This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Googlebooks

https://books.google.com

U.S. BUREAU OF RECLAMATION MONTHLY TEMPERATURE MODEL SACRAMENTO RIVER BASIN

U.S. BUREAU OF RECLAMATION MID-PACIFIC REGION SACRAMENTO, CALIFORNIA

JUNE 1990

DRAFT REPORT

U.S. BUREAU OF RECLAMATION MONTHLY TEMPERATURE MODEL SACRAMENTO RIVER BASIN

J. H. ROWELL

U.S. BUREAU OF RECLAMATION MID-PACIFIC REGION SACRAMENTO, CALIFORNIA

JUNE 1990

DRAFT REPORT

VIATER RESOURCES

1-3 -- 2010

"WERSITY OF CAUFORN"

Digitized by Google

SUMMARY

This report documents a monthly time-step reservoir and stream temperature model and describes its application to the Sacramento River Basin in California. The model is intended as a tool for evaluating the effects of CVP-SWP project operations on mean monthly water temperatures in the basin.

The Sacramento River Basin model simulates temperatures in five major reservoirs (Clair Engle, Whiskeytown, Shasta, Oroville, and Folsom), four downstream regulating reservoirs (Lewiston, Keswick, Thermalito, and Natoma), and three main river systems (Sacramento, Feather, and American).

The report includes a detailed description of model input data requirements and assumptions. Also included are the results of model verification studies and model evaluations of Department of Water Resources' simulation model (DWRSIM) operation studies, which have been conducted for the Bay-Delta Hearings.

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	GENERAL DESCRIPTION	2
III.	RESERVOIR MODEL A. Reservoir Model Description	3 5 8 8
IV.	C. Hydrologic Input Data	9 10 11 14 15
٧.	A. River Temperature Control by Flow Augmentation	17 17 19
VI.	POTENTIAL MODEL IMPROVEMENTS	21
VII.	CONCLUSIONS	22
III.	RECOMMENDATIONS	23
IX.	REFERENCES	23

LIST OF FIGURES

- 1. Sacramento River Basin Temperature Model Network
- 2. Lake Profiles Clair Engle, Whiskeytown, Shasta July 1987
- 3. Lake Profiles Oroville August 1981, Folsom October 1976
- 4. Tributary Basins of the Sacramento River Department of Water Resources
 Bulletin 111
- 5. Department of Water Resources Simulation Model Network Representation
- 6. Department of Water Resources Simulation Model Drainage Areas
- 7. Sacramento River Temperature Model Verification: 1971-77 Bend Bridge and Butte City
- 8. Sacramento River Temperature Model Verification: 1971-77 Wilkens Slough and Freeport
- 9. Feather River Temperature Model Verification: 1971-77 Thermalito Diversion Dam and Thermalito Afterbay
- 10. Feather River Temperature Model Verification: 1971-77 Nicolaus
- 11. American River Temperature Model Verification: 1971-77 Nimbus Dam and Sacramento Treatment Plant
- 12. Keswick Releases Required to Meet 65 °F at Freeport in May: 1922-77
- 13. Keswick Releases Required to Meet 65 °F at Freeport in June: 1922-77
- 14. Sacramento River at Freeport Flow vs. Temperature May 1976

- 15. Sacramento River at Freeport May and June Temperatures 1922-77 DWRSIM No. 75D (Base) vs. No. 144C (Salmon)
- 16. Sacramento River at Red Bluff July and August Temperatures: 1922-77

LIST OF TABLES

- 1. Reservoir Outlet Elevations
- 2. Reservoir Temperature Model Input Data
- 3. Reservoir Temperature Model Calibrations Coefficients
- 4. River Temperature Model Equations
- 5. River Temperature Model Climatic Input Data
- 6. River Temperature Model Data Sources for E and K Calculation
- 7. Sacramento River Model Reach Locations and Tributaries
- 8. Sacramento River Geometry

- 9. Discharges from Irrigation Drains to the Sacramento River
- 10. Sacramento River Tributary Temperatures
- 11. Sacramento River Tributary Temperature Equations
- 12. Feather River Model Reach Locations and Tributaries
- 13. Lower American River Temperature Model Input Data
- 14. Additional Keswick Releases to Meet 65-69 °F at Freeport May and June DWRSIM No. 75D 1922-77
- 15. Effects of Management Actions on Sacramento River Temperatures DWRSIM No. 62B Red Bluff, Freeport 56-year average (1922-77)
- 16. DWRSIM Operation Studies for Salmon DWRSIM No. 75D (base) No. 144C (Salmon) Red Bluff, Freeport 56-year average (1922-77)

LIST OF APPENDICES

		<u>Table</u>
Α.	Reservoir Temperature Model- Users Manual - HEC - January 1972	
В.	Climate Coefficients: E and K -Computer Program Listing (CPL) -Variable Descriptions -Solar Reflectivity	B-1 B-2 B-3
C.	River Temperature Model -SACTEMP - Sacramento River Model CPL -FEATEMP - Feather River Model CPL -NARTEM 1 - American River Model CPL	C-1 C-2 C-3
D.	Model Input Files -SACTEMP Input Files -FEATEMP and NARTEM 1 Input Files -File Organization	D-1 D-2 D-3
Ε.	Feather River Geometry -QMANN - Feather River Geometry CPL -Variable Descriptions -FEAQW 1 - Feather River Geometry: Flow-Width Data	E-1 E-2 E-3
F.	River Model Verification Tables -Sacramento River: 1987 -American River: 1981	F-1 F-2

U.S. BUREAU OF RECLAMATION MONTHLY TEMPERATURE MODEL SACRAMENTO RIVER BASIN

I. INTRODUCTION

Water temperatures affect all life stages of chinook salmon and other fish inhabiting the inland waters of California. The specific effects of Sacramento River temperatures on survival of chinook salmon adults, eggs, fry, and fingerlings are discussed in the literature. Studies by the Interagency Fisheries/Water Quality Committee have indicated that water temperature is an important factor in the survival of Chinook Salmon smolts passing through the Sacramento-San Joaquin Delta. 18

This report describes a monthly reservoir and stream temperature model and its application to the Sacramento River Basin in California. The model is intended as a tool for evaluating the effects of CVP-SWP project operations on basin water temperatures.

Since the project operation simulation models used for planning and forecasting CVP-SWP operations use a monthly time-step, 11 24 it was necessary to develop a temperature model that could evaluate operations model output on a monthly frequency. Monthly temperature model results are useful for comparing temperature impacts of alternative operating scenarios and defining the extent to which various factors control river temperatures. For operation studies covering many years of hydrologic record, the temperature model can show exceedance frequencies of specified temperature criteria. While monthly model results can be used to assess qualitative fishery impacts, they do not define day-to-day temperature variations within a month and, thus, would not allow

quantification of specific fishery impacts. A daily temperature model would be required for such evaluations.

The U.S. Bureau of Reclamation (Reclamation) has used a daily temperature model on the Upper Sacramento River above Red Bluff.³⁵ Other daily model applications include the Trinity River,³⁰ the Sacramento River Basin,²⁹ and the American River.¹⁷ Daily model studies use historical daily operations data, and are generally limited to a few years due to the extensive input data requirements. These limitations tend to make daily temperature models less suitable for evaluating long-term (i.e., 56 or more years) monthly operations studies.

II. GENERAL DESCRIPTION

The monthly temperature model consists of a Reclamation-modified version of a Corps of Engineers' monthly reservoir model and a stream model developed by Reclamation. A network diagram of the model application to the Sacramento River Basin is shown in figure 1.

The reservoir model simulates monthly temperature vs. depth profiles in the major reservoirs (Clair Engle, Whiskeytown, Shasta, Oroville, and Folsom) and computes release temperatures from the dams. Changes in the downstream regulating reservoirs (Lewiston, Keswick, Thermalito, and Natoma) are computed using the upstream releases and temperatures as input. With the regulating reservoir releases and temperatures as upstream boundary conditions, the river model computes temperatures at 52 locations on the Sacramento River from Keswick Dam to Freeport, 10 locations on the Feather River from Thermalito Dam

Digitized by Google

to the mouth, and 8 locations on the American River from Nimbus Dam to the mouth.

The computed flows and temperatures at the mouths of the Feather and American Rivers are input to the Sacramento River model at their respective river locations. Minor tributaries and drainage inflows enter the Sacramento River at 39 specific control points.

III. RESERVOIR MODEL

A. Reservoir Model Description

The reservoir temperature model was developed by the Corps of Engineers' Hydrologic Engineering Center. The users manual provides detailed information on the assumptions and input data required to run the model (appendix A).

The reservoir model simulates one-dimensional, vertical distribution of reservoir water temperature using monthly input data on initial storage and temperature conditions, inflow, outflow, evaporation, precipitation, radiation, and average air temperature.

The reservoir is divided into horizontal layers of uniform thickness.

Each layer is assumed to be isothermal (i.e., the same temperature throughout its volume).

Inflow water descends into the reservoir to seek its temperature level.

Since some mixing occurs between the inflowing and reservoir water, the model mixes a constant percentage of inflow with each layer as the inflow descends through the warmer reservoir layers. Therefore, the inflow ultimately reaches

a reservoir level at a temperature somewhat warmer than the original inflow temperature.

The energy exchange between the reservoir and the atmosphere is assumed to affect only the top layers of water except for energy transferred by diffusion. The depth of energy penetration was assumed to be 10 meters. The energy exchange is assumed to affect water temperature linearly from a maximum effect at the surface to a minimum at the depth of energy penetration. Solar radiation, evaporation, and a combination of conduction and long-wave radiation are expressed as functions of the difference between air and water temperatures. These energy exchanges are computed before the stability and diffusion computations are made.

Reservoir water is mixed from the surface downward until no lower levels contain warmer water than exists at higher levels. This stability function is constrained to temperatures above 4 °C, the maximum density of water.

The model assumes that incomplete mixing of adjacent layers occurs over a 10 meter range proceeding from the bottom to the top of the reservoir, one layer at a time. The degree of mixing is a function of the vertical diffusion calibration coefficient and the temperature difference between layers.

The model uses five calibration coefficients in calculating the various energy exchange functions:

 C_1 =air temperature coefficient - index of energy transferred by conduction due to the difference between the air and water surface temperature.

 C_2 =insolation coefficient - index of energy transferred to the reservoir due to net solar radiation - i.e., incoming minus absorbed and reflected radiation.

 ${\rm C_3}$ =evaporation coefficient - index of energy lost from the reservoir water surface due to evaporation.

 C_4 =inflow mixing coefficient - index of energy transferred to the inflow due to the difference between modified inflow temperatures and the temperature of each layer.

 C_5 =vertical diffusion coefficient - index of energy transferred between adjacent layers due to the difference in temperature between layers.

All of the coefficients have values ranging from zero to one - zero if no energy is transferred, and one if sufficient energy is transferred to reach equilibrium. In cases such as this study where observed reservoir temperature profiles are available, the program will derive the calibration coefficients automatically by minimizing the sum of squares of errors in temperature between computed and observed profiles. The program uses a gradient optimization technique developed by Beard² in which the coefficients are specified arbitrarily and then optimized by the computer so as to minimize the standard error of computed temperature.

Appendix A gives a detailed description of the calculation procedure and various energy exchange equations used in the model.

B. Reservoir Model Input Data

The reservoir operational data (inflows, releases, and evaporation) are obtained from project operation records if the model is simulating historical conditions or from operation model output if the model is being used to evaluate a theoretical operation. The application discussed in this report used output from DWRSIM, a planning operations model developed by DWR, which

simulated CVP-SWP project operations for the 1921-78 hydrologic period under present (1990) level of development.¹¹

The reservoir geometry was obtained from area-capacity tables.^{8 37}
Storages at the top of each layer were input to the model. All reservoirs (Clair Engle, Whiskeytown, Shasta, and Folsom), except Oroville, used 5-foot layers. Oroville Reservoir required 10-foot layers because of its greater depth. The model limit of 100 layers would be exceeded with 5-foot layers at Oroville.

Outlet level elevations for each reservoir are shown in table 1. Except for spills or river outlet releases, all reservoir releases pass through hydroelectric power generation plants. Clair Engle, Whiskeytown, and Shasta Reservoirs all have single-level power outlets. Oroville and Folsom Reservoirs both have multilevel outlets attached to the power penstocks.

A multilevel temperature control device (TCD) is being designed for installation at Shasta Dam.³⁴ This device will allow selective level withdrawal of releases to the powerplant for the purpose of controlling downstream Sacramento River temperatures to benefit salmon. The normal operation of Shasta multilevel outlets for providing downstream salmon temperatures would be to release from upper levels in the winter and spring months (December-April), from mid levels in the late spring and summer (May-July), and from low levels in the late summer and fall (August-November). This outlet operation would conserve cold water in Shasta Reservoir during the winter and spring for release during the summer and fall when Sacramento River temperatures become critical for salmon spawning. Installation of temperature control devices are also being considered to cool the releases from Whiskeytown Lake to the Spring Creek Powerplant.³³ Cooler Spring Creek

Powerplant releases would reduce temperatures of Keswick Dam releases to the Sacramento River.

The operation of the Folsom temperature control device differs because the American River supports only a fall run of chinook salmon, whereas the Sacramento River has four salmon runs: fall, late-fall, winter, and spring. The typical Folsom operation involves mid to upper level releases from January to September and low level releases from October-December for fall salmon spawning in the Nimbus Hatchery and Lower American River. Releases from Oroville are managed to provide suitable temperatures for the Feather River Hatchery.

Mean monthly air temperatures for each study year (i.e., 1922-77) were obtained from NOAA weather records.²² Redding air temperatures for the 56-year period (1922-77) were used to develop air temperatures at Clair Engle Whiskeytown and Shasta Reservoirs, which have only partial records. Regression equations were developed for each reservoir based on available reservoir air temperature data and the Redding air temperatures. Table 2 lists the regression equations. Air temperatures for Oroville and Folsom Reservoirs were obtained from complete Oroville and Folsom air temperature records, respectively.²²

Reservoir inflow temperature data are limited in both duration and quality. Continuous thermograph records are preferred, but often only periodic measurements are available. Due to the scarcity of data, available inflow temperature records were averaged by month and used to represent mean monthly reservoir inflow temperatures for all 56 study years. Table 2 summarizes the inflow temperature data for all five reservoirs. Inflow temperatures for Clair Engle and Shasta Reservoirs were obtained by flow-

Digitized by Google

weighting individual tributary temperatures. Whiskeytown natural inflow comes primarily from Clear Creek. Inflows and temperatures from the Clear Creek Tunnel to Whiskeytown Reservoir are model-generated inputs. While the operations model (DWRSIM) uses total inflows for Clair Engle, Shasta, and Oroville Reservoirs, the inflows to Folsom are divided into North Fork and South Fork inflows. Therefore, separate inflow temperature records were used to represent the two Folsom inflow sources.

The reservoir model inputs mean monthly values of total daily solar radiation at the top of the atmosphere. These values were obtained for each reservoir latitude from figure 2 of appendix A and are listed in table 2. The monthly solar radiation values were used for all 56 study years.

C. Reservoir Model Calibration

As discussed under DESCRIPTION, the reservoir model can be calibrated with measured temperature-depth profile data. The calibration procedure optimizes the five calibration coefficients defining the various energy exchange functions: air temperature, inflow mixing, vertical diffusion, evaporation, and insolation. Table 3 lists the calibration coefficients derived for each reservoir, the temperature data used, and the least-square errors between computed and observed temperatures.

D. Reservoir Model Verification

A previous application of the reservoir model to Clair Engle, Whiskeytown, and Shasta Reservoirs is discussed in a report by Rowell.²⁸ The model was calibrated and verified at the three reservoirs for selected years from 1951-66. Generally, the predicted release temperatures were within approximately

1 °F of the measured temperatures for all three reservoirs. The model was applied to Clair Engle Reservoir for the years 1964, 1974, 1975, and 1976 in a more recent study. As in the previous study, the calibrated model release temperatures compared well (± 1 °F) with observed temperatures measured below Trinity Dam. A verification of the model at Folsom Reservoir was done for 1966. Application of the model to Folsom is also documented in a 1980 Bureau of Reclamation report. Bureau of Reclamation report.

Recent comparisons of predicted and measured reservoir temperature profiles are shown in figure 2 (Clair Engle, Whiskeytown, and Shasta) and figure 3 (Oroville and Folsom). The predicted profile temperatures are usually within 1-2 °F of the measured temperatures.

A report by Christensen and Orlob¹⁰ presents a detailed evaluation of the sensitivity and accuracy of the reservoir temperature model with respect to several input variables.

IV. RIVER MODEL

A. Description of River Model

The river temperature model calculates temperature changes in the four regulating reservoirs (Lewiston, Keswick, Thermalito, and Natoma) below the main reservoirs (Clair Engle, Shasta, Oroville, and Folsom). With regulating reservoir release temperatures as initial river temperatures, the river model computes temperatures at several locations in the Sacramento, Feather, and American Rivers. The nodel or calculation points for river temperatures generally coincide with tributary inflow locations. Figure 1 shows the temperature calculation points of the model.

Table 4 shows the main equations used in the river model, and the assumed surface areas for the regulating reservoirs. Equation 1 represents a steady-state, slug-flow algorithm based on the equilibrium temperature approach described in Edinger and Geyer.¹⁵ The model is one-dimensional in the longitudinal direction and assumes fully mixed river cross sections. The effect of tributary inflow on river temperature is computed by mass balance calculation as shown in equation 2 (table 4).

Appendix C contains program listings of the Sacramento, Feather, and American River temperature models. Appendix D contains input file descriptions, input references to DWRSIM control points, and file organization data.

B. Climatic Input Data

Equilibrium temperatures (E) and heat exchange coefficients (K), the two climatic variables used in equation 1 (table 4), were computed for each month of the 56 year study period (1922-77) at 9 locations in the Sacramento River Basin. The nine weather stations are shown on table 6. A computer program was developed to calculate the monthly values of E and K using the procedures described in Edinger and Geyer. Appendix B contains a listing of this program and a description of the variables.

