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Abstract
The environment can strongly influence the survival and population dynamics of aquatic organisms. Our

understanding of these relationships, typically based on simple linear regression, underpins many contemporary
resource management decisions. However, such relationships can break down over time as ecosystems change.
Even when durable, relationships may not be very useful for management if they exhibit high variability,
context dependency, or nonstationarity. Here, we systematically review the literature to identify trends across
environment–recruitment relationships for aquatic taxa from California’s San Francisco Bay and Sacramento–
San Joaquin Delta Estuary. This delta is one of the most heavily modified aquatic ecosystems in North America,
and home to numerous species of concern whose relationships with the environment inform regulatory actions
and constraints. We retested 23 of these relationships spanning nine species using data that have accumulated
in the years since they were first published (9–40 additional years) to determine their durability. Most relation-
ships remained the same or stronger in direction and magnitude but showed declining predictive power with
the addition of new data, particularly for older relationships that had not adjusted for recognized regime shifts
in the system through the use of step changes or data splitting. Constantly refining these relationships may give
the appearance of durability, but limit their practical value as policy tools when the present or future state of
the ecosystem is unknown. We conclude by synthesizing emerging insights from the literature on best practices
for the analysis, use, and refinement of environment–recruitment relationships to inform better decision mak-
ing in dynamic ecosystems.

The environment can have a profound and complex influ-
ence on aquatic organisms and their population dynamics
(e.g., Szuwalski et al. 2015). Understanding when and how the
environment influences the survival, abundance, and

recruitment of fishes and other aquatic organisms has long
fascinated and perplexed fish and fisheries scientists and man-
agers (Hjort 1914; Cushing 1995; Jacobson and MacCall
1995). Knowing how the environment influences the popula-
tion dynamics of fishes is of general ecological interest because
of the light it can shed on, for example, the relative influence
of bottom-up and top-down control in ecosystems. Quantify-
ing how the environment influences recruitment can also, in
theory, help inform fisheries and improve management.
Given the now pervasive influence of humans over the
world’s aquatic ecosystems (e.g., Halpern et al. 2015), under-
standing when and how the environment—and human influ-
ences on it—affects the dynamics and abundances of aquatic
organisms is critical to many decisions in natural resource
management.

Relationships between the environment and recruitment,
defined here as any relationship between the number of indi-
viduals in a population (or their survival rate) and their
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environment (e.g., river flow, pesticide concentration, and
water temperature), may break down over time. In a now clas-
sic review of fisheries literature, Myers (1998) found that only
22 of 77 environment–recruitment relationships still held
after being re-examined with new data. The relationships that
were most likely to stand the test of time were those with tem-
perature at the limit of a species’ range, where the influence of
physiological tolerance thresholds outweighs that of more
complex ecological interactions. Even when such relation-
ships are reliable, they may not be very useful for informing
management if the described relationship is characterized by
high variability, context dependency, or nonstationarity as is
often the case with recruitment data. Nonetheless, relation-
ships between the environment (which we define broadly as
both natural and those aspects under human control) and fish
recruitment are commonly used to inform contemporary
resource management decision-making and the conservation
of aquatic species. Considering this, and the potential for
environment–recruitment relationships to break down over
time, there is a pressing need for guidance on best practices
for the analysis, use, and refinement of environment–
recruitment relationships to inform decision making in natu-
ral resource management.

California’s San Francisco Bay and Sacramento–San Joaquin
Delta Estuary (hereafter “Bay Delta”) (Fig. 1) is an ideal system in
which to examine the durability and usefulness (i.e., predictive
power) of environment–recruitment relationships and their
implications for decision making. The Bay Delta system has
been continuously monitored in a systematic manner for long
periods of time (e.g., since at least 1959 for fish populations,
Stevens 1977), it is heavily altered and managed, and it is home

to numerous endangered species and associated regulatory
actions and constraints including some which are based upon
environment–recruitment relationships (reviewed in Kimmerer
2004). Numerous relationships have been described for taxa in
the Bay Delta, but relatively few have been revisited to test
whether these correlations are reliable in the face of new data.

Here, we systematically review the peer-reviewed and gray lit-
erature to identify environment–recruitment relationships for
Bay Delta taxa. We then reanalyze a subset of these relationships
where new data are available to quantify the extent to which the
relationships still hold when confronted with new data. Finally,
we synthesize emerging insights from the literature on best prac-
tices for the analysis, use, and refinement of environment–
recruitment relationships to inform decision making in natural
resource management.

Methods
Study area

The Bay Delta is made up of a large interior delta formed by the
Sacramento and San Joaquin Rivers feeding into a series of basins
separatedbynarrow, deep tidal channels,whichflow into a seaward
region and ultimately into the San Francisco and San Pablo Bays
which are connected to the PacificOcean (Fig. 1A). The BayDelta is
one of themost heavilymodified estuaries in theUnited States, and
is strongly influenced by state and federal water project operations.
Two pumping facilities export delta inflows to meet metropolitan
and agricultural water needs. Water exports can affect fish directly
through entrainment into the pumping facilities, and indirectly
though the influence of reduced flows on a wide range of abiotic
and biotic variables (Fig. 1B). Established quantitative relationships

Fig. 1. Map of the Bay Delta region and key geographical features (A), along with an overlay of a conceptual model of key abiotic and biotic drivers
known to influence fish production in this system (B). Adapted from Delta Independent Science Board (2015).
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between flow characteristics and fish abundance, survival, and
migration underpin regulatory decisions regarding levels of allow-
able exports of river flows and minimum outflow from the Bay
Delta that maintain fish production and habitat within acceptable
bounds (CaliforniaDepartment of Fish andWildlife [CDFW] 2016).

