
probabilities. A suitable choice of priors on models
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would remove the “approximate” aspect (Burnham and
Anderson 2004, pp. 302–305).

If one accepts BIC as a basis for a large-sample
approximation to the Bayes factor, then a simple
justification of these weights as probabilities, and as
the model likelihood, is given in Burnham and
Anderson (2002, pp. 302–305) and in Burnham and
Anderson (2004, pp. 280–281).

We affirm the meaning of these probabilities and say
the Akaike “weights” are probabilities because each is
within the interval [0, 1] and they sum to 1. The key
issue should be, what do they mean as probabilities?
That issue applies as well to the Bayesian framework.
Therein prior probabilities on a discrete set of models
are probabilities simply by being bounded [0, 1] and
summing to 1. We maintain we can easily know if a
finite set of numbers is a discrete probability distribu-
tion; it is not required that we justify this by how the
numbers were “derived” (witness most Bayesian priors).
While it is very useful to know these weights can be
justified as posterior probabilities, the real issue is being
able to say what they mean for model selection and
inference (see technical issue 6, above).

A simple alternative to ANOVA tables and P values

The I-T approaches can also be used for problems
traditionally analyzed by analysis of variance (ANOVA)
tables with the traditional test statistic, its asymptotic
distribution, its P value, and an arbitrary judgment as to
its significance. During the computations leading to a t test
or ANOVA table one calculates a residual sum of squares
(RSS) and this is a branching point that leads to the new
information-theoretic approaches and all their advantages in
terms of evidence (Fig. 3). Starting with the RSS, the
procedure is quite straightforward.

Consider an experiment with random assignment of
experimental units to treatment classes, replication, and a
proper design involving treatment and control groups (e.g.,
completely randomized, randomized complete block, fac-
torial). We will focus on a completely randomized design as
an example. Data are collected and the traditional analysis
involves an ANOVA table. This table summarizes sums of
squares for treatment, error (or residual), and total. Division
by appropriate degrees of freedom provides mean squares
and ratios of these lead to an F value and a P value. For
illustration, let the test statistic (F) be 8.1 with appropriate
degrees of freedom, the P value is 0.009, and this is deemed
“statistically significant.” The P value, the probability of
the test statistic being 8.1 or greater, is 0.009, given the null.
Because the probability is low, one concludes, by default,

that the alternative is a better choice (i.e., “significant”).
However, the alternative is never tested and the probability
of the null and the probability of the alternative are not
known.

Information-theoretic approaches provide an attractive
alternative to the traditional presentation of t tests,
ANOVAs and multiple comparisons (means separation
tests). Let everything above be the same except that two
models are examined: one without a treatment effect and
the other with a treatment effect. The first model has two
parameters in this case: βo and σ2 while the second model
has 3 parameters: βo, β1 and σ2, where β1 represents the
unknown effect size. The essential quantity for each model
that is needed for the I-T approach the residual sum of
squares, RSS (sometimes called the error sum of squares) as
one can then compute the other quantities needed,

AICc ¼ nlog RSS=nð Þ þ 2K þ 2K K þ 1ð Þð Þ= n�K�1ð Þ;
whereK=2 and 3, respectively. Then, Δi ¼ AICci�AICcmin

and the twomodel probabilities can be easily computed. Thus,
the analyst has the probability of both the null and alternative
hypotheses, given the data. The strength of evidence can also
be gauged by an evidence ratio. In this case, the results are
conditioned on the data and all the models of interest; that is
why data are collected. Conditioning only on the null model,

ANOVA I-T

1) Δ

2) 

3) Prob 

4) Evidence ratios 

5) Multimodel inference 

RSS

Test statistic 

P - value 

DATA 

 DESIGN 

SCIENCE 

PROBABILITY  

QUESTION(S) 

MODELS 

Fig. 3 I-T approaches provide a superior alternative to the traditional
test statistic and P value paradigm (e.g., t tests and ANOVA tables). A
conceptual diagram of the pivotal branching point in the tree is the
RSS. All the important issues that precede data analysis (the roots) are
the same under either analysis approach, including the estimated effect
size and its precision for a given model
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which is often no more than a straw man, is an inefficient
approach to learning from the data.

A one-way ANOVA is equivalent to an unpaired t test
and a two-way ANOVA is (or can be) equivalent to a paired
t test. There are other equivalencies that arise. A detailed
example of the paired t test case is available from the
authors (also see www.Springer.com/978-0-387-74073-7
for exercise 8 in chapter 4). Use of AICc and model
selection ideas in an ANOVA framework, rather than
classical multiple comparisons methods, is considered by
Dayton (1988), and was first suggested by Sugiura
(1978).

