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I.	Background	and	Model	Structure	
Given the goals of improving the reliability of water supply and improving the ecosystem health in 
California’s Central Valley, NMFS-SWFSC is developing simulation models to evaluate the potential 
effects of water project operations and habitat restoration on the dynamics of Chinook salmon 
populations in the Central Valley. These life cycle models (LCMs) couple water planning models 
(CALSIM II), physical models (HEC-RAS, DSM2, DSM2-PTM, USBR river temperature model, etc.) and 
Chinook salmon life cycle models to predict how various salmon populations will respond to suites of 
management actions, including changes to flow and export regimes, modification of water 
extraction facilities, and large-scale habitat restoration.  In this document, we describe a winter-run 
Chinook salmon life cycle model (WRLCM). In the following sections, we provide the general model 
structure, the transition equations that define the movement and survival throughout the life cycle, 
the life cycle model inputs that are calculated by external models for capacity and smolt survival, 
and the steps to calibrate the WRLCM. 

Winter-run	Life	Cycle	Model	(WRLCM)	
The WRLCM is structured spatially to include several habitats for each of the life history stages of 
spawning, rearing, smoltification (physiological and behavioral process of preparing for seaward 
migration as a smolt), outmigration, and ocean residency. We use discrete geographic regions of 
Upper River, Lower River, Floodplain, Delta, Bay, and Ocean (Figure 1).  The temporal structure of 
winter-run Chinook is somewhat unique, with spawning occurring in the late spring and summer, the 
eggs incubating over the summer, emerging in the fall, rearing through the winter and outmigrating 
in the following spring (Figure 2).  We capture these life-history stages within the WRLCM by using 
developmental stages of eggs, fry, smolts, ocean sub-adults, and mature adults (spawners).  The goal 
of the WRLCM is consistent with that of Hendrix et al. (2014); that is, to quantitatively evaluate how 
Federal Central Valley Project (CVP) and California State Water Project (SWP) management actions 
affect Central Valley Chinook salmon populations.  

In 2015, the WRLCM was reviewed by the Center for Independent Experts (CIE).  In response to 
recommendations from the CIE, the following modifications were implemented in the WRLCM:  1) 
divided the River habitat to encompass above Red Bluff Diversion Dam (Upper River) and below Red 
Bluff Diversion Dam (Lower River); 2) incorporated hatchery fish into the WRLCM; 3) used 95% of 
observed density as an upper bound for calculation of habitat capacity; 4) re-parameterized the 
Beverton-Holt function; 5) used appropriate spawner sex-ratios for model calibration to account for 
bias in Keswick trap capture; 6) modified the WRLCM to a state-space form to incorporate 
measurement error and process noise; and 7) designed metrics and simulation studies to evaluate 
model performance.  In addition, Hendrix et al. (2014) indicated that future work would use DSM2’s 
enhanced particle tracking model to track salmon survival, which has now been implemented.  

Additional comments received in the CIE review that have not been incorporated yet include:  1) 
expanding spatial structure for spring and fall-run; 2) tracking additional categories of juveniles (e.g., 
yearling) for applying an LCM to spring-run Chinook; 3) implementing shared capacity for fall and 
spring-run Chinook; 5) tracking monthly cohorts through the model; and 6) evaluating multiple 
model structural forms.   We are actively working on improving the WRLCM and developing the 
spring-run LCM (SRLCM) and fall-run LCM (FRLCM).  Many of the CIE recommendations will be 
implemented with subsequent versions of these models. 
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Figure 1. Geographic distribution of Chinook life stages and examples of environmental characteristics that influence 
survival.  
 
The quantity and quality of rearing and migratory habitat are viewed as key drivers of reproduction, 
survival, and migration of freshwater life stages.  Various life stages have velocity, depth, and 
temperature preferences and tolerances, and these factors are influenced by water project 
operations and climate.   
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Figure 2. Temporal structure of the winter-run Chinook salmon. Each cohort begins in March of the brood year.  Figure 
from Grover et al. (2004). 

Hydrology (the amount and timing of flows) is modeled with the California Simulation Model II 
(CALSIM II).  Hydraulics (depth and velocity) and water quality is modeled with the Delta Simulation 
Model II (DSM2) and its water quality sub-model QUAL, the Hydrologic Engineering Centers River 
Analysis System (HEC-RAS), the U.S. Bureau of Reclamation’s (USBR) Sacramento River Water Quality 
Model (SRWQM), and other temperature models.  The enhanced particle tracking model (ePTM) 
makes use of many of these DSM2 related products to calculate survival of outmigrating smolts 
originating from Lower River, Delta, and Floodplain habitats.  Many of the stage transition equations 
describing the salmon life cycle are directly or indirectly functions of water quality, depth, or 
velocity, thereby linking management actions to the salmon life cycle.  The combination of models 
and the linkages among them form a framework for analyzing alternative management scenarios 
(Figure 3). 
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Figure 3. Submodels that support and provide parameter inputs that feed into the life cycle model. 

The life cycle model is a stage-structured, stochastic life cycle model.  Stages are defined by 
development and geography (Figure 1), and each stage transition is assigned a unique number 
(Figure 4). 

II.	Model	Transition	Equations	
This section is divided into two parts.  In the first part, we explain each of the transitions for the 
natural origin winter-run Chinook, which are described by the life cycle diagram (Figure 4).  In the 
second part, we explain the transitions for hatchery origin fish.  The transitions are described for an 
annual cohort; however, in most cases we have not included a subscript for the cohort brood year to 
simplify the equations.  For those transitions in which there are multiple cohorts, such as the 
production of eggs in transition 22, a subscript to distinguish cohort is included in the equation. 
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Figure 4.  Central Valley Chinook transition stages.  Each number represents a transition equation through which we can 
compute the survival probability of Chinook salmon moving from one life stage in a particular geographic area to 
another life stage in another geographic area.  

 

Natural	Origin	Chinook	

Transition	1	
Definition:  Survival from Egg to Fry 
 
Frym+2	=	Eggsm	*	Seggs,	m			
	 	 	 	 	 	

𝑙𝑜𝑔𝑖𝑡&𝑆!""#,%( = *
	𝐵0&	,																																																					𝑇𝐸𝑀𝑃	 ≤ 𝑡. 𝑐𝑟𝑖𝑡
𝐵0& + 𝐵1&(𝑇𝐸𝑀𝑃% − 𝑡. 𝑐𝑟𝑖𝑡),						𝑇𝐸𝑀𝑃 > 𝑡. 𝑐𝑟𝑖𝑡  

 
where Seggs,m is the survival rate of fry as a function of the coefficients B01, B11 and t.crit (model 
parameter representing the critical temperature at which egg survival begins to be decline), logit(x) 
= log(x/[1-x]) is a function that ensures that the survival rate is within the interval [0,1], for months 
m = (2, …, 6) corresponding to April to August (Figure 5). 

Factors affecting baseline survival B01 

B01	=	B0a	+	B1a	*	X1	

Where B0a is the intercept and B1a is the slope of the regression relating the covariate  X1  to the 
background survival rate.  This formulation provides the ability to incorporate the influence of 
Thiamine deficiency, for example, which may affect the survival of eggs.  In addition, this term could 
also be used to reflect density dependent mortality of eggs, which was identified as a possible factor 
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in Martin et al. (2017). The covariate TEMPm is defined as the equally weighted average of the month 
of spawning m and the following 2 months.  

 
 
Figure 5. The relationship of egg to fry survival as a function of temperature below Keswick Dam. The solid line 
represents the median survival rate and the dotted lines represent the 95% CI from 1000 combinations of parameter 
estimates.  

 

Transitions	2	-	5	
Definition: Dispersal from fry in the natal reaches as tidal fry to the h habitats = Lower River (LR), 
Floodplain (FP), Delta (DE), and Bay (BA) in months m = (5, …, 10) corresponding to July to 
December.  Fry that remain (in contrast to those that are tidal fry)  rear in the Upper River (UR). 
 
Tidal Fry and Upper River Rearing Fry (Transition 2) 
 

TidalFrym,	=	PTF,*	Frym	

RearFryUR,m	=	(1	-	PTF)	*	Frym	

where PTF is the proportion of fry moving out of the Upper River as tidal fry, and RearFryUR,m are the 
number remaining in the Upper River habitat (UR) as rearing fry. 

Floodplain Tidal Fry (Transition 3) 
 
Whenever there are flows into the Yolo Bypass, a proportion of the Tidal Fry move into the 
floodplain habitat: 
 
TidalFryFP,m	=	STF,FP	*	TidalFrym	*	PFP,m			

where PFP,	m is the proportion of fry that move into the Floodplain habitat, and STF,FP	is the	monthly 
survival of tidal fry in the floodplain.   
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For the 2035 climate scenario evaluation, the PFP,m  is modeled as a function of the expected flow 
onto the Floodplain habitat due to proposed modifications of the Fremont Weir.	

 
     	

𝑃'(,% =

⎩
⎪
⎨

⎪
⎧
𝑚𝑖𝑛. 𝑝, 𝑦. 𝑓𝑙𝑜𝑤% < 100

𝑚𝑖𝑛. 𝑝 +
(𝑦. 𝑓𝑙𝑜𝑤% − 100) ∗ (0.5 − 𝑚𝑖𝑛. 𝑝)

5900 , 100 ≤ 𝑦. 𝑓𝑙𝑜𝑤% ≤ 6000

𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡 M
𝑝. 𝑟𝑎𝑡𝑒 ∗ (𝑦. 𝑓𝑙𝑜𝑤% − 6000)

1000 P , 𝑦. 𝑓𝑙𝑜𝑤% > 6000

 

where PFP,m is the proportion of fry moving into the Floodplain as a function of the coefficients min.p 
(0.05) and p.rate (1.1), and the covariate y.flowm.  The function inv.logit(x) = ex/(1+ ex) ensures that 
the proportion of fry moving into the Floodplain is within the interval [0,1].  The covariate y.flowm	
represents the monthly average flow rate (cfs) at the entrance to Yolo Bypass (CALSIM node D160).  
The relationship between PFP,m	and flow is depicted in Figure 6.  

 

Figure 6. The relationship of Floodplain entry (Yolo bypass) entry proportion (PFP) as a function of Yolo flow. 

 
Delta  and Bay Tidal Fry (Transition 4 and 5) 
 

TidalFryDE,m	=	TidalFrym	*	(1-	PFP,m)	*	(1	–	PTF,	BA,m)	*	STF,DE,m	

TidalFryBA,m	=	TidalFrym	*	(1-	PFP,	m)	*	PTF,	BA,m	*	STF,DE,m	*	STF,DE-BA	

where STF,DE,m  is the survival to the Delta by Tidal Fry.  

logit(STF,DE,m)	=	B04	+	B14*DCCm	

where B04 and B14 are model parameters, and DCCm is the proportion of the transition month that 
the DCC gate is open. 
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PTF,Bay,m	is the proportion of fish moving to the Bay from the Delta 

logit(PTF,Bay,m	)	=	B05	+	B15*QRioVista,m	

where B05 and B15 are model parameters, and QRioVista,m is the flow anomaly (subtract mean and 
divide by standard deviation). The mean and standard deviation were calculated from 1970-2014 
data at Rio Vista (mean = 11,360, standard deviation = 12166.73). 

Rearing	
Definition:  Fry rear among Upper River, Lower River, Floodplain, Delta, and Bay habitats according 
to a density dependent movement function in months m = (5, …, 10) corresponding to July to 
December.   

 

 
 
 
Figure 7. Example of the Beverton-Holt movement function in which the outgoing abundance (thin solid black line) is 
split between migrants (thick dashed line) and residents (solid dark line), that are affected by the resident capacity (thin 
dotted line).  The 1:1 line (thin dashed line) is also plotted for reference. Parameter values used in the plotted 
relationship are survival, S = 0.90; migration, m = 0.2; and capacity, K= 1000. 
 

The number fry that remain as residents in the month is calculated from the following equation 
(Figure 7): 

Residentsh,m	=			SFRY,h,m	*	(1–	migh,m)	*	Nh,m	/	(1	+	SFRY,h,m	*[1	–	migh,m]*	Nh,m/Kh,m)		

Migrantsh,m	=	SFRY,h,m	*	Nh,m	–	Residentsh,m	

where SFRY,h,m is the survival rate in the absence of density dependence, Nh,m is the pre-transition 
abundance composed of Migrants from upstream habitats in m-1 and Residents from the current 



10 
 

habitat (Figure 7) in m-1, Kh,m is the capacity for habitat type h and migh,m is the migration rate in the 
absence of density dependence in month m. 

The migration rate in the Upper River, migUR,m,	 is unique and is estimated by using the temporal 
patterns in fry abundance estimated at Red Bluff Diversion Dam (Poytress et al. 2014).  

The migration rate in the Lower River, migLR,m , is modeled as a function of a flow threshold at 
Wilkins Slough 

logit(migLR,m)=	B0M	+	B1M	*	I(QWilkins,	m	>	400	m3s-1)	

whereas in all other habitats and months the migration rate migh,m is a constant value (e.g., 
movement from the floodplain to the delta, the delta to the bay, and the bay to the gulf).    

