BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY TAB

Benefit Calculation, Monetization, and Resiliency Tab

Attachment 1: Model Assumptions

Attach description and assumptions of with-project conditions for years 2030 and 2070, as defined in section 6004(a)(2) of the regulations, as well as a description of the with- and without-project current conditions. See also regulations section 6003(a)(1)(BB).

WSIP Application Instructions, March 2017

STATUS:	FINAL	PREPARER:	R LEAF	PHASE:	1	VERSION:	С
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1	CHECKER:	R TULL	DATE:	2017 A	UGUST	
CAVEAT:		QA/QC:		REF/FILE #:	WSIP A	APPLICATI	ON
NOTES:				PAGE:	1	O F	84

Sites Reservoir Project Description and Assumptions of with-Project Conditions for Years 2030 and 2070 plus with and without-Project Current Conditions

August 9, 2017

STATUS:	FINAL	PREPARER:	R LEAF	PHASE:	1	VERSION:	С
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1	CHECKER:	R TULL	DATE:	2017 A	UGUST	
CAVEAT:		QA/QC:		REF/FILE #:	/FILE #: WSIP APPLICATIO		ON
NOTES:				PAGE:	2	O F	84

Table of Contents

Attacl	ment 1: Model Assumptions	. 1
	Introduction	. 5
	Approach	. 5
	Project Description and Assumptions	. 7
	Project Infrastructure	. 8
	Tehama-Colusa Canal and Red Bluff Pumping Plant Facilities and Capacity	. 9
	Glenn-Colusa Irrigation District Main Canal and Hamilton City Pumping Facilities and	
	Capacity	. 9
	Proposed Delevan Pipeline and Intake Diversion and Release Capacities	. 9
	Existing Tehama-Colusa Canal and Glenn-Colusa Irrigation District Main Canal Intertie.	10
	Williams Outlet	10
	Holthouse (Funks) Reservoir	10
	Terminal Regulating Reservoir and Pipeline	10
	Diversions to Sites Reservoir	10
	Sites Reservoir Diversion Bypass Flow Protection	11
	Pulse Flow Protection Diversion Assumptions	11
	Diversions to Fill Sites Reservoir Storage	13
	Sites Reservoir Evaporation	13
	Reservoir Operations Assumptions	14
	Public Benefits	14
	Shasta Lake Coldwater Pool and Sacramento River Temperature Control	15
	Stabilize Upper Sacramento River Fall Flows	15
	Sacramento River Diversion Reductions at Red Bluff and Hamilton City	15
	Folsom Lake Coldwater Pool Improvement and Supply Reliability	16
	Yolo Bypass and Delta Outflow Improvement	16
	Lake Oroville Coldwater Pool Improvement	16
	Water Supply	16
	Works Cited	16

Figures

Figure 1. Modeling Analytical Framework	7
Figure 2. Sites Reservoir and Proposed Facilities	8
Figure 3. Pulse Flow Protection for Sites Diversions1	.3

STATUS:	FINAL	PREPARER:	R LEAF	PHASE:	1	VERSION:	С
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1	CHECKER:	R TULL	DATE:	2017 A	UGUST	
CAVEAT:		QA/QC:		REF/FILE #:	WSIP A	PPLICATI	NC
NOTES:				PAGE:	3	OF	84

Acronyms and Abbreviations

Authority	Sites Project Authority
CALFED	CALFED Bay-Delta Program
cfs	cubic feet per second
CVP	Central Valley Project
CVPIA	Central Valley Project Improvement Act
DCR	Delivery Capability Report
Delta	Sacramento-San Joaquin River Delta
DSM2	Delta Simulation Model
DWR	California Department of Water Resources
Funks Reservoir	Holthouse Reservoir
GCID	Glenn-Colusa Irrigation District
M&I	municipal and industrial
MAF	million acre-foot (feet)
NODOS	North-of-Delta Offstream Storage
Reclamation	Bureau of Reclamation
SRSC	Sacramento River Settlement Contractor
SVI	Sacramento Valley 40-30-30 water year type index
SWP	State Water Project
SWRCB	State Water Resources Control Board
TAF	thousand acre-feet
T-C Canal	Tehama-Colusa Canal
ТССА	Tehama-Colusa Canal Authority
TRR	Terminal Regulating Reservoir
USACE	U.S. Army Corps of Engineers
USRDOM	Upper Sacramento River Daily Operations Model
VIC	Variable Infiltration Capacity