Literature review
We carried out a literature search of peer-reviewed publica-

tions, gray literature, and government agency reports to iden-
tify published examples of relationships between
environmental variables and any population parameters of
aquatic Bay Delta species. Our initial search was carried out
using Google Scholar and various combinations of search
terms based on variables expected to influence organism
abundance as described in comprehensive reviews of Bay Delta
ecology (e.g., Kimmerer 2004; California Department of Water
Resources and U.S. Bureau of Reclamation 2016). These search
terms included “fish,” “invertebrate,” “abundance,” “survival,”
“entrainment,” “migration,” “environment–recruitment,”
“environmental variable,” “flow,” “conductivity,” “turbidity,”
“prey density,” and “X2” (the latter being distance in kilome-
ters from the Golden Gate up the axis of the estuary to where
the tidally averaged near-bottom salinity is 2 ppt or 2 × 10−9

mg L‑1; Jassby et al. 1995). The resulting set of publications and
reports was then supplemented by consulting regulatory docu-
ments to identify additional relationships that underpin con-
temporary management decisions.

We created a catalogue of all identified publications to doc-
ument their various characteristics, including publication year,
focal species, the number of relationships examined, and
whether the publication is cited in regulatory documents as
informing management decisions (included here as Support-
ing Information). Because most of the government agency
and gray literature reports were review documents that repro-
duced results from primary literature, we chose to focus fur-
ther investigations only on the peer-reviewed literature. For
each peer-reviewed study in our catalogue, we extracted each
individually reported relationship into a second catalogue and
documented characteristics including the focal species, predic-
tor and response variables, type of analysis, timeframe, pri-
mary data source, and reported model outputs including
intercept and slope parameters, R2, p-value, Akaike informa-
tion criterion (AIC) score, and others. This catalogue of rela-
tionships was used both to carry out a qualitative analysis of
trends in the study of such relationships in the Bay Delta, and
to select a subset of environment–recruitment relationships
suitable to retesting to quantify the extent to which the rela-
tionships still hold when confronted with new data.

Relationship selection criteria
We developed three tiers of criteria used to screen the full

set of published environment–recruitment relationships to
identify those suitable for reanalysis.

Tier 1 criteria excluded relationships for which reanalysis
would be impractical because of (1) inability to obtain new
data for reanalysis because of reliance on either one-time
experiments (e.g., paired releases of tagged fish), data collec-
tion programs that have since ended, or second-order variables
derived via complex integration of many other environmental
variables; (2) use of analytical methods that would be imprac-
tical to replicate for a review study of this scale (e.g., whole
ecosystem simulation models) or which make it difficult to
compare strength and statistical support across relationships
(e.g., nonlinear correlations such as GAMs and rank analyses);
or (3) because the published relationship is so recent there
would be few additional data points available (i.e., we
excluded relationships if the number of years of new data were
less than the number in the original time series or less than
10 years, whichever was less). In practice, this resulted in
retention of linear regressions based on data from long-term
monitoring programs with publicly available data sets, which
formed a large majority (about 75%) of all the published rela-
tionships in our dataset examined prior to the application of
screening criteria.

Tier 2 criteria screened out relationships with little or no
statistical support in the initial analysis, given that the objec-
tive of our work was to evaluate the extent to which estab-
lished relationships hold over time. For this purpose, we
defined little or no statistical support as p > 0.1, or ΔAIC >
2 from the top model or, where neither is reported in older
publications, the absence of a fitted regression line and equa-
tion on a scatter plot of the relationship. While we recognize
that selecting relationships previously identified as significant
introduces a bias toward durability, the rarity of studies pub-
lishing nonsignificant relationships or full multivariate model
selection approaches in this system makes it difficult to sys-
tematically test the opposite case, where previously nonsignifi-
cant relationships become significant with the addition of
more data.

Lastly, Tier 3 criteria were used to reduce redundancy in
the remaining set of relationships by selecting only a single
relationship for each unique species-variable combination for
reanalysis. When more than one relationship existed for the
same species-variable combination relying on the same source
data (e.g., delta smelt and X2), the following subcriteria were
used to select a single relationship that was (1) most recently
updated among the set to avoid reproducing past retests; (2),
the longest time-series among the set for greater statistical
power; (3) based on indices of abundance rather than extrapo-
lated abundance estimates to reduce propagation of error, and
(4) where all relationships in the set are statistically signifi-
cant, the relationship with the strongest support based on var-
iation explained (e.g., via R2) or other rationale provided by
the authors. We considered similar relationships using differ-
ent source data (e.g., delta smelt(fall midwater trawl) ~ X2 and
delta smelt(Bay Study midwater trawl) ~ X2) distinct and therefore
were retained because of known differences in methodology,
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target life stage, and conclusions that can be drawn from alter-
native source surveys.

The full catalogue of original and screened publications is
available in the Supporting Information.

Data sources
For each relationship retained for reanalysis, we sought to

obtain the same data used in the original analysis from the
source identified by the authors. In some cases, this data was
available directly, and in others, annual means of data needed
for analysis were derived from raw data sets using the same or
similar methods originally described by the authors, including
applying data transformations (indicated using superscripts in
Table 1, with more detail available in Supporting Information
Table S1). In some cases, we were not able to reproduce the
data using the methods described by the authors and either
used a modified method to obtain reasonably similar data or,
when this was not possible, excluded the relationship from
our analysis. Population data for these relationships were
derived from the California Department of Fish and Wildlife’s
fall midwater trawl (FMWT), summer townet survey (TNS),
beach seine surveys, and salvage surveys; the Bay Study otter
trawl (Bay OT) and midwater trawl (Bay MWT) surveys; and
the U.S. Fish and Wildlife Service’s Chinook salmon trawls.
Environmental data was derived primarily from Hutton
et al. (2015) and calculations therein for X2, from the Califor-
nia Department of Water Resources DayFlow data portal for
flows, from environmental data collected alongside popula-
tion data as part of the FMWT survey, and in some cases
directly from the study authors (Table 1, Supporting
Information).

Analysis
We conducted a quantitative reanalysis of selected

environment–recruitment relationships. Source data for the
analyses was transformed (as per original analyses; see
Table 1), subset to the relevant timeframes, and standardized
(by subtracting the mean and dividing by the standard devia-
tion) to allow estimated relationships to be comparable across
species and environmental variables. All relationships selected
for reanalysis were based on linear correlations and so scaled
data was analyzed using ordinary least squares regression with
an abundance measure as the response variable and one or more
environmental factors as the predictor variable. None of the ulti-
mately selected relationships included interactions among
variables.

