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Anton M. Scheuhammer, Michael W. Meyer, Mark B. Sandheinrich and Michael W. Murray

Effects of Environmental Methylmercury on
the Health of Wild Birds, Mammals, and Fish
Wild piscivorous fish, mammals, and birds may be at risk
for elevated dietary methylmercury intake and toxicity. In
controlled feeding studies, the consumption of diets that
contained Hg (as methylmercury) at environmentally
realistic concentrations resulted in a range of toxic effects
in fish, birds, and mammals, including behavioral, neuro-
chemical, hormonal, and reproductive changes. Limited
field-based studies, especially with certain wild piscivo-
rous bird species, e.g., the common loon, corroborated
laboratory-based results, demonstrating significant rela-
tions between methylmercury exposure and various
indicators of methylmercury toxicity, including reproduc-
tive impairment. Potential population effects in fish and
wildlife resulting from dietary methylmercury exposure are
expected to vary as a function of species life history, as
well as regional differences in fish-Hg concentrations,
which, in turn, are influenced by differences in Hg
deposition and environmental methylation rates. Howev-
er, population modeling suggests that reductions in Hg
emissions could have substantial benefits for some
common loon populations that are currently experiencing
elevated methylmercury exposure. Predicted benefits
would be mediated primarily through improved hatching
success and development of hatchlings to maturity as Hg
concentrations in prey fish decline. Other piscivorous
species may also benefit from decreased Hg exposure but
have not been as extensively studied as the common loon.

INTRODUCTION

Numerous studies document the toxic effects of methylmercury
(MeHg) in individuals of various vertebrate species. However, it
is less clear whether current environmental levels of MeHg pose

health hazards to free-living fish and wildlife, and especially to
populations of animals rather than to individuals. Here we
present a brief synthesis of the scientific state of knowledge
regarding current levels of MeHg exposure and its toxic effects
in fish and wildlife. Because of the paucity of information on the

toxicology of MeHg in reptiles and amphibians, our report
focuses on fish, birds, and mammals.

Under most conditions, fish and wildlife are exposed
primarily to MeHg rather than to other chemical forms of
Hg, and the route of exposure is primarily through the diet.
Thus, our report focuses on the effects of MeHg at ecologically
relevant levels of dietary exposure. Our report is not intended to

be a comprehensive critical review of the literature, and we pay
particular attention to recent studies that have not been
included in previous reviews. For a more detailed discussion
of various aspects of Hg exposure, accumulation, and toxicol-
ogy in fish and wild birds and mammals, the reader is directed
to prior reviews (1-6).

EXPOSURE

Species and Habitats at Greatest Risk

Because of biomagnification of MeHg, long-lived piscivorous or
other top predatory animals feeding in aquatic food chains are

at greatest risk for elevated dietary MeHg exposure, accumu-
lation, and toxicity. These species include large predatory fish,
such as walleye (Sander vitreus), northern pike (Esox lucius),
and lake trout (Salvelinus namaycush); mammals, such as mink
(Mustela spp.), otter (Lutra spp.), polar bears (Ursus mariti-
mus), and seals (Phocidae and Liliaceae spp.); and piscivorous
birds, such as common loons (Gavia immer), bald eagles
(Haliaeetus leucocephalus), osprey (Pandion haliaetus), kingfish-
ers (Alcedo spp.); and some seabirds, such as albatross
(Diomedeidae) and certain Arctic species (7). Conversely,
terrestrial nonpiscivorous species (e.g., granivorous and insec-
tivorous birds) typically demonstrate relatively low Hg exposure

(<0.5 mg kg-' wet weight in blood) (8, 9) and are generally not
considered to be at risk for MeHg toxicity (10). High,
potentially toxic concentrations of Hg (>5 mg kg-' wet weight
in brain, or >20 mg kg-' in liver) have occasionally been
reported in a variety of predatory wildlife species (5). Factors
influencing Hg exposure in fish and wildlife, and concerns
regarding tissue sampling and analysis have recently been
reviewed (11, 12)