STATUS:	FINAL	PREPARER:	R LEAF	PHASE:	1	VERSION:	С
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A1	CHECKER:	R TULL	DATE:	2017 A	UGUST	
CAVEAT:		QA/QC:		REF/FILE #:	WSIP A	PPLICATI	ON
NOTES:				PAGE:	4	OF	84

Recreation (WSIP Public Benefit)

Physical Quantification

Recreation benefits were valued using visitation estimates for the new recreational areas planned for the Sites project. Annual visitation was estimated using a facilities-based approach that accounts for Sites planned facilities, carrying capacity, the regional population of potential users, the surface acreage of the reservoir, fluctuations in storage throughout the year, and the amenities and visitation levels of substitute reservoirs in the region.

Table A3-13 presents the annual visitor-day estimates and unit day values by activity type. The estimated total annual visitor-days assumed in this analysis was approximately 187,000.

by Primary Activity				
Activities	Annual Visitor-Days			
Shore fishing	16,254			
Boat fishing	8,407			
Picnicking	15,457			
Sightseeing	27,514			
Swimming / beach use	36,992			
Walking	42,223			
Bicycling/Motorcycling	5,418			
Horseback riding	2,429			
Boating / water-skiing	29,145			
Hunting	560			
Other	2,429			
Total	186,829			

Table A3-13. Annual	Recreation	Visitation
---------------------	------------	------------

Monetized Benefits

Recreation benefits were quantified using unit day values from Rosenberger, Recreation Use Values Database (RUVD) for North America (2016) and from Loomis, Updated Outdoor Recreation Use Values on National Forests and Other Public Lands for U.S. Forest Service (2005). These values were applied to the visitation projections for Sites Reservoir. It was also determined that 80 percent of the visitor-days at Sites Reservoir would represent new recreational visits, and that the remaining 20 percent of visits would reflect recreational visitor-days that, in the absence of Site Reservoir's development, would otherwise have occurred at nearby reservoirs. Table A3-14 presents the results of the recreation benefits analysis.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:	С
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2	CHECKER:	J HERRIN	DATE:	2017	AUGUST	
CAVEAT:		QA/QC:		REF/FILE #:	WSIP	APPLICAT	ION
NOTES:				PAGE:	14	OF	18

Table A3-14. Estimated Annual Recreation Benefits (2015\$; \$1,000s)

	Annual E					
Alternative	2030	2070	Annualized Benefit ^b			
Average Conditions ^c						
Sites Reservoir	\$6,997	\$6,997	\$6,754			
^a Annual bonofits reflect consumer surplus value for various regreational activities supported by Sites Peservoir and water operation scenarios						

^a Annual benefits reflect consumer surplus value for various recreational activities supported by Sites Reservoir and water operation scenarios under year 2030 and year 2070 levels of development. Benefits were attributed for only 75 percent of future visitation expected as new recreational use after accounting for potential substitution effects on other reservoirs in the region.

^b Annualized benefits represent avoided costs relative to the Future No Project conditions over the planning horizon (2030 to 2122). Annual average is less than 2030 and 2070 values due to initial short ramp-up period before full benefits are generated.

^c Averaged over the entire hydrologic sequence (1922 to 2003).

The project's future recreation benefits were estimated to be approximately \$7.0 million in 2030. Although future population growth might be expected to increase future recreation demand and visitation, it was conservatively assumed that the 2030 level of benefits would remain constant throughout the future 2030 to 2122 operating period. As a result, the average annual benefit for the future 2030 to 2122 operating period was estimated to be \$6.8 million (slightly reduced due to an assumed 50 percent operation during its first two operating years).