Survival of fry 

Survival of resident and migrant fry SFRY,h,m are modeled as a function of a covariate X h,m that can 
vary for each habitat and month.  The monthly survival rate of fry in habitat h and month m is 
modeled as  

logit(SFRY,h,y,m)=	B0F	+	B1F,h	*	Xh,y,m	

	

Smolting	

Transitions	6	-	10	
Definition:  Smolting of Residents in the Upper River, Lower River, Floodplain, Delta, and Bay rearing 
habitats in months m = (11, … ,17) corresponding to January to July in the calendar year after 
spawning. 

Smoltsh,m=	PSM,m	*	Residentsh,m-1	

where PSM,m is the probability of smolting in month m which is assumed to be the same across 
habitats, by the Residents from the previous month (m-1) in that habitat.  

The probability of smolting is modeled as a proportion ordered logistic regression model of the form: 

logit(PSM,	m)	=	Zk		

where -∞	<	Z1	<	Z2…<	Zk	<	∞  are the monthly rates of smoltification based on photoperiod (k = 1, 
…, 7 encompassing January to July). 

The model performs the following steps during the months in which smoltification occurs: 

1. Smoltification of Resident fry 
2. Accumulation of the Migrant fry from the upstream habitats and Resident fry from the 

current habitat remaining from the previous month that did not smolt (Figure 8 shows 
connectivity among habitats) 

3. Survival and movement of the fry calculated in step 2 
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Figure 8. Connectivity among habitats for winter-run Chinook fry. Connections between the Lower River and Floodplain 
occur due to flooding of the Yolo bypass and are thus ephemeral. 

 

Transitions	11	–	14	
These transitions use a Smolt Survival Model (SSM) to calculate the smolt survival through the delta 
portion of their outmigration.  Different models may be used to calculate this survival including 
Newman (2003) based on an analysis of coded wire tag recoveries, estimates of acoustically tagged 
survival rates analyzed by Perry et al. (2018) and given the name STARS, and an enhanced particle 
tracking model (ePTM version 2) that simulates smolt movement at fine temporal (15 min) and 
spatial (DSM2 8.2 grid structure) resolution.  We have described the transition equations generically 
to be able to use the survival estimates in month m and habitat h from any of the above survival 
models using the acronym SSMh,m in the descriptions below.   

	

Transitions	11	&	12	
Definition:  Smolts that reared in the Upper River and Lower River habitats migrate to the Golden 
Gate and thus end the freshwater phase of their life cycle in months m = (12, … ,18) corresponding 
to February to August. 

Upper River smolt outmigration (Transition 11) 
 
GateUR,m = S11,UR,m-1 * SmoltsUR,m-1 
 
Lower River smolt outmigration (Transition 12) 

   Floodplain Fry 

Bay Fry 

Delta Fry 

Upper River Fry 

Lower River Fry 
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GateLR,m = S12,LR,m-1 *  SmoltsLR,m-1 

where survival ST,h,m is the smolt survival rate from transition T (11, ..., 15) in habitat h (UR, LR, FP, 
DE, BA) in month m.  The rates S11.UR,m and S12,LR,m are composed of three components: A) survival 
rate from the Upper or Lower River to the Sacramento River near Sacramento (Figure 9); B) survival 
through the Delta to Chipps Island; and C) survival from Chipps Island to Golden Gate.   
 
S11.UR,m = AS11,UR,m * BS12,LR,m* CS11 
S12,LR,m = AS12,LR,m * BS12,LR,m* CS11    
 
The first smolt survival component is modeled as a function of flow at Bend Bridge  
 
logit(AS11,UR,m) = B011,UR + B111 * q.bb_modm 

logit(AS12,LR,m) = B012,LR + B111 * q.bb_modm 

 
where B011,UR, B012,LR and B111 are model parameters, and q.bb_modm is modified monthly flow at 
Bend Bridge which is the closest station to the Red Bluff Diversion Dam standardized relative to 
historic Bend Bridge flows from 1970-2014 (mean = 14593.96, standard deviation = 10984.20). To 
estimate riverine smolt survival rate for the implementation for the Sites Reservoir Project, flow at 
Bend Bridge (q.bbm) was modified to account for the two Sites diversions located between Bend 
Bridge and Sacramento (River Mile [RM] 58): the Red Bluff Intake (RM 243) and the Hamilton City 
Intake (RM 205). To account for potential diversion effects on smolt survival, we used the following 
formula to modify Bend Bridge flow: 
 
q.bb_modm = q.bbm – q.bb_RBIm – (((205-58)/(243-58)) * q.bb_HCIm) 
 
where q.bbm is monthly flow at Bend Bridge, q.bb_RBIm represents flow at the Red Bluff Intake 
Diversion, and q.bb_HCIm represents flow at the Hamilton City Intake Diversion. The latter term 
accounts for the Hamilton City Intake being 79% (i.e., 147/(243-58)) of the distance to Sacramento 
from Red Bluff. In the baseline scenario q.bb_modm = q.bbm ; that is, there is no alteration to flow at 
Bend Bridge.  
 
BS12.LR,m = SSMLR,m 

where SSMLR,m is a survival rate for smolts originating from the Sacramento River through the Delta 
to Chipps Island as calculated by the Smolt Survival Model.  The value CS11 is a model parameter 
representing survival from Chipps Island to Golden Gate, and it was applied to smolts originating 
from all habitats. 
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Figure 9. The relationship of smolt survival in the mainstem Sacramento for smolts originating from the Upper River or 
Lower River as a function of flow at Bend Bridge. 

	

Transition	13	
Definition:  Smolts that reared in the Floodplain migrate to the Golden Gate arriving in months m = 
(12, … ,18) corresponding to February to August. 

GateFP,m = S13,FP,m-1 SmoltsFP,m-1 
 
The rate S13,FP,m is composed of three components: A) survival rate through the Floodplain to the 
Delta; B) survival through the Delta to Chipps Island; and C) survival from Chipps Island to Golden 
Gate.  
 
S13,FP,m = AS13,FP,m * BS13,FP,m* CS11 
 
where AS12,FP,m is survival in the Floodplain until the Smolt Survival Model estimate is applied for 
survival through the Delta. 
 
BS13.FP,m = SSMFP,m 
 
Transition	14	
Definition:  Smolts that reared in the Delta migrate to the Golden Gate arriving in months m = (12, … 
,18) corresponding to February to August. 

GateDE,m = S14,DE,m-1 * SmoltsDE,m-1 
 
The rate S14,DE,m is composed of two components: survival through the Delta to Chipps Island 
(AS14,DE,m) and survival from Chipps Island to Golden Gate (CS11).  
 
S14,DE,m = AS14,DE,m* CS11 
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where AS14,DE,m = SSMDE,m	

	

Transition	15	
Definition:  Smolts that reared in the Bay migrate to the Golden Gate with an associated migration 
survival in months m = (12, … ,18) corresponding to February to August. 

GateBA,m = S15,BA *SmoltsBA,m-1 

where S15,BA is the survival from the Bay habitat to the Golden Gate.	

	

Transition	16	
Definition:  Smolts that reach the Golden Gate transition to the Gulf of the Farallones and the 
numbers in each month accumulate as a combination of the smolts in the Gulf the previous month 
and smolts that passed the Golden Gate in months m = (12, … ,20) corresponding to February to 
September. 

 
Gulfh,,m	=		Gateh,m-1	*	SENTRY,	m-1	+	Gulfh,m-1	*	SGULF,	m-1		
Where the survival rate SENTRY, m is the survival rate during the month of ocean entry in the Gulf of 
the Farallones and the survival rate SGULF,m is the subsequent survival rate in month m after ocean 
entry.  
 
The period of ocean entry can be a critical period of transition for salmonids and lack of available 
resources can have strong detrimental effects on the year class (Lindley et al. 2009).  We therefore 
model the survival at ocean entry by using an indicator of ocean productivity as 
 
logit(SENTRY,m)	=	B0ENTRY	+	B1ENTRY	*	OPI,m	
 
where B0ENTRY  is a parameter describing the average survival rate , OPI,m is the ocean productivity 
index, and B1ENTRY  is the coefficient describing the strength of the ocean productivity effect on ocean 
entry survival.  
 
Finally, the transition to the ocean from all habitats includes a random effect term εy that is specific 
to each year y and is distributed as a normal random variable, that is εy ~ N(0, σε

2).  The formulation 
used here is a biased-corrected form so the expected value of the random effects equals 0. 
 
The total number of Age 1 fish entering the Gulf of the Farallones from all habitats arriving in a given 
month can be calculated by summing across each of the individual rearing areas.  Furthermore, 
earlier arriving fish are retained in the Age 1 stage and an ocean survival rate is applied to those fish 
that were already in the Age 1 stage in the previous month.  Fish arrive into the Age 1 stage in 
months m = (12, …, 20) corresponding to February through October.	
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Age1	m	=	GulfUR,m	+	GulfLR,m		+	GulfFP,m+	GulfDE,m		+	GulfBA,m		+	Age1m-1	*	S171/4 

	

Transition	17	
Definition:  Survival in the ocean from Age 1 to Age 2 (for Chinook that remain in the ocean) 

Age2	=	Age1m=21	*	(1	-	M2)	*	S17		

where S17 is a model parameter representing the survival rate of Age 1 fish in the ocean to Age 2 and 
M2 is a model parameter representing the maturation rate that leads to 2-year old spawners.   The 
model transitions from a monthly time step (used for months 1 through 20) to an annual time step 
(used for Age 2, Age 3 and Age 4 fish) in this transition, thus the S17	survival represents a 4-month 
survival rate from 21 months to 24 months (November to February). 	

	

Transition	18	
Definition:  Maturation and migration for Age 2 males and females that will spawn as 2-year olds  
 
Sp2,F	=	Age1	m=21	*	S17		*	M2		*	FemAge2	*	Ssp2	
Sp2,M	=	Age1	m=21	*	S17	*	M2		*	(1	-	FemAge2)	*	Ssp2	
 
where S17	and M2 are model parameters for maturation and survival as described in Transition 17. 
FemAge2 is a model parameter representing the proportion of Age 2 spawners that are female, and 
Ssp2 is a model parameter representing the natural survival rate of Age 2 spawners from the ocean to 
the spawning grounds. 

	

Transition	19	
Definition:  Survival in the ocean from Age 2 to Age 3 (for Chinook that remain in the ocean) 

Age3	=	Age2	*		(1	-	I3)	*	S19	*	(1	–	M3)		

where I3 is the fishery impact rate for Age 3 fish, S19 is a model parameter representing natural 
survival rate for fish between Age 2 and Age 3, and M3	is a model parameter representing 
maturation rate of Age 3 fish. 

	

Transition	20	
Definition:  Maturation and migration for Age 3 males and females that will spawn as 3-year olds 
 
Sp3,F	=	Age2	*	(1-	I3)	*	S19		*	M3		*	FemAge3		*	Ssp3	
Sp3,M	=	Age2	*	(1-	I3)	*	S19		*	M3		*	(1	-	FemAge3)	*	Ssp3	
 
where I3 is the Age 3 fishery impact rate, and M3 and S19 are the Age 3 maturation and survival rates 
as described in Transition 19.   FemAge3 is a model parameter representing the proportion of Age 3 
and 4 spawners that are female, and Ssp3 is a model parameter representing the natural survival rate 
of Age 3 spawners from the ocean to the spawning grounds. 
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Transition	21	
Definition:  Maturation and migration for Age 3 males and females that will spawn as 4-year olds 
 
Sp4,F	=	Age3	*		(1-	I4)	*	S21	*	FemAge3	*	Ssp4	
Sp4,M	=	Age3	*	(1-	I4)	*	S21	*	(1	-	FemAge3)	*	Ssp4	
 
where I4 is the Age 4 fishery impact rate, S21	is a model parameter representing survival rate from 
Age 3 to Age 4, FemAge3 is a model parameter representing the proportion of Age 3 and 4 spawners 
that are female, and Ssp4 is a model parameter representing the natural survival rate of Age 4 
spawners from the ocean to the spawning grounds. 

	

Transition	22		
Definition:  Number of eggs produced by spawners of Ages 2 – 4 in months m = (2, …, 6) 
corresponding to April to August. 

𝐸𝑔𝑔𝑠% =	
∑ (𝑇𝑆𝑝),' − ℎ𝑎𝑡. 𝑓))𝑃*(,%𝑉!""#,)+
),-

1 +	
∑ (𝑇𝑆𝑝),' − ℎ𝑎𝑡. 𝑓))+
),- 𝑃*(,%𝑉!""#,)

𝐾*.,%

 

where TSpj are the total number of female spawners of age j	=	2,	3,	4	(composed	of	both	natural	
and	hatchery	origin), Veggs,j	is the number of eggs per spawner of age j	=	2,	3,	4, KSp,m	is the capacity 
of eggs in the spawning grounds per month, and PSP,m is the proportion of spawning that occurs in 
month m and is a function of April average temperature at Keswick Dam.  Because the April 
temperature can vary among years, the monthly distribution varies as well to reflect observed 
patterns in spawn timing among the years from 1999 to 2012.  Please see Appendix A for description 
of the analysis of historical patterns in spawn timing.  

TSp2,F	=	Sp2,F	

TSp3,F	=	Sp3,F		–		hat.f	

TSp4,F	=	Sp4,F			

hat.fj	=	0.15	*	Sp3	   (min	=	10;	max	=	60) 

where hat.f is the number of age-3 spawning females removed for use as hatchery broodstock, and 
Spj,Hatchery for j	=	(2,3,4) is the spawners of age j	hatchery origin, which are described below in the 
Hatchery Origin Chinook section. 