Piscivorous wildlife living in inland freshwater habitats often

experience higher Hg exposure than the same species from
nearby estuarine or marine habitats. In Maine, bald eaglets
sampled at nests on inland lakes had higher blood-Hg
concentrations than did eaglets raised in nests on rivers,
estuaries, or marine (coastal) habitats; and a similar trend was
found for belted kingfishers (Ceryle alcyon) nesting in the same

region (8). Higher Hg concentrations were reported in feathers
from chicks of both great egrets (Ardea alba) and white ibises
(Eudocimus albus) at a variety of inland freshwater sites
throughout peninsular Florida than in feathers of the same
species from coastal colonies (13). Tissues of otter from inland
habitats in Nova Scotia, Canada, had higher Hg concentrations
than those from corresponding marine coastal habitats (14).

Piscivorous fish and wildlife living near local point sources of

environmental Hg contamination may experience elevated Hg
exposure (15, 16), which may persist long after new inputs of Hg

have ceased (17-19). Some formerly important sources of
environmental Hg pollution that resulted in toxicity and death
of wild birds and mammals in the past (e.g., use of
organomercurials as seed dressings and effluents from Hg-cell
chloralkali plants) have been eliminated or greatly reduced.

Environments remote from point-source releases of Hg can
also contain fish and piscivorous wildlife with elevated Hg
concentrations. For example, some common loons and river
otters (Londra canadensis) from the interior of Nova Scotia,
Canada, and from several New England states (US) have
among the highest tissue Hg concentrations reported for these
species (8, 20, 21). Elevated Hg concentrations have also been
reported in some predatory marine mammals and birds,
especially from relatively remote northern locations (7, 22-
26). In general, regions that receive relatively high atmospheric
Hg loadings and are characterized by a high proportion of Hg-
sensitive aquatic ecosystems in which Hg methylation rates are
relatively high (low-alkalinity, low-pH lakes; surface waters
with large upstream or adjoining wetlands; waters with
adjoining or upstream terrestrial areas subjected to flooding;
and dark-water lakes and streams) pose the greatest risk for
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piscivorous wildlife, because it is in these environments that
trophic transfer of Hg is high and fish accumulate the greatest
concentrations of Hg (5, 27, 28).

Temporal and Geographic Trends in Exposure

Where they were studied, temporal trends of Hg in wildlife were
found to vary by region and by the magnitude of the time
period chosen for analysis. Studies of trends in areas affected by
industrial activity have sometimes reported declining Hg levels
in recent years (21, 29); however, more long-term analyses,
especially in remote locations, such as the North Atlantic and
the Arctic, where global atmospheric inputs of Hg likely
predominate, indicate increasing Hg concentrations in piscivo-
rous wildlife over the past 30-150 years (24, 30, 31). In Florida,
Hg in fish-eating birds increased substantially during the 1990s,

compared with earlier decades, reflecting trends in local source
deposition, which then later declined as local emissions were
controlled (13, 32).

Extensive sampling of common loon feathers, blood, and
eggs indicates a general west-to-east gradient of increasing Hg
exposure in this species across North America, roughly consis-
tent with patterns of atmospheric Hg deposition (33, 34).
However, within specific regions, there can be wide variation in

Hg exposure in loons, associated with differing land-use
patterns, and physical and chemical characteristics of local
watersheds-for example, the degree of lake acidification (8).