Flood Damage Reduction (WSIP Public Benefit)

Physical Quantification

Development of the Sites project would reduce the magnitude of flood events in the area along Funks Creek and Stone Corral Creek, specifically for the town of Maxwell's residential, commercial, and public structures and contents. In addition, the project would reduce flood damage to adjacent agricultural lands and flood-related closures to Interstate 5 and State Route 20.

Hydraulic analysis (HEC-RAS 2-D) was used to quantify the project-related reduction in flood-impacted areas and flooding severity for six different flood event types (ranging from 5-year to 500-year flood events). Geographic information system (GIS) land use analysis inventoried the impacted areas. Flood reduction benefits were estimated for current hydraulic conditions to represent the expected 2030 conditions. No adjustments in the hydraulic modeling or other analytic methods were used to project 2070 conditions (including climate change) because the flood damage benefits are relatively limited and due to difficulty in quantifying the magnitude of changes in future flood events.

Additional details on flood damage reduction benefits are provided under the Sites_A1 Flood Control under the PHYSICAL PUBLIC BENEFITS TAB.

Monetized Benefits

The value of flood damage reduction benefits was estimated based on the average annual cost of flood damages under No Action conditions and the projected reduction in flooded area and damage costs for "with Project" conditions. The resulting Expected Annual Damages savings from the project-related reduction in flood impact incidence and severity were calculated for a comprehensive range of different flood event types (5 year to 500 year) and adjusted for their expected incidence rate. This approach corresponds to the "avoided cost" approach described in the WSIP TR report.

Table A3-15 presents the estimated benefit value of the project-related flood damage reduction.

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:	С
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2	CHECKER:	J HERRIN	DATE:	2017	AUGUST	
CAVEAT:		QA/QC:		REF/FILE #:	WSIF	P APPLICA	TION
NOTES:				PAGE:	15	OF	18

Table A3-15. Flood Reduction Benefits (2015\$; \$1,000s)

	Annual E				
Alternative	2030	2070	Annualized Benefit ^b		
Average Conditions ^c					
Sites Reservoir	\$4,377	\$4,377	\$4,377		
	φ τ ,377	<u> </u>	, <i>311</i>		

^a Based on the project-related reduction in expected annual damages from future flood events.

^b Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070.

 $^{\circ}$ Averaged over the entire hydrologic sequence (1922 to 2003).

The project's future flood reduction benefits were estimated to be approximately \$4.4 million in 2030. It was conservatively assumed that 2030 benefit values would remain constant throughout the future 2030 to 2122 operating period. As a result, the average annual benefit for the future 2030 to 2122 operating period was estimated to be \$4.4 million.

Water Supply (Non-Proposition 1 Eligible Benefit)

Physical Quantification

Increases in water supply were monetized based on the increase in deliveries. Increases in deliveries for 2030 and 2070 were estimated using CALSIM II. CALSIM II determined future water deliveries for each applicable project purpose by water-year type and location. Corresponding physical benefits were estimated on an annual basis for the interim 2031 to 2069 period by interpolating individually (i.e., for each specific purpose, location, water-year type, and incidence rate). Each year's individual quantified values were then used to determine a corresponding average expected water use amount. Table A3-16 shows the estimated water supply deliveries by water-year type projected in 2030, 2070, and the annual average in the 2030 to 2122 study period. Sites is expected to reduce the flood area by 9,570 acres. Additional details on flood damage reduction benefits are provided in Sites_A1 Flood Control under the PHYSICAL PUBLIC BENEFITS TAB.

Period	NOD Agriculture	SOD Agriculture	SOD M&I	SOD Recaptured	Total		
2030 Results							
Long-Term Average	110	25	106	11	254		
Wet	62	5	15		82		
Above Normal	86	68	52		144		
Below Normal	125	28	121		273		
Dry	157	56	213		426		
Critical	153	53	185		391		
2070 Results							
Long-Term Average	137	30	117	11	295		
Wet	110	5	15		130		
Above Normal	146	12	72		230		
Below Normal	152	26	116		294		
Dry	161	69	257		488		
Critical	133	41	145		319		
Average (2030–2122)							
Long-Term Average	131	29	114	11	286		
Source: CALSIM II. M&I = municipal and industrial NOD = north-of-the-Delta SOD = south-of-the-Delta							
STATUS: FINAL			PREPARER: N CAI	RLSON PHASE:	1 VERSION: C		
PURPOSE: BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2 CAVEAT:		CHECKER: J HER	RIN DATE:	2017 AUGUST			
		QA/QC:	REF/FILE #:	WSIP APPLICATION			
NOTES:				PAGE:	16 ^{OF} 18		