	

Hatchery	Origin	Chinook	

Transition	1H		
Definition:  Survival of hatchery fish from eggs to Age 2  

Age2Hatchery	=	hat.f	*	3000	*	HS1	
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HS1	=	2.3	*	Age2Natural	/	FryNatural	

where HS1	is the hatchery-origin survival rate from pre-smolt at release to Age 2 in the ocean, 
Age2Natural is the number of natural-origin Chinook that survived to Age 2 and remained in the ocean, 
and FryNatural	is the number of natural origin emerging Fry (see Transition 1 for Natural Origin 
Chinook).  The multiplier of 3000 hatchery smolts per spawner was obtained from Winship et al. 
(2014). The multiplier of 2.3 was used to equate hatchery origin survival to the end of age 2 to 
natural origin survival to the end of age 2 as described in Winship et al. (2014).  

	

Transition	2H	
Definition:  Maturation and spawning for hatchery origin Age 2  
 
Sp2,F,Hatchery	=	Age2 Hatchery	*	M2		*	FemAge2	*	Ssp2	
Sp2,M,Hatchery	=	Age2 Hatchery	*	M2	*	(1	-	FemAge2)	*	Ssp2	
 

where the coefficients are described under Transition 18. 

	

Transition	3H	
Definition:  Survival of hatchery origin fish in the ocean from Age 2 to Age 3 (for Chinook that remain 
in the ocean) 

Age3Hatchery	=	Age2	Hatchery	*	(1	-	I3)	*	S19	*		(1	–	M3)		

where the coefficients are described under Transition 19. 

 

Transition	4H	
Definition:  Maturation and spawning for hatchery origin Age 3  
	
Sp3,F,	Hatchery	=	Age2Hatchery		*	(1-	I3)	*	S19	*	M3	*	FemAge3	*	Ssp3	
Sp3,M,	Hatchery	=	Age2Hatchery	*	(1-	I3)	*	S19	*	M3	*	(1	-	FemAge3)	*	Ssp3	
 

where the coefficients are described under Transition 20. 

 

Transition	5H	
Definition:  Survival and maturation rate for hatchery origin Age 4  
 
Sp4,F,	Hatchery	=	Age3Hatchery	*	(1-	I4)		*	S21	*	FemAge3	*	Ssp4	
Sp4,M,	Hatchery	=	AgeHatchery	3		(1-	I4)	*	S21	*	(1	-	FemAge3)	*	Ssp4	
 

where the coefficients are described under Transition 21. 
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Fishery	Dynamics	
To simulate the winter-run population dynamics under alternative hydrologic scenarios, we include 
fishery dynamics that are consistent with a NMFS fishery control rule (NMFS 2012) (Figure 10).   For 
each year of the simulation, the impact rate for age 3 (I3) was calculated from the control rule by 
obtaining the 3-year trailing geometric average of spawner abundance. The age-4 impact rate (I4) in 
that year was calculated as double the instantaneous age-3 impact rate (Winship et al. 2014).  

 

Figure 10. Fishery control rule determining the level of Age 3 impact rate as a function of trailing 3-year geometric mean 
in winter-run escapement. 

 

III.	Inputs	to	the	Winter-run	life-cycle	model	

Water	Temperature		
The life cycle model (LCM) incorporates monthly average temperature below Keswick Dam into the 
definition of egg to fry survival.  The water temperature can be obtained from water quality gages 
on the Sacramento River (for model calibration) or from a forecasted water temperature model, 
such as the the Sacramento River Water Quality Model (SRWQM).  

 

Fisheries		
Estimates of impact rates on vulnerable age classes of Chinook salmon are computed as part of the 
Pacific Fisheries Management Council (PFMC) annual forecast of harvest rates and review of 
previous years’ observed catch rates.  For runs that are not actively targeted, such as winter-run and 
spring-run Chinook, analyses of coded wire tag (CWT) groups are used to infer impact rates for these 
races (e.g., O’Farrell et al. 2012).   
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Habitat	Capacity	
Juvenile salmonids rear in the mainstem Sacramento River, delta, floodplain, and bay habitats 
(Figure 1).  The model incorporates the dynamics of rearing by using density-dependent movement 
out of habitats as a function of capacity for juvenile Chinook.  The capacities of each of the habitats 
are calculated in each month using a series of habitat-specific models that relate habitat quality to a 
spatial capacity estimate for rearing juvenile Chinook salmon.  Habitat quality is defined uniquely for 
each habitat type (mainstem, delta, etc.) with the goal of reflecting the unique habitat attributes in 
that specific habitat type.  For example, the mainstem habitat quality is a function of velocity and 
depth (Beechie et al. 2005). Areas with vegetated cover along banks are preferred in other systems 
by Chinook salmon (Beamer et al. 2005, Semmens 2008), and areas associated with cover in the 
delta were assumed to be higher quality habitats because they provide protection from predators 
(Semmens 2008) and offer subsidies of terrestrial insect prey. In the bay, salinity is a factor that 
predicts suitable habitat, as fish monitoring data in both Skagit River and San Francisco Bay have 
shown high likelihood of fry presence in water with salinity less than 10 ppt. Higher quality habitats 
are capable of supporting higher densities of rearing Chinook salmon, with the range of densities 
being determined from studies in the Central Valley and in river systems in the Pacific Northwest 
where appropriate. Note, the current version of the model uses densities from the Skagit River, 
Washington, which are shown in Figure 11. 

Defining habitat capacity. For each habitat type (mainstem, delta, and bay), capacity was calculated 
each month as: 

𝐾/ =V𝐴)𝑑)

0

),&

	

where Ki	is the capacity for a given habitat type i,	n is the total number of categories describing 
habitat variation, Aj is the total habitat area for a particular category, and dj is the maximum density 
attributable to a habitat of a specific category. Three variables were determined for each habitat, 
the ranges of each were divided into high and low quality, and all combinations were examined, 
resulting in a total of eight categories (2 x 2 x 2) of habitat quality for each habitat type (Table 1).  
The exception was mainstem habitats (Upper River, Lower River, and Yolo Bypass), which were 
subdivided into 4 (2x2) bins of habitat quality. Ranges of high and low habitat quality were based on 
published studies of habitat use by Chinook salmon fry across their range and examination of data 
collected by USFWS within the Sacramento-San Joaquin Delta and San Francisco Bay. 

Defining maximum densities. Determining maximum densities for each combination of habitat 
variables is complicated by the fact that most river systems in the Central Valley are now hatchery-
dominated with fish primed for outmigration. In addition, the Central Valley river system is at 
historically low natural abundance levels compared to expected or potential density levels. Because 
of this deficiency in the Central Valley system, salmon fry density data from the Skagit River system 
were used, which in contrast has very low hatchery inputs, has been monitored in mainstem, delta, 
and bay habitats, and exhibits evidence of reaching maximum density in years of high abundance 
(Greene et al. 2005; Beamer et al. 2005). These data from the Skagit River were compared with 
Central Valley density estimates calculated by USFWS. For each of these data sets, the upper 95 
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percentile levels of density defined a range of maximum density levels, assuming that the highest 
five percentile of density levels were sampling outliers. The comparison indicated that Skagit River 
values represented conservative estimates of maximum density (Figure 11). 

 

Table 1. Habitat variables influencing capacity for each habitat type. 
Habitat type Variable Habitat quality Variable range 

Mainstem & 
Bypass 

Velocity High <= 0.15 m/s 

  Low > 0.15 m/s 

 Depth High > 0.2 m, <= 1 m 

  Low <= 0.2 m, > 1 m 

Delta Channel type High Blind channels 

  Low Mainstem, distributaries, open water 

 Depth High > 0.2 m, <= 1.5 m 

  Low <= 0.2 m, > 1.5 m 

 Cover High Vegetated 

  Low Not vegetated 

Bay Shoreline type High Beaches, marshes, vegetated banks, tidal flats 

  Low Riprap, structures, rocky shores, exposed habitats 

 Depth High > 0.2 m, <= 1.5 m 

  Low <= 0.2 m, > 1.5 m 

 Salinity High < 10 ppt 
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Habitat type Variable Habitat quality Variable range 

  Low >= 10 ppt 

	
Figure 11. 95th percentile values of 
densities in river, delta, and bay 
habitats in the Skagit and Sacramento 
Rivers. Skagit data are based on 
electroshocking in mainstems and 
beach seining in delta and bay habitats 
(Beamer et al. 2005), while Sacramento 
data are based on beach seining across 
all habitat types (USFWS 2007). 

 

 

 

 

 

 

Determining habitat areas. Two approaches were used to map the spatial extents of different 
combinations of habitat variables. To estimate river and Yolo Bypass capacities based on channel 
velocity and depth, a suite of HEC-RAS models at varying discharge values (2,000-200,000 ft3/sec) 
were simulated on the Sacramento River and Yolo Bypass. The HEC-RAS geometry was based on a 
series of cross-sections that define locations surveyed in the mid-1990s at longitudinal intervals of 
approximately 500m. From the HEC-RAS output, the cross-sectional width of a given river reach was 
broken up into 45 lateral sections (i.e., cells), with the main channel composed of 25 cells and the 
banks composed of 20 cells (10 left and 10 right bank; example shown in Figure 12). Main channel 
and bank stations are defined in the original HEC-RAS model and denoted in Figure 12 with red 
cross-section stations. To estimate depth and velocity in each cell, we used the flow distribution 
methods outlined by HEC, which can be found at:  
https://www.hec.usace.army.mil/confluence/rasdocs/ras1dtechref/latest/overview-of-optional-
capabilities/flow-distribution-calculations 
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Figure 12: Example of method used to split up a HEC-RAS cross-sectional output into 45 lateral sections. Note that main 
channel locations are within the red cross-sections stations and bank locations are outside of the red cross-sections 
stations 

 

At each lateral cell, the HEC-RAS simulated channel depth and velocity were grouped into one of the 
four habitat capacity categories described above. Each cell in the cross-section has a depth and 
velocity, and altering the flow changes the depth and velocity of a particular cell. The area of each 
cell that corresponded to a specific combination of velocity and depth category was tabulated for 
each mean monthly flow (extracted from CalSim results) associated with a cross-section. The 
appropriate density of Chinook salmon for each of the four categories was applied to each lateral 
cell by taking the product of area for a given preference and the 95th percentile density estimate for 
that preference. To arrive at a monthly capacity estimate for the Sacramento River and Yolo Bypass 
habitats, we summed the capacity estimates for each lateral and longitudinal cell in each habitat. 
Figure 13 shows how habitat capacity changes as a function of flow for the Sacramento River and 
Yolo Bypass. 
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Figure 13: Habitat capacity to flow (thousand cfs) relationship for the Sacramento River and Yolo Bypass under the 95th 
percentile density estimate. 

For the delta and bay, geographic data products were used to map habitat variables, including cover, 
shoreline type, salinity, and depth. Vector GIS files were converted to raster, and all habitat variables 
were mapped onto a common 10m2 grid. To obtain the spatial extent of channels and wetlands, 
National Wetland Inventory (NWI) data (USFWS 2006) were used in the delta, and Bay Area Aquatic 
Resource Inventory (BAARI) v 2.1 data (SFEI ASC 2017) were used in the bay. A geographic buffer 
was applied where required to ensure that the full extent of the channels were included, and a levee 
file (DWR 2018) was utilized to ensure that no inaccessible areas were included. For each cell, the 
habitat variables listed in Table 1 above were determined to be of high or low quality. Cover data 
were obtained from the Coastal Change Analysis Program (C-CAP) (NOAA OCM 2017). Areas that had 
vegetation (forested areas, scrub/shrub area, etc.) were considered high quality cover, and cells 
within 30 meters were marked as high-quality cover. Shoreline data were obtained from BAARI v 2.1 
(SFEI ASC 2017) and the Environmental Sensitivity Index (NOAA OR&R 2017). Cells within marshes, 
tidal flats, and vegetated areas, and cells within 30 meters were marked as high quality, whereas 
areas near rip-rap, rocky areas, and exposed areas were marked as low quality. 

For salinity, monthly X2 values, representing the distance from the Golden Gate Bridge to the 2 ppt 
isohaline position (Jassby et al. 1995), were obtained from CalSim simulations. X10 values were 
calculated as 75% of X2 values (Monismith et al. 2002, Jassby et al. 1995). Distance to the Golden 
Gate was mapped, and cells upstream of the X10 value were marked as high quality. 
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Water depth was calculated from bathymetric data (Wang et al. 2018) and water level from DSM2 
simulations. Each cell was assigned to its corresponding DSM2 channel, and for each DSM2 channel, 
monthly median water level was calculated. This value was subtracted from the bathymetric 
measurement in order to obtain monthly water depth for each cell. 

Blind tidal channels within wetland areas were not able to be mapped directly with the available 
data. Therefore, we estimated these areas using allometric relationships between tidal wetland 
areas and blind tidal channel areas. We tested allometric equations developed in the Skagit River by 
Beamer et al. (2005) and Hood (2007) to determine which equations were best suited to apply to the 
Central Valley and chose an allometric equation that returned conservative estimation results:  

𝐴123 	= 	0.0024 ∗ 𝐴4&.67 

where Abtc is blind tidal channel area in hectares and Aw is wetland area in hectares. We also applied 
the minimum area requirement (0.94 ha) to form blind tidal channels in a wetland from Hood 
(2007). To ensure that habitat area was not double counted in wetland areas through the previously 
described mapping methods and the blind tidal channel calculation, the habitat area of each cell in 
tidal wetlands was reduced by the proportion of the area of the wetland that is blind tidal channel. 
Finally, the habitat areas from all cells, along with the habitat area from blind tidal channels, was 
summed in order to get the total monthly habitat areas for each of the eight habitat quality 
categories. 