The climatic data required to calculate values of E and K include air temperature, solar radiation, relative humidity, wind speed, cloud cover, solar altitude, solar reflectivity, and river shading. Monthly mean air temperatures for the 56 year study period were available at 9 locations in the Sacramento River Basin.²² Since less extensive data were available for the other climatic variables, long-term average monthly values from two locations

(Red Bluff and Sacramento) were used.^{20 21} Table 5 summarizes the long-term climatic data and the shade factors used in the E and K calculation. A summary by basin river reach of the air temperature, climatic, and shade data used to calculate the corresponding values of E and K are shown in table 6.

C. <u>Hydrologic Input Data</u>

1. Sacramento River

The river temperature model segments the Sacramento River into 52 reaches from Keswick Dam to Freeport.

The model computes Keswick Dam temperatures by mass-balance calculations of Shasta Dam flows, adjusted Shasta release temperatures, and Spring Creek powerplant flows and temperatures. The adjusted Shasta temperatures are computed from equation 1 using Shasta Dam flows and temperatures and the Keswick Lake surface area shown on table 4. The model then computes temperatures at the beginning and end of each river reach. The reach locations and corresponding river miles are listed in table 7. River mileages were obtained from DWR Bulletin 111.9

River geometry data are presented in table 8, which is one of the input files required to run the river model (appendix D). The geometry data, obtained from DWR Bulletin 111, include surface areas of each river reach in 10^6 ft² corresponding to riverflows ranging from 2,000 ft³/s to 25,000 ft³/s. The river model interpolates from table 8 to determine reach surface areas for specific riverflows. The surface area is used in equation 1 (table 4) - the river temperature algorithm.

The major and minor tributaries in the Sacramento River Basin and their corresponding drainage areas are shown in figure 4.9 Tributary flows

which are specified in DWRSIM, the DWR planning simulation model, " are input directly to the river model. Figure 5 is a network diagram of DWRSIM. As shown on figure 5, the Sacramento River tributaries and diversions with flows specified by DWRSIM include Shasta Dam releases, Spring Creek, Clear Creek, Cottonwood Creek, Tehama Colusa Canal (diversion), Thomas Creek, Glen-Colusa Irrigation District (diversion), Stony Creek, Wilkens Slough (diversion), Colusa Basin Drain, Feather River, and American River. Shasta Dam, Spring Creek, and Clear Creek flows and temperatures are output from the reservoir temperature models. Feather and American River flows and temperatures are output from the Feather and American River temperatures models, respectively. All other major tributaries and diversions are output from DWRSIM. Appendix D lists the river temperature model input files.

The minor Sacramento River tributary flows, not defined by output from the other models, were obtained by applying flow factors to net accretions from the DWRSIM drainage areas shown in figure 6. The flow factors are the percentages of net DWR drainage area accretions that represent each tributary. They were calculated by dividing each tributary drainage area by the total drainage area for all tributaries within each DWR drainage area. Battle Creek flows were increased by 200 ft³/s to account for Coleman hatchery discharges and other upstream regulation.²⁹ The tributary drainage areas (figure 4) and the computed tributary flow factors are shown in table 7.

Agricultural drainage flow factors were developed from drainage discharge data presented in table 9 (DWR Bulletin 111-Table 3.18). Drainage factors were calculated for nine agricultural drains (table 7) by computing percentages from the discharge data. The Colusa Basin Drain flows, as mentioned above, are defined by DWRSIM output.

Tributary temperature records are sparse or nonexistent for many of the tributaries to the Sacramento River. Available tributary temperature data used in the model are summarized in table 10. Monthly mean temperatures were computed from continuous thermograph records where available. Otherwise, periodic measurements were used. To compare the feasibility of using equilibrium temperature regressions versus average historical temperature records to represent the tributary temperatures, Cow Creek thermograph records for 1965-78 were tested using both approaches. The best fit (least error between predicted and measured temperatures) was found to be with use of average historical temperatures.

Temperature station periods of record and location (miles above the mouth) are noted on Table 10. While most tributary temperature stations are located near the mouth, the Thomes, Stony, and Butte Creek stations are significant distances above their confluences. For these creeks, therefore, equilibrium temperature equations similar to equation 1 were used to compute temperatures at the stream confluences with the Sacramento River. These equations use the thermograph records as initial temperatures, the tributary flows and E and K values, as defined previously, and estimated stream surface areas. The surface areas were developed by calibration using the equilibrium equations and available periodic temperatures at the mouths.³ A similar approach is used for Clear Creek to compute temperature changes between Whiskeytown Dam and the mouth. The equations used for the Clear, Thomes, Stony, and Butte Creeks are summarized in table 11.

Agricultural drainage temperatures are virtually nonexistent. Since drainage waters are strongly influenced by climatic conditions, it was assumed that the calculated monthly mean equilibrium temperatures could be used to

Digitized by Google

represent agricultural drainage temperatures. Partial temperature records^{3 31} were available for the Colusa Basin Drain (CBD) and are listed in table 10. A linear regression equation was developed for CBD using the average monthly temperature records and the 56-year average values of E developed for the Lower Sacramento River. This equation, presented in table 11, is used in the model to calculate CBD temperatures as a function of the mean monthly values of E.

Table 7 lists the assumed tributary temperature source for each stream and drain. For tributaries with no historical temperature data, temperatures from nearby streams are used.

2. Feather River

The river temperature model segments the Feather River into 10 reaches extending from Oroville Dam to the mouth. Table 12 identifies the reach locations.

Feather River geometry data were obtained from Corps of Engineers channel cross-section geometry used in the HEC-5 Model.⁴² The HEC-5 cross-section data include stream channel energy grade line elevations, the cross-section river mileages, cross sectional areas, hydraulic radius to the 2/3 power, surface widths, and Manning's n (roughness coefficient). This information was available at each cross section for 21 elevations. A computer program was written to calculate riverflows corresponding to each river surface width using Manning's equation and the HEC-5 data. Aerial photos from a DWR spawning gravel study on the Feather River¹⁴ were used to check the HEC-5 river widths. Some cross sectional width information was determined by these comparisons to be unrepresentative and was not used. Appendix E contains the computer program and cross-section data used in the Feather River

model. The model computes average surface widths for each river reach by interpolating the cross-section data.

Since DWRSIM output does not specify storages for Thermalito diversion pool, forebay, and afterbay, average storages were assumed based on historical operations. Corresponding surface areas were obtained from area-capacity tables. These surface areas, shown on table 4, are used in equation 1 to compute the temperature changes of Oroville Dam releases through the Thermalito reservoirs.

The three main tributaries entering the Feather River are Honcut Creek, Yuba River, and Bear River. DWRSIM output does not segregate river accretions by stream. Therefore, it was necessary to develop distribution factors for the three tributaries from USGS flow records. These factors are indicated on table 12. Agricultural return flows specified by DWRSIM are assumed to enter the river near Nicolaus.

Yuba River near Marysville continuous temperature records were available for 1972-78.⁴⁰ Average monthly temperatures were developed from these records and used to represent Yuba River inflow temperatures to the Feather River (table 10). Due to lack of temperature data, the other tributaries and agricultural return flows were represented by mean monthly equilibrium temperatures computed from Marysville air temperatures.²²

3. American River

The river temperature model segments the American River into eight reaches extending from Nimbus Dam to the mouth (table 13). Nimbus temperatures are computed from equation 1 using Folsom Dam flows and release temperatures and the Lake Natoma surface area shown on table 4.

American River geometry data were obtained from aerial photographs³⁶ and FWS instream flow studies.³⁸ Based on the available river width data, logarithmic relationships were developed between flow and width for each river reach. The coefficients for the relationships are shown on table 13.

Carmichael and City of Sacramento diversions, specified by DWRSIM output, are subtracted from American River flows at the Cordova Park and the City Filtration Plant river locations, respectively. The model neglects any effects that backwater influence from the Sacramento River may have on American River Temperatures between H Street and the mouth.

D. River Model Verification

The river temperature model was verified (predicted and measured temperatures compared) on the Sacramento, Feather, and American Rivers at several locations for the period 1971-77. The verifications are presented graphically in figures 7-11. Additional verifications for the Sacramento River (1987) and the American River (1981) are included in Appendix F. The predicted temperatures are generally within 1-2 °F of the measured temperatures. This is an acceptable difference since most measured temperatures are accurate to only about 0.5-1.0 °F. Christensen and Orlob¹o evaluated the sensitivity and accuracy of a previous version of the river temperature model²a and recommended several potential improvements. The model reported herein has been substantially revised and includes several improvements, which are discussed in Chapter VI.

V. MODEL EVALUATIONS

A. River Temperature Control by Flow Augmentation

To provide input to the Bay-Delta Hearing process, the monthly model was used to evaluate Sacramento River flows that would be required to maintain river temperatures at Freeport suitable for salmon smolt out-migration.²⁵

A DWRSIM operations model run (base study No. 75D) was used for temperature model input. The model computed additional Shasta releases, above the base flows, required to meet Sacramento River temperatures at Freeport during May and June ranging from 65 to 69 °F. For this analysis, it was assumed that Shasta releases of about 50 °F would be available each year in unlimited amounts. Since each year was evaluated independently, the effects of increased Shasta releases on the storages and temperatures of Shasta Reservoir in subsequent years was not considered.

Table 14 and figures 12-13 summarize the flow study results. It is apparent that significant quantities of water would need to be released from Shasta Dam to achieve small temperature reductions at Freeport in May and June. For example, table 14 indicates that a 1 °F reduction in May could require additional Shasta releases of about 50-100 thousand acrefeet (TAF) (56-year average) with releases exceeding 250 TAF in some years. A 1 °F reduction in June could require additional releases of about 200-250 TAF (56-year average) with releases exceeding 300 TAF in some years. A 3 °F reduction could require releases of over 150 TAF in May and 600 TAF in June (56-year average) with high values exceeding 500 TAF in May and 1,000 TAF in June in certain years. As a check, these model results were compared with

output from a DWR regression model relating Freeport temperatures to flows and air temperatures. A comparison of selected years shows reasonable agreement of the two models in the estimated flow increases required for Freeport temperature reductions of 1 °F and 3 °F.

To compare the effectiveness of different water supply sources on reducing Sacramento River temperatures at Freeport, the model was used to develop flow vs. temperature curves for Shasta, Oroville, and Folsom releases. Flow increases from each upstream reservoir were made separately, while the other two reservoirs were held constant at the base level. All reservoir releases were assumed to be 50 °F. May 1976 conditions from DWRSIM study No. 75D were used. 13

The results of this analysis are shown in figure 14. As would be expected, Oroville and Folsom releases were more effective than Shasta releases in reducing Freeport temperatures because of the shorter distance and travel time from release point to Freeport. Folsom releases are most effective but would have the disadvantage of not reducing Sacramento River temperatures upstream of the American River confluence. Also, the ability to make additional releases from Folsom Reservoir is limited by its lower capacity.

In summary, the flow evaluations have demonstrated that substantial amounts of upstream reservoir releases would be required to achieve relatively small reductions of Sacramento River temperatures at Freeport. The effectiveness of flow augmentation is limited by the influence of air temperatures and other climatic factors on river temperatures. Also, large spring reservoir releases would reduce summer and fall storages, which would result in warmer summer and fall river temperatures in the salmon spawning

reaches. Warmer temperatures in the Sacramento and American Rivers, for example, would adversely impact the winter, spring, and fall salmon runs on the Sacramento River and the fall run on the American River.

B. River Temperature Control by Other Measures

Table 15 summarizes a temperature model evaluation of the ability of upstream management actions other than increased flows to reduce Freeport temperatures in May and June. These actions include a Shasta Dam TCD, bypassing Oroville Dam releases around Thermalito Forebay and Afterbay, increasing riparian shade along the entire length of the Sacramento River from Keswick Dam to Freeport by 10 percent, and eliminating the major agricultural drainage discharges to the Sacramento River from Butte Creek to Sacramento. The May and June temperature reductions at Freeport were computed to be 0.7 °F or less for each action, and 1.5 °F or less for all four actions combined, based on a 56-year average (1922-1977) of predicted temperatures using DWRSIM operations study No. 62B.¹³

The Shasta TCD has no significant effect on Freeport temperatures during any month of the year. The device would normally be operated to conserve cold water in the spring months so that river temperature reductions could be accomplished in the summer and fall months to benefit the winter and fall salmon spawning above Red Bluff. Table 15 shows the effects of an August-November Shasta TCD operation. While significant temperature decreases occur at Red Bluff (about 2-4 °F), Freeport temperature reductions are minor, ranging from 0.1 to 0.3 °F.

C. DWRSIM Operation Studies for Salmon

DWRSIM operation studies were run for a base condition (No. 75D) and a salmon flow condition (No. 144C).¹³ Both studies assumed 1990 hydrology, 1990 level projected SWP-CVP demands, and existing facilities. The salmon study No. 144C imposed a salmon flow requirement from May 1-June 15 at Freeport on the Sacramento River, based on the DWR regression equation relating river temperature to flow and air temperature.¹⁶ The target temperatures for Freeport were 63 °F in May and 67 °F in June.

The temperature model results for the two DWRSIM studies are presented in table 16 and figures 15 and 16. Monthly mean temperatures averaged over the 56-year study period are shown in table 16 for the Sacramento River at two locations: Red Bluff and Sacramento. Studies with and without a TCD at Shasta Dam were run. The TCD was operated to reduce salmon spawning temperatures between Keswick Dan and Red Bluff during the months of July-November.

The model results indicate a 56-year average reduction in Freeport temperatures of about 1.3 °F in May and 0.5 °F in June. Maximum reductions of over 6 °F in May and 3 °F in June occur in specific years (figure 15). The trade-off of providing cooler Freeport temperatures in May and June is an increase in river temperatures above Red Bluff during July-September, the spawning period of the winter and spring salmon runs. The 56-year average temperatures at Red Bluff are about 0.5-1.0 °F warmer in these months under the salmon flow scenario (No. 144C). Maximum increases of 4-6 °F occur in certain years (figure 16). The warmer river temperatures in July-September are due to lower Shasta storage levels resulting from the May-June salmon flow increases.

VI. POTENTIAL MODEL IMPROVEMENTS

The report by Christensen and Orlob¹⁰ reviewed a previous version of Reclamation's monthly model²⁸ and recommended several potential improvements. The model reported herein has incorporated many of these improvements. They include a more definitive treatment of Sacramento River accretion flows and temperatures, updated climatic input data, improved geographic representation of climatic data, and a more detailed characterization of river geometry.

Despite these improvements there are additional modifications to the model that could potentially improve its accuracy. Some areas of potential improvement include:

- 1. Inflow temperatures A better estimate of reservoir and tributary inflow temperatures may be obtainable by multiple regression of available measured temperatures with flows and air or equilibrium temperatures.
- 2. Regulating reservoirs An improved estimate of temperature changes within the regulating reservoirs may be possible by using a two-dimensional model to simulate stratification, which may become significant under certain low flow conditions.
- 3. Whiskeytown Reservoir Because of its relatively high inflow-storage ratio and unique geometry, Whiskeytown Reservoir temperature may be characterized more accurately by a two-dimensional reservoir model rather than the one-dimensional model.
- 4. Climatic data While monthly mean air temperatures were specified for each year of the study period (1922-1977), the other climatic variables were represented by long-term average monthly means. There may be sufficient data

to extend some of these other variables by correlation throughout the study period, thereby improving the annual climatic variation.

5. River geometry - Feather and American River geometry input data can be improved by evaluating additional aerial photo sets to better define the flow vs. surface width relationships. Data from the recent Sacramento River instream flow study²³ could be useful in determining changes in river geometry that may have occurred since the 1962 study.⁹ Data being collected on the American River in connection with the instream flow litigation¹⁹ may be helpful in better defining the effects of backwater on the temperatures of the American River above the mouth.

VII. CONCLUSIONS

- 1. The monthly temperature model described in this report is useful for comparing temperature effects of alternative CVP-SWP operating scenarios, as defined by monthly operation models (i.e., DWRSIM or PROSIM).^{11 24}
- 2. The model is best used for evaluating relative differences in river temperatures for different operating conditions. Any use of the predicted temperatures as absolute values must consider inherent model inaccuracies.
- 3. The model is limited to mean monthly, steady-state simulations of water temperature. Evaluation of the effects of unsteady flow conditions or short-term (i.e., daily or diurnal)fluctuations in air temperatures or other climatic variables would require a different modeling approach.
- 4. The studies evaluating different flow scenarios (i.e., DWRSIM No. 75D and No. 144C) have shown that increased reservoir releases can reduce Sacramento River temperatures at Freeport during May and June, but only at the cost of increasing upstream river temperatures during July-September.

VIII. RECOMMENDATIONS

- 1. The potential model improvements listed in section VI should be implemented to the extent that available resources and data allow.
- 2. Additional model studies should be conducted as necessary to further define the ability of CVP-SWP operations to meet existing or proposed temperature objectives for fisheries.
- 3. The model should be modified as necessary to operate with the new operations model PROSIM,²⁴ when it becomes fully operational.
- 4. Application of the model to the San Joaquin River Basin should be developed. The model should be designed to accept output from the operations model (SANJASM).⁵

IX. REFERENCES

- 1. Beard, L. R., and Willey, R. G.; "Reservoir Temperature Stratification;" Generalized Computer Program No. 723-410; Users Manual; HEC, U.S. Army Corps of Engineers; Davis, CA; January 1972.
- 2. Beard, Leo R.; "Optimization Techniques for Hydrologic Engineering;"
 Hydrologic Engineering Center, U.S. Corps of Engineers; Technical
 Paper No. 2; Sacramento, CA: April 1966.
- 3. Blodgett, J. C.; "Water Temperatures of California Streams;" North Coastal and Sacramento Basin Subregions; Open-File Report; U.S. Geological Survey; Menlo Park, CA; 1970-71.
- 4. Boles, Gerald L.; "Water Temperature Effects on Chinook Salmon With Emphasis on the Sacramento River." Literature Review; Department of Water Resources, Northern District; Red Bluff, CA; January 1988.
- 5. Boyle Engineering; SANJASM San Joaquin Basin Simulation Model; under development; Sacramento, CA; estimated completion date: July 1990.
- 6. California Department of Water Resources; "State Water Project Annual Report of Operations;" Sacramento, CA; 1982-87.