Several relationships selected for reanalysis (e.g., Kimmerer
et al. 2009) included a step-change or data-splitting before and
after the introduction of the invasive Asian clam (Corbula amur-
ensis) into the Bay Delta in 1986. Introduction of this clam is
thought to be responsible for a sudden and substantial decline of
zooplankton and, subsequently, of fish in the Bay Delta
(Kimmerer et al. 1994). Where published analyses found statisti-
cal evidence for a split or step change in 1987 (using a dummy

variable), we chose to reanalyze the relationship using only data
after this cut-off both to simplify the analyses and because prior
data could be considered irrelevant for interpreting how relation-
ships have changed in the context of additional data.

For each relationship, we quantified the strength (R2; coeffi-
cient of determination) and magnitude (slope; in standardized
units) of the relationships based on the original and updated
time series and then compared them to quantify the extent to
which the relationships still held when confronted with new
data. We also quantified prediction error using unscaled origi-
nal and extended time series for each relationship to charac-
terize how well the observed relationships would be expected
to predict future (out of sample) observations and to provide
an indication of how useful the relationship may be from a
decision making and management perspective. Prediction
error was estimated as the normalized root mean squared pre-
diction error (CVn):

CVn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

ŷi −yi
1−hi

� �2
r

1
n

Pn
i¼1yi

ð1Þ

where hi is the diagonal element of the operator matrix that
produces the least squares fit (i.e., hat matrix). This measure of
prediction error can be interpreted as the percent error in future
predictions relative to the average observed abundance for a
given relationship. For example, a prediction error of 100%
would mean that the relationship allows us to predict future
abundances to within � 50% of the mean predicted abundance.

We compared the raw data, parameters, and fit of relation-
ships using the original time series to those reported in the orig-
inal publications to ensure that our approach successfully
replicated the previously published relationships before pro-
ceeding to retesting. Instances where we were not able to repro-
duce past relationships were not considered further (detailed in
Table 1).

Our retests of environment–recruitment relationships using
data that has accumulated since a relationship was first estab-
lished has the potential to be biased by an imbalance in the
number of pre- to post-retest observations. In instances where
there are many (e.g., 30) years of pre-retest observations and
only a few (e.g., 10) post-retest observations it is possible that
the pre-retest observations obscure what is otherwise a weak-
ening or different relationship in the post-retest observations.
To quantify the extent to which this was the case with the
relationships we retested, we carried out a secondary balanced
analysis where we randomly subsampled the pre-retest data so
that there was an equal number of pre- and post-retest data
points, and then, as above with the full time series, quantified
the strength and magnitude of the relationship based on the
subsetted data. We repeated this exercise 1000 times for each
relationship, and then compared the median strength and
magnitude of the relationship based on the original (sub-
setted) and updated time series.
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Table 1. Summary of previously published environment–recruitment relationships retested with additional years of data.

Source Species Response variable Predictor variable(s)
Time series

(original and/extended)

Bennett et al. (2005) Delta smelt TNS indexa Log total salvagea 1979–2002/2016

Brandes et al. (2006) Fall Chinook salmon Chinook salmon fry m‑3

at Chipps Island (Jan–mar)

Mean daily Feb flow

at Freeport (cfs)

1985–2005/2011

Fall Chinook salmon Chinook salmon fry m‑3

at Sacramento (Apr–Jun)

Mean daily Feb flow

at Freeport (cfs)c
1985–2005/2011

Fall Chinook salmon Chinook salmon fry m‑3

at Chipps Island (Apr–Jun)

Mean daily Apr

to Jun flow

at Rio Vista (cfs)

1978–2005/2015

Kimmerer et al. (2009) American shad FMWT abundance indexa Spring X2 (km) 1988–2007/2014

Bay goby Bay study OT abundance indexa Spring X2 (km) 1988–2007/2014

Bay shrimp Bay study OT abundance indexa Spring X2 (km) 1988–2007/2012

Longfin smelt Abundance index

(three models: FMWT; bay

study MWT; OT)a

Spring X2 (km) 1988–2007/2014

Sacramento splittail Abundance index (FWMT)a Spring X2 (km) 1988–2007/2014

Starry flounder Abundance index

(bay study OT)a
Spring X2 (km) (1 yr lag) 1988–2007/2013

Sommer et al. (1997) Sacramento splittail Abundance index (FWMT)b Delta outflow (cfs)a 1967–1995/2014

Sacramento splittail Abundance index (FWMT)b Days Yolo bypass

inundated

1967–1995/2014

Sommer et al. (2007) Longfin smelt Abundance index (FWMT)a Flows Jan to June (cfs) a 1988–2006/2014

Stevens (1977) Striped bass Abundance index

(TNS 38 mm index)a
Mean daily Delta outflow

(Jun–Jul) (cfs)a
1959–1970/2016

Striped bass Abundance index

(TNS Suisun Bay)a
Mean daily Delta outflow

(Jun–Jul) (cfs)a
1959–1976/2011

Feyrer et al. (2007) Delta smelt Abundance index (TNS) Mean annual conductance

(μS cm‑1; FMWT)

Fall stock abundance

index (FMWT)

1987–2004/2016

Delta smelt Abundance index (TNS) Mean annual Secchi

depth (m) (FMWT)

Fall stock abundance

index (FMWT)

1987–2004/2016

Delta smelt Abundance index (TNS) Mean annual conductance

(μS cm‑1) (FMWT)

Mean annual Secchi

depth (m) (FMWT)

Fall stock abundance

index (FMWT)

1987–2004/2016

Miller et al. (2012) Delta smelt Fall-to-summer survivalc

(July TNS index/previous

year’s FMWT index)

Previous fall

abundance (FWMT)d

Previous–previous fall

abundance (FWMT)d

Average E–P density,

Apr–Jun (#/m3)d

Proportional entrainment

Average E–P density,

Jan–Mar (#/m3)d

1972–2006/2014

(Continues)
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All analyses were carried out in the R statistical software
suite (R Core Team 2017), and we provide the source code,
and data, for our analyses in the Supporting Information.