	

Enhanced	Particle	Tracking	Model		
The survival rate of juvenile Chinook salmon within and migrating through the Delta is modeled 
using the Enhanced Particle Tracking Model (ePTM) version 2.0 (Hereafter, ePTM v2). This rate is 
defined as the survival at Chipps Island of simulated juvenile salmon released at any location within 
the Delta. The ePTM v2 survival computation includes movement, orientation, holding and routing 
behaviors and predation mortality (Sridharan et al., in prep.). The ePTM v2 is based on the Delta 
Simulation Model II Particle Tracking Model (DSM2 PTM) developed by the Department of Water 
Resources (DWR), California. Model code and documentation for the ePTM v2 is hosted at 
https://github.com/cvclcm/ePTM_v2.  

DSM2		
The DSM2 PTM transports particles on a one-dimensional network representation of the Delta, 
driven by the flows computed by HYDRO, the hydrodynamic module of DSM2 written in FORTRAN 
(Anderson and Mierzwa, 2002). The DSM2 HYDRO module computes the flow and stage at different 
locations in the Delta by solving the cross-sectionally averaged one-dimensional shallow water wave 
equations on a network of links, continuously stirred tank reactors (CSTR) and nodes which 
respectively represent channels, flooded and leveed islands, floodplains and forebays, and channel 
junctions (Figure 14). River inflows and in-delta consumptive use flows are estimated from CALSIM, a 
water budget model for California. Gate operations are provided by DWR. Details of the numerical 
solution method can be found in DeLong et al. (1997) and a peer review of the model can be found 
in Sridharan et al. (2018). DSM2 HYDRO is typically run with a time step of 15 minutes to one hour. 
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Figure 14. The Sacramento-San Joaquin Delta and the DSM2 grid. Arrows represent inflows and outflows. Grey lines, 
dark grey shaded regions and red dots respectively represent DSM2 channels, reservoirs and nodes. The Hatched box, 
crossed out circle and solid box respectively represent the Delta Cross Channel, the salinity control gate in Montezuma 
Slough and the temporary salmon passage barrier in Mossdale. The blue boxes represent nodes in which fry rearing in 
the Sacramento River and the Yolo Bypass floodplain are seeded as simulated smolts into the ePTM v2. Simulated smolt 
seeded in all other nodes represent fry rearing within the Delta.  

The DSM2 PTM module, written in JAVA, is a pseudo three-dimensional model with a turbulent law 
of the wall logarithmic vertical velocity (Prandlt 1935) and a fourth order polynomial transverse 
velocity profile (Wilbur 2000) imposed onto the solved mean flows through a cross-section. The links 
are represented as rectangular prismoids whose cross-sections preserve the hydraulic radii and 
water column depth in the channels they represent. It uses constant cross-sectional eddy 
diffusivities in a zeroth-order turbulence closure to move particles laterally and vertically. Particles 
are advected in the streamwise direction with the hydrodynamic velocity at their locations and 
moved randomly in the lateral and vertical direction with the diffusivities at their locations using 
Forward Euler numerical integration. DSM2 PTM is capable of modeling about 5,000 particles 
(Kimmerer and Nobriga, 2008). It does not have any temporal interpolation of hydrodynamic 
quantities between DSM2 HYDRO time steps, and randomizes particles arriving at nodes and assigns 
them to new links based on the flow splits at the nodes. Their new cross-sectional positions are also 
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randomized. ePTM v2 builds on the basic framework of the DSM2 PTM by adopting conceptual and 
performance updates described in Sridharan et al. (2017) and adds behavior to simulated particles. 

	

ePTM	v2	
The ePTM v2 adds juvenile salmon swimming behavior and predation mortality to the DSM2 PTM 
(Sridharan et al. in prep.). Apart from these additions, the ePTM v2 linearly interpolates all hydraulic 
and hydrodynamic quantities between DSM2 HYDRO time steps to account for simulated salmon 
movement within an ePTM v2 time substep. Broadly, the scope of the ePTM v2 can be summarized 
into its representation of the hydrodynamics, the fish behavior, and the mortality of simulated 
salmon.  

Hydrodynamics	
Simulated smolt trajectories are given by (Visser 1997) 

 89
82
= 𝑢 + 𝑢*; 	

8:
82
= 𝑅:^

-
;
<!
∆2
+ 𝑑𝜀𝐻

𝑑𝑦
; 8A
82
= 𝑅A^

-
;
<#
∆2
+ 𝑑𝜀𝑉

𝑑𝑧
 

where u is the hydrodynamic velocity at the particle position, us	is the swimming velocity, 𝜀C and 𝜀D  
are the lateral and vertical eddy diffusivities, ∆𝑡 is the ePTM v2 timestep,  RY and RZ are uniform 
random variables between -1 and 1, r is the variance of a standard normal distribution and is equal 
to 1.  In order to realistically represent fish movements, channel curvature has been included in 
ePTM v2.  

The curvature of a channel is determined by fitting both a Theil-Sen robust linear regressor (Gilbert 
1987), as well as a Chernov-Lesort robust circular regressor (Chernov, 2010). If the Pearson 
correlation coefficient value of the linear fit exceeds that of the circular fit, or if the estimated radius 
of curvature exceeds 10 Km, the channel is assumed as straight. The bend angle is computed as the 
ratio of the total distance along the river and the radius of curvature. Meanders occurring on a scale 
smaller than the channel length can be incorporated by refining the DSM2 model grid as needed. 

For straight channels, we have (DWR, 1998): 
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where 𝑓D  and 𝑓C are the water velocity profiles in the lateral and vertical dimensions, W and H are 
respectively the width and depth of the channel, U is the mean streamwise velocity, A, B and C are 
constants that can vary with the river, 𝜅=0.41 is von Karman’s constant, and the diffusion 
coefficients in the lateral and vertical dimension are 

𝜀C = 𝐶G𝐻𝑢∗; 	𝑢∗ = 0.1𝑈 
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where 𝐶G=0.6 is a constant and 𝑢∗ is the friction velocity. 

For curved channels, the experimental results of Gandhi et al. (2016) of turbulent open rectangular 
channel flow in around bends of varying curvature from a straight channel to up to 90o are used. For 
angles beyond 90o, we assume that the flow adjustment will not be significantly different (Blanckaert 
and De Vriend, 2004), and so we use the distribution at 90o itself. We use the best-fit regression of 
Gandhi et al. (2016) to their data to generate the flow profiles. Using the force balance between the 
turbulent eddy diffusivity and the shear stress by assuming a linear decay of the shear stress from its 
peak value at the channel banks to zero at the lateral position of peak flow defined from the left 
bank, 𝑦IJ9 (and similarly for the right bank),  

 𝜀C
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8:

 is obtained from the data, and smoothing the resulting profile of 𝜀C to remove spurious 

discontinuities, we get profiles of the flow and mixing terms. A mixed layer is implemented near the 
channel banks that is 20% of the width of the channel (Ross and Sharples 2004). 

Time substeps are chosen to be 20 seconds. A simulated salmon leaves a given channel through its 
upstream or downstream end when its streamwise displacement during a time step exceeds the 
distance between its current position and the end of the channel. The channel bottom, banks and 
free surface are treated as fully reflecting boundaries. 

Simulated salmon that enter reservoirs or flooded islands are held there over a random period 
between 0 and 24 hours and subsequently randomly released depending on the flow into a 
connecting channel. 

Behavior	
ePTM v2 is a spatially explicit model, in that behaviors of fish are allowed to vary spatially through 
the Delta domain. Such spatial variability is supported by numerous reports from the literature, and 
observations within the Delta that migrating smolts vary their behavior as they move closer to the 
ocean (McCleave 1978; Solomon 1978; Healey 1980; Moser et al. 1991; Lacroix and McCurdy 1996; 
McCormick et al. 1998; Moore et al. 1998; Miller and Sadro 2003; Lacroix et al. 2005; Hedger et al. 
2008; Kelly and Klimley 2012; Chapman et al. 2013; DWR 2015; DWR 2016). The ePTM v2 
incorporates five behaviors based on literature reviews and observations in the data (Sridharan et al. 
In prep) that include: 

(i) active swimming, 

(ii) orientation towards or away from the ocean, 
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(iii) Holding against the flow, 

(iv) routing at channel junctions, and  

(v) mortality due to predation. 

All these behaviors are allowed to vary at the scale of the regions defined in Figure 15.  

 

Figure 15. Calibration regions for ePTM v2 behaviors. Colors uniquely identify the different calibration regions. All blue 
colored regions indicate the mainstem Sacramento River. 

Active	swimming	
A biological swimming velocity is added to the water velocity at the location of the simulated salmon 
at each time step. Simulated salmon can swim in the along stream direction with swimming speeds 
that are drawn from a lognormal distribution 𝑙𝑛𝑁(𝜇, 𝜎) in which  

𝜇 = 2𝑙𝑛(𝑈*) −
&
-
𝑙𝑛(𝜎#- + 𝑈*-) and 𝜎 = ^𝑙𝑛(𝜎#- + 𝑈*-) − 2𝑙𝑛(𝑈*).  

Here, the mean and standard deviation of observed swimming speeds are respectively 𝑈*  and 𝜎#. To 
ensure that randomly drawn swimming speeds remain within the range of biologically plausible 
speeds, the log-normal distribution is truncated at the 95th percentile and rescaled appropriately. 
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Orientation	
In the ePTM v2, a probabilistic swimming direction rule determines each simulated salmon’s 
swimming direction at each timestep. The swimming direction is influenced by the migrant’s 
previous swimming direction, as well as the flow it experiences as follows. If a Bernoulli draw to 
determine persistence results in a zero, the fish’s swimming direction is determined by a stochastic 

decision based on the flow it experiences, |K||M|
, during the current timestep as  

𝑝*N' = 0.5 + (𝑝OP!Q − 0.5) q
1

1 + 𝑒RS3T1UV
|K|
|M|W

r 

Here, 𝑈 is the mean flow observed in the Delta from 1962 to 2014, and is used to simply normalize 
the values of 𝑢. There is no assumption that the fish somehow knows what 𝑈 is. 𝑝*N'  is the probability 
of orienting with the flow, and 𝑝OP!Q, 𝑐 and 𝑏 are calibration constants.  

For positive values of 𝑐 and small values of 𝑏, fish response to flow signals is sluggish in that only at 
very strong water speeds will fish make decisions that are not random. For negative values of 𝑐 and 
large values of 𝑏, fish responses to small changes in the flow will be very sharp, i.e., decisions will be 
nonrandom even for weak flows. The 𝑝OP!Q parameter determines if the fish is likely to orient with or 
against the flow. If 𝑝OP!Q ≈ 0, then as flows become stronger, fish will have a tendency to orient 
against the flow. If 𝑝OP!Q ≈ 0.5, orientation decisions will be random. If 1, then as flows become 
stronger, fish will have a tendency to orient with the flow.  

	

Holding	Position	Relative	to	Flow	
The simulated salmon also holds position via Selective Tidal-Stream Transport (STST) (Gibson 2003), 
a hypothesis for optimal energy expenditure while achieving average travel speeds greater than the 
average flow velocity in tidal regions. During the ebb phase of the tide, the simulated salmon allow 
themselves to be advected.  On a flood tide, when the upstream flow exceeds some threshold, they 
hold position with a certain probability (Liao, 2007). The ePTM v2 also parameterizes diel swimming 
behavior (Chapman et al. 2013) by assigning a probability of swimming during the light hours. 

	
	
Routing	at	Channel	Junctions	
Anadromous salmonids often make decisions on which route to adopt (Gleichauf et al. 2014; Perry 
et al. 2014; Hance et al. 2021). Sridharan et al. (2017) demonstrated the importance of correctly 
representing the movement of simulated fish through channel junctions. In the ePTM v2, we allow 
fish to move into downstream channels at junctions depending on their lateral position relative to 
the critical streakline (Perry et al. 2014), also known as the bifurcating streamline. 

When a simulated migrant reaches the end of a channel within a sub-timestep, the routing process is 
invoked, and it is moved into a downstream channel or open water body. Subsequently, the remaining 
trajectory computation is completed for that sub-timestep in the new channel beginning from a 
random cross-sectional position in the new channel. If the fish enters an open water body, it waits for 
a random length of time between zero seconds and one day and then leaves the open water body 
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randomly into a connecting downstream channel. This mechanism ensures that fish move through the 
system in a manner consistent with the critical streakline hypothesis, while allowing for random lateral 
and vertical movements to occur within the time taken to move through the junction. 

When a simulated fish reaches a channel junction, it is assigned to one channel or the other based on 
its lateral location relative to the location of the critical streakline (see Perry et a. 2018 or Sridharan 
et al. 2017 for an explanation of how the location of the critical streakline is calculated). Thus, the 
routing module does not contain any fitted free parameters. When there are junctions with more than 
three channels, a tree-search algorithm is implemented in which the junction is dynamically 
deconstructed into a sequence of bifurcations with two downstream channels from the point of view 
of the channel from which the fish enters the junction. Recently, nonphysical barriers and fish 
guidance mechanisms such as bubble curtains and strobe lights have been investigated to steer fish 
into favorable migration routes in the Delta (Perry et al. 2014; DWR 2015; DWR 2016). Such 
mechanisms can be represented in the model as a “particle filter,” which restricts a fraction of fish 
from entering a specific waterbody. Any number of filters can be applied at any junction in the system 
domain with specified efficiencies. Such filters will simply divert the fraction of fish into the next 
nearest downstream channel that does not have a filter.  