In summary, both approaches share all the preliminary
issues up to the residual (or “error”) sums of squares (RSS).
Then the traditional and information-theoretic approaches
diverge (Fig. 3). In both cases, the computations are simple;
however, the inferential information is quite different. Of
course, both procedures provide the same estimate of the
effect size and its precision for any given model. Given a
choice, it seems one would always prefer having the model
probabilities (that is, Prob{Ho|data} and Prob{Ha|data})
and the evidence ratio rather than just a P value which is
conditioned on the null.

Problems with null hypothesis testing approaches

Many null hypotheses are trivial (so-called silly nulls) and
uninteresting and reflect a lack of thinking about plausible
alternatives. Finding little/no support for the null does little
to provide evidence for the alternative (e.g., perhaps the
alternative does not fit either!). At best, the P value is not a
proper strength of evidence (Royall 1997). The meaning of
a P value is inferentially odd, Prob{data|null}, and we find
that people want to twist this to pretend that a P value is
Prob{null|data}.

Null hypothesis testing should not be used for observa-
tional studies as the distribution of the test statistics under
the null is not known (and cannot be gotten by boot-
strapping or various Monte Carlo techniques). These
traditional methods are especially poor for model building
(e.g., step-up, step-down, and stepwise procedures) due to
the multiple testing problem.

An array of technical problems arise with the null
hypothesis testing approach. One example is the perfor-
mance of the test when sample size goes to infinity
(asymptotic). Consider a simple t test where the treatment
effect is exactly 0. Then even with infinitely large sample
sizes, the procedure will still error at the α-level (e.g., 5%
of the time). Moreover, a reported P value, or the rejection
(or not) of the null hypothesis is uninformative about the
actual effect size, at any sample size. Additional informa-
tion can be found at the websites warnercnr.colostate.edu/

∼anderson/thompson1.html and warnercnr.colostate.edu/
∼anderson/nester.html.

In summary, traditional testing approaches leave an
analyst without ways to rank hypotheses, cope with data
from observational studies, cope with non-nested models,
average models, estimate model selection uncertainty,
incorporate model selection uncertainty into estimates of
precision, or provide confidence sets on models. The I-T
methods offer a fundamentally sound, intuitively appealing
approach to analysis. Most practicing statisticians have
“moved on” to either I-T methods or Bayesian methods; we
recommend that people in the life sciences continue to learn
about and to adapt the new approaches in their work.

Final thoughts

We offer a few speculations regarding the future, based on
experience in the past. One might think that Akaike's main
legacy would be his AIC and the related advances.
However, Akaike has said that his main contribution has
been to point out the importance of defining alternative
hypotheses and the related modeling. It is this step that lays
the foundations for good science. We need to better develop
a culture of hard thinking. Journal editors can play an
important role here.

Akaike's later works are more readable for nonstatis-
ticians and more philosophical (Akaike 1983a, b, 1985,
1992, 1994) and draw additional insights from the concept
of entropy. Parzen (1994) and Findley and Parzen (1995)
provide more information on Akaike and his collected
works are listed in Parzen et al. (1998).

The information-theoretic approaches are far more than
data analysis. The new methods represent a package,
starting with the careful delineation of a worthy science
question and ending with the ability to both quantify and
qualify the evidence for the set of alternative hypotheses.

Modeling of the alternative hypotheses remains a
potential stumbling block as relatively few students in the
life sciences have this background in their education. Better
education is needed in quantitative methods, including
subjects such as calculus, matrix algebra, probability, and
mathematical statistics. In addition, education is failing in
science history and philosophy: people can receive a doctor
of philosophy degree without ever taking a course in
science philosophy.

The key ingredients needed for the I-T approaches are the
residual sum of squares (RSS) in a least squares framework
or the maximized log-likelihood in a likelihood-based
analysis. However, further advances include generalized
estimating equations (see Qin and Lawless 1994 and Pan
2001a and b). In addition Rissanen (2007) provides
alternative approaches also based on information theory,
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but from a coding theory standpoint, whereas Konishi and
Kitagawa (2007) continue to emphasize the link between
information theory and statistical modeling.

There is no excuse for gathering poor data in the twenty-
first century. Proper sampling and experimental design are
the subjects of hundreds of books and thousands of journal
papers. While many people think of “statistics” as only data
analysis (or worse yet, just null hypothesis testing and its P
values), consultation with a statistician can often help in the
planning and design stages of a research program.

Quantifying and qualifying the evidence is critically
important and is simple using the new approaches. Then the
a priori set evolves by dropping hypotheses judged to be
implausible, refining the remaining hypotheses, and adding
new hypotheses based on the earlier evidence. This is a
science strategy that promotes fast learning and deep
understanding.
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