- 7. California Department of Water Resources; "California Sunshine Solar Radiation Data;" Bulletin 187; Sacramento, CA; August 1978.
- 8. California Department of Water Resources; "Water Operations Manual OP-150 -Oroville Field Division - Appendix A3 - Area Capacity Tables; Sacramento, CA; May 1971.
- California Department of Water Resources; "Sacramento River Water Pollution Survey;" Bulletin No. 111, Appendix A, Hydrography, Hydrology and Water Utilization; August 1962.
- 10. Christensen, Carol L. and G. T. Orlob; "Temperature Modeling of the Sacramento and American Rivers;" project report prepared for California Department of Fish and Game; University of California, Davis; Davis, CA; September 1989.
- 11. Chung, Francis I., et al.; "The DWR Planning Simulation Model for California;" Department of Water Resources, Sacramento, CA; January 1985.
- 12. DeHaven, Richard W.; "Shaded Riverine Aquatic Cover of the Sacramento River System, 1987-88 Study Results and Recommendations:" U.S. Fish and Wildlife Service; Sacramento, CA; May 1989.
- 13. Dabbs, Paul; Memos transmitting DWRSIM No. 75D and 144C output tables to Jack Rowell (U.S. Bureau of Reclamation); Department of Water Resources, Sacramento, CA; June 6. 1989, and March 30, 1990.
- 14. Eaves, J. Noel; "Feather River Spawning Gravel Baseline Study;"
 Department of Water Resources, Northern District, Red Bluff, CA; 1982.
- 15. Edinger, J. E. and Geyer, J. A.; "Heat Exchange in the Environment;" Edison Electric Institute Publication No. 65.902; Johns Hopkins University; Baltimore, MD; June 1, 1965.
- 16. Green, Sheila; "Freeport Flow Guidelines for Augmented 75D Operation Study;" office memorandum; Department of Water Resources, Sacramento, CA; November 1, 1989.
- 17. Humphrey, John H.; "American River Water Temperature Modeling;" Ott Water Engineers, Inc.; Redding, CA; April 1987.
- 18. Kjelson, Martin A., Dennis Hood, and Patricia L. Brandes; "Survival and Productivity of Juvenile Chinook Salmon in the Sacramento-San Joaquin Estuary;" annual progress report; U.S. Fish and Wildlife Service; Stockton, CA; October 1989.
- 19. Leidy, G. Roy; "Water Temperature Monitoring Program;" draft proposal for the American River; Beak Consultants, Inc.; Sacramento, CA; May 3, 1990.

- 20. National Oceanic and Atmospheric Administration; "Local Climatological Data Sacramento, California 1979;" Asheville, NC; 1979.
- 21. National Oceanic and Atmospheric Administration; "Climates of the States;" Volume 1; edited by Gale Research Company, Detroit, MI; 1978 edition.
- 22. National Oceanic and Atmospheric Administration; "Climatological Data Annual Summary California," 1922-77.
- 23. Odenweller, Dan; "Upper Sacramento River Instream Flow Study;" preliminary draft report; Department of Fish and Game; Stockton, CA; 1990.
- 24. Randall, Dean and Daniel P. Sheer; "SWP/CVP Hydrologic Integrated Simulation Model Documentation;" preliminary report; Water Resources Management, Inc., Columbia, MD; April 14, 1989.
- 25. Renning, John; "Comments of the USBR Upon the Revised Draft Water Quality Control Plan Sacramento-San Joaquin Delta;" U.S. Bureau of Reclamation, Sacramento, CA; February 21, 1990.
- 26. Rowell, J. H.; "Mathematical Model Investigation of Auburn Dam Multilevel Intakes for Downstream Temperature Control;" U.S. Bureau of Reclamation, Sacramento, CA; April 1980.
- 27. Rowell, J. H.; "Mathematical Model Investigations: Trinity Dam Multilevel Outlet Evaluation Trinity River Temperature Prediction Study;" Trinity River Basin Fish & Wildlife Task Force; Interim Action Program; U.S. Bureau of Reclamation; Sacramento, CA; May 1979.
- 28. Rowell, John H.; "Reservoir and Stream Temperature Predictions in the Upper Sacramento River Basin;" M. S. Thesis; California State University, Sacramento, CA; July 24, 1972.
- 29. Smith, Donald J.; "Calibration Report Sacramento River System Temperature and EC Model;" draft report to U.S. Bureau of Reclamation contractor: CH2M Hill; Resource Management Associates; May 1988.
- 30. Theurer, Fred D., et al.; "Instream Water Temperature Model Instream Flow Information Paper 16;" U.S. Fish and Wildlife Service, Fort Collins, CO; September 1984.
- 31. Turek, Steve; unpublished temperature data Sacramento River Basin; Department of Water Resources, Red Bluff; CA; 1939-82.
- 32. U.S. Bureau of Land Management; "Ephemeris of the Sun, Polaris, and Other Selected Stars;" Washington, DC; 1971.
- 33. U.S. Bureau of Reclamation; "Temperature Control of Spring Creek Powerplant Releases to the Sacramento River;" memo to State Water Resources Control Board; Sacramento, CA; March 15, 1990.

Digitized by Google

- 34. U.S. Bureau of Reclamation; "Shasta Temperature Control Device CONCEPTC Decision Memorandum No. 3130-1;" Denver, CO; June 20, 1989.
- 35. U.S. Bureau of Reclamation; "Central Valley Fish and Wildlife Management Study Temperature and Flow Studies for Optimizing Chinook Salmon Production, Upper Sacramento River, California;" draft special report; Sacramento, CA; August 1986.
- 36. U.S. Bureau of Reclamation; aerial photos, Lower American River, Flow = 1,000 ft³/s; Sacramento, CA; September 19, 1966.
- 37. U.S. Bureau of Reclamation; Area-Capacity Tables for Shasta, Clair Engle, Whiskeytown and Folsom Reservoirs; Sacramento; 1962.
- 38. U.S. Fish and Wildlife Service; "A Preliminary Report on the Lower American River Flow Study;" prepared for U.S. Bureau of Reclamation; Sacramento, CA; December 1983.
- 39. U.S. Geological Survey; "Water Resources Data for California," Annual Report; 1987.
- 40. U.S. Geological Survey; "Water Resources Data for California," annual reports; 1954-85.
- 41. University of California, Berkeley; "Solar Radiation Probable Average Values of Insolation Direct and Diffuse on a Horizontal Surface at Sea Level, in Langleys per Day;" Algae Research Project; Berkeley, CA; June 15, 1954.
- 42. Willey, Jerry; Feather River geometry data; HEC-5 Model Input Data; U.S. Corps of Engineers; Davis, CA; 1989.

Digitized by Google

LIST OF FIGURES

- 1. Sacramento River Basin Temperature Model Network
- 2. Lake Profiles Clair Engle, Whiskeytown, Shasta July 1987
- 3. Lake Profiles Oroville August 1981, Folsom October 1976
- 4. Tributary Basins of the Sacramento River Department of Water Resources Bulletin 111
- 5. Department of Water Resources Simulation Model Network Representation
- 6. Department of Water Resources Simulation Model Drainage Areas
- 7. Sacramento River Temperature Model Verification: 1971-77 Bend Bridge and Butte City
- 8. Sacramento River Temperature Model Verification: 1971-77 Wilkens Slough and Freeport
- 9. Feather River Temperature Model Verification: 1971-77 Thermalito Diversion Dam and Thermalito Afterbay
- 10. Feather River Temperature Model Verification: 1971-77 Nicolaus
- 11. American River Temperature Model Verification: 1971-77 Nimbus Dam and Sacramento Treatment Plant
- 12. Keswick Releases Required to Meet 65 °F at Freeport in May: 1922-77
- 13. Keswick Releases Required to Meet 65 °F at Freeport in June: 1922-77
- 14. Sacramento River at Freeport Flow vs. Temperature May 1976
- 15. Sacramento River at Freeport May and June Temperatures 1922-77 DWRSIM No. 75D (Base) vs. No. 144C (Salmon)
- 16. Sacramento River at Red Bluff July and August Temperatures: 1922-77

FIGURE 2 Lake Profiles — July 1987

FIGURE 3 - Lake Profiles

Folsom - Oct 1976

---- measured

predicted

FIGURE 4 (Continued)

LEGEND

Basin	
. <u>No.</u>	Basin
1	Shasta Lake Inflow
2	Local Keswick Inflow
3	Spring Creek
4	Middle Creek
5	Sulphur Creek
6	Olney Creek
7	Clear Creek
8	Churn Creek
9	Stillwater Creek
10	Cow Creek
11	Bear Creek
12	Ash Creek
13	Anderson Creek
14	Cottonwood Creek
15	Battle Creek
16	Inks Creek
17	Paynes Creek
18	Blue Tent Creek
19	Dibble Creek
20	Reeds Creek
21	Red Bank Creek
22	Antelope Creek
. 23	Oat Creek
24	Elder Creek
25	Mill Creek
26	Thomes Creek
27	Toomes Creek
28	Deer Creek
29	Rice Creek
30	Pine Creek
31	Big Chico Creek
32	Stony Creek
33	Butte Creek
34	Colusa Basın Drain
35	Sacramento Slough-Sutter Bypass
36	Feather River
37	Auburn Ravine
38	American River
39	Clear Lake
40	Putah-Cache Creeks

Thermalito Diversion Dam Feather River Temperature Model Verification 1971-77 Thermalito Afterbay Figure 9 Predicted Measured Temperature

Feather River Temperature Model Verification 1971-77 Figure 10

Sacramento Treatment Plant American River Temperature Model Verification 1971-77 Nimbus Measured Figure 11 **Predicted** 0 **Temperature**

Sacramento River at Freeport for May 1976 Figure 14

DWRSIM #75D — All releases at 50 F

Digitized by Google

LIST OF TABLES

- 1. Reservoir Outlet Elevations
- 2. Reservoir Temperature Model Input Data
- 3. Reservoir Temperature Model Calibrations Coefficients
- 4. River Temperature Model Equations
- 5. River Temperature Model Climatic Input Data
- 6. River Temperature Model Data Sources for E and K Calculation
- 7. Sacramento River Model Reach Locations and Tributaries
- 8. Sacramento River Geometry
- 9. Discharges from Irrigation Drains to the Sacramento River
- 10. Sacramento River Tributary Temperatures
- 11. Sacramento River Tributary Temperature Equations
- 12. Feather River Model Reach Locations and Tributaries
- 13. Lower American River Temperature Model Input Data
- 14. Additional Keswick Releases to Meet 65-69 °F at Freeport May and June DWRSIM No. 75D 1922-77
- 15. Effects of Management Actions on Sacramento River Temperatures DWRSIM No. 62B Red Bluff, Freeport 56-year average (1922-77)
- 16. DWRSIM Operation Studies for Salmon DWRSIM No. 75D (base) No. 144C (Salmon) Red Bluff, Freeport 56-year average (1922-77)

TABLE 1 RESERVOIR OUTLET LEVEL ELEVATIONS

OUTLET LEVEL ELEVATION - FT

1

Reservoir			Power					River			Spill
Clair Engle			2110					2000			2350
Whiskeytown			1085				975		1110		1210
Shasta Existing Proposed TCD*	710	800	815	815 1020	900	742		842 842		942	1037 1037
Oroville*	620 770	800		700	740			400			922
Folsom*	307	402		415	428	210		280		316**	897

* Power levels are approximate
** Local water supply diversion

RESERVOIR TEMPERATURE MODEL INPUT DATA TABLE 2

INPUT DATA DATA / RESERVOIR SOURCE		ட	Σ	⋖	Ž	ean mor J	Mean monthly values J	ues A	တ	0	Z	Q
INFLOW TEMPERATURE - °F	36.7	40.3	6.04	41.3	43.8	54.2	2.09	62.2	61.1	52.1	41.3	37.7
	42.0	46.0	46.0	51.0	55.0	63.0	70.0	72.0	65.0	57.0	48.0	45.0
Shasta	42.5	44.8	6.94	9.67	54.4	61.1	67.2	62.9	61.5	54.6	48.8	43.1
Oroville 4	41.0	9.44	46.4	50.0	55.4	62.6	8.69	8.69	66.2	57.2	50.0	42.8
Folsom - North Fork 5	44.1	46.2	49.4	52.9	57.7	8.49	7.89	66.1	63.5	59.7	53.4	•
Folsom - South Fork 6	41.3	42.2	45.7	48.6	52.4	57.4	6.09	60.3	59.3	56.3	48.7	43.5
TOTAL SOLAR RADIATION - LY/D		•	•		•				i			•
Clair Engle 7	350	200	650	820	920	950	935	870	710	550	400	310
Whiskeytown 7	320	200	650	820	920	970	096	870	710	550	400	310
Shasta 7	320	200	650	820	920	955	076	870	710	550	400	310
Oroville 7	360	505	099	830	940	980	965	860	710	220	400	320
Folsom 7	390	510	650	830	930	980	970	860	720	220	400	340
AIR TEMPERATURE REGRESSIONS Clair Engle		TA I	.9381615	× RTA -	4.185949	I H	866					
		1		RTA -	0.585167	H	266					
Shasta 10		TA -	.9964047	× RTA -	1.288424	H	266					
		Regressi	Regression Terms:									
·		TA -	Reservoi	r monthl	Reservoir monthly mean air	ir tempe	temperature					
		RTA -	Redding monthly Correlation coef	monthly ion coef	hly mean air temperataure coefficient	tempera	•	NOAA - 1	1922-77			
Di												
Data Sources:												
	fee Creek		WTD Avg.	- 1957-68	89							
	@ French (Julch - 1										
3. USGS/DWR - Sacramento (thermograph) McCloud,	to (thermo	ograph) N		Pit; Flow	w - WTD Avg.	ı	1964-77					
	d Orovil	le (therm	mograpn) . (thormo	- 1954-6/		DONN THE DISTRIBUTED AND		1061 78				
5. USGS/USBR - NOICH FOLK AMELICAN KIVEL (CHELMOGLAPH), M. 6. USGS - South Fork American River (thermograph) - 1964-7	ork Americ merican Ro	ean Kiver Iver (the	r (Lnermo Frmograph	igraph), m. 1) - 1964-78		r LOW - W I	- 508 G	0/-1061				
Figur	Ą	, (• •									
8 NOAA - Trinity River Hatchery - 1976-85	r Hatcher	. 1976-										

USGS/DWR - Sacramento (thermograph) McCloud, Pit; Flow - WTD Avg. - 1964-77 DWR - Feather River @ Oroville (thermograph) - 1954-67 USGS/USBR - North Fork American River (thermograph), M. Fork; FLOW-WTD AVG - 1961-78 1. 2. 3. 4. 5. 6. 7. 9.

Figure 2 - Appendix A NOAA - Trinity River Hatchery - 1976-85

NOAA - Whiskeytown Dam - 1976-85

NOAA - Shasta Dam - 1944-70

TABLE 3 RESERVOIR TEMPERATURE MODEL

Calibration Coefficients

•				Coefficients			Calib.
Reservoir	Data Source	Air Temp	Inflow Mixing	Vertical Diffusion	Evapor- ation	Insol- ation	Error °F
Clair Engle	1	. 500	. 230	.003	. 513	. 325	0.7
Whiskeytown	1	. 988	.072	.003	. 866	.000	2.0
Shasta	1	1.000	.048	.013	. 655	.155	1.1
Oroville	2	.924	.108	.097	1.000	. 277	2.2
Folsom	1	. 500	. 230	.020	. 440	.220	1.1

Data Source:

- USBR Temperature Depth Profiles selected years 1951-77
 DWR Temperature Depth Profiles 1981

TABLE 4 RIVER TEMPERATURE MODEL EQUATIONS

```
Equation 1: T_2 = (T_1 - E) e^{-CK/Q} + E
Equation 2: T_2 = (T_1Q + T_TQ_T)/(Q + Q_T)
  TERMS:
    T_1 = River temperature at start of reach (EQ.1) or above tributary (EQ.2) - °F
    T_2 - River temperature at end of reach (EQ.1) or below tributary (EQ.2) - °F
     E = Equilibrium temperature - °F
     Q = Riverflow over reach (EQ.1) or above tributary (EQ.2) - ft^3/s
     e = Natural log = 2.7183
     K = Heat exchange coefficient - _
    T_{\tau} = Tributary temperature - °F
    Q_T = Tributary flow - ft<sup>3</sup>/s
                    A - Surface area of river reach - ft<sup>2</sup>
                    C1 = 62.4 \text{ lb/ft}^3
                    C2 - 1 Btu/1b
                    43,560 ft<sup>2</sup>/acre
                    86,400 sec/day
           Assumed regulating reservoir surface areas:
              Lewiston
                                   736 acres
              Keswick
                                    620
              Thermalito
                Diversion pool
                                   319
                Forebay
                                    614
```

Afterbay

Natoma

3,460

450

RIVER TEMPERATURE MODEL CLIMATIC INPUT DATA TABLE 5

	DATA					<	Mean monthly values	nthly valu	Ser				
VARIABLE/UNITS SO	SOURCE	7	ш	Σ	4	Σ	7	٦,	4	S	0	z	۵
Red Bluff													
Solar radiation - LY/D	Y/D 1	157	247	378	520	621	683	681	809	481	329	201	136
Relative humidity -	8	72.5	67.3	0.09	51.8	46.3	38.5	33.5	35.0	36.5	47.5	64.3	73.8
Wind speed - mi/h	7	9.5	9.5	8.6	9.6	9.5	9.3	8.0	9.7	8.0	8.4	9.8	8.5
Cloud cover - 10ths	7	6.7	6.4	6.1	5.3	4.4	3.1	1.2	1.7	2.0	4.0	0.9	6.9
Solar altitude - Deg.		19.1	26.3	30.7	33.7	35.8	38.2	37.4	32.8	29.8	25.5	21.5	17.3
Solar reflectivity	7	.11	60.	.07	.07	.07	90.	90.	.07	80.	.10	.10	.11
Solar rad. factor	S	968.	. 929	. 962	. 983	066.	1.000	866.	.993	.974	.953	.912	806.
Sacramento													
Solar radiation - LY/D	9 Q/X	175	266	393	529	627	683	682	612	767	345	220	150
Relative humidity -	2	82.5	77.0	8.69	63.3	58.8	54.8	53.0	54.8	55.3	61.3	75.3	87.8
Wind speed - mi/h	8	7.7	7.8	8.9	9.0	9.6	6.6	9.1	8.7	7.7	6.7	6.3	7.0
Cloud cover - 10ths	∞	7.1	6.3	5.5	4.7	3.5	2.2	1.0	1.5	1.7	3.2	5.7	8.9
Solar altitude - Deg.	3	20.6	27.8	31.7	33.9	36.0	38.3	37.5	33.2	30.6	26.7	22.9	18.7
Solar reflectivity	7	.10	80.	.07	.07	.07	90.	90.	.07	.07	60.	60.	.10
Shade Factors													
Tow	6	60.	80.	.07	90.	90.	90.	90.	90.	.07	80.	60.	.10
Moderate	6	.15	.13	. 12	. 10	. 10	. 10	. 10	. 10	.11	.13	.15	.16
Data Sources:		-											