Results
Literature review

Our literature search identified 98 publications describing
environment–recruitment relationships in the Bay Delta. Of
these, 40 were reviews citing primary literature or offered only
general observations on raw data without conducting any
analysis, and three were not available online and so not exam-
ined further. The remaining 55 peer-reviewed publications
were retained for further analysis. This subset included papers
published between 1977 and 2017, with a mean publication
date of 2002. These studies examined an average of 10 relation-
ships per study, and a minority of papers examined a large
number (> 100) of competing models describing the same rela-
tionship. Each study examined between 1 and 17 focal species
(mean ~ 3).

These 55 peer-reviewed studies described 420 individual rela-
tionships which overwhelmingly focused on examining the
influence of environmental variables on population abundance
as opposed to other biological characteristics (Fig. 2A). This is
likely a result of the fact that roughly 70% of all relationships
relied on publicly available long-term abundance survey data
that has been collected in the Bay Delta for decades
(e.g., California Department of Fish and Wildlife FMWT, TNS,
and San Francisco Bay Study OT and MWT surveys), whereas
other types of population variables are generally not routinely
collected for most species and were obtained via one-off experi-
ments or surveys (18% of the relationships). The distribution of
relationships was also strongly biased toward species that are

either currently or historically listed as threatened or endan-
gered (Fig. 2B). There was a more even distribution of environ-
mental variables examined across studies, but the most
frequently examined variables were X2, or other measures of
salinity, and flow (Fig. 2C). Most relationships examined
only a single environmental variable (maximum of seven)
through simple linear regression (60% of all relationships).
However, the number of variables has generally increased in
more recent studies as researchers continue to adopt more
complex analytical methods including multivariate models,
generalized additive models, and whole-ecosystem simula-
tions. While about 42% of all relationships have been identi-
fied as underpinning regulatory decision-making, only 14%
of all relationships have been retested to quantify their dura-
bility (i.e., extent to which their magnitude of effect holds
up in the face of new data).

Across the published relationships there was broad varia-
tion within and among environmental variables in the
amount of variation in the abundance that was explained. For
example, some environmental variables like flow and salinity
tended to explain over half the observed variation in abun-
dance, while others such as temperature and water export
rates (measured in cfs—cubic feet per second—or m3 s‑1,
where 35.31 cfs = 1 m3 s‑1) explained much less variation in
abundance (Fig. 3).

Reanalysis of Bay Delta environmental–recruitment
relationships

Applying our screening criteria to the full set of relation-
ships resulted in 31 relationships suitable for retesting
(Table 1). The publications originally reporting these rela-
tionships varied widely in the details provided on

Table 1. Continued

Source Species Response variable Predictor variable(s)
Time series

(original and/extended)

Delta smelt Summer-to-fall survivalc

(FMWT index/July

TNS abundance

in the same year)

July STN abundancee

Average E–P density,

Sep–Dec (#/m3)

1972–2006/2014

Delta smelt Fall-to-fall survivalc

(FMWT/previous year’s

FMWT index)

Previous FMWT fall

abundanced

Previous–previous FMWT

fall abundanced

Average E–P density,

Apr–Jun (#/m3)d

Average E–P density,

Sep–Dec (#/m3)d

1972–2006/2014

Superscripts indicate that this variable has been transformed by one of the following methods, (a) log10, (b) log10 + 1, or (c) ln, (d) divided by 1000 or
(e) divided by 10,000, in accordance with the original analysis. Abbreviations as follows: TNS = summer tow net survey, FMWT = fall midwater trawl sur-
vey, MWT = Bay Study midwater trawl survey, OT = Bay Study otter trawl survey, E–P = Eurytemora sp. + Pseudodiaptomus sp., two dominant copepods of
the upper San Francisco Estuary and major prey items for delta smelt.
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methodology, and it was often difficult to determine how
the environmental variables were derived or the source of
the data used to derive them. As a result, we were unable to
complete reanalyses for 8 of these 31 relationships, because
of either an inability to recreate the input variables using the
methodology described by the authors or because of errors
or missing information in the original publications,. This left
us with 23 relationships (17 univariate and 6 multivariate)
from 8 publications which were fully reanalyzed using the
most recent available data (between 9 and 40 additional
years, median 9 yr). In recognition of the bias introduced by
retesting only previously significant relationships, we also
attempted to replicate the full model selection process in the
two publications using multivariate analyses to determine
whether the top models remained the same in light of new
data. However, we were unable to reproduce all the variables
for the more extensive model selection example (Miller

et al. 2012), and obtained nearly identical model selection
results for the more limited model selection example (Feyrer
et al. 2007). The general dearth of model selection approaches
in this system makes it difficult to draw conclusions about the
behavior of previously discarded models in the face of
new data.

When updated data were used to retest previously pub-
lished relationships, the direction and statistical signifi-
cance of the relationships remained the same (Fig. 4;
Table 1). Of the univariate relationships, 9 of 17 became
stronger (i.e., either more negative or positive depending
on the original relationship), 3 of 17 became weaker and
5 of 17 remained nearly identical. These general patterns
remained the same for the multivariate relationships
(Table 1) and when the dataset used to retest relationships
was balanced to achieve an equal number of original and
updated data points (Fig. 4; Table 1).
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In some instances, the addition of more years of data
resulted in more variation in the relationship being explained
(i.e., higher R2; Fig. 5A,B). However, on average, considering
more recent data did not increase the estimated strength of
the relationships, and in some cases reduced it (Fig. 5A). For
example, relationships between striped bass abundance and
flow saw substantial declines in R2 with the addition of more
years of data, despite the fact the magnitude of the relation-
ship remained nearly identical (Fig. 4). This occurred because
the overall abundance of striped bass declined between the
original time series and the updated one, which has been
attributed to introduction of the Asian clam in 1987, but
abundance still increased with increases in flow during both
periods (Supporting Information Fig. S1).