	

Predation	Mortality	
The ePTM v2 adds predator-induced mortality according to the XT model (Anderson et al. 2005). The 
probability of a simulated salmon surviving passage through a region, S, is as follows: 

 𝑆 = 𝑒RX
(
)√9

*TZ*2*[                         

where x is the distance traveled and t is the travel time. The mean free path, λ, is  

 𝜆 = &
\];*

   

where 𝜌 is the density of predators and r is the encounter distance. The term ω is the random 
component of prey speed. The implementation of the XT model in the ePTM v2 involves recording 
the x and t for each channel that a simulated salmon traverses in a given 15-minute time step.  A 
survival probability for each of these sub time steps is then calculated using the λ values for the 
individual channels. The overall probability that the simulated salmon survives the 15-minute time 
step is the product of the survival probabilities of the sub time steps, i.e.: 

 𝑆 = ∏ 𝑒
R^ ()+

_9+
*TZ+

*2+
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where n is the number of channels that the simulated salmon traversed during the time step, xi is 
the distance traveled in channel i, ti is the time spent in channel i, and λi and ωi are the channel-
specific mortality parameters. In the ePTM v2, only the parameters λi and ωi are specified explicitly 
(Table 2). 
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Model	Calibration	and	Validation	
The parameters of the ePTM v2 were estimated from tagging studies of late Fall-run Chinook salmon 
(2006-2010) released in the Sacramento River and passing through the Delta (Perry et al. 2010). This 
tagging study included a total of 1,591 tagged late-Fall juveniles that were released in the 
Sacramento River in eight release groups over the five year period. These fish were tagged with 
VEMCO V5 acoustic tags and were tracked through the system at hydroacoustic receiver arrays 
(Figure 15). By tracking fish through these receiver arrays, their passage through the Delta could be 
naturally quantified along the nine regions connected by key river junctions (Figure 15). A Cormack-
Jolly-Seber (CJS) mark-recapture model was fit within a hierarchical Bayesian framework to 
concurrently estimate detection, routing and survival probabilities through the different regions 
(Perry et al. 2010; Perry et al. 2018). In addition to the region-scale survival estimates, the data was 
also processed (Russ Perry, personal communication) to include fist detection times for each fish 
whenever it was detected at a receiver array.  

To estimate all 99 ePTM v2 parameters (11 parameters in each of the nine calibration regions) from 
the calibration data described above, the following steps were applied. First, for each parameter, 
bounds were identified on the permissible range of parameter values to constrain the parameter 
search space. These bounds were set based on a thorough review of the literature including laboratory 
experiments and field data, and reasonable biological expectations when insights could not be gained 
from the literature. Then, a four-stage calibration process was incorporated. In this process, first, it 
was determined that the movement (swimming, orientation and holding) parameters could be fit 
independently of the survival parameters (Sridharan et al. In prep.). Second, a coarse grid search on a 
large number of movement parameter values was performed to narrow in on the best local optima 
defined within a multiobjective optimization framework. Third, the parameter space was zoomed into 
in the neighborhoods of the best local optima to perform a fine grid search using the multiobjective 
optimization framework to identify the global optimum movement parameter values. Fourth, the 
movement parameters were held at their optimum values and performed a grid search over the 
survival parameters to find the optimum values of these parameters. These values are listed in Table 
2. In lieu of an uncertainty analysis, a sensitivity analysis was performed on the parameters (Sridharan 
et al. In prep.). The calibrated model was also validated with out-of-sample data using Juvenile Salmon 
Acoustic Telemetry System (JSATS) tagged Chinook smolts (see Sridharan et al. In prep.). Both the 
calibration and validation results are archived in the ePTM v2 GitHub repository. 

 

Table 2. ePTM v2 model parameters 

Behavior Description Parameter Search 
bounds 

Optimal value Evidence 

Swimming Mean 
swimming 
speed 

𝑈* [0,0.5m/s] region 1: 0.50 m/s 
region 2: 0.37 m/s 
region 3: 0.32 m/s 
region 4: 0.43 m/s 
region 5: 0.50 m/s 
region 6: 0.15 m/s 
region 7: 0.35 m/s 

Swimming 
speeds 
observed by 
Dougan 1993; 
Anglea et al. 
2004; Brown 
et al. 2006; 
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Behavior Description Parameter Search 
bounds 

Optimal value Evidence 

region 8: 0.39 m/s 
region 9: 0.33 m/s 

Walker et al. 
2016; Lehman 
et al. 2017 

 Standard 
deviation 
of 
swimming 
speed 

𝜎* [0,0.5m/s] region 1: 0.16 m/s 
region 2: 0.47 m/s 
region 3: 0.45 m/s 
region 4: 0.43 m/s 
region 5: 0.01 m/s 
region 6: 0.32 m/s 
region 7: 0.01 m/s 
region 8: 0.43 m/s 
region 9: 0.44 m/s 

Swimming 
speeds 
observed by 
Dougan 1993; 
Anglea et al. 
2004; Brown 
et al. 2006; 
Walker et al. 
2016; Lehman 
et al. 2017 

Orientation Probability 
of memory 
persistence 

𝑝(!;#/#2!03! [0,1] region 1: 0.81 
region 2: 0.97 
region 3: 0.86 
region 4: 0.78 
region 5: 0.61 
region 6: 0.87 
region 7: 0.37 
region 8: 0.32 
region 9: 0.71 

Normal 
probability 
range 

 Probability 
of 
rheotaxis 

𝑝OP!Q [0,1] region 1: 0.38 
region 2: 0.15 
region 3: 0.05 
region 4: 0.17 
region 5: 0.03 
region 6: 0.40 
region 7: 0.11 
region 8: 0.90 
region 9: 0.41 

Normal 
probability 
range 

 Half-
saturation 
point of 
logistic 
function 

𝑐 [-10,10] region 1: 7.55 
region 2: 5.91 
region 3: 2.09 
region 4: 8.19 
region 5: -0.19 
region 6: 0.91 
region 7: 2.68 
region 8: -2.53 
region 9: -0.55 

Encompassing 
various shapes 
of logistic 
curve for 95% 
of flows 
observed in 
the Delta 

 Slope of 
logistic 
function 

𝑏 [0,10] region 1: 5.89 
region 2: 5.34 
region 3: 0.88 
region 4: 6.40 

Encompassing 
various shapes 
of logistic 
curve for 95% 
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Behavior Description Parameter Search 
bounds 

Optimal value Evidence 

region 5: 5.77 
region 6: 6.02 
region 7: 4.47 
region 8: 7.16 
region 9: 8.56 

of flows 
observed in 
the Delta 

Holding Landward 
holding 
threshold 
water 
velocity  

𝑢C [0,1.5m/s] region 1: 0.70 m/s 
region 2: 1.44 m/s 
region 3: 1.17 m/s 
region 4: 1.26 m/s 
region 5: 0.70 m/s 
region 6: 0.67 m/s 
region 7: 1.48 m/s 
region 8: 1.13 m/s 
region 9: 1.14 m/s 

0 to peak tidal 
water velocity 
computed by 
DSM2 
between 1962 
and 2014 

 Holding 
probability 

𝑝C [0,1] region 1: 0.80 
region 2: 0.58 
region 3: 0.65 
region 4: 0.33 
region 5: 0.60 
region 6: 0.66 
region 7: 0.96 
region 8: 0.73 
region 9: 0.32 

Normal 
probability 
range 

 Daytime 
swimming 
probability 

𝑝a* [0,1] region 1: 0.63 
region 2: 0.11 
region 3: 0.62 
region 4: 0.01 
region 5: 0.70 
region 6: 0.00 
region 7: 0.16 
region 8: 0.62 
region 9: 0.68 

Probabilities 
reported in 
Chapman et 
al. (2013) 

Mortality Mean free 
path length 

𝜆 [10,1000Km] region 1: 753 Km 
region 2: 629 Km 
region 3: 1000 Km 
region 4: 876 Km 
region 5: 1000 Km 
region 6: 794 Km 
region 7: 711 Km 
region 8: 918 Km 
region 9: 753 Km 

Synthetic 
survival model 
predictions 
encompassing 
range of 
survivals 
predicted in 
Perry et al. 
(2018) 

 Random 
prey speed 

𝜔 [0,2m/s] region 1: 0.58 m/s 
region 2: 0.92 m/s 
region 3: 1.42 m/s 

Synthetic 
survival model 
predictions 
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Behavior Description Parameter Search 
bounds 

Optimal value Evidence 

region 4: 0.08 m/s 
region 5: 0.08 m/s 
region 6: 0.75 m/s 
region 7: 0.50 m/s 
region 8: 0.00 m/s 
region 9: 0.00 m/s 

encompassing 
range of 
survivals 
predicted in 
Perry et al. 
(2018) 

Spatial	Patterns	in	Calibrated	Model	Parameters	
A detailed analysis of the spatial patterns in the calibrated behaviors will be presented in Sridharan 
et al. (In prep.); here we merely present a synopsis.  

For the active swimming component of the model, in the North Delta regions upstream of Rio Vista 
(regions 1 to 5) and the confluence of Georgiana Slough with the San Joaquin River (region 6), 
simulated salmon actively swim against strong non-reversing riverine flows. In the more tidally 
reversing Central (region 7), Western (region 8) and South Delta (region 9), fish execute either 
movements that are directed weakly with or against the flow. Together, these parameters result in 
actions by the fish that increase migration rate and dispersion with increasing proximity to the 
ocean, as is observed in the acoustic telemetry datasets. 

The orientation and holding parameters allow simulated fish to hold position against the flow, and 
even swim against the flow during the landward flood phase of the tide. In the regions where the 
oceanward flow does not reverse, the net effect is to orient fish against the flow much more often 
than with the flow. In the parts of the system where the flow reverses tidally, fish orientations are 
more likely to switch between with and against the flow. During strong landward flow reversals, fish 
approximately maintain position relative to the flow. The probability of swimming during the day is 
consistent with the values obtained in this region from acoustic telemetry experiments reported in 
Chapman et al. (2013). 

The mean-free path length and random prey speed result in an overall increasing likelihood of 
survival through the downstream regions of the system. In the Delta, predator densities are 
generally higher in the fresh Sacramento and San Joaquin River waters than in the Western, more 
salty parts of the system (Michel 2020). The spatial distribution of the mortality parameters thus 
mirror a lower likelihood of predation in the Western Delta than in the Eastern Delta. 

ePTM	v2	Application	
For a given climate change, water operations or restoration scenario, ePTM v2 is used in conjunction 
with the habitat capacity model, and the USGS juvenile Chinook beach seine abundance model 
(Perry et al. 2016) to predict mean and variance in monthly survivals for fish rearing in the 
Sacramento River, the Yolo Bypass floodplain, and in the interior Delta. In a multi-year scenario, 50 
simulated salmon are released uniformly over the first month of each simulation at each DSM2 node 
East of Chipps Island and the survivals estimated from each of these releases is bootstrapped into 
1,000 survival samples. Each ePTM v2 simulation for fish released in a given month is run for three 
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months to allow fish to reach their ultimate fate, and survival is reported based on fish that arrive at 
Chipps Island. River- and floodplain-rearing smolt survivals are reported as the survivals estimated 
by releasing fish at the relevant nodes (Figure 14), while Delta-rearing smolt survivals are reported 
by reweighting the survivals in the target month estimated from in-Delta node releases using the 
carrying capacity associated with each Delta node three months prior to the release month. The 
carrying capacities are estimated three months prior to the release month to reflect the fact that 
rearing juveniles would have selected a habitat patch to rear based on the conditions at the time 
that they arrived there. This reweighting assumes an ideal free distribution of fish in the Delta. The 
reweighting is done as follows: 

First, the density of smolt abundance per unit area in four different regions representing the Delta 
[regions 2 through 5 in Figure 16 adapted from an United States Fish and Wildlife Service memo  
(Barnard 2019)] are estimated using the USGS abundance model for each month in each year 
between 2000 and 2020.  

 

 

Figure 16. Beach-seine based abundance density model regions. Regions 2, 3, 4 and 5 are used in the habitat capacity-
based reweighting scheme. From Barnard 2019. 

Then, for each month in each year in the scenario that is being evaluated, the density in each region 
is estimated by using a K-nearest neighbors model which sets the abundance in a given month as 
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𝑑%,; =
∑ 8,,!+./01+2&3,+4
,5(

c
  

where 𝑑%,/  is the density in region 𝑟 in month 𝑚 of the scenario, 𝑑),C/#2Q;/3Jd,/  is the density in that 
region in the 𝑗th month of 𝐾 months within the historical period that are within the cluster of 
months closest to the 𝑚th month hydrologically. The hydrological similarity index used to cluster 
historical months is given by the Euclidean distance between the hydrologic conditions 
representative of a given region, which are 

Region 1 based on Sacramento River flow: ^&𝑄*J3,% − 𝑄*J3,)(
-

 

Region 2 based on Sacramento River flow and Delta Cross Channel operation: 

^&𝑄*J3,% − 𝑄*J3,)(
- + &𝑄aee,% − 𝑄aee,)(

-
 

Region 3 based on Sacramento River flow and Delta Cross Channel operation: 

^&𝑄*J3,% − 𝑄*J3,)(
- + &𝑄aee,% − 𝑄aee,)(

-
 

Region 4 based on San Joaquin River flow: ^&𝑄*fO,% − 𝑄*fO,)(
-

 

and,  𝑤)  is the inverse Euclidean distance between the hydrologic conditions representative of a 
given region within the cluster of points closest to the month 𝑚. The number of clusters is 
dynamically determined by minimizing the sum of squared errors obtained by successively leaving 
one month out of the historical dataset. These errors are the sum of the Euclidean separation 
between a training point and the sum of other points in a cluster weighted by the inverse Euclidean 
separation between those points and the training point.  