Demethylation and Interactions with Selenium

Most fish and wildlife are exposed to Hg primarily as MeHg
through diet. However, in at least some predatory aquatic
wildlife species, after tissue accumulation of MeHg, a portion of
the body's MeHg burden may be demethylated. The resulting
inorganic Hg often accounts for a significant, yet highly
variable, fraction of the total Hg present in certain tissues,
especially in liver and kidney (and perhaps brain). Some other
tissues, such as skeletal muscle; fur; feathers; and eggs show
little or no evidence of demethylation. Methylmercury in liver
generally predominates when total Hg concentrations are less
than -10 mg kg-l wet weight; however, with greater Hg
accumulation, an increasingly high proportion of the total liver
Hg is often present as an inorganic species. Frequently, animals
with the highest liver-Hg accumulation have the lowest MeHg
fraction, despite being exposed to Hg primarily as MeHg in fish
(35, 36). Although there is some uncertainty regarding the
toxicity of inorganic Hg derived from demethylation, a
detoxification mechanism for MeHg in seabirds and marine
mammals has been proposed that entails demethylation by
reactive oxygen species and subsequent formation of high
molecular weight Hg-selenium (Se)-protein compounds, which
subsequently undergo degradation in lysosomes, creating an
insoluble Hg-Se compound (35, 37). Ultimately, insoluble
mercuric selenide (tiemannite) or other stable, insoluble Hg-
Se-protein fragments accumulate in the liver through time (23,
38). The cellular mechanisms by which this process occurs and
the energy costs involved are not well understood.

Different species exhibit differences in their apparent ability
to demethylate Hg, which may affect their relative sensitivity to

MeHg toxicity; however, this has not been explicitly studied.
For example, free-living river otters generally accumulate higher

concentrations of Hg than mink; however, in otter brains, only
--74% of total Hg was in the organic form (MeHg), compared
with --90% for mink (39, 40), indicating that otters may be
better able to metabolize organic Hg into an inorganic form.
Also, a significant correlation between Hg and Se was reported
in brains of otter but not mink (41). A positive correlation
between Hg and Se levels in the brain was also observed in

monkeys exposed to MeHg, with no exposure to Se other than
through their regular diet (42). In addition, fish and wildlife
living in environments with elevated Se levels exhibit lower-
than-expected Hg accumulation (43, 44).

Diets supplemented with Se, including organic forms of Se
present in biological materials, can protect against or delay the
onset of MeHg-induced neurotoxicity (45). However, although
selenomethionine supplementation ameliorated the neurotoxic
effects of dietary MeHg exposure in adult mallard ducks (Anas
platyrhynchos), reproductive impairment was more severe in
ducks that consumed a diet supplemented with both MeHg and
selenomethionine than in birds consuming diets with elevated
levels of MeHg or selenomethionine alone (46). Differences in
the dietary intake of Se by different wildlife species, or the same

species in different environments, may contribute to variability

in the expression of MeHg toxicity. The extent to which
different wildlife species demethylate MeHg, the consequences
of this process on the toxicology of MeHg, and the role of Se in

MeHg accumulation and toxicity in wildlife at ecologically
relevant doses require further investigation.

EFFECTS

Fish

Compared with humans and mammalian and avian wildlife,
relatively little is known of the toxicological significance to fish

of environmentally realistic exposures to MeHg (4, 5).
Laboratory studies typically exposed fish to aqueous concen-
trations of MeHg that are 104- to 105 -fold greater than those in

natural waters (4), rather than using realistic dietary exposure
conditions. The route of administration of Hg in these studies
was also unrealistic, because diet, not water, is the main source
of MeHg exposure in wild fish (47, 48).

Overt effects on fish growth and survival occur only at high

tissue Hg concentrations (6-20 mg kg-l wet weight in muscle)
(4), observed primarily in fish from highly contaminated
environments, such as Minamata Bay, Japan (49, 50), and Clay
Lake in the English-Wabigoon River system, Ontario, Canada
(51). However, several laboratory studies demonstrated MeHg
impairment of fish behavior, gonadal development, production
of sex hormones, and reproduction at concentrations more
typical of those in fish from flooded, low alkalinity, or other
Hg-sensitive habitats (52-55). Suppression of gonadal develop-
ment, egg production, and spawning were reported in juvenile
fathead minnows (Pimephales promelas) fed MeHg-contami-
nated diets until sexual maturity (56). Mated pairs of fish with
mean carcass concentrations of 0.71 mg kg-' wet weight (males)
to 0.86 mg kg-' (females) experienced a 39% reduction in
spawning success. Similar carcass concentrations were also
associated with disrupted reproductive behavior of male fathead