Sacramento Solar radiation (6) \times Factor (5)

NOAA - Red Bluff - 1946-75 (REF. 21)

Red Bluff Lat. = 40.4°, Sacramento Lat. = 38.6° (REF 32)
Appendix B - Figure B-3 (REF 15)
Ratio solar radiation by latitude - (Red Bluff/Sacramento) (REF 41)
DWR - Davis - 1942-77 (REF 7)
NOAA - Sacramento - 1961-79 (REF 20)
NOAA - Sacramento - 1949-79 (REF 20)
FWS - (REF 12) Google

TABLE 6 RIVER TEMPERATURE MODEL

Data Sources for E and K Calculation

Data Source Air Other Shade File Name River/Reaches **Temperature** Climatic **Factor** Trinity River Lewiston Reservoir Trinity * Red Bluff Low LEWKE1 Sacramento River Keswick Reservoir Red Bluff Low REDKE1 Redding Sacramento Riv (RM 301-272) Redding Red Bluff Low REDKE1 Sacramento Riv (RM 272-191) Red Bluff Red Bluff Low RBKE1 Sacramento Riv (RM 191-100) Low COLKE1 Colusa Sacramento Sacramento Riv (RM 100-46) Sacramento SACKE1 Sacramento Low Feather River Thermalito Diversion Pool OROKE1 Oroville Sacramento Low Thermalito Forebay & Afterbay Oroville Sacramento Low OROKE1 Feather River (RM 68-51) Oroville Sacramento Low OROKE1 Feather River (RM 51-0) Marysville Sacramento Mod MARKE1 American River Natoma Reservoir Folsom Sacramento Low FOLKE1 American River (RM 23-0) LARKE1 Sacramento Sacramento Mod

^{*} Regression with Redding air temperature (table 2)

TABLE 7
SACRAMENTO RIVER MODEL
Reach Locations and Tributaries

TABLE 7-CONTINUED SACRAMENTO RIVER MODEL

Reach Locations and Tributaries

132.0	1GCID 1000 199 1000	1GCID 1GCID 199 199 180 180 180 180 180 180 180 180
1GCID . 091 . 199 . 180 . 000 . 079 . 049 . 049 . 036 . 036 . 036 . 036 . 000	1GCID .0 .091 .199 .0) .18C .9 .079 .079 .079 .079 .079 .079 .079 .	1GCID .0 .091 .0) .199 .000 .9 .0461 .9 .079 .079 .079 .079 .079 .079 .079 .
.0)	000 1	.000 .109 .109 .1000 .0000 .0000 .0000 .0000 .0000 .0000
150) 150 150 150 150 161 161 161 161 161 161 161 161 161 16	13) 1SC 1SC 1000 1000 1000 1000 1000 1000 1	10) 1SC 13) 1SC 1461 9 1079 9 1CBD 9 1CBD 9 1078 9 1078 9 1078 9 1086 9
.3) 9 .461 9 .079 9 .049 9 .049 9 .049 9 .036 9 .036 9 .036 9 .000	.3) 9 .461 9 .079 9 .049 9 .049 9 .049 9 .049 9 .036 9 .036 9 .000 9 .000	.3) 9 .461 9 .079 9 .049 9 .049 9 .036 9 .036 9 .000 9 .000
000 1079 1079 1080 1	000 000 000 000 000 000 000 000	000 000 000 000 000 000 000 000
1049 1049 1080	1 IWS 9	1049 1049
9 411 9 673 9 673 9 036 9 036 9 036 9 036 9 000	9 .411 9 .049 9 .049 9 .036 9 .036 9 .000 9 .000	9 411 9 049 9
9 ICBD 9 ICBD 9	9 9 1CBD 9 0673 9 000 9 000 000 000	049 9 ICBD 9
	9 QFR 9 QFR 9 036 9 QAR 9 000 9 000	9 9 9 0 0 0 36 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 220 9 036 9 035 9 000 9	9 9 9 9 036 9 000 000 000 000	9 9 9 036 9 000 000 000 000
220 9 .036 9 .035 9 .000	220 9 9 035 000 000 000 000	220 9 036 9 000 9 000 000
9 9 9 036 9 000 000 000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 0 036 9 0 000 0 000 0 000
9 9 9 035 9 000 9 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
035 9 000 000 000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 9 9 000 000 000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
666	<u> </u>	6 6 6
o o	6 6	o o
6	o	ο

TABLE 7-CONTINUED SACRAMENTO RIVER MODEL

Reach Locations and Tributaries

Column Explanation

- Reach number.
- River mile DWR Bul. 111 (REF 9). (2)
- Reach location usually at tributary or diversion points. (3)
 - KE File Refers to climate file (tables 6 and D-1). (4)
- DWR drainage area number see figure 6 and table D-1.
- Drainage areas of tributaries in square miles figure 4 DWR Bul. 111. 9
- Flow factors Col. (6) divided by Col. (6) (total) corresponding to DWR DA Col. (5). Variable names designate flows specified by input files - see table D-1. Agricultural drainage factors from table 9.
- EY3 and EY4 are Tributary temperatures - variable names of tributaries used to represent each tributary temperature TCL, TFR, and TAR designate temperature input files (table 10). TCL, TTHOMES, TSTONY, TBUTTE, and TCBD are further explained on table 11. equilibrium temperatures - see table D-1. (table D-1). 8

TABLE 8 SACRAMENTO RIVER GEOMETRY

Surface Areas in 10° Square Feet

River			low - 1,	•	-10	
<u>Mile</u>	2_	_4	_6	8_	_10_	<u>25</u>
300.68	.78	. 90	.92	.97	1.00	1.17
299.73	3.42	3.71	3.78	3.85	3.92	4.48
297.28	. 26	. 26	. 27	. 27	. 27	. 29
296.33	1.90	2.12	2.19	2.24	2.30	3.01
293.77	8.37	9.83	10.41	10.88	11.11	12.38
288.33	.33	.43	.45	.46	.46	. 49
288.12	6.51	8.08	8.80	8.90	8.98	9.95
283.46	5.73	6.75	7.10	7.29	7.44	8.29
279.75	1.39	1.51	1.58	1.62	1.67	1.92
278.93	4.15	4.42	4.60	4.72	4.85	5.45
276.45	2.18	2.30	2.39	2.45	2.52	2.79
275.15	4.55	5.13	5.25	5.34	5.40	5.75
272.60	.36	.43	. 44	. 45	. 45	. 52
272.36	3.16	3.60	3.66	3.72	3.75	4.44
270.10	11.22	12.01	12.37	12.52	12.61	14.79
263.32	8.87	9.31	9.70	9.97	10.08	12.51
256.33	5.24	5.49	5.67	5.76	5.79	7.02
251.67	9.32	10.11	10.34	10.60	10.67	11.76
246.50	1.84	1.96	2.01	2.08	2.11	2.41
245.38	2.92	3.04	3.09	3.16	3.19	3.59
243.66	1.52	1.57	1.61	1.65	1.67	1.77
242.82	1.69	1.75	1.79	1.83	1.85	1.96
241.92	2.05	2.11	2.15	2.19	2.21	2.28
241.19	14.60	17.16	18.64	19.96		- 27.81
233.50	1.50	2.64	3.03	3.29	3.35	3.79
231.98	4.64	5.32	5.93	6.39	6.91	7.90
229.44	. 83	. 85	. 87	. 90	.92	1.00
229.05	8.22	9.12	9.92	10.29	10.63	12.07
224.44	6.05	6.53	6.95	7.27	7.52	8.46
221.03	3.41	4.06	4.45	4.77	5.01	7.45
219.07	21.67	25.60	28.07	29.61	31.35	37.86
207.22	5.52	5.95	6.39	6.76	7.07	7.96
205.06	17.72	18.34	18.78	19.16	19.49	20.57
197.11	5.91	6.65	7.05	7.35	7.67	9.19
193.86	7.28	8.10	8.72	9.07	9.33	10.49
190.84	43.58	49.35	52.72	54.81	55.63	63.90
168.28	50.73	53. 3 9	55.16	56.89	58.10	69.15
138.86	21.91	22.74	23.63	24.24	24.76	29.16
124.15	7.03	7.39	7.64	7.83	8.04	9.23
118.11	18.79	19.70	20.74	21.36	22.04	26.46
100.06	6.28	6.71	7.0 9	7.30	7.59	9.47
93.60	3.16	3.36	3.51	3.59	3.70	4.49
90.23	11.11	11.30	11.47	11.81	12.16	14.49
80.75	1.17	1.21	1.23	1.26	1.28	1.43
80.00	2.29	2.36	2.41	2.45	2.50	2.74
79.13	27.62	28.45	29.01	29.33	29.55	31.44
66.32	10.71	11.46	11.81	12.10	12.19	12.93
61.51	1.48	1.58	1.64	1.66	1.67	1.74
60.92	1.40	1.50	1.56	1.57	1.58	1.65
60.36	. 58	.61	. 64	. 65	. 65	. 68
60.13*	5.97	6.21	6.36	6.48	6.52	6.91
58.00*	33.28	34.59	35.46	36.12	36.34	38.53

^{*} Estimated By Correlation - DWR Bulletin 111

TABLE 9
DISCHARGES FROM IRRIGATION DRAINS TO THE SACRAMENTO RIVER
1950-59

				ā	Discharge (10	00 acre-feet					
	:1950	:1951	:1952	:1953	:1954	:1955	:1956	:1957	:1958	:1958 :1959	AVG
Butte Slough	228	168	104	181	205	180	141	122	83	128	154.0
Reclamation District 70	16	18	33	31	36	24	34	15	36	21	26.4
Reclamation District 108	121	159	172	141	167	126	132	93	151	111	137.3
Reclamation District 787	9	6	19	22	19	11	27	13	22	16	16.4
Colusa Basin Drain	261	310	225	305	271	355	326	353	236	356	299.8
Sacramento Slough	338	335	200	180	345	445	276	546	370	232	296.7
Natomas Cross Canal	172	N/R	214	81	83	107	152	84	12	7	97.0
Reclamation District 1000	43	38	77	45	97	51	65	17	82	6	47.3
TOTAL	1,184	1,037	1,043	987	1,172	1,298	1,152	406	992	877	

Source: DWR Bul. 111 (REF 9)

TABLE 10 SACRAMENTO RIVER TRIBUTARY TEMPERATURES

	,							AVERA	AVERAGE TRIBUTARY	BUTARY	-	TEMPERATURES -	ES - °F			
CREEK	MILES AB. MO.	RECORD	DATA	EQ.	ſ	ī.	Σ	∢	×	_	-	∢	S	0	z	D
) ac	0.4	1065_78	F	ž	44.3	48.3	52.4	7 7 7	3 3 3	74.0	<u>.</u>	707	73.5	203	50.3	0 77
	, c	1077-85	٠ (-		74.0	. o.	52.1	. 00	67.7	77.7	2.50	75.0	700	£ 55	5.5.5 5.5.5	7.7
. COITO	7.7	60-1161	- 1	2 :	2.5	0.0	1.00	0.40	t. (0.0	0.0	1.70	4.70	0.20	
Battle	2.7	1966-78	H	= 2	45.2	47.3	49.4	52.2	57.2	61.1	64.3	67.9	58.9	53.9	49.4	45.7
Paynes	0.4	1955-67	۵,	- %	46.4	48.2	53.6	59.0	62.6	71.6	71.6	71.6	8.69	64.4	51.8	48.2
Red Bk	0.5	1963-67	Д,	ŝ	48.2	48.2	53.6	53.6	66.2(1)	75.2(1)	75.2(2)	78.8(2)	71.6(2)	62.6(2)	51.8	51.8
Antlp1	9.7	1953-67	Д,	ŝ	42.8	46.4	48.2	53.6	59.0	68.0	75.2	78.8	71.6	62.6	50.0	44.6
Antlp2	2.0	1950-66	۵,	ν̈́	44.6	48.2	51.8	57.2	62.6	71.6	73.4	75.2	8.69	62.6	55.4	46.4
Elder	3.5	1953-68	م.	ŝ	46.4	48.2	53.6	8.09	8.69	78.8	90.8	78.8	77.0	8.09	53.6	50.0
Mill	8.0	1950-67	<u>a</u> ,	ŝ	44.6	44.6	48.2	53.6	57.2	64.4	73.4	78.8	71.6	62.6	51.8	46.4
Thomes	30.0	1961-78	۲	Yes	41.5	44.7	47.1	50.4	58.5	9.69	78.4	77.8	71.7	61.6	49.0	43.3
Deer	2.0	1943-51	۲	ŝ	41.2	45.0	48.7	54.7	61.8	0.69	76.2	73.9	70.2	58.8	49.3	43.6
Chico	2.0	1956-68	۵,	ŝ	42.8	48.2	20.0	57.2	8.09	8.69	75.2	75.2	8.69	59.0	51.8	44.6
Stony	24.0	1969-88	۲	Yes	45.6	48.5	52.9	26.8	6.19	68.2	73.6	76.8	72.7	64.5	54.3	47.5
Butte Cr	40.0	1961-78	۲	Yes	42.1	44.5	46.0	49.2	54.5	61.5	67.1	0.99	61.3	54.4	47.3	42.8
Butte SI	0.0	1953-68	Д,	ŝ	44.6	20.0	57.2	62.6	0.89	73.4	78.8	75.2	71.6	62.6	51.8	44.6
CBD	0.9	1953-88	Д,	Yes	44.6	49.1	60.2	60.3	9.69	75.2	79.1	76.8	70.3	63.5	52.9	47.8
SACSL	0.5	1954-68	۵,	ŝ	44.6	20.0	55.4	6 6.2	8.69	75.2	75.2	75.2	8.69	8.09	51.8	46.4
NATCC	2.0	1953-58	Д,	ŝ	44.6	51.8		29.0	8.69	8.69	78.8	71.6		57.2	51.8	48.2
Yuba	0.5	1972-78	⊢	ŝ	46.5	47.6	50.3	53.3	59.7	65.4	69.1	66.3	9.49	60.1	8.09	47.6
•				=												

(1) REDBK 20 mi ab mouth
(2) ANTLP1

T = Thermograph
PP = Periodic
EQ = Equation (table 11)

REF. (3, 31, 40)

TABLE 11 SACRAMENTO RIVER TRIBUTARY TEMPERATURE EQUATIONS

Clear Creek

$$T_2 = E + (T_1 - E) e^{-KA1/CQ}$$

$$T_3 = (T_2Q + T_{AC}Q_{AC})/(Q + Q_{AC})$$

$$T_A = E + (T_3 - E) e^{-KA2/C(Q + QAC)}$$

Terms:

- T, Whiskeytown release temperature TCL (table D-1)
- E = Equilibrium temperature EY1 (table D-1)
- K = Heat exchange coefficient XKY1 (table D-1)
- e Natural log 2.7183
- A, Clear Creek surface area (Whiskeytown Dam-IGO) .64 X 106 S.F.
- C = Unit conversion factor = 5.39136
- Q Whiskeytown release flow QCL (table D-1)
- T₂ Clear Creek temperature above IGO
- T_{ac} Accretion temperature Tcotton (table 10)
- Q_{ac} = Accretion flow = .014 (table 7) x IAC58 (table D-1)
- T, Clear Creek temperature Below IGO
- A₂ Clear Creek surface area (IGO-mouth) 2.20 X 10⁶ S.F.
- T₄ Clear Creek at mouth

Thomes Creek

$$T_2 = E + (T_1 - E) e^{-KA/CQ}$$

Terms:

- T, Thomes Creek temperature at RM 30 TThomes (table 10)
- E Equilibrium temperature EY2 (table D-1)
- K = Heat exchange coefficient XKY2 (table D-1)
- A Thomes Creek surface area (RM 30-mouth) 4.75 X 106 S.F.
- Q Thomes Creek flow ITC (table D-1)
- T_2 Thomes Creek temperature at mouth

Stony Creek

$$T_2 = E + (T_1 - E) e^{-KA/CQ}$$

Terms:

- T₁ = Stony Creek temperature at RM 24 = TStony (table 10)
- E EY2 (table D-1)
- K = XKY2 (table D-1)
- A Stony Creek surface area (RM 24-mouth) 6.34 X 106 S.F.
- Q Stony Creek flow ISC (table D-1)
- T₂ Stony Creek temperature at mouth

TABLE 11-CONTINUED SACRAMENTO RIVER TRIBUTARY TEMPERATURE EQUATIONS

Butte Creek/Slough

 $T_2 = E + (T_1 - E) e^{-KA/CQ}$

Terms:

- T, Butte Creek temperature at RM 40 TButte (table 10)
- E EY3 (table D-1)
- K = XKY3 (table D-1)
- A Butte Creek surface area (RM 40-mouth) 21.12×10^6 S.F.
- Q = Butte Creek flow = .461 (table 7) x IACI5 (table D-1)
- T_2 Butte Creek temperature at mouth

Colusa Basin Drain

T - 1.1067 (E) - 1.4082

Terms:

J

E = EY4 (table D-1)

Linear regression with TCBD (table 10)

and EY4 (1922-77 avg.)