Second, the area within each of the eight habitat classes, 𝑐, associated with a node, 𝑖, with 𝑙 
connecting channels is given by 

 𝑎/,3 =
&
-
∑ 𝑎/,3d
),&  

The density associated with each habitat class is given by 𝑑3.  

Third, the weight associated with each region in the Delta is estimated as  

 𝑤; =
∑ 82g∑ J+,26

+5( h7
25(

∑ 418
15(

 

This formula ensures that regions with predominantly poor habitats are weighted lower as locations 
where fish would likely rear. As the USGS density model collapses beach seine data into the four 
regions depicted in Figure 16 and finer resolution is not possible, the assumption here is that the 
carrying capacity associated with each node within a given region is identical.  

Fourth, the carrying capacity (K) of each region is then given by 

𝐾%,; = 𝑤;𝑑%,;   



37 
 

Finally, the reweighted survival from a given DSM2 node 𝑖 in month 𝑚 is given as 

 𝑆%,/,O!4!/"P2!8 =
c9:;,1

∑ c9:;,1
8
15(

𝑆%,/  

Caveats	
Currently, the ePTM v2 can represent either the current geomorphology and hydrology of the Delta 
(Current), a historic representation of the Delta before Liberty Island flooded (Historic), or any other 
configuration representing restoration actions or other water operations. We note that in order to 
investigate these alternate configurations, some effort would be required to set up the overarching 
CALSIM simulations and the Delta hydrodynamics DSM2 model. The development of these models 
for specific scenarios is currently beyond the scope of the LCM team. The ePTM v2 results are based 
on a simplified one-dimensional network representation of the Delta, and hence do not account for 
complex geo-morphological and hydrodynamic transport and mixing phenomena such as tide 
induced chaotic dispersion, wind generated transport and gravitational circulation. The ePTM v2 
results do not include the effects of environmental stressors such as water quality, temperature, 
nutrients, channel scale, temporal variability in predation dynamics, and foraging behavior or energy 
management dynamics. There is a significant data gap in addressing more complex spatio-temporal 
patterns in biological behavior and habitat interactions, as well as a need for easy model 
deployment and speed, so the ePTM v2 parameterizes only simple hypotheses about these effects.  

	

Cloud-based	Implementation	of	ePTM	v2	for	Tractable	Scenario	Evaluation	
In a typical application of the WRLCM for evaluation of a proposed project or water management 
scenario, the ePTM v2 is used to generate monthly survival estimates across multiple decades. The 
resampling procedure described above requires survival estimates for smolts originating throughout 
the Delta for every year and month, which implies that a large number of ePTM v2 simulations are 
required for a single scenario evaluation. 

For example, a typical scenario evaluation could span 90 years and eight months per year, for a total 
of 720 year-month combinations. The exact number of ePTM v2 insertion nodes depends on the 
DSM2 grid, which may vary by scenario, but there are approximately 370 relevant insertion nodes 
east of Chipps Island. Therefore, the example scenario evaluation would require approximately 
266,400 simulations (90 years x 8 months x 370 simulations/year-month). A single ePTM v2 
simulation with 50 SJS requires on the order of one minute to complete. Performing all of the 
required simulations on a single machine would take approximately 1.65 X 107 seconds, or 190 days. 

Given that the elapsed real time required to complete these ePTM v2 simulations on a single 
machine would be prohibitive, we have deployed the ePTM v2 on the Amazon Web Services (AWS) 
cloud computing platform to allow for massively parallel computation. Using AWS, we are able to 
distribute the ePTM v2 simulations across hundreds of instances (virtual machines), allowing 
completion of a scenario evaluation in less than a day of elapsed real time. 

We employed three primary components of AWS to implement the cloud-based ePTM v2 workflow. 
Simulations are performed using Elastic Cloud Compute (EC2) instances. Communication between a 
local machine and the EC2 instances (e.g., for scheduling jobs and downloading metadata for the 



38 
 

completed jobs) is implemented via the Simple Queue Service (SQS). ePTM v2 outputs from the EC2 
instances are stored using Simple Storage Service (S3) buckets. 

Creating virtual machines on EC2 requires an Amazon Machine Image (AMI), which is essentially a 
template that can be used to spawn one or more EC2 instances. It can be thought of as an image of a 
single computer that can be copied any number of times to create multiple, identical, virtual 
computers running in the cloud. The AMI specifies the operating system, all of the installed 
software, and other software configuration details. The same AMI can be used to launch EC2 
instances with a variety of hardware configurations, meaning that a more or less powerful hardware 
configuration can be selected as needed at runtime. 

For the ePTM v2, we created a custom AMI based on Windows and the x86_64 platform with the 
ePTM v2 and all required supporting software installed. The AMI was configured to automatically log 
in and begin polling SQS for available jobs upon launch, and to automatically terminate after a set 
period of time with no new jobs. For typical applications, we use the c5.large EC2 instance type, 
which is a compute-optimized instance with 2 virtual CPUs (vCPUs) and 4 GiB of memory. 

We used a series of Python scripts, running on both a local machine and the cloud instances, to 
implement the workflow. The workflow includes scheduling the jobs from the local machine, polling 
the job queues on the cloud instances, downloading the ePTM v2 outputs to the local machine, and 
post-processing the results. Interaction with AWS is accomplished using the Boto3 AWS Software 
Development Kit (SDK) for Python. 

Each ePTM v2 simulation provides a survival estimate for SJS inserted into a particular DSM2 node 
for a given year and month. To obtain survival estimates representing the entire month, we insert 50 
SJS with insertion dates and times distributed uniformly throughout the specified month. For each 
SJS, the ePTM v2 calculates a survival probability in each time step, so the cumulative survival 
probability from the insertion location to the Delta exit at Chipps Island is the product of the survival 
probabilities for the individual time steps. Survival probabilities for SJS that did not pass Chipps 
Island are assumed to be zero. 

Summarizing, the standard workflow for running the ePTM v2 on AWS includes the following steps: 

·         use a Python script on a local machine to post jobs on SQS for all years, months, and insertion 
nodes required for the scenario evaluation 

·         launch up to hundreds of c5.large EC2 instances using a custom Windows-based AMI configured 
to automatically log in, poll the SQS job queue, claim a particular job, perform the ePTM v2 
simulation, save the run metadata to the SQS queue, and save the raw ePTM v2 outputs to an S3 
bucket 

·         after all scheduled simulations are complete, use a Python script to download the raw ePTM v2 
outputs to a local machine for post-processing 

·         run a Python post-processing script to quality assure (QA) the ePTM v2 outputs and perform 
bootstrap resampling 
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IV.	Model	Calibration		
The WRLCM framework is flexible in that it may be used to generate many different trajectories of 
abundance and spatial patterns of habitat use by varying the parameters of the model.  The WRLCM 
should reflect historical trends and spatial patterns in abundance, however.  As a result, we 
calibrated the WRLCM to multiple winter-run abundance indices by fixing some model parameters 
and estimating other parameters with a statistical fitting algorithm.  

One goal of the WRLCM was to construct a model that was sensitive to alternative hydro 
management actions in the Central Valley; thus the model was structured such that it is sensitive to 
hydrologic drivers.  An unintended consequence of this approach is that the statistical properties of 
the model are not optimal.  In particular, some model parameters are not uniquely identifiable; that 
is, the same abundance can occur through several different parameter combinations.  Because this 
property of the LCM makes statistical estimation difficult, the values of some parameters must be 
constrained using biological information, previous studies, or expert opinion, so that other 
parameters can be estimated.   We provide the parameters that were constrained and provide 
justification for their values before moving to the statistical estimation of the remaining parameters.  

	

Fixed	Parameters	and	Their	Justifications	

Spawn	Timing	Parameters	
Historically, the spawning of winter-run Chinook has not been uniform among the months April to 
August.  Instead, higher proportions of winter-run spawned in June and July relative to April, May, 
and August.  In addition, the proportions of winter-run that spawned in each month were not 
constant across years, but instead varied yearly.  We analyzed the historical proportion of spawning 
among each month from 2003 – 2014 using carcass counts (assuming a 2 week period between 
spawning and senescence), and estimated the proportion of winter-run spawning in each month as a 
function of April temperatures at Keswick (Appendix A).  We compared this model to one that used a 
static proportion among years, and found that the model based on April temperatures 
outperformed the static model.  The general relationship identified through this multinomial 
regression model was that hotter April temperatures caused later initiation of spawning in winter-
run Chinook.  This may be explained mechanistically if the female spawners were laying their eggs to 
target an emergence time.  Hotter temperatures in April indicated that a shorter incubation window 
was needed, whereas cooler temperatures indicated a longer incubation window.  Please see 
Appendix A for additional information on this analysis.  

These equations provided a method of shifting spawning distribution among months as a function of 
April temperatures (Table 3 and Appendix A).  The April water temperatures were standardized in 
the analysis and thus need to be standardized for use in the simulation model (mean = 10.00 C, 
standard deviation = 0.70).  

 

 

 



40 
 

 Table 3. Parameter values related to monthly spawn timing (SD = standard deviation).   

 Parameter Mean SD Description 

B0Apr	 -4.145 0.060 Intercept for proportion of spawners in April 

B1Apr	 0.0538 0.062 Effect of temperature on proportion of spawners in April 

B0May	 -1.796 0.020 Intercept for proportion of spawners in May 

B1May	 -0.2031 0.020 Effect of temperature on proportion of spawners in May 

B0Jul	 -0.332 0.012 Intercept for proportion of spawners in July 

B1Jul	 0.3852 0.012 Effect of temperature on proportion of spawners in July 

B0Aug	 -3.443 0.044 Intercept for proportion of spawners in August 

B1Aug	 0.7921 0.045 Effect of temperature on proportion of spawners in August 

	

Tidal	Fry	and	Fry	Related	Parameters	
Winter-run Chinook generally have not had a high tidal fry proportion (on the order of less than 5%). 
Furthermore, the location of tidal fry has varied among years, and they have been susceptible to 
movement downstream in the Sacramento River under high flow conditions (Pat Brandes, USFWS 
personal communication).  The WRLCM parameters for the tidal fry and fry stages reflected these 
assumptions (Table 4). 

 

Table 4. Fixed parameter values related to the tidal fry and fry stage.   

 Parameter Value Description 

t.crit	 12.0 

Temperature at which thermal morality initiates in the egg to 
emerging fry survival in Transition 1. Value of 12.0 obtained from 
Martin et al. (2017).  

B1A	 0.0 

Effect of covariate on background survival in egg to emerging fry 
survival in Transition 1.  A value of 0 indicates no annual 
variability in background survival. 

PTF,	m	 0.047 Proportion tidal fry 

STF,FP		 0.731 Survival tidal fry in floodplain 

PFP,m			 0.88 Proportion entering Floodplain if flooding (Pope et al. 2018) 

B04	 0.5 Average survival tidal fry to delta intercept 

B14	 -1.0 Effect of DCC gate (value is in logit space)* 

B05	 0.5 Average proportion of tidal fry to bay intercept 

B15	 2.0 Effect of Rio Vista flow (value is in logit space)* 
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 Parameter Value Description 

B0M	 0.003 

Proportion of fry moving from the Lower River to the Delta in the 
absence of density dependence when Wilkins Slough Flows are < 
400 cms. 

B1M	 0.377 

Proportion of fry moving from the Lower River to the Delta in the 
absence of density dependence when Wilkins Slough Flows are > 
400 cms. 

	

Smoltification	Timing	Parameters	
The timing of smoltification of winter-run Chinook salmon historically begins in January with a 
majority of winter-run sized smolts outmigrating by March (delRosario et al. 2013).  In the WRLCM, 
all fry are assumed to have smolted by April and migrated in May (Table 5).  The timing of 
smoltification in the WRLCM has been parameterized to coincide with winter-run sized Chinook 
salmon in Chipps Island trawl data (delRosario et al. 2013) and by using Chipps Island abundance 
indices as described below in the Parameter Estimation section. 

 

Table 5. Smoltification timing parameters for winter-run Chinook. 

Parameter	 Value Description 
Z1	 0.269 January smolt probability 

Z2	 0.5 February smolt probability 

Z3	 0.953 March smolt probability 

Z4	 0.999 April smolt probability 

Z5	 1 May smolt probability 

Z6	 1 June smolt probability 

Z7	 1 July smolt probability 

	

Maturation	Rate	Probabilities	
The age-specific maturation probabilities for winter-run Chinook salmon were fixed to values based 
on analysis of coded wire tagged hatchery fish (Grover et al. 2004).  The probability of maturation of 
age 2 fish was 0.10 (M2), the conditional probability of maturation at age 3 was 0.90 (M3), and the 
conditional probability of maturation at age 4 was 1.0.   