In most cases, considering more years of data did not improve
the predictive power of the environment–recruitment relation-
ships. Instead, counterintuitively, the prediction error of each
relationship typically increased with the addition of more years
of data (Fig. 5C,D). The median percent increase in prediction
error across the relationships retested was 30%. As with the varia-
tion explained, these changes were most pronounced for rela-
tionships between striped bass abundance and flow. Increases in
prediction error could be attributed to an increase in overall vari-
ance because of the addition of more data points, particularly if
the new data are drawn from a previously undersampled part of
the overall distribution. However, the observations that most

new data points are spread across the full range of values in the
original data set (Supporting Information Fig. S1), that the error
around coefficient estimates does not differ markedly between
extended and balanced models (Fig. 4), and that prediction error
sometimes increases drastically within the span of a few years
(Fig. 6) do not appear to support this hypothesis.

Discussion
Our review of the literature identified 98 publications exam-

ining 420 individual environment–recruitment relationships in

34

6

2

1

2

13

2

3

20

24

7

5

19

46

0 0.25 0.50 0.75 1

R

n

2

Flow

Salinity

Conductance

Clarity

Temperature

Exports

Inundation

Entrainment

Oceanography

Climate

Predator

Prey

Pesticide

Multivariate

Fig. 3. Boxplots and underlying estimates of the distribution of the strength
(R2) of published relationships for each broad type of environmental variable
identified in the literature review (184 papers reported this statistic). Some var-
iables have stronger relationships (e.g., flow and salinity) with the abundance
of species than others that are more variable (e.g., temperature and volume of
exports) and may therefore depend more on the species and context
involved. The “multivariate” environmental variable encompasses relationships
that include two or more of the other environmental variables listed here.
Black dots outside the range of the box and whiskers represent true outliers
(i.e., beyond 1.5 times the interquartile range), while the jittered black dots
represent the distribution of remaining data points.

Days Yolo

Bypass

Flooded

Salvage

Freeport 

(Feb)

Sacramento

(Apr−Jun)

Delta 

(Jun−Jul)

Delta 
(Feb−Mar)

Delta 
(Jan−Jun)

X
2

−1 −0.5 0 0.5 1

Standardized Effect Size

E
n
v
ir
o
n
m

e
n
ta

l 
P

re
d
ic

to
r 

 V
a
ri
a
b
le

F
lo

w

BC

D D*

E1

E1E2

A

Time Series

Re−test (Balanced)

Re−test

Original

SF

SPL

LFS

BS

BG

AS

LFS

SPL

SB

CS

SPL

DS

Fig. 4. Magnitude of environment–recruitment relationships for 17 univari-
ate analyses spanning nine species based on original (▪), extended (5), and
extended but balanced (●) time series. “Balanced” refers to estimates based
on analyses where we randomly subsampled (100 times) the pre-retest data
so that there was an equal number of pre- and post-retest data points.
Where there is more than one relationship per species-variable combination,
letters indicate the source of data as being from the FMWT (A), bay study
MWT (B), bay study OT (C), TNS (D for the overall Delta, and D* for Suisun
Bay only), or Chinook salmon trawls (E1 at Chipps Island, E2 at Sacra-
mento). The standardized effect is the slope of the relationship between
abundance and the environmental variable under consideration in standard
deviation units. For example, based on the updated time series, a one stan-
dard deviation unit increase in flow at Freeport in February is expected to
result in a 0.4 standard deviation unit increase in juvenile fall-run Chinook
salmon index abundance in the Chipps Island trawl. Error bars are � 1 SE.

Tamburello et al. Durability of environmental correlations

S230

 19395590, 2019, S1, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.11037, W

iley O
nline L

ibrary on [09/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the Bay Delta. These relationships overwhelmingly focused on
the influence of environmental variables on population abun-
dance as opposed to other biological characteristics and were
biased toward species that are either currently or historically
listed as threatened or endangered. About half of these relation-
ships are used in regulatory decision-making, but only one in
five relationships has been retested to quantify the extent to
which they stand the test of time. In contrast to Myers (1998),
who found that the proportion of relationships that held up
when retested was low, we found that when new data were
used to retest previously published Bay Delta relationships, the
direction and statistical significance of the relationships
remained the same, though the amount of variation explained
by the relationships and our ability to predict how a species will
respond to change in their environment did not generally
improve with more data. Instead, in most cases, prediction error
actually increased when extending the time series, suggesting

that accumulating more data will not necessarily improve the
ability of these relationships to inform decision making (insofar
as predictive power is useful for decision making). Perhaps this
should not come as a surprise given the original relationships
examined here were typically identified based on their ability
to explain observed data (e.g., R2 from linear regression) as
opposed to their ability to predict future observations using, for
example, approaches like data splitting and cross-validation
(Power 1993; Harrel 2015). However, a large reduction in pre-
dictive power when relationships are retested with more data
may be diagnostic of an established relationship that is break-
ing down (i.e., as is the case with striped bass and potentially
Sacramento splittail in Fig. 5), possibly because of changes in
data collection methods, misspecification of the original model,
or an environmental shift that causes another factor to become
limiting. Such losses in predictive power might prompt action
to search for unmeasured drivers of this change.
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The finding that the environment–recruitment relation-
ships retested here are generally durable is surprising in light
of the previous work by Myers (1998). The durability of the
Bay Delta relationships might reflect the quality of the under-
lying data, consistent with Myers’ finding that relationships
were more durable where they used reliable data, such as
research surveys and reconstructed population estimates.
Rather than relying on fisheries-dependent data that can
obscure environment–recruitment patterns through changes
in fishing effort and capture efficiency during the exploitation
phases of a fishery (Hilborn and Walters 1992), studies in the
Bay Delta benefit from multiple long-term monitoring sur-
veys. Further, whereas the relationships reviewed by Myers
came from marine, freshwater, and estuarine ecosystems, the
Bay Delta relationships focus entirely on species that reside in
an estuarine habitat for part or all their life. It is perhaps
unsurprising then that freshwater flow and salinity are the
most frequently inspected response variables in the Bay Delta
(Fig. 2B), and inasmuch as these relationships are durable,
may reflect species’ adaptations to the determinants of estua-
rine habitat.