N - No. data points - 12

r - Correlation coefficient - .984

T - Colusa Basin drain outfall temperature

TABLE 12 FEATHER RIVER MODEL

Reach Locations and Tributaries

Reach	River		KE	Tributary 1	Data
No.	Mile	River Location	File	Flow	Temp.
(1)	(2)	(3)	(4)	(5)	(6)
1		Oroville Dam	ORO	IQKR	EY1
2	67.9	Thermalito Div. Dam	ORO	IQTD	
3	67.3	Fish Barrier Dam	ORO		
4	59.0	Thermalito Afterbay	ORO	IQTAB	TTAB
5	50.8	Gridley - Gauge	ORO		
6	44.0	Honcut Creek	MAR	IQD56 × F1	EY2
7	27.7	Yuba River	MAR	IQ56 × F2 -IQD13	TY
8	12.4	Bear River	MAR	IQ56 × F3	EY2
9	9.3	Nicolaus - Gauge	MAR	IQR13	EY2
10	7.4	Nelson Slough	MAR		
	0.0	Mouth			

Column explanation

- (1) Reach number.
- (2) River mile USGS topographic map.
- (3) River location usually at tributary or diversion points.
- (4) KE File refers to climate file (see tables 6 and D-2).
- (5) Flow variable names (table D-2). Flow dist. factors: F1 = .022, F2 = .836, F3 = .142 (based on USGS flow records).
- (6) Temperature variable names (table D-2). EY1, EY2 = equil. temperatures (table D-2), TTAB = computed therm. afterbay temperature, TY = TYUBA (table 10).

TABLE 13 LOWER AMERICAN RIVER TEMPERATURE MODEL INPUT DATA RIVER CHARACTERISTICS

U

I

Reach No.	River Location	Mile Point* (Mi. U/S Month)	Reach Length (Miles)	Width Coefficients A	fficients C	DWRSIM Diversion
1	Nimbus Dam	22.94				
2	Sunrise Bridge	20.08	2.86	102.516	67.242	
က	Cordova Park	15.35	4.73	-55.404	88.702	IQCAR
7	Arden Rapids	13.46	1.89	-55.404	88.702	
S	Watt Avenue Bridge	9.36	4.10	252.912	30.044	
9	American River Filtration Plant	7.34	2.02	190.912	30.044	IQFP
7	H Street Bridge	6.59	0.75	190.912	30.044	
∞	16th Street Bridge	2.01	4.58	150.912	30.044	
	Mouth	00.00	2.01	150.912	30.044	

^{*} Mile point from 1980 USGS quads 1:24000

Notes: W = C LOG Q + A

Where W = width - ft $Q = flow - ft^3/s$

 $^{^{\}text{b}}$ Widths from 1966 aerial photos: Q = 1,000 ft $^{3}/\text{s}$, and from 1981 instream flow study

TABLE 14

KESWICK RELEASES TO MEET FREEPORT TEMPERATURES - DWRSIM # 75D

	- base	rels -			{	incremen	tal incre	ease in	releases			
	•	•	65 F	65 F	66 F	66 F	67 F	67 F	68 F	68 F	69 F	69 F
	May	June	May	June	May	June	May	June	May	June	May	June
YEAR	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF
1922	510	533	0	559	0	0	0	0	0	0	0	0
1923	538	652	0	83	Ö	Ö	Ö	Ö	ŏ	ŏ	Ŏ	Ŏ
1924	434	525	695	970	523	768	363	589	215	422	49	274
1925	289	812	0	559	0	369	0	184	0	0	0	0
1926	498	699	148	1,023	0	827	0	649	0	488	0	339
1927	567	549	0	928	0	666	0	405	0	71	0	0
1928	467	726	510	869	271	666	0	482	0	309	0	137
1929 1930	479 453	513 683	191 0	791 815	31 0	625 625	0	470 452	0	327 286	0	190 113
1931	408	5 8 6	1,070	1,244	849	940	652	690	474	482	308	298
1932	436	572	160	1,678	0	1,285	0	958	0	660	0	357
1933	448	493	0	1,452	Ö	1,119	Ŏ	839	Ŏ	589	Ō	345
1934	370	470	621	1,351	449	1,059	289	815	98	601	0	405
1935	285	686	0	1,321	0	1,065	0	839	0	631	0	434
1936	453	513	0	1,053	0	815	0	595	0	375	0	107
1937	413	649	0	708	0	553	0	411	0	268	0	119
1938	518 507	479	0	1,535	700	1,095	477	666	0	(22	0	0
19 39 1940	503 339	655	443	910	308	732	172 0	571 893	12 0	422 684	0	286 494
1941	909	751 646	394 0	1,392 1,065	0	1,131 779	0	524	0	280	0	0
1942	887	619	0	1,023	0	684	0	339	0	200	Ö	Ö
1943	494	742	141	411	Ö	173	ŏ	0	Ŏ	ŏ	Ŏ	Ŏ
1944	494	707	178	518	Ŏ	345	Ŏ	167	Ŏ	Ö	0	Ō
1945	413	605	0	1,154	0	928	0	726	0	541	0	363
1946	523	815	0	559	0	375	0	202	0	12	0	0
1947	614	737	603	809	443	631	289	464	135	· 309	0	161
1948	153	525	0	1,023	0	762	0	524	0	286	0	0
1949	463	727	49	815	0	666	0	524	0	393	0	262
1950	553	562	0	750 253	0	583	0	422	0	250	0	0 256
1951 1952	409 756	673 530	0	952 0	0	762 0	0	583 0	0	422 0	0	256
1953	759	714	0	375	0	83	0	Ö	0	0	Ö	Ö
1954	665	760	246	756	Ö	541	Ŏ	345	Ŏ	149	ŏ	Ŏ
1955	463	672	387	904	203	714	Ö	541	Ö	375	Ō	214
1956	920	501	0	1,261	0	946	0	649	0	339	0	0
1957	527	543	0	1,595	0	1,321	0	1,083	0	863	0	666
1958	619	704	0	1,017	0	643	0	286	0	0	0	0
1959	573	725	203	1,392	0	1,131	0	898	0	696	0	518
1960	454	810	160	1,315	0	1,089	0	887	0	708	0	547
1961	591 474	717	0	1,392	0	1,154	0	946	0	762	0	601
1962 1963	471 518	692 599	0	1,089	0	863 875	0	655 601	0	470 339	0	286
1964	569	677	43	1,178 774	Ö	5 89	Ö	417	0	256	Ö	95
1965	445	572	0	595	ő	345	ŏ	42	Ŏ	0	Ö	Ő
1966	535	711	467	898	277	708	86	536	Ŏ	375	Ö	220
1967	1,060	711	0	744	0	292	0	0	0	0	0	0
1968	481	685	209	1,214	25	994	0	803	0	625	0	464
1969	898	557	0	988	0	708	0	434	0	125	0	0
1970	467	674	812	1,142	584	904	375	690	160	500	0	315
1971	870	614	0	934	0	649	0	369	0	36	0	0
1972	549 450	747	400	1,000	234	791	62	613	0	440	0	286
1973 1974	659 403	891 401	449	964	228	750	0	553 843	0	369 577	0	196 292
1975	602 970	601 641	0	1,517 1,327	0	1,172 1,000	0	863 702	0	417	0	77
1976	520	606	800	1,125	609	910	431	720	271	553	111	399
1977	325	460	0	2,410	0	1,886	731	1,488	- 0	1,178		922
			•••••	•••••	•••••		•••••		•••••			
	onthly i	Averages	: 167	1,004	90	752	49	538	24	344	8	197

T,

TABLE 15
EFFECTS OF MANAGEMENT ACTIONS ON SACRAMENTO RIVER TEMPERATURES
56 YR AVERAGE (1922-77) - DWRSIM #62B

					Mean m	onthly te	Mean monthly temperatures - °F	ires - °F				
Scenario	5	L	Σ	4	Σ	7	7	∢	တ	0	z	۵
						Red Bluff	Bluff					
Base	43.3	45.7	48.8	52.2	55.0	96.0	57.0	59.1	61.1	57.6	52.4	45.4
Shasta TCD	43.6	45.8	0.64	52.4	55.4	9.99	57.8	55.3	58.2	55.9	52.1	46.2
Thermalito Bypass	43.3	45.7	48.8	52.2	55.0	96.0	57.0	59.1	61.1	57.6	52.4	45.4
10% Shade	43.2	45.5	9.87	51.9	54.6	55.6	9.99	58.5	60.7	57.3	52.3	45.3
No Drains	43.3	45.7	48.8	52.2	55.0	96.0	57.0	59.1	61.1	9.75	52.4	45.4
All 4	43.5	45.7	48.7	52.1	55.0	56.2	57.4	54.7	57.8	55.6	52.0	46.1
						Freeport	oort					
Base	9.44	9.87	53.2	59.3	65.0	70.8	73.7	73.4	71.1	61.4	53.0	45.7
Shasta TCD	44.7	9.87	53.2	59.3	65.0	70.9	73.8	73.1	6.07	61.2	52.9	45.9
Thermalito Bypass	44.7	48.4	52.8	58.9	9.49	70.2	73.1	73.1	71.0	61.2	52.9	45.9
10% Shade	44.4	48.3	52.8	58.8	64.3	70.2	72.9	72.7	70.5	6.09	52.7	45.5
No Drains	9.44	48.5	53.1	59.0	64.5	70.5	73.5	73.2	71.2	61.4	53.0	45.7
All 4	9.44	48.1	52.3	58.1	63.5	7.69	72.3	7.17	0.07	60.3	52.6	45.9

TABLE 16
DWRSIM OPERATION STUDIES FOR SALMON
56 YR AVERAGE (1922-77) - #75D, #144C

#75D (base) #4.3 46.9 50.1 53.0 55.3 56.6 56.7 58.9 60.8 57.6 52.9 46.3 bifference #75D (base) #44.3 46.9 50.1 53.0 55.3 56.6 56.7 58.9 60.8 57.6 52.9 46.3 bifference #75D (base) #44.3 46.9 50.4 53.3 53.8 56.4 57.9 59.7 61.1 57.5 52.8 46.3 bifference #75D (base) #44.7 48.0 52.5 55.1 56.2 57.2 56.2 56.6 57.8 54.6 51.4 47.0 bifference #75D #144C #7	44.3 46.9 50.1 53.0 55.3 44.3 46.9 50.4 53.3 53.8 50) 0.0 0.0 0.3 0.3 -1.5 44.7 48.0 52.5 55.1 56.2 44.7 48.9 52.5 55.3 54.8 0.0 0.0 0.2 -1.4 44.7 48.9 53.3 59.3 63.4 0.0 0.0 0.2 0.2 -1.3 44.8 49.2 53.7 59.4 64.7	d Bi	58.9 59.7 0.8				
44.3 46.9 50.1 53.0 55.3 56.6 56.7 58.9 60.8 57.6 52.9 -75D) 44.3 46.9 50.1 53.0 55.3 56.6 56.7 58.9 60.8 57.6 52.9 -75D) 0.0 0.0 0.3 -1.5 -0.2 1.2 0.8 0.3 -0.1 -0.1 44.7 48.0 52.5 55.1 56.2 57.2 56.6 57.8 54.6 51.3 44.7 48.0 52.5 55.3 54.8 56.7 57.2 57.4 58.3 54.7 51.3 0.0 0.0 0.0 0.2 -1.4 -0.5 1.0 0.8 0.5 0.1 -0.1 44.7 48.9 53.3 59.1 64.7 69.5 71.7 71.8 69.3 60.8 52.9 44.7 48.9 53.3 59.1 64.7 69.5 71.7 71.8 69.3 60.8 52.9 44.8 49.2 53.7 59.4 64.7 69.5 71.5 72.2 69.4 60.8 52.9 44.8 49.2 53.8 59.4 64.7 69.5 71.6 <	CD (44.3 46.9 50.1 53.0 55.3 (44.3 46.9 50.4 53.3 53.8 53.8 7.1.5 (44.7 48.0 52.5 55.1 56.2 44.7 48.0 52.5 55.3 54.8 (44.7 48.9 53.3 59.1 64.7 44.7 48.9 53.3 59.1 64.7 44.9 53.5 59.3 63.4 (44.7 48.9 53.5 59.3 63.4 (44.7 48.9 53.5 59.3 63.4 (44.8 49.2 53.7 59.4 64.7		58.9 59.7 0.8				
44.3 46.9 50.1 53.0 55.3 56.6 56.7 58.9 60.8 57.6 52.9 -75D) 0.0 0.0 0.3 -1.5 -0.2 1.2 0.8 60.8 57.5 52.8 -75D) 0.0 0.0 0.3 -1.5 -0.2 1.2 0.8 60.3 -0.1 -0.1 44.7 48.0 52.5 55.1 56.2 57.2 56.6 57.8 54.6 51.3 0.0 0.0 0.0 0.2 -1.4 -0.5 1.0 0.8 0.5 0.1 -0.1 Freport 44.7 48.9 53.3 59.1 64.7 69.5 71.7 71.8 69.4 60.8 52.9 44.7 48.9 53.5 59.3 63.4 68.9 72.5 69.4 60.8 52.9 44.7 48.9 53.5 59.3 64.7 69.5 71.7 71.8 69.4 60.8 52.9 44.8 49.2 53.7 59.4 64.7 69.5 71.5 69.4 60.1 0.0 0.0 44.8 49.2 53.7 69.6 72.4 72.0 69.2	on) 44.3 46.9 50.1 53.0 55.3 44.3 46.9 50.4 53.3 53.8 -75D) 0.0 0.0 0.3 0.3 -1.5 44.7 48.0 52.5 55.1 56.2 44.7 48.0 52.5 55.3 54.8 0.0 0.0 0.0 0.2 -1.4 44.7 48.9 53.3 59.1 64.7 44.7 48.9 53.5 59.3 63.4 0.0 0.0 0.0 0.2 -1.3		58.9 59.7 0.8				
(44.7) 48.9 50.4 53.3 53.8 56.4 57.9 59.7 61.1 57.5 52.8 con) (44.7) 48.0 52.5 55.1 56.2 57.2 56.2 56.6 57.8 54.6 51.3 co.0 0.0 0.0 0.2 -1.4 -0.5 1.0 0.8 0.5 0.1 -0.1 (44.7) 48.9 53.3 59.1 64.7 69.5 71.7 71.8 69.3 60.8 52.9 co.0 0.0 0.2 -1.3 -0.6 0.8 0.4 0.1 0.0 0.0 0.0 0.2 -1.3 -0.6 0.8 0.4 0.1 0.0 0.0 0.0 0.0 0.2 -1.3 -0.6 0.8 0.4 0.1 0.0 0.0 0.0 0.0 0.1 -1.3 -0.6 0.8 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0 0.0	On) 44.3 46.9 50.4 53.3 53.8 7.75D) 0.0 0.0 0.3 0.3 -1.5 7.5D) 0.0 0.0 0.3 0.3 -1.5 7.5D) 44.7 48.0 52.5 55.3 54.8 0.0 0.0 0.0 0.2 -1.4 7.4 48.9 53.3 59.1 64.7 44.7 48.9 53.5 59.3 63.4 0.0 0.0 0.0 0.2 -1.3 7.9 63.4 64.7 44.8 49.2 53.7 59.4 64.7		59.7 0.8	8.09	57.6	52.9	46.3
44.7 48.0 52.5 55.1 56.2 57.2 56.6 57.8 54.6 51.4 44.7 48.0 52.5 55.3 54.8 56.7 57.2 57.4 58.3 54.7 51.3 0.0 0.0 0.0 0.2 -1.4 -0.5 1.0 0.8 0.5 0.1 -0.1 Freeport 44.7 48.9 53.3 59.1 64.7 69.5 71.7 71.8 69.3 60.8 52.9 44.7 48.9 53.5 59.3 63.4 68.9 72.5 72.2 69.4 60.8 52.9 0.0 0.0 0.2 0.2 -1.3 -0.6 0.8 0.4 0.1 0.0 0.0 44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.7 59.4 64.7 69.5 71.6 72.6 69.2 60.4 52.6 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.5 0.1 0.0	(44.7 48.0 52.5 55.1 56.2 44.7 48.0 52.5 55.3 54.8 0.0 0.0 0.0 0.2 -1.4 44.7 48.9 53.3 59.1 64.7 44.7 48.9 53.5 59.3 63.4 0.0 0.0 0.2 -1.3	2 56		61.1 0.3	57.5 -0.1	52.8 -0.1	0.0
44.7 48.0 52.5 55.1 56.2 57.2 56.2 56.6 57.8 54.6 51.4 444.7 48.0 52.5 55.3 54.8 56.7 57.2 56.2 56.6 57.8 54.6 51.4 0.0 0.0 0.2 -1.4 -0.5 1.0 0.8 0.5 0.1 -0.1 FreeDort 44.7 48.9 53.3 59.1 64.7 69.5 71.7 71.8 69.3 60.8 52.9 44.7 48.9 53.5 59.3 63.4 68.9 72.5 72.2 69.4 60.8 52.9 44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.8 59.5 63.5 69.0 72.4 72.0 69.2 60.4 52.6 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.1 0.0	(44.7 48.0 52.5 55.1 56.2 44.7 48.0 0.0 0.0 0.2 -1.4 0.0 0.0 0.2 -1.4 0.0 0.0 0.2 0.2 -1.4 0.0 0.0 0.2 0.2 -1.3 0.0 0.0 0.2 0.2 -1.3 0.0 0.0 0.2 0.2 -1.3 0.0 0.0 0.2 0.2 -1.3 0.0 0.0 0.2 0.2 -1.3	2 56					
(44.7) 48.0 52.5 55.3 54.8 56.7 57.2 57.4 58.3 54.7 51.3 0.0 0.0 0.0 0.2 -1.4 -0.5 1.0 0.8 0.5 0.1 -0.1 (4.7) 48.9 53.3 59.1 64.7 69.5 71.7 71.8 69.3 60.8 52.9 44.7 48.9 53.5 59.3 63.4 68.9 72.5 72.2 69.4 60.8 52.9 0.0 0.0 0.2 0.2 -1.3 -0.6 0.8 0.4 0.1 0.0 0.0 0.0 44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.8 59.5 63.5 69.0 72.4 72.0 69.2 60.4 52.6 60.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0	(L) (44.7) (48.0) 52.5 55.3 54.8 0.0 0.0 0.0 0.2 -1.4 0.0 0.0 0.2 -1.4 0.0 0.0 0.2 0.2 -1.4 0.0 0.0 0.0 0.2 0.2 -1.3 0.0 0.0 0.2 0.2 -1.3 0.0 0.0 0.2 0.2 -1.3	57	9.99		9.49	51.4	47.0
## 49.2 53.7 59.4 64.7 69.5 71.7 71.8 69.3 60.8 52.9 60.0 0.0 0.2 0.2 -1.3 -0.6 0.8 71.5 69.4 60.8 52.9 60.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0	(D) 44.7 48.9 53.3 59.1 64.7 44.7 48.9 53.5 59.3 63.4 0.0 0.0 0.2 0.2 -1.3 44.8 49.2 53.7 59.4 64.7	2 2	57.4		54.7 0.1	51.3 -0.1	0.0
44.7 48.9 53.3 59.1 64.7 69.5 71.7 71.8 69.3 60.8 52.9 44.7 48.9 53.5 59.3 63.4 68.9 72.5 72.2 69.4 60.8 52.9 0.0 0.0 0.2 -1.3 -0.6 0.8 0.4 0.1 0.0 0.0 44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.8 59.5 63.5 69.0 72.4 72.0 69.2 60.4 52.6 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0	44.7 48.9 53.3 59.1 64.7 44.7 48.9 53.5 59.3 63.4 0.0 0.0 0.2 -1.3 44.8 49.2 53.7 59.4 64.7	Freeport					
44.7 48.9 53.3 59.1 64.7 69.5 71.7 71.8 69.3 60.8 52.9 44.7 48.9 53.5 59.3 63.4 68.9 72.5 72.2 69.4 60.8 52.9 0.0 0.0 0.2 0.2 -1.3 -0.6 0.8 0.4 0.1 0.0 0.0 44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.8 59.5 63.5 69.0 72.4 72.0 69.2 60.4 52.6 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0	44.7 48.9 53.3 59.1 64.7 44.7 48.9 53.5 59.3 63.4 0.0 0.0 0.2 0.2 -1.3 44.8 49.2 53.7 59.4 64.7						
44.7 48.9 53.5 59.3 63.4 68.9 72.5 72.2 69.4 60.8 52.9 0.0 0.0 0.2 0.2 -1.3 -0.6 0.8 0.4 0.1 0.0 0.0 44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.8 59.5 63.5 69.0 72.4 72.0 69.2 60.4 52.6 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0	44.7 48.9 53.5 59.3 63.4 0.0 0.0 0.2 0.2 -1.3 44.8 49.2 53.7 59.4 64.7		71.8	69.3	8.09	52.9	76.
0.0 0.0 0.2 0.2 -1.3 -0.6 0.8 0.4 0.1 0.0 0.0 44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.8 59.5 63.5 69.0 72.4 72.0 69.2 60.4 52.6 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0	0.0 0.0 0.2 -1.3 44.8 49.2 53.7 59.4 64.7		72.2	7.69	8.09	52.9	46.
44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.8 59.5 63.5 69.0 72.4 72.0 69.2 60.4 52.6 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0	44.8 49.2 53.7 59.4 64.7		7.0	0.1	0.0	0.0	0.
44.8 49.2 53.7 59.4 64.7 69.5 71.6 71.5 69.0 60.3 52.6 44.8 49.2 53.8 59.5 63.5 69.0 72.4 72.0 69.2 60.4 52.6 3rence 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0	44.8 49.2 53.7 59.4 64.7						
3 44.8 49.2 53.8 59.5 63.5 69.0 72.4 72.0 69.2 60.4 52.6 srence 0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0			71.5	0.69	60.3	52.6	76.
0.0 0.0 0.1 0.1 -1.2 -0.5 0.8 0.5 0.2 0.1 0.0	44.8 49.2 53.8 59.5 63.5		72.0	69.2	4.09	52.6	. 94
	0.0 0.0 0.1 0.1 -1.2		0.5	0.2	0.1	0.0	0