Age-specific sex ratios were applied to obtain age and sex specific escapement values.  Males 
dominate age-2 escapement, thus the female sex ratio for age-2 fish (FemAge2) was set at 0.01.  
Estimates of the proportion of age-3 female spawners (FemAge3) may vary among years, and we 
accounted for this historical annual variability by using an annual sex spawner ratio value calculated 
from Keswick trap counts 2001 – 2014 (mean = 0.595, sd = 0.077).  These values were also used in 
the annual calculation of natural origin escapement from carcass surveys over the period 2001 – 
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2014 (Doug Killam, CDFW Redding, CA, personal communication).  In the absence of an estimate of 
the age-3 sex ratio, a value of 0.5 was assumed for 1970 – 2000. 

Egg production per age-2 female (Veggs,2) was 3000 for age 2 females (3200 reported in Newman and 
Lindley, 2006) and production per age-3 and age-4 female (Veggs,3	and	Veggs,4) was 5000 (Winship et al. 
2014). 

 

Smolt	Survival	
The ePTM v2 calculates month and year-specific smolt survival probabilities; however, some survival 
probabilities were needed to move the smolts from their areas of rearing to the location in which 
the ePTM v2 survival rates were applied.  Smolt survival from the Lower River to the Delta (B011,LR) 
was fixed at 0.8 (estimates of survival ranged from 0.73 - 0.875 Colusa to Sacramento in the 2012-
2015 WR acoustic tag data, Arnold Ammann, SWFSC NMFS Santa Cruz personal communication).  
Smolt survival from the Upper River to the Delta (B010,UR)  was fixed at 0.4 (estimates of survival 
averaged 0.456 from release to Sacramento in the 2012-2015 WR acoustic tag data, Arnold 
Ammann, SWFSC NMFS Santa Cruz personal communication).   Smolt survival from the Yolo bypass 
to insertion into the DSM2 grid for incorporation into the ePTM v2 (AS13,FP) was assumed to be 1.0 
per month.  

Survival of smolts from Chipps Island to the Golden Gate bridge (cS11) was incorporated into the 
survival during early ocean survival (described below) and therefore assumed to be 1.0.  Survival of 
smolts that reared in the Bay to the Golden Gate bridge (S15,BA)  was assumed to be 0.8.  

	

Ocean	Survival	
Survival of smolts that reared in the Upper River, Lower River, Delta, Yolo, and Bay habitats (SG1) 
have the same gulf survival, which was estimated through statistical fitting (see below in the 
Parameter Estimation section).  

Survival during the first four months in the ocean (S17) was assumed to have a rate of 0.79, which 
equates to an annual survival of 0.5, whereas annual survival in the ocean for age-3 and age-4 (S19 
and S21) was assumed to be 0.8.  These annual natural survival rates are consistent with winter-run 
reconstruction conducted annually as part of the fishery management of Sacramento River salmon 
(Grover et al. 2004, O’Farrell et al. 2012).    

 

Statistical	Estimation	
One of our objectives is to ensure that the WRLCM can reflect the historical patterns in winter-run 
Chinook population dynamics in the Sacramento River.  In order to meet this objective, we 
calibrated the LCM to observe winter-run indices of abundance throughout the life cycle (Table 6).  
Not all indices of abundance were available for the entire period of model calibration of 1970-2014.  
This data limitation is not a problem for fitting the WRLCM, however.  The WRLCM can be fitted to 
the specific indices of abundance for the period over which they were available by pairing observed 
indices of abundance with WRLCM predictions over the appropriate period.  Then, the sampling 
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distribution provided a likelihood function by which the model predictions were statistically 
evaluated given the observed data (Hilborn and Mangel 1997).   

This type of model, in which multiple data sources are used to inform multiple life-history stages, is 
called an integrated population model and has notable advantages over piecewise model 
composition (Newman et al. 2014).  In particular, the model parameter estimates can utilize all of 
the available data simultaneously, which can improve the parameter estimates by allowing the 
model to “fill in the gaps” over portions of the life cycle that are unobserved (Newman et al. 2014).   

Table 6.  Indices of abundance used to calibrate the winter-run life cycle model. 
 

Data Date 
Standard 
Deviation 

Sampling 
Distribution 

Data time step 

Natural 

Escapement    

1970-2002 0.25 lognormal Annual 

Escapement by sex and 
jack/jill vs adult 

2003-2016 0.25 lognormal Annual 

RBDD monthly juvenile 
counts 

1996-1999, 2002-2016 0.8 lognormal Monthly 

Chipps Island monthly 
juvenile abundance 

2008 - 2011 0.9 lognormal Monthly 

	

Modification	of	the	WRLCM	for	Estimating	Parameters	
Annual impact rates of age-3 (I3) and age-4 (I4) were obtained from estimated harvest rates over the 
1970- 2014 period (O’Farrell and Satterthwaite 2015). Survival of age-2 (Ssp2), age-3 (Ssp3), and age-4 
(Ssp4) through the freshwater prior to spawning is assumed to be 0.9 to incorporate in-river harvest, 
which historically included levels of approximately 7 percent (Grover et al. 2004) and pre-spawn 
mortality.    

To reflect the historical dynamics of access to the Floodplain habitat (Yolo bypass), the following 
transition equation was used to describe the proportion of Tidal Fry that enter the floodplain habitat 
(PFP,m) 

PFP,m	=	B1FP	*I(QVerona,m	>	991.1	m3s-1	)		

where QVerona,m was the Sacramento River flow at Verona in month m,  I(	) is an indicator function 
that equates to 1 when the condition in the parenthesis is met, and B1FP	is the proportion of fry that 
enter the Yolo under flooding conditions, which was 0.8.	 
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Bayesian		Estimation	
Given the fixed parameter values described above, the remaining parameters were estimated in a 
Bayesian statistical fitting framework.  An initial evaluation of model complexity (not shown) 
indicated that approximately 10 parameters were identifiable in the mechanistic portion of the 
model, depending upon which parameters were chosen. We estimated 8 parameters in addition to 
45 annual random effects (i.e, the εy) in the model calibration.  

These parameters were estimated by sampling from the posterior distribution (the combination of 
the likelihood specified by the sampling distribution and the prior distribution for model parameters) 
of observing the winter-run abundance indices (Hilborn and Mangel 1997, Gelman et al. 2013).  That 
is, parameter combinations can be used to make predictions on the escapement in each year, the 
number of juveniles passing RBDD in each month, and monthly abundance estimates at Chipps 
Island (Table 6).  Some parameter combinations provide predictions that are closer to the observed 
abundance indices than others.  The parameter combinations that provide the closest fit to the 
observed indices are retained in the Markov Chain Monte Carlo (MCMC) sampling algorithm, leading 
to a set of samples from the posterior distribution of the model parameters.  The MCMC algorithm 
also provides estimates of the state variables, which include the abundance at each sampling 
location at the appropriate time scale (Table 6) for comparison of the model predictions to the 
observed abundance data.   

Model parameters were estimated by implementing the Bayesian statistical fitting in the 
programming language NIMBLE (de Valpine et al.  2017, deValpine et al. 2022a).  In order to 
implement the MCMC algorithm, the WRLCM had to be written into the NIMBLE language as 
NIMBLE uses a specific syntax that it subsequently converts to C++ code so that the MCMC algorithm 
can be implemented in a fast computational environment.  All life stages of the WRLCM were coded 
into the NIMBLE version of the WRLCM with the exception of tidal fry.  Tidal fry compose a small 
portion of the overall dynamics of winter-run (~5.0%) and field data have not been collected for this 
life stage.  As a result, the NIMBLE model has no observations on which to evaluate this life stage, 
and therefore tidal fry were not included in the NIMBLE code; however, their dynamics were 
included in the evaluation of the projects using the fixed parameter values described above.  More 
details on the NIMBLE programming language can be found at de Valpine et al. (2022b).   

	

Fits	to	Abundance	Indices	
Fits to the abundance indices generally followed patterns in the observed data.  Annual patterns in 
natural origin escapement were well estimated by the model (Figure 17), as were monthly patterns 
in juvenile abundance estimates at RBDD (Figure 18).  
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Figure 17. Model fit (line) with 95% credible intervals on model predictions (dashed line) to log natural origin 
escapement data (solid circles) with 95% interval on measurement error (open circles).  
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Figure 18. Model fit (line) with 95% credible intervals on model predictions (dashed line) to log juvenile abundance at 
Red Bluff Diversion Dam (solid circles) with 95% interval on measurement error (open circles).  

 

Finally, the WRLCM was able to capture the monthly patterns in Chipps Island abundance trends 
from 2008 – 2011, reflecting the outmigration patterns of winter-run from each of the rearing 
habitats (Figure 19).   
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Figure 19. Model fit (line) with 95% credible intervals on model predictions (dashed line) to log juvenile abundance at 
Chipps Island (solid circles) with 95% interval on measurement error (open circles).  

The estimated parameter values from the MCMC algorithm are provided in Table 7.  The table 
provides the parameter estimate, the standard deviation of the estimate (SD), a transformed value 
of the parameter estimate, and a note defining the parameter.  We attempted to estimate all 
parameters of the survival of egg to fry as a function of temperature (Transition 1); however, there 
was strong correlation among the three parameters that caused problems with parameter 
identifiability.  We assumed that the critical temperature at which thermal mortality starts to affect 
egg to fry survival was 12.0 C, which is the value determined from an analysis of egg to fry survival 
by Martin et al. (2017).  The survival of egg to fry below this critical temperature was a value 
(logit(B01)) for the 3-month period, whereas above this threshold the survival was reduced for every 
degree above the critical temperature.  

migm is a constant value (e.g., movement from the floodplain to the delta, the delta to the bay, and 
the bay to the gulf).  
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The other parameter value that was set was the variance on the random effect in process noise (σε2), 
and it was set to have a value of 1.  This variance allowed the model to estimate the annual random 
effect parameters (εy) to have values of approximately + 2.  These parameter values corresponded to 
a range in annual variability in survival of (0.17, 7.4) due to the lognormal structure of the random 
effects.  

 

Table 7.  WRLCM parameter estimates from the model calibration to winter-run indices of abundance (Table 
6).  
Parameter mean sd 2.50% 97.50% Rhat  Description 
B0A	 0.95 0.096 0.764 1.139 1.00 Survival below critical 

temperature value (logit space) 
B11	 -1.11 0.144 -1.412 -0.847 1.09 Rate of reduction in egg to fry 

survival (logit space) 
SFRY 0.872 0.062 0.758 0.997 1.00 Winter run fry survival (logit 

space) 
migm 0.224 0.126 0.017 0.486 1.00 Proportion migrating per 

month from floodplain, delta, 
and bay in absence of density 
dependence  

migUR,m 0.128 0.012 0.105 0.153 1.00 Proportion of fry in upper river 
migrating to lower river per 
month in absence of density 
dependence  

SG0 -3.165 0.297 -3.723 -2.557 1.02 Average survival during gulf 
entry (logit space) 

SG1 -0.338 0.233 -0.786 0.144 1.04 Effect of upwelling index on 
survival during gulf entry (logit 
space) 

σε 1.645 0.194 1.255 1.974 1.01 Standard deviation of random 
effects during gulf entry 

 

Using 1500 samples from the posterior, we calculated the correlation among estimated model 
parameters (Table 8).   In general, the absolute value in correlations among parameters was less 
than 0.6.  Parameters with absolute correlations greater than 0.5 included the standard deviation in 
the random effects (σε) and the average ocean entry survival (SG0), which were negatively related, 
and the effect of thermal mortality (B11) and the ocean entry average ocean entry survival (SG0), 
which was also negatively related.  These negative correlations reflect the lack of observations on 
winter-run between Chipps Island (in a few years) and spawner escapement.  As a result, the 
observed patterns in abundance can be explained by having high thermal mortality and low gulf 
entry survival (and vice versa).  Likewise, the abundance data can be explained by allowing the 
annual variability in gulf survival to be more variable if the thermal mortality rate is low and less 
variable if the thermal mortality rate is high.  These correlations reflect unknown relationships due 
to limited data; that is, we do not have data sets that can determine the specific rates and thus 
multiple combinations of these parameters can produce the same patterns in abundance.  This is an 
important aspect to the model fitting in that the correlations in posterior draws can be passed to the 
evaluation of the project effects.  
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Table 8. Correlation matrix for estimated parameters in the WRLCM calibration. 

 migm migUR,m SG0 SG1 B0A SFRY B11 σε 
migm 1 0.152 -0.08 -0.009 0.083 0.279 0.023 -0.09 
migUR,m 0.152 1 -0.102 -0.062 -0.228 0.442 -0.01 -0.014 
SG0 -0.08 -0.102 1 0.172 -0.081 -0.232 -0.564 0.353 
SG1 -0.009 -0.062 0.172 1 0.024 -0.091 -0.259 0.262 
B0A 0.083 -0.228 -0.081 0.024 1 -0.25 -0.035 -0.063 
SFRY 0.279 0.442 -0.232 -0.091 -0.25 1 -0.071 -0.031 
B11 0.023 -0.01 -0.564 -0.259 -0.035 -0.071 1 -0.564 
σε -0.09 -0.014 0.353 0.262 -0.063 -0.031 -0.564 1 

	

Incorporating	Uncertainty	in	the	Analysis	of	Hydrologic	Alternatives	
Our goal is to be able to account for multiple sources of uncertainty in the analysis of the proposed 
alternatives relative to the existing condition (or baseline).  We incorporated three forms of 
uncertainty in the DCP analysis: 1) parameter uncertainty, 2) natural variability in cohort 
productivity, and 3) model uncertainty in the smolt survival function (ePTMv2).  We then used 
Monte Carlo simulation to incorporate all three sources of uncertainty in the WRLCM outputs.  