minnows (57), suppressed plasma estradiol and testosterone,
and reduced reproductive success (52). Suppressed estradiol was
likely due to increased numbers of apoptotic follicular cells
caused by MeHg exposure (58). Significant inverse relationships
between concentrations of MeHg and estrogen, testosterone,
and 11-ketotestorone was also observed in white sturgeon
(Acipenser transmontanus) from the lower Columbia River (59).
Methylmercury concentrations that suppressed sex hormones,
altered reproductive behavior, and impaired reproduction in
fish were similar to mean concentrations in carcasses of white
perch (Morone americana; 0.78 mg kg-l), walleye (0.71 mg
kg-l), and northern pike (Esox lucius; 0.56 mg kg-l) from
northeastern North America (60) and less than those measured
in axial muscle of fish from many lakes and reservoirs (Fig. 1).

Although maternal transfer of dietary MeHg bioaccumu-
lated during oogenesis is the primary mechanism of MeHg
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Figure 1. Mean Hg concentrations
in fillets of standard-length fresh-
water fish of various species from 3 0.8_
across northeastern North Ameri-
ca (data adapted from [60]), com- 0.6 Possible steroidogenesis
bined with estimated Hg I 0.4 threshold for white stilgeonconcentration thresholds associat- I 0 4ed with steroidogenic effects. 0.2 : _
Threshold ranges adapted from
(52) [fathead minnows]; Sandhein- Irich, M., Drevnick, P., Wiener, J., Oe 2Knights, B., and Jerimison, J. un- 0 ,s ppubl. data [northern pike]; and (59) ?00, ,
[white sturgeon].

exposure to fish embryos (61), there is limited information on
the effects of maternally transferred MeHg in fish. Aqueous
exposure of eggs of rainbow trout (Oncorhynchus mykiss) to
inorganic Hg resulted in total Hg concentrations of 0.07-0.10
mg kg-' wet weight in eggs and significantly increased
embryonic mortality (62). These concentrations are within the
range of total Hg measured in eggs of yellow perch (Perca
flavescens) from semi-remote lakes in northern Wisconsin, US
(63). Thus, based on laboratory studies that examined the
effects of dietary MeHg in fish, combined with data on
concentrations of MeHg in free-living fish, it is plausible that
MeHg at environmentally relevant concentrations may affect
reproduction in wild populations of fish. Differences among
species in their reproductive sensitivity to MeHg, as well as the
population-level consequences of impaired reproduction in
individual fish remain to be determined.

Mammals: Suggested Toxicity Thresholds

Mink and otter are the mammalian wildlife species for which
the greatest amount of information exists regarding Hg
exposure and toxicity. Data from several studies indicate that
consumption of diets that contained Hg (as MeHg) >1 mg kg-'
wet weight caused neurotoxicity and death in adult mink and
otter (5). The US Environmental Protection Agency (USEPA)
estimated lowest observable adverse effect level (LOAEL) for
mink is currently 0.18 mg kg-' body weight d-1, or 1.1 mg kg-'
wet weight (approximately 3-4 mg kg-' dry weight) MeHg in
the diet (64). Neurological signs in MeHg-intoxicated mammals
typically include lethargy, ataxia, limb paralysis, tremors,
convulsions, and ultimately death.

Brain Hg (probably primarily as MeHg) concentrations in
otter and mink with overt MeHg poisoning are typically >5 mg
kg-' wet weight (5). After exposure to MeHg, brain-Hg
concentrations in the range of 12-20 mg kg-' wet weight
during postnatal development in a variety of small mammal
species used in medical research were associated with blindness,
spasticity, and seizures, whereas 3-11 mg kg-' were associated
with more subtle effects on behavior and cognition, including
increased activity, poorer maze performance, abnormal startle
reflex, impaired escape and avoidance behavior, and abnormal
visual evoked potentials (65). Numerous individual free-living
mink or otter from various locations in North America have
brain-Hg concentrations sufficiently high (>3 mg kg-') to be
associated either with clinical MeHg intoxication or with more
subtle neurological impairments that could detrimentally affect
survival (5, 21).