LIST OF APPENDICES

1

1)

1

1

		<u>Table</u>
Α.	Reservoir Temperature Model- Users Manual - HEC - January 1972	
В.	Climate Coefficients: E and K -Computer Program Listing (CPL) -Variable Descriptions -Solar Reflectivity	B-1 B-2 B-3
C.	River Temperature Model -SACTEMP - Sacramento River Model CPL -FEATEMP - Feather River Model CPL -NARTEM 1 - American River Model CPL	C-1 C-2 C-3
D.	Model Input Files -SACTEMP Input Files -FEATEMP and NARTEM 1 Input Files -File Organization	D-1 D-2 D-3
E.	Feather River Geometry -QMANN - Feather River Geometry CPL -Variable Descriptions -FEAQW 1 - Feather River Geometry: Flow-Width Data	E-1 E-2 E-3
F.	River Model Verification Tables -Sacramento River: 1987 -American River: 1981	F-1 F-2

APPENDIX A

RESERVOIR TEMPERATURE STRATIFICATION

USERS MANUAL

THE HYDROLOGIC ENGINEERING CENTER GENERALIZED COMPUTER PROGRAM 723-X6-L2410

JANUARY 1972

U. S. ARMY ENGINEER DISTRICT, SACRAMENTO 609 SECOND STREET DAVIS, CALIFORNIA 95616

TELEPHONE (916) 449-2105

RESERVOIR TEMPERATURE STRATIFICATION

TABLE OF CONTENTS

		Subject	Page
ı.	INI	RODUCTION	
	1.	Origin of Program	1
		Program Purpose	1
		Program Capability	1
		Supporting Programs and Planned Expansion	2
II.	PRO	GRAM DESCRIPTION	
	5.	•	2
		a. One dimensional model	2
	_	b. Other assumptions	2
	6.		. 2
		a. Existing reservoirs	2
	-	b. Proposed reservoirs	2
	/.	Methodology	
	•	a. Atmospheric energy exchange b. Thermal stability and ice formation	3 3 3
		c. Vertical diffusion	3
		d. Inflow energy	3
		e. Computational interval	4
•		f. Selection of intake levels	4
		g. Target release temperature	4
		h. Reservoir system input-output	4
		i. Model calibration	4
		j. Calculation procedure	5
III.	PRO	GRAM USAGE	
	8.	Equipment Requirements	5
		a. Computer storage and speed	5
		b. I-O equipment	7
		Input Preparation	7
		Program Output	7 7
		Example Probleme	7
	•	a. Example 1. Model Calibration	
		b. Example 2. Analysis of a Proposed Reservoir	19
		x 1. CALCULATION PROCEDURES	
		x 2. DEFINITION OF OUTPUT VARIABLES	
wbi	reng1	x 3. INPUT REQUIREMENTS	
		 Card Format Multiple Jobs 	. 🕿
		3. Card Contents	
•		A Summery of Input Carde	

RESERVOIR TEMPERATURE STRATIFICATION

THE HYDROLOGIC ENGINEERING CENTER GENERALIZED COMPUTER PROGRAM 723-X6-L2410

I. INTRODUCTION

1. ORIGIN OF PROGRAM

This program is a modification of program 723-X2-L2810 which was prepared for the Sacramento District, Corps of Engineers, by The Hydrologic Engineering Center. The input requirements have been modified to include several new options. Up-to-date information and copies of source statament cards can be obtained from the Center upon request by Government and cooperating agencies.

2. PROGRAM PURPOSE

This program is intended for application to design and planning problems involving consideration of multi-level intake structures. The program will simulate the vertical distribution of water temperature within a reservoir and estimate the mean monthly release temperature through each level of intake. The results of the program are useful in determining the required number of intake levels and their vertical location. An alternative use of the program involves studying project and preproject conditions for evaluation of the thermal portion of the project's environmental impact.

3. PROGRAM CAPABILITY

The program simulates the vertical distribution of water temperature within a reservoir on a monthly basis from data on initial conditions and on inflow, outflow, evaporation, precipitation, radiation, and average air temperature. Outflow requirements can be specified as any combination of releases through specific outlets and in terms of maximum and minimum allowable outflow temperatures. Model coefficients can be determined automatically from observed temperature profiles, in which case a printout plot of the observed and computed profiles is shown. Input may be in either English or Metric units and the output will be in corresponding units. A provision is included to output release quantities and temperatures on tape and to accept inflow quantities and temperatures from tape so that studies for tandem reservoirs can be made in a single computer run.

An Approach to Reservoir Temperature Analysis, The Hydrologic Engineering Center Technical Paper No. 21, L. R. Beard and R. G. Willey, April 1970.

4. SUPPORTING PROGRAMS AND PLANNED EXPANSION

It is anticipated that this program will be expanded to include quality parameters other than temperature, and that a separate program will be developed to analyze the variation of temperature and other quality parameters with distance downstream of a reservoir. It is requested that any user who finds an inadequacy or desirable addition or modification notify The Hydrologic Engineering Center.

II. PROGRAM DESCRIPTION

5. THEORETICAL ASSUMPTIONS

- a. One dimensional model The present state of the art of reservoir hydrodynamics and the current availability of meteorological data suggests the use of a relatively straightforward method to analyze reservoir temperature profiles. It is assumed in the temperature model that the reservoir can be divided into conceptual horizontal layers that are isothermal throughout the volume of the layer. This assumption is necessary for development of a one dimensional model. It is probably sufficiently accurate in most situtations; but cases do exist where sloping isothermal lines are observed. The latter situation generally occurs at reservoirs having a high ratio of mean monthly inflow to storage capacity.
- b. Other assumptions Assumptions which are an inherent part of the calculations are discussed in appendix 1.

6. AREAS OF APPLICATION

- a. Existing reservoirs Because of recently established stream temperature standards, there is a need for methods to analyze the capability of existing reservoir systems to meet operational temperature limits. If recent thermal data have been collected in the reservoir for one or more years, the model can be calibrated with the observed data and then used to simulate historic thermal conditions that existed prior to the collection of the thermal data.
- b. Proposed reservoirs When a thermal analysis is required at a proposed reservoir, thermal data from nearby existing reservoirs are used for model calibration. The thermal conditions in the proposed reservoir can then be evaluated using the regional calibration coefficients.

7. METHODOLOGY

The reservoir is divided into horizontal layers of uniform thickness equal to any integral number of feet or meters. The choice of layer thickness involves a trade-off between the degree of profile definition desired, and the cost of both data preparation and computer time.

Usually a layer of thickness between 1 and 5 feet is satisfactory. It is necessary to specify the reservoir storage capacity at the top of each layer and at the bottom of each level of outlets. Although water released from a particular outlet actually comes from both above and below the outlet invert, releases as computed in this model are made from the water immediately above the intake invert elevation of each outlet. It is considered that this approximation will have minor effect on computation accuracy, because water ordinarily blended from higher and lower levels would have approximately the same temperature as the water at the invert level.

- a. Atmospheric energy exchange The exchange of energy between the reservoir and the atmosphere is assumed to affect only the top several meters of water, except for diffusion within the reservoir, which is computed separately. The exchange is considered to affect water temperatures linearly, with maximum effect at the surface and zero effect at the selected depth of energy penetration. Three atmospheric factors are considered in the energy exchange computation. These are solar radiation, evaporation, and a combination of conduction and long-wave radiation expressed as a function of the difference between air temperature and water temperature. All three exchanges are computed before stability and diffusion computations are made. In doing this, the exchange that is a function of air temperature is based on the water surface temperature at the start of the computation interval. Equations for these exchanges are described in appendix 1.
- b. Thermal stability and ice formation Water is mixed from the surface downward until no lower levels contain warmer water than exists at higher levels. This computation is constrained to temperatures above 4°C, corresponding to the maximum density of water. If water is cooled below this temperature, the temperature of each layer from the surface downward is allowed to go negative until an amount of energy equal to that required to form ice has been extracted from that layer.
- c. Vertical diffusion A rather simple diffusion computation has been found to work reasonably well where observed temperature profiles have been reconstituted. It is assumed that incomplete mixing of adjacent layers occurs over a 10-meter range, starting from the bottom and proceeding upward through the reservoir one layer at a time. The degree of mixing is controlled by a calibration coefficient. Paragraph 71 and appendix 1 describe model calibration and vertical diffusion respectively.
- d. <u>Inflow energy</u> It is recognized that there is some mixing as the inflow water descends into the reservoir to seek its temperature level. The model contains a provision for mixing a constant percentage of inflow with each layer as the inflow water descends through the warmer reservoir layers. The inflow temperature is consequently modified upward, and the inflow ultimately reaches a reservoir level at a temperature somewhat warmer than the original inflow temperature.

- e. Computational interval In some cases, inflow during a period as long as a month can exceed the total reservoir content. When this happens, computation on a monthly interval becomes very unstable. In order to preserve computational stability, it is possible to specify that the computation be divided into any number of parts and that only a fraction of the water and energy transfers be computed in each part. Thus the partial computations would be repeated the specified number of times before the quantities for the entire computational interval are printed out.
- f. Selection of intake levels Where there is latitude in selection of outlets for releasing water of a required temperature, two methods of operation are available. Method 1 selects the two intakes closest together that can blend water of the required temperature. With this method, a maximum choice of temperatures is available for subsequent months. Method 2 blends water from the highest and lowest available intakes. This operation generally provides a mixture of water having high and low dissolved oxygen content.
- g. Target release temperature When selecting the best release temperature from a target temperature range, the model has the capability of examining future target temperature criteria for any number of desired months. The model calculates the release temperature that would change the average reservoir temperature from its existing value to the average value of the temperature criteria for the specified number of future months.
- h. Reservoir system input-output A provision is included to output release quantities and temperatures on tape and to accept inflow quantities and temperatures from tape so that studies for tandem reservoirs can be made in a single computer run. If the temperature of the release water changes before it enters the downstream reservoir, the program must be modified as explained in the Programmers Manual.
- i. Model calibration Model calibration coefficients can be derived automatically on the basis of minimizing the sum of squares of errors in temperature between computed and observed profiles. Observed profiles must extend from the surface downward to any depth for which data are obtained. Any number of observed profiles can be used for a single model calibration. Errors are measured between computed and observed temperatures for each level and each profile. Computed temperatures are interpolated for the date of the observed profile by linear interpolation between end-ofmonth temperatures at the depth corresponding to the depth of the observed temperature. The program uses a gradient optimization technique in which the coefficients are specified arbitrarily and are changed by the computer in accordance with the resulting effect of minimizing the standard error of computed temperatures. It is not necessary to calibrate the model for all coefficients. Fixed values for any of the coefficients can be prespecified, and the computer will optimize only the remaining coefficients. In order to facilitate evaluation of the calibration, a plot of the computed and observed

Optimization Techniques for Hydrologic Engineering, The Hydrologic Engineering Center Technical Paper No. 2, Leo R. Beard, April 1966.

profiles is printed out. The proper selection of model calibration coefficients is an important element in any temperature study using this program. The HEC has developed calibration at numerous reservoirs in various regions of the United States. The information is available to the user on request. It is asked that program users notify the Center of their results on model calibration so that this information can be shared with other users.

j. <u>Calculation procedure</u> - A detailed description of the calculation procedure, including the required equations, is given in appendix 1. A functional flow chart for the program is shown in figure 1.

III. PROGRAM USAGE

8. EQUIPMENT REQUIREMENTS

a. Computer storage and speed - The program requires a FORTRAN IV compiler and a computer of at least the GE-400 series (32K) capacity. The use of higher speed computers (UNIVAC 1108, CDC 6600, etc.) is much more efficient for calibrating the model when 2 or more years of thermal profile data are used. However the program runs sufficiently fast for long term records (30 or more years) once the calibration coefficients have been determined. A list of approximate execution times and storage requirements for various types of computers is shown in table 1.

TABLE 1

Computer	Program Storage (in words)	Program Execution Time (per year of record)
	Model Calibration	n
CDC-7600	14K	30 sec
CDC-6600	14K	3 min
UNIVAC-1108	12K	6 min
IBM 360/50		30 min
GE-425	11K	60 min
	Calibrated Model	
CDC-6600	14K	5 sec
UNIVAC-1108	12K	9 sec
CDC-3300		l min
GE-425	11K	3 min

FIGURE 1. FUNCTIONAL FLOW CHART

b. <u>I-O equipment</u> - Cards are used for input, printer for output and units 92, 93, and 94 for temporary binary storage.

9. INPUT PREPARATION

Input data requirements are described in appendix 3 and examples are shown on pages 10-25. Consistent unit systems are "Metric and °C" or "English and °F". Required input is summarized as follows:

- 1. Inflow quantity and temperature for each month
- 2. Lake evaporation and precipitation for each month
- 3. Total monthly outflow quantity
- 4. Monthly discharge through each intake level or downstream temperature criteria
- 5. Average air temperature for each month
- 6. Solar radiation (obtained from figure 2 or table 2 for known latitude)
- 7. Reservoir physical data (i.e., storage-elevation data, intake configuration, etc.)
- 8. Thermal depth profiles or estimated calibration coefficients

10. PROGRAM OUTPUT

The output includes a printout of most input data; the calibration coefficients (given or derived), results of the optimization subroutine (if model is being calibrated), plots of observed and calculated temperature profiles (if model is being calibrated), end-of-month calculated temperature profiles, end-of-month storage, monthly average outflow temperature and quantity through each level of outlets and flow-weighted average temperature for all outlets.

11. EXAMPLE PROBLEMS

a. Example 1. Model Calibration - This example is intended to illustrate the use of the program for developing calibration coefficients from observed temperature profiles.

Detroit Reservoir, located on the North Santiam River in Oregon, has the physical characteristics shown in table 3.

FIGURE 2

CHART OF THE TOTAL DAILY SOLAR RADIATION AT THE TOP OF THE ATMOSPHERE

The solid curves represent total daily solar radiation on a horizontal surface at the top of the atmosphere, measured in cal. cm. $^{-2}$ Shaded areas represent regions of continuous darkness.

The above data was obtained from the Smithsonian Meteorological Tables, by Robert J. List, 6th revised edition, 1949.