However, closer inspection of the individual relationships
suggests their apparent durability may be misleading. Fourteen

of the 23 relationships we retested either split (Kimmerer
et al. 2009; Sommer et al. 1997, 2007) or excluded altogether
data prior to 1987 under the assumption that the invasion of
the Asian clam fundamentally altered the estuary food web
(Kimmerer et al. 1994). In some cases the slope of the
environment–recruitment relationship held, but the intercept
changed after 1987, as in the case of longfin smelt (Kimmerer
et al. 2009), implying a shift in the abundance index. In the
case of delta smelt abundance, only the postclam invasion
period produced significant relationships with water quality
predictors (Feyrer et al. 2007). Constantly refining these rela-
tionships by adding step changes or excluding portions of the
time series to account for changes in the ecosystem gives the
appearance that the relationships are durable, but their practi-
cal value to inform policy is limited when the present or
future state of the ecosystem is unknown. For example, Ste-
vens (1977) reported a strong striped bass response to delta
outflow into the 1970s, but visual inspection of the data sug-
gests the relationship has broken down in the years since
(Supporting Information Fig. S1A,B). Similarly, the slope of
the relationship between flow at Freeport and Chinook
salmon catches in Sacramento and Chipps Island trawls are
driven by flow conditions only observed in the original time
series (Supporting Information Fig. S1O,P); it is unclear if this
relationship still holds. Indeed, despite the apparent durability
of the retested Bay Delta relationships, their generally poor—
and declining—predictive power (Fig. 5, Supporting Informa-
tion Table S1) should be acknowledged before any of the
relationships are used to inform policy.

Our review of published environment–recruitment relation-
ships in the Bay-Delta also highlights some methodological
shortcomings of studies in this region. First, our review illus-
trates the value of long-term data collection programs that fol-
low standardized and consistent protocols to detect and
validate long-term trends in biological variables. A large share
of studies in this space leverage these datasets. However, the
availability and accessibility of such survey data may also
reduce the likelihood that researchers in this region embark
on independent data collection to study other species and bio-
logical variables that are not the focus of existing surveys. Sec-
ond, despite the accessibility of long-term survey data and the
simplicity of correlative analyses, we were still unable to repro-
duce originally published variables for many relationships oth-
erwise meeting our criteria for retesting. In some cases, this
was because of errors in the original work, unreported assump-
tions about data transformations that only became clear after
contacting the authors, or the prior use of interpolated data
that has since been corrected at the source by survey operators.
These challenges highlight the importance of reproducibility in
research in general, and into environment–recruitment rela-
tionships in particular, echoing a growing call for greater repro-
ducibility both in ecology and across other scientific disciplines
(Cassey and Blackburn 2006; Nosek et al. 2015; Borregaard and
Hart 2016). Trends toward the use of open source programming
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languages for ecological analysis, and for the publication of the
underlying code alongside manuscripts as we do in our Sup-
porting Information, should help play a role in improving the
reproducibility of ecological research going forward (Mislan
et al. 2016).

Our conclusions should be considered in light of potential
biases in both our study selection criteria and in the type of
data these studies draw upon. As with all studies based on lit-
erature review, our results are subject to publication bias
(Cooper et al. 2009) relating to our decision to focus on
peer-reviewed studies, a propensity toward publication of
significant relationships in peer-reviewed journals, and a
disproportionate number of publications on particular vari-
ables (e.g., X2 and flow) coming from a few very active
authors in this field. In addition, recent work has shown
that the long-term survey data used to create many of these
relationships may itself be inherently biased by unquanti-
fied changes in detection probability. Detection probability,
or catchability, may vary considerably over time with
(1) overall abundance (i.e., it is more difficult to catch a
rarer species or size class) (Mahardja et al. 2017); (2) with
changing environmental conditions (e.g., catchability may
decrease with increasing water clarity as fish are better able
to see and avoid survey gear in clearer water) (Latour 2016);
and (3) with differences in gear type across surveys (Peterson and
Barajas, in press). When not accounted for, these changes in
detectability may be incorrectly interpreted as real changes
in abundance or occupancy. Notwithstanding these poten-
tial biases, we believe that the breadth of species, environ-
mental variables, and survey types covered in our analysis
allows us to draw general conclusions about the utility of
environment–recruitment models, and to synthesize
insights from the literature on best practices for the analy-
sis, use, and refinement of environment–recruitment rela-
tionships to inform decision making in natural resource
management.

Correlation, causation, and strength of evidence
Correlations underpin most natural resource management

decisions, including those in the Bay-Delta. Such correla-
tions are usually assumed to be causative, but we are often
reminded of the adage “correlation does not equal causa-
tion.” Ideally, manipulative experiments can be used to
determine whether a specific human action causes a
response in an ecosystem component. Such learning by
manipulation embraces the three key elements of experi-
mental design: controls, randomization of treatments, and
replication. Much has been learned in natural resource man-
agement through manipulative experiments. For example,
hatcheries manipulate the timing and size of fish released to
determine which combination result in optimal survival
(e.g., Irvine et al. 2013) and hydroelectric facility operators
manipulate timing and magnitude of flow releases to deter-
mine which flows are most likely to improve fish survival

(e.g., Bradford et al. 2011). In the Bay Delta, the Vernalis
Adaptive Management Plan evaluated how juvenile salmon
migration survival through the Delta responded to experi-
mentally manipulated San Joaquin flow, exports, and physi-
cal barriers (San Joaquin River Group Authority 2013). While
manipulative experiments are the gold standard approach to
establishing causation, scope for manipulative experiments
decreases at increasing scales, and so we are left interpreting
correlative relationships in order to manage some of the larg-
est human-influenced ecosystems in the world.

When opportunities for learning by manipulation are
limited or impossible, the weight of evidence for a hypothe-
sized causal correlation should be assessed based on
the strength, consistency, specificity and plausibility of
the mechanism underlying the relationship (e.g., Hill 1965;
Hilborn 2016). However, while strength, consistency, speci-
ficity and plausibility can help guide the degree of support
for a given relationship, they should not come at the cost of
maintaining multiple working hypotheses, and evaluating
the evidence for each simultaneously when using correla-
tions to guide decision making (Hilborn and Mangel 1997;
Plowright et al. 2008). An illustrative example of the simul-
taneous consideration of multiple working hypotheses is
the development and application of a state-space multistage
life cycle model to investigate for drivers of population
decline in delta smelt by Maunder and Deriso (2011).