Recently, various neurochemical changes in brains of free-
living otter (66) and mink (67) were correlated with brain-Hg
concentrations <5 mg kg-' wet weight; and similar effects were

demonstrated in captive mink fed diets that contained
ecologically realistic concentrations of MeHg (68) (Fig. 2). It
is probable that the current level of MeHg exposure of free-
living mink and other piscivorous mammals in a number of Hg-
sensitive environments is sufficiently high to have subtle
neurotoxic and other consequences (69, 70). Aqueous MeHg
concentrations likely exceed the USEPA derived mammalian
wildlife criteria for mink (57 pg MeHg L-1) (71) in many
aquatic ecosystems; however, it is currently unclear whether
documented environmental concentrations and toxic effects on
individual animals have population-level impacts in mink or
other mammalian species.

Birds: Suggested Toxicity Thresholds

In adult birds, Hg concentrations (as MeHg) >15 mg kg-' wet
weight in a variety of tissues, including brain, are associated
with overt signs of MeHg intoxication and death (5). Nonlethal
effects of lower Hg concentrations have been less well studied,
except for effects on reproduction. Egg-Hg concentrations >1
mg kg-' wet weight are associated with impaired hatchability
and embryonic mortality in a number of bird species, and brain-
Hg concentrations >3 mg kg-' wet weight are associated with
mortality in developing bird embryos (5). In free-living common
loons, diets that contained >0.3 mg kg-' wet weight Hg (as
MeHg) were associated with severely reduced reproductive
success, mainly as a result of decreased egg laying and territorial

3060 Changes neurnchemisfty Advrse diaizcal
outcomes
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Figure 2. Concentration of muscarinic acetylcholine receptors in
brains of free-living wild mink and captive mink fed diets with
different levels of MeHg as a function of brain Hg concentration.
Changes in receptor concentrations occur at Hg concentrations
below those associated with overt toxicity. Data adapted from Ref.
68. Estimated LOEL for overt MeHg intoxication (-20 mg kg-1 dry
weight or -5 mg kg-1 wet weight Hg in brain) based on (98).
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fidelity by breeding adults (15). Many lakes in North America
have fish with Hg concentrations that exceed 0.3 mg kg-' wet
weight (60, 72).

The MeHg effect threshold for common loon chicks was
established via subchronic dose-response studies (73-75). Loons
were dosed daily from hatch through day 105 with fish diets
that contained control, 0.08, 0.4, or 1.2 mg kg-l wet weight as
MeHg chloride. No overt signs of toxicosis or significant
reductions in growth or food-consumption rates were observed
in any dose group (75), but there was evidence of reduced
immune response and histological changes (central nervous
system demyelination) in chicks that received ecologically
relevant doses of MeHg (0.4 mg kg-' diet wet weight) (76). A
preliminary loon chick LOAEL was estimated at 0.4 mg kg-'
wet weight in diet (fish), whereas a preliminary no observable
adverse effect level (NOAEL) in diet was estimated at 0.08 mg
kg-' wet weight (76).

Birds: Recent Field Studies

Correlations between MeHg exposure, reproductive impair-
ment, and other effects have been examined in common loons
breeding in the northern United States and eastern Canada (8,
15, 20, 76-80) and in wading birds nesting in south Florida and
the Everglades (13). Although these correlational studies cannot
be used to establish rigorous exposure thresholds of effect, they
can identify populations where significant statistical relations
exist between MeHg exposure and demographic and/or
physiological parameters, and can assist in establishing effects
thresholds.