TABLE 2 TOTAL DAILY SOLAR RADIATION AT THE TOP OF THE ATMOSPHERE

1

Values are in cal. cm. and apply to a horizontal surface

	0*	221.	45*	671.	90°			de of 1			225*	2471	270°	2921.	315*	3371.
		•		••		,		uzimate		,		••		•		
	Mar. 21	Apr. 13	May 6	May 29	June 22	July 15		Aug.		Oct. 16	Nov.	Nov. 30	Dec. 22	Jan. 13	Feb.	Feb. 26
Lati- tude								ca	l. cus.~	•						
90° 80 70 60 50	155 307 447 575	423 423 525 635 732	772 760 749 809 867	999 984 939 934 958	1077 1060 1012 979 989	994 980 934 929 954	765 754 742 801 859	418 418 519 629 725	153 303 442 568	7 129 273 414	24 146 286	72 204	49 176	73 205	24 146 289	7 131 276 419
30 20 10	686 775 841 882 89 5	807 865 894 897 873	910 929 923 893 837	972 967 935 881 804	991 975 935 873 790	96 7 960 930 87 7 800	901 921 916 886 830	798 856 884 887 863	677 765 831 871 885	545 663 760 835 886	429 564 685 789 870	348 492 627 748 851	317 466 605 733 843	350 494 630 752 855	434 568 691 795 878	553 670 769 845 896
-10 -20 -30 -40 -50	882 841 775 686 575	824 750 654 538 408	760 660 543 413 276	707 593 465 329 193	687 567 436 297 165	704 590 463 328 192	753 654 538 409 274	814 741 646 533 404	871 831 765 677 568	910 907 877 819 743	927 959 964 944 901	931 988 1020 1027 1014	933 999 1041 1059 1056	936 993 1025 1032 1018	936 968 973 953 909	921 918 883 823 752
-60 -70 -80 -90	44 7 30 7 15 5	269 127 7	140 23	68	47	68	139 23	266 126 7	442 303 153	644 532 429 429	840 778 790 801	987 993 1041 1056	1046 1081 1132 1149	992 998 1046 1062	84 7 785 796 809	652 539 434 434

The above data was obtained from the Smithsonian Meteorological Tables, prepared by Robert J. List, 6th revised edition, 1949.

TABLE 3

Parameter	Magnitude
length at full pool	10 miles
maximum width at full pool	1.5 miles
surface area at full pool	3,500 acres
capacity at full pool	455,000 acre-feet

Detroit Dam is a gravity structure 386 feet high. The dam has four levels for possible withdrawal (spillway, power plant penstock, and two lower sluices).

The project weather station collects the required meteorological input data of air temperature, rain, and evaporation. Inflow temperature measurements are available for 75% of the inflow volume and reservoir temperature profiles are measured daily near the dam. The remaining 25% of the inflow was assumed to have a temperature equal to the average (flow-weighted) measured inflow temperature. Often inflow temperature data is available for only a small portion of the hydrologic record, but can be extended in time by graphically correlating it with air temperature.

Example input is shown on page 12 and is explained in appendix 3. A part of the example output is shown on page 15 and the output variables are defined in appendix 2. In examining the output, the top half of page 15 should be checked to insure that the correct input data has been used. The bottom half of page 15 and the top half of page 16 is output from the optimization subroutine. The changes made to each variable in the attempt to minimize the least-square error in the reproduction of observed temperature profiles are indicated. The last two lines in this set of output read as follows:

CRITERION FOR VARIABLE 1 1.6679 1.6677 1.6676

VAR 1 ADJ FROM .83 TO .81

These lines indicate that variable 1 (the air temperture coefficient) has been changed from .83 to .81 and that the least-square error on this trial (the final trial) was 1.6679 temperature units. The other two least-square error values pertain to the magnitude of the error function at points used to measure the slope and change in slope of the error function. This printout option is controlled by the variable IDGST on the "B" card. The next set of output defines the "optimized" set of calibration coefficients. If the last change in each variable was a small percentage of the variable's magnitude, then these values can be used as optimum values. If the percentage change is large, the job should be rerun using the final values from this first run as the initial estimate of the calibration coefficients for the second run.

Each end-of-month calculated temperature profile is printed out by layers followed by a plot of any observed profiles for the next month. The plot includes a calculated profile which has been interpolated to the date of the observed profile. Before any confidence is place in the model calibration, the plots should show a comparison between calculated and observed values that is satisfactory to the user. The numerical value that describes the degree of reproducibility is the least-square error discussed above. The summary printout which follows the temperature profile output for all 12 months includes some input data which should be checked against the recorded data as well as a printout of calculated end-of-month storage, calculated discharge temperature through each outlet and the flow-weighted average temperature through all outlets.

GENERAL PURPOSE DATA FORM (8 COLUMN FIELDS)

90	PROGRAM 77.3	01421-1X-	C					DATE	26	
REO	REQUESTED OF RGJ		PREPARED BY	A		CHEC	CHECKED BY	PAGE	40	3
-	3 4 9 6 7 6	9 10 11 12 13 14 18 18 17 18 18 20 21 22 23 24 23 24 23 28 27 28 29 30 31	3		32 33 34 35 36 37 38 39 40 41 4	6 4 45 46 47 40 48	30 81 82 83 84 89 84 87	8 88 60 61 62 63 64 63 6	6 7 8 9 10 41 42 43 44/45 46 47 4649 50 31 32 33 24 25 36 37 36 39 60 61 62 63 64 63 66 67 68 68 70 71 72 73 74 75 78 77 6 79 60	01
4	-	DE	DETROIT		19	4	51 P 68	in:	al ac	
4		TEMPERATURE	IRE STAAT	TIFICATION	ON STURY		3 8 4	24 70 70 70	10 B	
7	PERICO	90	4	74N 194	- 1967			67 60 40 47	TO BELLE	
8	3,	1965	12	1,	1,	48	8	4	4	7
0	0	','	1	9	0	4	0	67	100	
0	3670001.	9834721	983472	494973	114709	-21	-2,	-2'	-21	-2
0	65	49	.504167.		O		-			
W	7	17	04	9	2					
4	-2	-2,	-2	-2,			-		1	
v	3.1	28,	3/1	39	31	39	31,	31,	30,	3/
9	39	37								
or	45,	125,	197	402,	607.	967,	1482	1897	2609	4200
H	6100	,8200,	10341	14000	17509	21009	25/00	2,9238.	35200	40800
T	47009	53700,	61546	68500	77200	86209	96500,	108027	119000	1
H 1	144509	1,58300	172224	188009	204009	220000	237009	254593	272009	
-	3 4 8 0 7 0 0	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	.9 20 21 22 23 24 25	26 27 28 28 30 31 32 33 34 36 36 37 38 38 40 41 42 43 44 45 46 47 48 48 50 51 52 53 54 55 56 57	34 36 34 37 38 38 40 41	42 43 44 49 48 47 48 49	50 51 52 53 54 55 56 57		10 47 48 68 70 71 72 73	74 75 76 77 78 78 80
H	314000	336509	360245	386000,	41,0000	438000	466009	494973,	-	
I		40	49	82	49	49	41.	42	42	42
I	4/1	4/1	41,	44	411	41,	40	49	41	4/
7	4/1	4/1	41,	41,	41,	41,	41,	41	41,	40
M	40,	49	40	40,	40	40	40	40	49	40
H	4	40,	40,	4	-/-	-1/-	-1'-	1/-		
5	2009	27009	76000	364000	000		•		-	
X	38	4/1	46,	49.	5/1	59,	68,	661	60	56
14	47,	37,							1	1
3	.30	1.10	2.78.	2.54	3.15	4.04	5.51	4.35	4.53	2.77
3	1.02	. 48,	-					1	-	1
10	21.22	5.64	1.76	5.70,	3.97.	.64	. 28.	2.33	. 361	4.87
B	10.69	11.65		-			-			1
2	100	4682	9351	906	1875	1.31	957	1033;	1758	2/47
Q	3243	1425								
	•	0	2 13 14 15 6 17 16 19 20 21 22 23 24 29 26 27 28 29 30	26 27 20 29 30 31 32 33	34 32 36 37 36 38 40 4	42 45 44 45 46 4 48 48	chelechelechel chele			
SF	(3)			Pr	es entre	are lete				42

12

Input for Example 1

GENERAL PURPOSE DATA FORM (8 COLUMN FIELDS)

260 260 280 280 2812 2812 2812 2812 2812 2812	PR06RA	722	.X6- L2	014					DATE		
	REGUES		1		× 6 0		CHEC	KED BY	PAGE		3
		-		ю	4	2	9	7	8		01
300 420 600 600 520 520 600 520 600 600 600 600 600 600 600 600 600 6	- 2	0 0 1 0 0	71 12 13 14 16 16 17	18 19 20 21 22 23 242	3 26 27 28 29 30 3. 32 3	13 34 35 36 37 30 39 40	11 42 43 44 45 46 47 4849	50 51 52 53 54 55 56 57	50 59 60 6 62 63 64 65	66 67 66 69 70 7. 72 73	74 75 76 77 79 8
340, 260 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	1.	309	420	600	800	920	989	960	859	680	490
2746, 2312, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	S	340,	260	,					-	-	
2746, 2312, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	1	2,	0	0	0			0	0	0	
2746, 2312, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	1	0	0					-		-	
3.35, 2370, 935, 32,43, 1428, 00, 00, 00, 00, 00, 00, 00, 00, 00, 0	1	2746	23/2	0	9		1	0	0	0	9
3243, 2370, 935, 3243, 1428, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0	0								
5243 (428	7		,2370,	935.	906	182		1256		M	2/4
	1	3243	1428								
	1	Q	0	0	0			Ō	9	Q	3
	1	2	0								
14.1. 1134 251 251 3	7	5563	11	1827,	72	20	136	87%	683	6/5	66
292 62 62 40 10 10 10 10 10 10 10 10 10 10 10 10 10	2	14.1.	1134							-	
	>	39,	38,	24	4/	46		52	55	59	4
	2	4	300					-			
	7	-	201.	301	405	50/	100	701	801	902	100
		4 8 6 7 8	10 11 12 13 14 18 16 17	10 19 20 21 22 23 24 2	25 26 27 28 29 30 3. 32	33 34 35 36 37 36 38 40	4 42 43 44 45 46 47 48 41	9 50 5: 52 53 54 55 56 5	98 38 60 6: 62 63 64	15 66 67 68 69 70 71 72 73	3 74 75 76 77 78 79
C_1	M	11011	1501					1			
148 62 39 192 62 218 62 39 243 62 40 263 62 292 62 40 263 62 292 62 40 262 62 292 62 62 62 62	×	10	34.8035	0	00	68.		3	38		m
292. 62, 46, 46, 212.89, 38, 12.80, 39, 112.80, 39, 137.89, 49, 237.80, 41, 265.63, 49, 44, 186.76, 40, 236.76, 40, 286.76, 41, 286.76, 41, 286.76, 42, 168.0, 41, 295.92, 44, 43.92, 44, 43.92, 44, 43.92, 44, 43.92, 44, 43.92, 44, 45.92, 44, 45.92, 44, 216.92, 44, 297.72, 47, 27.52, 47.52,			39	1)	36	218.		43.6	40	3	4
E 26x5351 0, 38 12.80, 31, 112.80, 39, 137.63, S 327.62, 39, 237.80, 41, 262.63, 44, 46, 16, 16, 41, 186.16, 41, 186.16, 16, 41, 186.16, 41, 186.16, 16, 41, 186.16, 41, 186.16, 16, 41, 186.16, 12, 42.7231, 0, 44, 43.92, 92, 44, 66.92, 44, 186.16, 16, 41, 186.16, 41, 186.92, 41, 186.92, 41, 186.16, 176.92, 42, 186.92, 186	. ,		40,				+				
211.16. 40 236.16. 40 136.16. 41 262.63. 49 41 186.16. 40 161.16. 40 161.16. 40 161.16. 40 161.16. 40 161.16. 40 161.16. 40 161.16. 40 161.16. 16. 40 161.16. 16. 40 161.16. 16. 40 161.16. 16	×	w	265535	0		12.		1	39	137	4
2/1./6, 40, 236./6, 40, 136./6, 41, 286./6, 40, 186./6, 40, 186./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 286./6, 40, 172.6, 41, 197.6, 50, 276, 41, 197.6, 50, 276, 41, 197.6, 50, 276, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40			7.1.	12		237.			49		
211.16, 40, 236.16, 40, 261.16, 41, 286.16, 40, 115.92, 143.12.131, 0, 44, 43.92, 44, 26.92, 44, 26.92, 43, 115.92, 143.92, 44, 216.92, 44, 216.92, 40, 243.92, 40, 216.92, 40, 216.92, 40, 217.62, 41, 197.62, 41	×	8	271	0		136.			4/	186.	3
12. 42.7231, 0. 44. 43.92, 44. 68.92, 43. 1/8.92, 26.6. 3. 42. 168.9. 41. 195.92, 41. 216.92, 42. 243.92, 26.6. 3. 41. 292.7. 41. 31.0.<	. ,	11.1	401	36.		261.		86.	49		
26.8.7. 92	×	/21	272	0		43.9		in	43	115.9	7
26.8.3. 41, 292.7. 41, 31.8.7. 46, 47.60, 50, 72.69, 11, 440.27.20, 43, 147.60, 46, 172.60, 41, 197.60, 27.20, 27.		in	42,	8		193.		18	49	243.	4
91.66 45 17.60 43 44.60 47.60 41.197.66	.,	37	41,			3/6		•			
91.00, 45 17: 27 43 .47.60, 40, 172.60, 46, 197.	1.	1		C			METOR)	-	50		4
40, 200, 200		91.66	45	125	43	41.6	K BULL	2	41	197.	4
	1,7		40,	2	40			-			
		F				Previous edition	s are obsolete;				
SPK Form age	-	,,);									

Input for Example 1
Digitized by Google

GENERAL PURPOSE DATA FORM (8 COLUMN FIELDS)

	7:3	-X1.4	- AL				THE VIEW		DATE		
	REQUESTED OF F	6.1.	PREPARED BY			10	CHECKED BY		PAGE	6	3
		2	Ю	4	2	9	7		8	6	10
	8 9 6 7 8 9	10 11 2 13 14 16 16 17	9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 2425 26 27 28 29 30	16 27 26 28 30 31 32 3	31 32 33 34 35 36 37 38 38 40 41 42 43 44 45 46 47 48 48 50 51 52 53 54 55 56 57 38 50 61 62 63 64 65 56 67 68 68 70 71 72 73 74 78 76 77 78 78 76	1 42 43 44 45 46 47 48	49 50 51 52 53 54	55 56 57 58	29 60 61 62 63 64	S 46 87 84 68 70 71 72	78 74 78 76 77 78 78 60
	1//	447643	0	621	24.59	56,	47.	50,	52,	74.50	50
	93,50	47.	124.50	44,	149.50	44	174	50	43	199.50	
	224.50,	4/1	324 50	41,				-			
	1.3,	440652	0	70,	22.70	62	4.7.	70,	56	72.70	X
100	97.70	5/1	122.70	48		45	-	70,	44.	-	
	222.70	42,	2.72.70.	42,	297.70	4/,	32	70,	41.		
^	14,	4 14.	ō	64,	15.90	65	40.	90	10	65.90	57
-	90.90	55	115.90	5/1		47	165.	90,	45	190.90	
T	-	42	240,90	43		A 33	290.	.90,	42	4 .	
		34.7085	9	63	•	53	43	29	59		
	93.29	56	118.29	55		46	168.	29	4		
_	293.29	43,		-				-		1	
_	12,	257828	0	5%	9.30	5%	34.	39	56	59.30	55
	84.30	55	109.30	53	134.30,	48	1	39	43	1 '	
amp 1	209.30	7 0 0 10 11 12 14 12 14 15 14 1	234	2223 24 25 25 26 27 28 28 30 31 32 33	259.	43 14613 14617 14617	48 50 31 52 53 84	99 99	59 60 61 62 63 646	9 66 67 66 68 70 71 72	874787878789
-	B	154606		49.	7.	48	57.	80.	48.	82.80	47
	107.80	44.	157.89	44	182.89	43	207.	80	43,		
			The M.	1,0,0,1	7, 4, 1,	N Ond X	Cards	for	years "	1966 0119	
			/	967 Ore	not si	40101			1		
1		4	-	-							
_	•	-									
V	4							-			
7	4	-									
V	4		-		-						
-	A	1			E						
4	4										
_	1	1	-1								
		1	1		-				-		
		0:1	10: 18: 14: 15: 14: 15: 14: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15	2772 a 2 0 3 0 3 1 3 2 3	3 34 35 34 37 34 39 40 40						
1	The same				2000 000 000 000 000 000 000 000 000 00	and the land of th	48 55 25 1 50 644	55 56 57 56	20 60 61 62 63 64 6	5 66 67 68 69 70 71 72	73 74 78 76 77 76 78 60
	1 1 6 32				review	die Tetel				-	1

JEIAUIT RESEAVOIR TEMPEKATUAE STRATIFICATION STUDY PERIOD OF FECORD, JAN 1965 - 1967

4

1

·	748 3 18FL 0	1965 1965 1880 3	42ca 12	IPEP MST	RT HLAYR 1 48	LAYER	40UTL A	AMINO IDE	IDERV METRC 1 0	1 10651	N N	F 0	NOTL	INTE
	STORA	615A 1.943	C05A	ST34X 494973	STPMN 114700	TIN TAIR -2 -2	EVAP -2.00	PRCP -2.00	OMEN -2	TMAX THIN 65 40	C SOUT	SOLR -1	DEP 32.01	• -
	AIR-TE	418-TEMP COEF 730		14FLD 41XING CO. 103 -13C	nef 01	DIFFUSION COFF 040 .940	EVAP	HEAT 600	COEF	INSOLATION COEF 200 .200	. .			
	- 141 MUD	C-7-	-2.0	-2.0	-2.0									
	STCAP=	ć 4	125	191	402	109	1967	1482		2600	4200			
		50:74	00767	61546	68507	17200	36200	00167			131000			
P		314,30	1583)C 135510	172224 360245	184000 346000	204000 41000r	220000 438000	237000	254593	272000	292000			
rin	15191=	4.0.4	40.0	0°0	40.0	40.0	0.04	41.0	42.0	42.0	42.0			
tou		41.0	(-I+	41.0	41.0	41.0	41.0	40.0	40.0		41.0			
t f		4. 6.1 6.0	41.0	0°C+	0°04	4.1.0 4.0.0	0.04	40.0	0.14 0.04	• 1 • 0 • 0 • 0	??			
or i		0.04	40.	40.0	40.0	-1.0	-1.0	-1.0	-1-ن					
la est	STOUT =	5002	2793	70001	364000									
ple 1	CRITERION FOR VEXIABLE VAR 1 ADJ FRUM .7.	F JK VAKIA I FRUM	3L 1	1.08°5 1.00	1.6881	1 1.6892	2							
	CRITEPION FIR VALIABLE	F IN VARIA	dL: 2	1.0949	1.6951	1.6951	_							
	CRITERION FIR VARIABLE VAR 3 ANJ FRUM	F IN VAKIA I FRUM	BLE 3	1.0949	1.6956	969•1								
	CRITERION F DE VARIABLE VAR 4 ADJ FRUM .30	RIO" F JH VAKIA 4 ADJ FRUM	.ble 4	1.6929	1.6947	7 1.6962	~							
	CQITEGION FIN VANIABLE VAP 5 ADJ FRUM .2.	IOP! F JK VAKIA ADJ FRUM	.22 TJ	1.6919	1.6816	6 1.681	ĸ							
	CRITFRION FOR VERIAGE.	ON FOR VEALS ADJ FHUM I	43L 1 1.00 TJ	1.0915	1.6906	1.679	æ							
	CRITERION FOR VARIABLE VAR 2 ADJ FROM .12	FUR VAKIA I FRUM	.blc 2 .1. TO	1.9758	1.6769	0 1.5762	2							
15	CRITERION FOR VARIABLE VAR 3 ANJ FRUM .U.	RION FOR VARIA 3 ADJ FRUM	olt 3	1.5757	1.6767	1.6779	•							_ `
	CRITEKION F DH VAKLAULE VAR 4 ANJ FRUM .09	RION FOR VAKIA 4 ADJ FRUM	.59 TJ	1.5747	1.6743	3 1.6739	œ							

End-of-month calculated temperature profiks for Feb. 1965 through Jun. 1965 are not shown. Plotted profiks for Feb. 1965 through Jun. 1965 are not shown.