Adaptive management in the face of ecosystem change
Even when relationships are truly causative, using past

relationships to guide future management decisions can fail
to have the intended effect when the system in which they
occur changes over time (i.e., exhibits nonstationarity). Such
nonstationarity in aquatic systems can arise from both slow-
moving environmental change or rapid regime shifts and
“tipping points” between alternative stable states (Scheffer
et al. 2001, 2009). There is widespread evidence of regime
shifts in aquatic ecosystems arising from both natural
(e.g., climate) and human (e.g., pollution and species intro-
ductions) caused factors (Carpenter 2003; Hunsicker
et al. 2016) and the state of the ecosystem can have a strong
influence on the outcomes of management actions. For
example, large releases of hatchery salmon reduce the sur-
vival of endangered wild salmon but only during periods of
poor ocean conditions (Levin et al. 2001), and translocation
of wild juvenile salmon past hydropower installations carries
greater benefits for their ocean survival in cooler but not
warmer oceanic regimes (Gosselin et al. 2017). These exam-
ples highlight the fact that the benefits of management inter-
ventions (e.g., reducing hatchery releases to minimize
impacts to wild fish, translocation of fish past barriers) are
contingent upon the ocean regime the system is experienc-
ing in any given year. In the Bay Delta, the introduction and
rapid expansion of the invasive Asian clam in the late 1980s
is believed to have caused a major increase in grazing

Tamburello et al. Durability of environmental correlations

S233

 19395590, 2019, S1, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.11037, W

iley O
nline L

ibrary on [09/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



pressure on phytoplankton, leading to a persistent decline in
overall pelagic food resources (Carlton et al. 1990; Nichols
et al. 1990; Baxter et al. 2010). The so-called “step change”
toward this new stable state has had varying influences on
different species within the ecosystem. For example, the
regime shift because of Asian clam has led to a change in the
overall magnitude (intercept) but not the rate of change
(slope) of existing abundance-flow relationships for striped
bass (Kimmerer et al. 2009, and reproduced in this study),
but has been suggested to have driven a new abundance-flow
relationship for threatened delta smelt that brought with
them significant implications for the way flows in this sys-
tem are managed (CDFW 2016). Managers may also need to
anticipate future changes in ecosystem state. For example,
climate change may erode or replace existing relationships as
warming water temperatures exceed the range of historical
observations in this region and begin to approach species’ ther-
mal limits (Cloern et al. 2011). Temperature was a commonly
explored environmental variable in the studies we reviewed
(Fig. 2), but its limited explanatory power excluded it from the
retested relationships (Fig. 3; Table 1). However, during Califor-
nia’s most recent drought, water temperatures regularly
approached or exceeded the thermal tolerance of Bay Delta spe-
cies, including longfin smelt (Jeffries et al. 2016). Indeed, a lim-
iting factors approach (e.g., Hamilton and Murphy 2018) may
reveal established flow–recruitment relationships are superseded
in certain years by species’ physiological response to increased
water temperature.

Given the ubiquity of regime shifts and nonstationarities
in aquatic systems (Möllmann and Diekmann 2012), includ-
ing in the Bay Delta (Kimmerer 2002; Kimmerer et al. 2009;
Thomson et al. 2010), how should one evaluate the evidence
for environment–recruitment relationships and use them to
inform decision making when system change is suspected? In
some cases, change in a system will be so pronounced that
there is little question about when it occurred and so the
nature of a relationship post regime change should be the one
that is used to inform future management actions. In other
instances, the timing of abrupt change, and indeed whether it
has occurred at all, will be uncertain for several years and so
debated (at times vociferously) until clear evidence accumu-
lates that a regime shift has occurred. To date, statistical sup-
port for changes in the state of the Bay Delta system have
used retrospective approaches, for example, change-point ana-
lyses (Thomson et al. 2010) or applying dummy variables in
linear regression (e.g., Kimmerer 2002; Kimmerer et al. 2009),
to quantitatively evaluate the evidence for system change.
However, dynamic linear models may be better suited for fore-
casting population responses to changes in the system state
because they treat regression parameters as time-varying,
thereby explicitly acknowledging the evolution of the func-
tional relationship between the environmental variable and
recruitment (e.g., Scheuerell and Williams 2005). In addition,
and perhaps more importantly, one should quantitatively

evaluate the decision-making consequences of incorrectly
assuming a regime shift has or has not occurred so as to be able
to understand and clearly communicate the costs (e.g., biologi-
cal, economic, and social) of getting it wrong. Lastly, it has also
been found that when nonstationarity is present (or suspected
to be present), using recent observations to predict the conse-
quences of alternative management actions can improve man-
agement outcomes (e.g., Ianelli et al. 2012).

In systems that have undergone dramatic change (e.g., tip-
ping points), failure to regularly re-evaluate the durability and
predictability of environment–recruitment relationships risks
making management decisions based on information with
increasingly large margins of error, with the potential for nega-
tive ecological, social and economic consequences. To illustrate
this point, we estimated prediction error for a few Bay Delta
environment–recruitment relationships spanning the period
before and after the Asian clam invasion in 1987 for species that
have (striped bass and longfin smelt; Kimmerer et al. 2009), and
have not (Sacramento splittail; Kimmerer et al. 2009), responded
to the invasion (Fig. 6). For those species that declined in abun-
dance coincident with the invasion, failure to account for this
change results in relationships with increasing prediction error as
time goes by after the invasion, relative to relationships that
account for the change by including a step change in 1987
(striped bass and longfin smelt; Fig. 6). In contrast, for Sacra-
mento splittail, which did not appear to respond to the invasion,
there is no benefit to including a step change in the relationship.
Interestingly, these analyses suggest that the environment–
recruitment relationships for striped bass and longfin smelt have
experienced subsequent regime shifts (~ 1995 for striped bass
and ~ 2005 for longfin smelt) that have further eroded their pre-
dictive power. This subsequent shift may be explained by
observed changes in distribution likely to affect catchability in
long-term surveys. Prior studies have suggested that a reduction
on pelagic food resources because of overgrazing by Asian clam
appears to have driven shifts in the distribution of young fish
in the 1980s and 1990s away from the primary sampling
regions of long-term surveys and toward areas characterized
by fewer clams and better foraging prospects. This mani-
fested as a lateral shift from deeper channel habitat preferen-
tially sampled by annual surveys toward shallower slough
habitat for striped bass (Sommer et al. 2011), and as a longi-
tudinal shift from upstream habitat toward more saline
downstream habitat for longfin smelt (Baxter et al. 2008;
Sommer et al. 2011). Thus, these two shifts in prediction
error align with and illustrate two stages of rapid environ-
mental change driven by a trophic cascade, the first likely
related to a species introduction, and the second likely
related to two different behavioral responses to adapt to the
consequences of this introduction.