Table A3-16.	Increase in	Water Supply	Deliveries	(TAF/year)
--------------	-------------	--------------	------------	------------

Monetized Benefits

Sites Reservoir would improve water supply reliability to both M&I water users (primarily south of the Delta) and agricultural waters (both north and south of the Delta). CWEST modeling was used to estimate the project's future M&I water supply benefits. The CWEST values were also applied to the small quantity of recaptured water that the Sites Joint Powers Authority (JPA) intends to use as a revenue source to cover the future operations and maintenance (O&M) cost-share for the project's agricultural water supply benefits for ecosystem and other public benefit purposes based on the WSIP-recommended unit water values. The total benefit value was estimated based on the expected future average hydrological year type and the expected use location of the water supplies. The WSIP unit water values were also adjusted to include the additional conveyance energy cost associated with its future use.

Table A3-17 shows the project's total water supply reliability benefits.

Alternetive	Annual E	Annualized Reposit			
Alternative	2030	2070	Annualized Benefit		
Average Conditions ^c					
Sites Reservoir	\$89,024	\$251,521	\$175,418		

Table A3-17. Total Water Supply Benefits: CWEST Results and WSIP Unit Water Values (2015\$; \$1,000s)

^a Based on CWEST and WSIP unit water values adjusted by water-year type, expected delivery location, and conveyance energy costs. ^b Annualized benefits assume interpolated annual physical benefits between 2030 and 2070 and then constant annual benefits after 2070. WSIP

unit water values interpolated between 2030 and 2045, after which 2045 unit water values were used.

^c Averaged over the entire hydrologic sequence (1922 to 2003).

Based on the assumed water use split between agricultural, M&I, and recaptured water deliveries and their use location, the project's future water supply benefits are estimated to increase from \$89.0 million in 2030 to approximately \$251.5 million in 2070. The corresponding average annual benefit for the future 2030 to 2122 operating period is estimated to be \$175.4 million, which is equal to an estimated average unit benefit value of \$760 per acre-foot for water supply use.

Hydropower (Non-Proposition 1 Eligible Benefit)

Physical Quantification

Hydropower benefits were modeled by both DWR's Power and Risk Office (PARO) and United States Bureau of Reclamation contractors. These non-public benefits are difficult to forecast due to a rapidly changing market for valuing ancillary and systemwide capacity benefits due to the rapid and extensive new development of wind and solar resources. The fluctuation in revenue from hydropower generation over the last decade can be seen by looking at the variability in revenue from generation that has occurred for the State Water Project (SWP).

Hydropower analysis performed by Toolson and Zhang (2013) generally corroborated PARO's direct net energy benefits. Toolson and Zhang's PLEXOS modeling analysis also evaluated Sites Reservoir ancillary services (AS) and systemwide capacity performance and benefits. Sites is expected to increase the hydropower (system) by 215,542 MWh per year.

Monetized Benefits

The proposed Sites Reservoir Project includes new hydropower capacity and the ability to provide AS at Shasta Dam and other hydropower facilities throughout the Central Valley Project (CVP) and SWP systems. Estimates of net changes in hydropower capacity, generation, and AS in western

STATUS:	FINAL	PREPARER:	N CARLSON	PHASE:	1	VERSION:	С
PURPOSE:	BENEFIT CALCULATION, MONETIZATION, AND RESILIENCY A2	CHECKER:	J HERRIN	DATE:	2017	7 AUGUST	
CAVEAT:		QA/QC:		REF/FILE #:	REF/FILE #: WSIP APPLICATION		ION
NOTES:				PAGE:	17	OF	18