Common Loon Reproduction in New Hampshire and
Maine, US. Evers et al. (77) measured common loon
productivity, behavior, and biochemical markers in relation to
Hg exposure in 212 breeding territories and used adult blood-
Hg concentrations to assign breeding territories to categories of

Hg toxicity risk. Loon territories where adult blood Hg levels
exceeded 3.0 mg kg-' produced 40% fewer fledged young than
territories where adult blood Hg was less than 1.0 mg kg-l;
these territories were categorized as "high risk." Territories
where adult loon blood Hg exceeded 4 mg kg-' were classified
as "extra-high risk," because these concentrations were associ-
ated with impaired productivity, elevated levels of corticoste-
rone in blood, developmental asymmetry in flight feathers, and

adverse changes in essential breeding behaviors. On average,
circulating corticosterone hormone levels increased 14.6% for
every mg kg-' increase in blood Hg (n = 239). Paired secondary
feathers (one from each wing) from adults on high or extra-high

risk territories had greater differences in mass than feathers
sampled from territories with low Hg exposure risk (n = 227).
Adult loons in high-risk territories also left eggs unattended
14% of the time, compared with 1% in lower-risk territories. A

significant negative relation was found between adult blood Hg
and foraging behavior, and a significant positive relation was
observed between adult blood Hg and brooding behavior.

The majority of loon eggs collected at nests in New
Hampshire and Maine (n = 448) contained elevated Hg
concentrations. In Maine, 11% of eggs had Hg concentrations
between 1.3 and 2.0 mg kg-' wet weight, and 4% were >2 mg
kg-l wet weight (77). Egg Hg concentrations >1 mg kg-l wet
weight are associated with impaired hatchability in a number of
avian species (3, 5, 20).

Common Loon Reproduction in Kejimkujik National Park,
Nova Scotia, Canada. Common loons in some areas of Atlantic
Canada have among the highest mean blood Hg concentrations
in North America (20, 33). Concentrations were highest at
Kejimkujik National Park, Nova Scotia, where adult blood-Hg
levels averaged >4 mg kg-l wet weight and where lower-than-

normal loon productivity has been observed for many years (81,

82). At Kejimkujik, 92% of adult loons sampled had blood Hg
concentrations in the "extra-high risk" category (>4 mg kg-'
wet weight) suggested by Evers et al. (77). The Hg exposure was
related to impaired loon productivity and altered breeding
behavior in loons in Atlantic Canada (83). The majority of
common loon eggs collected at Kejimkujik nests had potentially
toxic Hg concentrations (>1 mg kg-' wet weight). Mercury
concentrations in both loons and fish in Kejimkujik lakes were
correlated with lake pH; however, prey fish abundance was not
correlated with lake pH, indicating that pH-related prey
depletion was not occurring and was not a confounding factor
influencing loon productivity at Kejimkujik.

Common Loon Reproduction in Wisconsin, US. Field
studies conducted in Wisconsin showed reduced common loon
reproductive performance on acidic lakes where fish Hg
concentrations and loon Hg exposure levels were elevated (79,
80). Subsequent studies found that, on acidic lakes, loon chick
food intake rates and survival were lower, adult foraging
behavior was altered, and blood Hg of adults and chicks, as well
as prey Hg concentrations were higher than on circumneutral
lakes (78). However, several environmental parameters, such as
lake pH, co-varied with Hg. Thus, a laboratory approach was
deemed necessary to directly test the effects of Hg exposure on
common loon reproductive performance and to estimate
LOAELs and NOAELs (75, 76).

One-hundred-fifteen adult loons from Wisconsin were
assessed for Hg exposure via blood samples during 2002-
2004, and 7 (6% of those sampled) had a blood Hg level >3.0
mg kg-' wet weight (76), within the high-risk Hg exposure
category of Evers et al. (77). Fifty-four percent of unhatched
loon eggs collected from 33 nests in Wisconsin during 1996-
2000 were categorized as "background" (0.0-0.6 mg kg-' Hg
wet weight) and 46% as "elevated" (0.6-1.3 mg kg-' wet
weight); none exceeded 1.3 mg kg-' wet weight. All adult loons
and loon eggs with elevated Hg concentrations sampled in
Wisconsin were from acidic lakes (pH < 6.3).