Our findings suggest that when environment–recruitment
relationships underpin decision-making they should be re-
evaluated on a regular basis as part of a broader adaptive
management approach to ensure that they remain robust in
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the face of new data and continue to provide an accurate
representation of a continually evolving ecosystem. Such an
adaptive approach to evaluating environment–recruitment
relationships is aligned with broader calls for increasing the
implementation of more proactive adaptive management in
Bay Delta ecosystems to address accelerating environmental
change (Delta Independent Science Board 2015, 2016;
Zandvoort et al. 2018).

Environment–recruitment relationships in decision
making

The widespread use, and at times misuse, of environment–
recruitment relationships to inform decision making has pro-
duced several general insights into best practices for incorpo-
rating such relationships into natural resource management.

First, uncertainty should be both quantified and propagated
in any analysis that seeks to predict the consequences of alter-
native management actions and identify those actions most
likely to achieve desired objectives. This uncertainty comes in
at least four distinct forms (e.g., Peterman 2004): (1) natural
variation in both physical and biological processes; (2) uncer-
tainty because of imperfect assessment arising from measure-
ment error; (3) structural uncertainty because of incomplete
understanding of how a system functions leading to model
misspecification; and lastly (4) outcome uncertainty or imple-
mentation error in how well a given management target
(e.g., increase flow by 20%) is achieved by a management
action (e.g., releasing water from a reservoir). While uncer-
tainty resulting from points 2 to 4 can in theory be reduced
by improved measurements, greater understanding of system
function, and better management control, all of which can be
accomplished to some extent with the collection of more
years of data, uncertainty arising from natural variability is
irreducible. We found that prediction error was not reduced
for Bay Delta environment–recruitment relationships with the
accumulation of more years of data, and in fact increased in
many cases. This finding suggests that natural variation in the
physical or biological processes of the system is an important
and ongoing source of uncertainty. Improving predictions of
how Bay Delta taxa respond to changing environmental con-
ditions and human action will require identifying predictors
of currently unaccounted for variation. In the interim, model-
ing natural variability as a stochastic process should be favored
over retrospective change-point and dummy variable evalua-
tions because the former accounts for the irreducible uncer-
tainty and propagates it into better-calibrated predictions than
standard linear regression (Clark 2005).

Second, there is increasing recognition of the value of
developing and using life cycle models to evaluate the pre-
dicted consequences of alternative management actions on
species of concern in the face of this uncertainty (e.g., Good
et al. 2007; Ruckelshaus et al. 2002; Zeug et al. 2012). In con-
trast to single life stage, habitat type, or environmental rela-
tionships, life-cycle models simultaneously consider extrinsic

(environment, management action) and intrinsic (density
dependence) factors influencing multiple life stages. Life cycle
models can either be mechanistic where survival between life
stages is based on specific mechanisms (Scheuerell et al. 2006)
or statistical where life stage specific survival is not defined by
specific mechanistic relationships (Nobriga and Rosenfield
2016). The use of life cycle models allows for more realistic
and comprehensive evaluation of the predicted outcomes of
alternative management actions than considering single life
stage, habitat type, or environmental relationships, because it
considers environmental effects across linked stages in a
life cycle while also accounting for population processes
(e.g., growth, movement, mortality, and reproduction).

Even when uncertainty is successfully incorporated into
modeling approaches, the broader question remains—how
can we account for and propagate uncertainty into the
broader management of a complex system with many con-
flicting management objectives when our understanding of
that system is not, and will never be, complete? In a review of
management approaches in the Bay-Delta ecosystem for the
National Research Council (NRC), the Committee on Sustain-
able Water and Environmental Management proposes that
agencies should adopt management approaches that assume
“‘universal nonstationarity,’ or the idea that all aspects of the
environment will constantly be changing.” (NRC 2012). Such
approaches may prove challenging for many traditional
decision-making pathways, which are often constrained by
static or slow-moving policy frameworks (Aladjem 2013;
Delta Independent Science Board. 2016). However, a num-
ber of approaches with shared characteristics have been
developed to help facilitate formalized decision-making in
complex systems characterized by their uncertainty and are
among the approaches recommended by the NRC review.
Among these are decision analysis (Peterman and Anderson
1999), decision scaling (NRC 2012), risk assessment (Peters
and Marmorek 2001), and management strategy evaluation
(Punt et al. 2016).

Conclusions
Moving forward, there is a growing recognition of the

importance of maintaining multiple working hypotheses
when quantifying the support for correlations in environmen-
tal management (Hilborn 2016), that quantitative assessment
of policies that consider these relationships should be done
using approaches that allow for realistic incorporation and
propagation of multiple sources of uncertainty (Peterman
2004), and that, ultimately, managers in the Bay-Delta and
elsewhere should identify policies that are robust to a range of
alternative hypotheses (National Research Council 2012;
Schindler and Hilborn 2015).

Despite advances in the tools available to improve our assess-
ment of environment–recruitment relationships and their con-
sideration in decision making, we should remain humble in
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our zeal to either accept them as fact or discount them entirely
because they are “just correlations.” As Hill emphasized in his
1965 Presidential Address on correlation and causation to the
Royal Society of Medicine (Hill 1965): “All scientific work is
incomplete—whether it be observational or experimental…
[and] is liable to be upset or modified by advancing knowledge.
That does not confer upon us a freedom to ignore the knowl-
edge we already have, or to postpone the action that it appears
to demand at a particular time.”
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