To incorporate parameter uncertainty, we used 1000 posterior samples from the parameters 
estimated via MCMC. With two exceptions, we used the draws that were defined by the posterior 
credible intervals described in Table 7.  The two parameters that used different values were the 
standard deviation in the random effects (σε) and the ocean entry survival (SG0).  The ocean entry 
survival was fixed at a value of 0.12 for gulf entry survival (corresponding to an inverse logit 
transformed value of -2), because the estimated value of 0.043 (corresponding to an inverse logit 
transformed value of -3.1) was leading to extremely low population sizes given the survival rates in 
the other parts of the life cycle.  We also fixed the standard deviation in the random effects (σε) to 
its mean value (1.645).    

To incorporate natural variability in cohort productivity, we incorporated a unique random effect for 
each cohort in the 81-year time series.  We repeated this 81-year series over 1000 iterations to 
simulate a set of 1000 x 81 random effects that corresponded to 1000 iterations and 81 years of the 
time series.  The random effects were bias corrected random variables (to ensure that when they 
were exponentiated they retained a mean of 1) from a normal distribution with mean = 0 and 
standard deviation = 1.645.   

Finally, to incorporate uncertainty in the smolt survival model (ePTMv2), we used 1000 
bootstrapped samples of survival rates estimated for each model month 11 to 17 (January to July) 
and the Lower River, Floodplain, and Delta rearing habitats.  These 1000 samples by month and 
habitat were calculated for each alternative and the baseline existing condition.  Within each 
scenario, we ordered the survival estimates within each month and rearing habitat such that the 
first value was the lowest survival rate for that month and habitat and the last value was the highest 
survival rate for that month and habitat.   We then used the ordered smolt survival rates in the 
effects analysis, which ensured that the lowest monthly survival for a given habitat under the 
existing condition was being paired with the lowest monthly survival for the same habitat under the 
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alternative.  This ordering also ensured that this comparison was made for the second lowest 
survival and through to the highest survival.  
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Appendix	A.	Analysis	of	winter-run	monthly	spawn	timing	
To estimate the proportion of winter-run spawning among the months of April to August, we 
conducted an analysis of the numbers of winter-run carcasses detected in each of the months April 
to August.  We were interested in understanding whether the proportions spawning among months 
were static across all years, or alternatively, whether the proportions varied among years due to the 
environmental conditions in that year.  That is, whether there were some environmental conditions 
that caused shifts to earlier spawning in some years. 

Data 
Winter-run carcass observations by date were shifted two weeks earlier to generate “observed” 
number of fish spawning by date.  These spawning numbers by date were coalesced by month to 
form N.spawnm,t the observed (based on carcass counts) number of winter-run Chinook spawning in 
month m in year t.   

To evaluate annual variability in the proportion spawning in a given month, we calculated a 
spawning proportion anomaly as the standardized proportion of fish spawning each month (SPrm,t). 
For example, the values of the standardized April values were  

 

𝑆𝑃i.;,2 =
𝑃. 𝑠𝑝𝑎𝑤𝑛i.;,2 −𝑚𝑒𝑎𝑛(𝑃. 𝑠𝑝𝑎𝑤𝑛i.;)

𝑠𝑡𝑑	𝑑𝑒𝑣(𝑃. 𝑠𝑝𝑎𝑤𝑛i.;)
	

where the proportion spawning in each month for a given year t (subscript suppressed) was 
calculated as  

𝑃. 𝑠𝑝𝑎𝑤𝑛% = j.#.J409
∑9 j.#.J409

. 

To understand how these annual anomalies varied as a function of water temperature, we 
calculated the Pearson’s correlation coefficient between mean monthly temperature below Keswick 
Dam between January and June and the standardized proportions (Figure A1).  
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Figure A1. Pearson correlation coefficients (upper triangle), histograms (diagonal) and scatter plots (lower 
triangle) for all combinations of monthly spawning proportion anomalies and Keswick water temperatures.  
The red box indicates the month by temperature correlations, and red asterisks indicate significant 
correlation coefficients.  

 

Statistical Analysis 
We fit a multinomial logistic regression using the multinom function from the nnet package in R to 
the number of winter-run Chinook spawning in each month, N.spawnm,t.  We evaluated the ability of 
April Keswick temperatures to explain annual variability in the spawning timing.  We focused on 
April temperatures because April is the first month of spawning, and April would allow this physical 
variable to be used as a predictor of spawn timing for future years.  The monthly average April 
temperatures at Keswick were standardized (subtracted mean and divided by standard deviation) 
for use in the multinomial model.  

We fit a base model without the April temperature effect and we fit the model with the April effect 
and used Akaike Information Criterion (AIC) to compare the models.  The AIC value for the base 
multinomial model was 75822, whereas the value for the multinomial model including April 
temperature as a covariate was 74209.   The difference in AIC was 1613, providing strong support for 
the model with the April temperature covariate.   

The model coefficients for the multinomial model with April covariate indicated increasing spawning 
in July and August (positive coefficient values) when April temperatures increased (Table A1 and 
Figure A2).   The model coefficients (Table A1) can thus be used for making predictions of spawning 
proportions using standardized April temperatures as displayed in Figure A2.   
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Table A1. Coefficient estimates of the multinomial model including April covariate.  The effect of the April 
covariate is reflected in the B1 coefficient estimate. 	
 Estimate  Standard Error 

Month B0 B1 B0 B1 

Apr -4.145 0.054 0.06 0.062 

May -1.796 -0.203 0.02 0.02 

Jul -0.332 0.385 0.012 0.012 

Aug -3.443 0.792 0.044 0.045 

 
	

	

Figure A2. Predictions of the proportion of winter-run Chinook spawning from the multinomial regression 
model using April temperatures at Keswick Dam as a predictor variable.  

 

 

	 	



61 
 

Appendix	B.	Table	of	parameter	values	for	WRLCM	
Table B1. Parameter values, standard deviation (SD), transformed values, transition numbers in which 
parameters are found and brief description of parameters.  

Name Value SD* 
Transformed 

Value Transition Description 

t.crit 12.0 0 12.0 1 
Critical temperature ( C ) at which egg to fry survival is 
reduced 

B01 0.95 0.096 0.72 1 Survival below critical temperature value (logit space) 

B11 -1.11 0.144 NA 1 Rate of reduction in egg to fry survival (logit space) 

PTF, m -3 0 0.047 2 Proportion tidal fry 

STF,FP 1 0 0.731 3 Survival tidal fry in floodplain 

min.p 0.05 0 0.05 3 
Minimum proportion entering Yolo bypass under flow 
< 100 cfs under modified design 

p.rate 1.1 0 NA 3 
Rate of increase in proportion entering Yolo bypass 
for flows > 6000 cfs under modified design 

B04 0 0 0.5 4 Average survival tidal fry to delta intercept 

B14 -1 0 NA 4 Effect of DCC gate (value is in logit space)* 

B05 0 0 0.5 5 Average proportion of tidal fry to bay intercept 

B15 2 0 NA 5 Proportion tidal fry to bay - flow at Rio Vista effect 

STF,DE-BA -1 0 0.269 5 Survival of tidal fry from delta to bay 

SFRY 0.872 0.062 0.705 Rearing Winter run fry survival 

migUR,m 0.128 0.012 0.128 Rearing 
Proportion of fry in upper river migrating from upper 
river to lower river per month 

B0M -6.0 0 0.002 Rearing 
Wilkins slough movement without trigger (value is in 
logit space) 
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Name Value SD* 
Transformed 

Value Transition Description 

B1M 5.5 0 0.377 Rearing 
Wilkins slough movement with flow trigger (value is in 
logit space), movement rate under flow trigger is 
0.377 

migm 0.224 0.126 0.224 Rearing Probability of migration from habitats 

SFRY,BA -7 0 0.001 Rearing Survival of bay rearing fry pushed to gulf 

Z1 -1 0 0.269 11 to 15 January smolt probability 

Z2 0 0 0.5 11 to 15 February smolt probability 

Z3 3 0 0.953 11 to 15 March smolt probability 

Z4 8 0 1 11 to 15 April smolt probability 

Z5 10 0 1 11 to 15 May smolt probability 

Z6 10 0 1 11 to 15 June smolt probability 

Z7 10 0 1 11 to 15 July smolt probability 

B011,LR 1.39 0 0.801 12 Smolt survival lower river to delta 

B010,UR -0.4 0 0.401 11 Survival of upper river fish to lower river 

B110 0.3 0.053 NA 11,12 River smolt survival from flow effect 

CS11 12 0 0.999 11 to 14 
Survival smolt chipps to ocean – survival captured in 
gulf survival 

AS13,FP,m 12 0 0.999 13 
survival from Yolo until Delta, assume 0.999 since 
Yolo nodes being captured in ePTMv2 

S15,BA 0 0 0.5 15 Survival of smolts bay to ocean 
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Name Value SD* 
Transformed 

Value Transition Description 

SG0 -2.0 0 0.12 16 Average survival of smolts entering the gulf 

SG1 -0.338 0.233 0.157 11, 12, 13 
Gulf entry covariate effect (PCUI) for all rearing areas 
in logit space 

σε 1.6 0 1 16 
Standard deviation of annual random effects in 
process noise 

S17 1.35 0 0.794 17, 18 Probability of survival age 1 to age 2 over  4 months 

M2 -2.2 0 0.1 17,18 Probability of maturation age 2 

Ssp2 2.2 0 0.9 18 Survival ocean exit to spawning ground age 2 

S19 1.4 0 0.802 19 Probability of survival age 2 to age 3 

M3 2.2 0 0.9 19, 20 Conditional probability of maturation at age 3 

Ssp3 2.2 0 0.9 20 Survival ocean exit to spawning ground age 3 

S21 1.4 0 0.802 21 Survival age 3 to age 4 

Ssp4 2.2 0 0.9 21 Survival ocean exit to spawning ground age 4 

Veggs,2 3000 0 3000 22 Eggs per spawner age 2 

Veggs,3 5000 0 5000 22 Eggs per spawner age 3 

Veggs,4 5000 0 5000 22 Eggs per spawner age 4 

B0Apr -4.145 0.060 NA 22 Intercept for proportion of spawners in April 

B1Apr 0.0538 0.062 NA 22 
Effect of temperature on proportion of spawners in 
April 

B0May -1.796 0.020 NA 22 Intercept for proportion of spawners in May 



64 
 

Name Value SD* 
Transformed 

Value Transition Description 

B1May -0.2031 0.020 NA 22 
Effect of temperature on proportion of spawners in 
May 

B0Jul -0.332 0.012 NA 22 Intercept for proportion of spawners in July 

B1Jul 0.3852 0.012 NA 22 
Effect of temperature on proportion of spawners in 
July 

B0Aug -3.443 0.044 NA 22 Intercept for proportion of spawners in August 

B1Aug 0.7921 0.045 NA 22 
Effect of temperature on proportion of spawners in 
August 

FemAge2 0.01 0 0.01 18 Proportion of age 2 spawners that are female 

FemAge3 0.5 0 0.5 20 Proportion of age 3 and 4 that are female 

KSp,m 9000 0 9000 22 
Capacity of female age -3 spawners  in the spawning 
reaches by month 

*Estimated parameter values have associated standard deviations (SD) 
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Figure 1: Apr egg survival by water year type.
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Figure 2: May egg survival by water year type.
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Figure 3: Jun egg survival by water year type.
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Figure 4: Jul egg survival by water year type.
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Figure 5: Aug egg survival by water year type.
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Figure 6: Boxplots of median freshwater productivity (gulf smolts per spawner) by water year type.
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Figure 7: Boxplots of percent change in median freshwater productivity (gulf smolts per spawner) by water
year type.
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Figure 8: Percent change in freshwater productivity (gulf smolts per spawner).
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Figure 9: Percent change in annual escapement.
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scenario mean % change in abundance 95% CI Pr(Alt>baseline)

Alt3A_modifiedBendBridge 1.08 [-5.93, 9.19] 0.65

Alt3B_modifiedBendBridge 0.34 [-9.12, 10.09] 0.55

Table 1: Mean of percent change in annual abundance (sum of in-river, natural, and hatchery-origin spawners)
averaged across all years. Pr(Alt>baseline) is the probability that a realization of the alternative scenario
will have a positive percent change averaged across all years.

scenario mean % change in productivity

Alt3A_modifiedBendBridge 0.67

Alt3B_modifiedBendBridge 0.45

Table 2: Mean percent change in freshwater productivity (gulf smolt per spawner) relative to baseline
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scenario mean % change in CRR 95% CI Pr(Alt>baseline)

Alt3A_modifiedBendBridge 1.37 [-1.02, 3.13] 0.76

Alt3B_modifiedBendBridge 1.31 [-1.71, 3.03] 0.67

Table 3: Mean of percent change in cohort replacement rate (CRR) averaged across all years. Pr(Alt>baseline)
is the probability that a realization of the alternative scenario will have a positive percent change averaged
across all years.
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