A Wisconsin common loon demographic model was
developed to evaluate population performance within a 5000
km2 risk-assessment region of northern Wisconsin (76). The 5-
stage deterministic projection matrix model predicts an annual
growth rate of 0.9988 by using adult survival, fertility, and
juvenile recruitment rates measured in the risk-assessment
region during 2002-2004. Controlled dosing studies with loons
(chick survival and hatching rates), combined with exposure
assessment of the Wisconsin loon population, indicate that 10%
of northern Wisconsin loon chicks have exposure levels
associated with toxicity in the laboratory (Fig. 3), and 10% of
adult female loons have exposure levels associated with a 30%
reduction in egg hatching rate (76) (Fig. 4). The benefits of
decreasing the Hg content of fish can be simulated by increasing

the hatching and survival rates to account for the impairment
assumed to be caused by elevated Hg exposure. If all chicks that
are at risk for toxicity within the assessment region die before

transition to adult stage (a conservative assumption), then
reductions in Hg emissions to levels that result in Hg
concentrations in loon prey <0.08 mg kg-' wet weight (loon
chick NOAEL from dosing study) should increase juvenile
survival by 10%; and hatching success could be increased by
30% in 10% of the reproducing females. Inclusion of these
adjustments to hatching success and chick survival in the
projection matrix model results in a predicted improvement in
annual population growth rate from 0.9988 to 1.011. When
assuming a 10% improvement in chick survival and breeding
success, the population growth rate within the risk-assessment
region is predicted to increase by 1.7% annually. When
assuming a total adult population in the study area of
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Figure 3. Percentage of loon chicks from Wisconsin, US, and Nova
Scotia, Canada, having blood Hg concentrations associated with
toxic effects (76) (>0.3 pg/m, as determined in controlled laboratory
dosing studies [75]).

approximately 1200 individuals (estimated population size in
2003), a 1.7% increase in annual growth rate would translate
into 20 additional adults being recruited into the breeding pool
each year. This K-selected species has an estimated lifespan of
25 years and an estimated annual survival rate of 0.92, thus the
increase could plausibly translate into measurable improvement
in population performance. Mercury emission reductions are
predicted to have a much greater beneficial impact on the
annual growth rate of the New England and Nova Scotia
common loon populations where much larger proportions of
chicks and hens are exposed to Hg levels associated with
toxicity (Fig. 3), as determined in controlled dosing studies.

Aquatic Bird Population Decline in South Florida and the
Everglades. Water bird populations (primarily wading bird
species in the order Ciconiiformes) have declined precipitously
in south Florida and the Everglades National Park since the
mid 1930s. There was a >90% reduction in the numbers of
nesting pairs of wood storks (Mycteria americana), great egrets
(Ardea albus), white ibises (Eudocimus albus), and snowy egrets
(Egretta thula) (84, 85). Loss of habitat, changes in hydro-
period, marsh compartmentalization, and salinization of
estuarine feeding areas are thought to be primary factors
responsible for the decline (84-86). However, MeHg toxicity has
been proposed as an additional contributing factor (87) and as a
potential impediment to the recovery of these species. Elevated
liver Hg concentrations were found in 30-80% of breeding-age
birds of various species found dead in the Everglades during
1987-1991 (88). In prebreeding female white ibises in the
Everglades, estradiol concentrations were negatively correlated
with Hg concentrations, as was the number of nesting attempts,

suggesting that Hg exposure may cause fewer birds to nest or
more birds to abandon nests because of subacute effects on
hormone systems (89). Similar effects of Hg exposure on nesting

behavior were previously documented for common loons in
northwestern Ontario, Canada (15).

In recent years, dramatic declines in wading bird Hg
exposure were documented in the Everglades. By using a
previously established predictive relation between Hg consump-
tion in food and feather Hg concentration for great egrets,
Frederick et al. (13) estimated that average Hg concentrations
in the diet of egrets declined by 67% between 1994 and 2000,
and concluded that the Everglades underwent a biologically
significant decline in Hg availability during that time period,
probably due mainly to decreased local Hg inputs.
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Figure 4. Percentage of regional common loon populations in
Wisconsin, USA, and Nova Scotia, Canada, having egg Hg or hen
blood Hg greater than thresholds associated with reduced hatching
success.

Bald Eagles and Osprey. Although both bald eagles and
osprey are large piscivorous birds that experience elevated Hg
exposure in some environments, these species have not been well
studied with respect to potential effects of Hg on reproductive
success or other population parameters. Nevertheless, the
existing published reports indicate a lack of association between
Hg exposure and productivity of free-living eagles or osprey in
different locations in North America (19, 90-92).

Immunotoxic Effects

It has long been recognized that exposure to Hg may have
autoimmune consequences. In wild birds, there is also
circumstantial evidence that environmental MeHg exposure
may be associated with a higher potential for infection by
disease organisms. Dead loons found in an emaciated condition
or with more parasitic infections generally had higher tissue-Hg
concentrations than loons found dead in good body condition
(93). In Florida, herons that died from chronic disease had
significantly higher liver Hg concentrations (9.76 ? 2.40 mg
kg-') than those that died in good body condition (1.77 ? 1.79
mg kg-') (87). Similarly, a number of immunological param-
eters were affected in egrets fed fish that contained an
environmentally relevant concentration of Hg (0.5 mg kg-')
(94). Low concentrations of both inorganic Hg and MeHg
inhibited avian white blood cell phagocytosis in vitro; however,
similar effects were not observed in blood of birds exposed to
elevated MeHg in vivo (95). For mammals, harbour porpoises
(Phocoena phocoena) demonstrated a relation between infec-
tions and elevated Hg accumulation (96, 97). The immunotox-
icological effects of dietary MeHg exposure require further
scientific research.

CONCLUSIONS

There is consistent evidence across a number of species that wild
populations of fish, birds, and mammals in some regions of
North America consume diets with MeHg concentrations
sufficiently high to be toxic to individuals as determined from
controlled dosing studies. Some wildlife species that feed at high
trophic levels in aquatic food chains, especially species that feed
primarily on fish or on other piscivorous species, are at
particularly high risk for elevated exposure and potential
toxicity. Laboratory dosing studies with fish and with
piscivorous birds and mammals, indicate that ecologically
relevant MeHg exposures can cause significant behavioral,
physiological, immunological, neurochemical, reproductive,
and histological changes. For fish and amphibians, field studies
are limited and direct evidence of altered reproduction or other
population parameters because of MeHg exposure in free-living
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populations are not presently available. However, for some wild
piscivorous bird species, field studies demonstrated significant
positive relations between MeHg exposure and numerous
indicators of MeHg toxicity, including reproductive impair-
ment, at ecologically relevant levels of Hg contamination. The
weight of evidence indicates that reproduction is the demo-
graphic parameter most affected by exposure to MeHg in birds
(and plausibly for fish and mammals as well). Potential
population impacts will vary as a function of species life
history, as well as regional differences in MeHg exposure
because of regional and local variability in fish Hg concentra-
tions. Modeling indicates that some regional common loon
populations may benefit significantly from reductions in Hg
emissions, which would result in decreasing concentrations of
Hg in prey fish, and increased reproductive success mediated
primarily through better hatching success and survival of
hatchlings. Although the risk-assessment approach used for
wildlife often emphasizes sustainability of wildlife "popula-
tions" rather than the health of individuals, conserving habitat
quality is also a major consideration. Environmental Hg
contamination results in degradation of Hg-sensitive aquatic
ecosystems, because inorganic Hg is methylated, rapidly enters
the food web, and biomagnifies to potentially toxic concentra-
tions in fish and their predators.
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