					~									20 39.6
														39.4
														10 39.3
														17 39.3
														16 39.3 39.8
													COEF	39.3 39.8
													INSOLATION COEF	14 39.3 39.8
													INSO	13 39.3 39.6
													DEF	12 39.3 39.8
													EVAP HEAT COEF .634	TURES 11 39.3 39.6
													EVAP	TEMPERATURES 9 10 11 3 39.3 39.3 8 39.8 39.8
23	د .	34	;	38	91	6	22	11	6	83	92		.	VOIR T 9 9 39 3 39 8
1.6728	1.6735	1.6734	1.6741	1.6738	1.6716	1.6799	1.6722	1.6717	1.6693	1.6683	1.6676		DIFFUSION COEF	RESERVOIR 39.3 39. 39.8 39.
36	90	8	*	92	5	13	50	13	1	6			1 FFUS 10N	7 39.3
1.6739	1.6730	1.6730	1.6734	1.6726	1.6724	1.6713	1.6720	1.6713	1.6701	1.6679	1.6677		٥	99.3 39.7
7.	7.8	8	چ	52	<u>د</u>	71	7.	2	ē	6	52		COEF	39.3 39.7
1.6737	1.6737	1.5730	1.673r .04	1.5725	1.6724	1.5717	1.6717	1.0717	1.5769	1.6689	1.5679		MIXING • 116	39.3
~	-2	~	3 13	, 2	~ 2	10	22	3 13	45	٠ <u>٠</u>	-2		INFLO MIXING COEF	39.3 39.7 39.8
IAdlė	CRITERION FOR VARIABLE VAR 1 ADJ FROM .93	IABLE	CRITEPION FOR VARIABLE VAR 3 ADJ FROM .34	CRITERION FOR VARIABLE VAR 4 ADJ FROM .67	CRITERION FOR VARIABLE VAR 4 ADJ FROM 420	CRITEPION FOR VARIABLE VAF 1 ADJ FRUM .92	CRITFRIGH FOR VARIABLE VAR 2 ADJ FROM .15	CRITERION FIR VARIABLE VAR 3 ADJ FRU4 .34	CRITERION FIR VALIABLE VAR 4 ADJ FROM	CRITERION.FJR VARIABLE VAR 5 ADJ FROM .19	CRITCPION FOR VARIABLE VAR 1 ADJ FAUM .83			24.05 24.05 24.05
R VAR	R VAR ROM	A VAR	R VAA RUM	R VAR	R VAR FOM	R VAX	R VAR ROM	R VAR	R VAA	R VAR	R VAR	ABLES	HP CO	39.5 39.6 39.6
CRITERION FOR VARIABLE	CRITERION FJR VI VAR I ADJ FROM	CRITERION FIM VARIABLE	CRITEPION FJR VI VAR 3 ANJ FRUM	CRITERION FOR VA	ADJ F	CRITERION FOR VA	CRITFRION FOR VI VAR 2 ADJ FROM	CRITERION FJR VAI Var 3 anj frum	104 F.)	CRITERION.FJR VA VAR 5 AD.J FROM	CRITCRION FOR VI	DERIVED VARIABLES	AIR TEMP CUEF	e ~
al Tea	RITER IR 1	RITER	TITEP IR 3	11 TER!	CRITERI VAR 5	ITEE I	ITFR	ITER 3	ITER	ITER I	ITCR.	RIVE	7	YFAR P 1965
	5 >	5	5≥	53	53	55	2 >	2.2			55 : for 1		le 1	× 1
16									PT	*#£04£	. LUE E			

	100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
5701	ć	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
7 - 1 - 1	93	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
ATURES	۲,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
(*) TEMPER	وَ.	•	# C	• • •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AND USSERVED (*) TEMPERATURES	5,	•	•	•	•	•	.	•	*	*.	*	*	:		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
COMPUTED(J) AN	7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.	*	•	***	•	* .)	* ,	# .5	*	•,	* *1	•	•	*;	*;	*;	•;	•;
I dkUU	LVL 3:		4 e •	• 54	. 77	. ٤4			• ن	. 39	34	37 .	36 .	3.	٠ ٪	33 .	32	31 .	٠,	. 62	2ª •		. 42	2.	. 72	23 •	. 22	21 •	5 Ç	•	8		٠.	. 51	. 4	13 .	. 21		•	•	• •	

	: 2: 2									•	•																						
				~	•	•	6	0	0		~	•	0	•	0	•	•		•	•	0		•	•	•		0	•	•		0	0	•
	5:04 1			_	1139.	•	11.	1428.	1428.	19297	14129	114700	37.	38.	65.	43.4	9		0.0	0	0		0.0	0	ં		1428.0	1428	63		0.0	•	9
	† 0.												0	•	•	4	•		0	0	0.0		0	0.0	ó						0	0	9
	17				1442	-	=	3243	3243	6464	1574	114700	47.	43,	65	50.4	ģ		ŏ	ŏ	ŏ		ŏ	ċ	ŏ		3243.0	3243	Š		0.0	ŏ	à
	9 T. 94			2	0.69	2.8	4.8	47.0	47.0	4973	2933	114700	56.0	47.0	65.0	54.3	9		0.0	0.0	0.0		0.0	0.0	0.0		2147.0	47.0	54.3		0.0	0.0	0
	15 39.8												_	_	_	_	_		_	_	_		_	_	_						_	_	_
	14 39.8			•	615.0	4.5	*	1758.0	1758.0	494973	353344	114700	0.09	50.00	65.0	51.7	40.0		0.0	0.0	0		0.0	0.0	0.0		1758.0	1758.0	51.7		0.0	0.0	0.0
	13 39.7			60	83.0	4.3	2.3	22.0	22.0	4973	2400	114700	٥٠ 99	55.0	0.59	47.4	40.0		0.0	٥.	0.0		0.0	ပ.	0.0		1022.0	0.22	4.7.4		<u>ں</u> د	0.0	0.0
	12 39.6		965												_	_			_		_		_	_	_							_	
			FOR 1965	7	879.0	5.5	€.	957.0	957.0	494973	443837	114700	68.0	52.0	65.0	4.4.9	9		••	0.0	0.0		0.0	0.0	0.0		957.0	957.0	44.9		0.0	6.3	0.0
EMPERA	8 9 10 11 39.6 39.6 39.6 39.6	41.3	RATURES	•	61.0	0.4	•	32.0	31.0	4973	0158	114700	59.0	50.0	65.0	45.9	٠. د		0.0	0.0	0.0		16°ن	19.0	39.8		1213.0	13.0	43.0		ر. د	c. 0	6.0
AIR T	39.6	41.3	EMPER																								_	_					
RESERV	8 39.6	41.3	FLOWS AND TEMPERATURES	5	2087.0	3.2	4.0	1875.0	1875.0	494973	443474	114700	51.0	46.0	65.0	41.3	0.0 0.0		C.O	0.0	0.0		0.0	0.0	0.0		1827.0	1827.0	41.2		4 A.C	48.0	48.0
	39.6	11.3	FLOW	4	٥.	2.5	5.7	5.0	٠ •	973	661	õ	0.0	0.1	٠	40.0	0.0		د.	0.0	0.0		0.0	د. د	٥.		0.906	6.	ç		٦. ر ا	0.),(
	9 9. 6				272		•	ĝ	ò	464	430	114700	4	7	5	¥	*		Ĭ	•					Ĭ		Š	ÿ	7		•	_	•
		41.3 4		~	1827.0	2.8	1.8	935.0	935.0	494973	121292	11470	46.0	39.0	65.0	39.5	40.0		ج د.	0.0	C.		c.	G.O	0.3		935.0	935.0	39.6		 	٥.	0,0
		, 7.1		7		7.	4	9	·				0	ب	c	•5		•	 	7	ر.		7	د:	Ç		q	٠.	~		 	ີ) ' '
	39.6 3				3118.0	-	5.6	4682	4682	494973	2666 79	114700	7	38	65	39.2	9		3	7	٠,		2312	2312.3	39.3		2370.0	237.3	39.3		C	•	7
				-	5223.0	۳.	21.2	13.N	33.0	434973	322438	114750	34.0	33.0	65.0	39.65	٠,64	_	ۍ د	6.2	39.3	7	2745.0	2745.0	39.4		3135.0	3132.0	39.6	4	ر. د. د		ر ا
	33.0				5		.,	23.	53	43	35,	Ì			_		•	Ľ			•	JJTLET	27	1.7		JILEI	31	31	•••	JILEI			
,	39.6	¥.0.		YEAR	1342.1	2.7	5.8	2172.3	172.3				51.2	42.2	65.3	43.9	43.0	THRU JJI				TH3J J				THRU SUTLET				THAU UNTLET			
	PER 12													_	_		_	ISES	-							SES			_	SES			
1	YEAR 1945				INFL	EVAP	PRCP	OUTFL	P EQUO	STHX	STOP	STeh	TA	TMPIN	THPHX	TPUIT	AN AN L	RELEASES	27 00	3	TOUT	RFLEASES	\$ 0	POUT	TOUTE	RELEASES	N C	900 I	TOITE	RELEASES	2	00.UTL	LOIL
																						_					_		_		_		_

Results for calender years 1966 and 1967 are not shawn.

NAU

Printout for Example 1

18

b. Example 2. Analysis of a Proposed Reservoir - This example illustrates application of the program for situations where estimates of the calibration coefficients have been obtained by regional analysis. Detroit Reservoir is analyzed assuming thermal profiles do not exist but that the model calibration coefficients are known. Refer to example 1 for physical characteristics of the dam and reservoir.

Example input is shown on page 20 and is explained in appendix 3. Example output is shown on page 22 and the variables are defined in appendix 2. Examination of the output should include checking the top half of page 22 and the summary of "flows and temperatures" at the end of each year to insure that the program obtained correct input data. The remainder of the output includes the end-of-month calculated temperature profiles and reservoir storage, discharge temperature and quantity through each outlet and flow-weighted average temperature through all outlets.

Examination of the output shows that the release temperature was below the temperature criteria in January through March for the first two years. The January profiles for the first two years show that the warmest water in the reservoir can not satisfy the criteria, but the February and March temperature criteria might be met by using two penstock intake levels at elevations above the existing level.

In many cases, for analysis of a proposed reservoir, the releases are not specified for particular outlet levels and the program makes the decision as to which levels are used to meet the downstream temperature criteria. In such cases, the program uses the NMINQ(B-9) value equal to zero and therefore no F card or T cards would be required.

3. 3.

GENERAL PURPOSE DATA FORM (8 COLUM FIELDS)

	A A PER BER B 31 A 47000 A 45 A 47000 A 45 A 47000 A 45 A 47000 A 45 A 47000 A 4 47 A 47000 A	CHECKED BY	PAGE		
A PER BER 31 4000 H 445000 H 455000 H 4	A PER BER 31 4 4 5 5 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1			00	
A BER B 3. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	A A BER B 3. 10.000.000.000.000.000.000.000.000.000	7	80	6	9
A PER BER B 3 B B B B B B B B B B B B B B B B B	A PER BER B 3	3 46 47 4649 50 31 52 53 54 55 56 5	7 58 59 60 61 62 63 64 65 6	67 68 69 70 71 72 73 74	75 76 77 78 79 80
A PER B 31	A PER B 31				
4 PER 8 3. 8 3. 8 0. 0 36.70000. 6 3.16. 7 47.000. 7 44. 7 40. 7 40. 7 40. 7 40. 8 30. 8 30. 8 30. 8 40. 1 40. 1 40. 1 40. 1 40. 2 20.00. 8 30. 8 40. 1 40. 1 40. 1 40. 1 40. 2 20.00. 8 30. 8 40. 1 40. 1 40. 1 40. 1 40. 1 40. 1 40. 1 40. 1 50.00. 1 40. 1 50.00. 1 60.00. 1 7 40. 1 7 40. 1 7 60. 1 7 7 60. 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	A PER B B B B B B B B B			-	
8 3.4 0 36.7009 0 0 36.7009 0 6 .8/6. 6 .8/6. 7 41. 1 44. 1 44. 1 44. 1 44. 1 44. 1 44. 1 44. 1 40.009 0 1 2009 0 1 40.009 0 1 2009 0 1 40.009 0 1 2009 0 1 38.809 0 1 38.809 0 1 40.009 0 1 5009 0 1 6009 0 1 7 41.	6 36 70000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-	
B O 36 7000 O 36 7000 O 65 O 65 O O O O O O O O O	1 10 10 10 10 10 10 10		4	41	5
D 3670000 E .8/61 F2, G 3/6 H 47000 H 44500 H 314000 H 314000 I 40 I 70 I 40 I 70 I 40 I 70 I 70	10 36 10 00 00 00 00 00 00 0		3,	-	
65, 816, 65, 65, 65, 65, 65, 65, 65, 65, 65, 6	1 65 65 65 65 65 65 65	- 12	-2		
1 4000 1 45 45 45 45 45 45 45	F .8/6, -2, 4 45 H 47000, H 314000, H 314000, I 44, I 44, I 40, I 50,00, M 38, M 47, M 38, M 47, M 4	3			
F -2, G 31, H 47000, H 44500, H 344500, H 314000, I 40, I 70, I	F -2, H 47000, H 47000, H 314000, H 314000, I 40, I 40, I 40, I 40, I 40, I 40, I 40, I 40, I 40, I 70, I				
5. 31, 4. 47000, 4. 47000, 4. 44500, 4. 44500, 7. 40, 7. 2000, 7. 40, 7. 2000, 8. 30, 8. 30,	45 31, 45 000, 44 47, 44, 47, 40, 47,	1		-	1
4 41000 4 47000 4 44500 4 44500 1 314000 1 40 1 70 1 40 1 70 1	4 47000, 454 500, 454 500, 454 500, 456, 456, 456, 456, 456, 456, 456, 456		3/	30	2
45 45 600 1	4 45000 454 444				120
H 47000, H 444500, H 314000, I 314000, I 40, I 40, I 40, I 40, I 2000, M 47, M 47, M 47, M 47, M 58, M 621, 22, M 621, 22, M 621, 23, M 638, M	H 47000, H 444500, H 314000, I 314000, I 40, I 40, I 40, I 40, I 2000, M 38, M 47, M 47, M 20, 92, M 21, 22, M 21, 22, M 23, 32, 43,	67. 1	199	2609	4 200
H 470001 H 344500 H 314000 I 40 I 40 J 2000 M 47, W .30, W .30	H 470001 H 44500 H 314000 I 40 I 40 I 40 I 40 M 47, W 1.02, W 1.02, W 21.22, W 21.22, W 21.22,	25		35200	4080
		209	108027	114000	
		237000	254593	272000	292000
314000	314000 40	13 48 47 48 48 50 51 52 53 54 55 56	57 86 59 60 61 62 63 6465	86 67 66 68 70 71 72 73	
I 40,	I 40,	466	4949	-	
41, 40, 40, 2000, 38, 38, 47, 	41, 40, 40, 2000, 38, 38, 47, 70,02, 21,22, 10,92, 10,92, 32,43,			42	46
40, 40, 40, 38, 38, 7, 02, 7, 02, 7, 02, 7, 03, 1,	40, 40, 40, 38, 38, 47, 32, 32, 32, 32, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43			411	4
40, 2000, 2000, 38, 30, 1,02, 21,22, 10,99, 10,99, 5883,	40, 2000, 38, 38, 47, 30,			41	40
2000. 38. 38. 47. .30. .02. 21.22. 10.99.	2000 2000 38 37 47 . 02 . 30 . 02 . 02 . 21. 22 . 21. 22 . 22 . 32 . 32 . 33			401	7
2000 38 38 47 . 30, 7.02, 70.99, 70.99, 3243,	2000 38 47 . 30 . 02, 27. 22, 70. 92, 70. 93, 3243,	///-	1/-		
38 47, .30, .30, .70,99, .00,99, .5883,	38, 47, 30, 1,02, 10,99, 10,99, 32,83,			-	
47, .30, /.02, 21.22, 20.93, /0.93, 3243,	47, . 30, . 02, 27, 22, . 0 9 9, . 0 9 9, . 3 2 4 3,			60	20
. 30, 7. 02, 27. 22, 70. 99, 5883, 3243,	. 30, 7. 02, 27. 22, 70. 99, 70. 99, 32,83,	5	1	1	
7.02, 27.22, 10.99, 5883, 3243,	1.02, 21.22, 10.99, 5883, 3243,	.04 5.	n	0	7.5
21.22, 10.99, 5883, 3243,	21.22, 10.99, 5883, 3243,		0	7,6	X
10.99, 5883, 3243,	5883 3243	2.	6.3	196	-1
		00		1758	2/47
		3/1 75		001	
		6 55 56 55 55 55 55 55 55	97 58 59 60 61 62 63 64 6	0 66 67 68 69 70 71 72 73	74 75 76 77 78

20

GENERAL PURPOSE DATA FORM
(8 COLUMN FIELDS)

• 1

	2 0 0 0 0 0 0 0 0 0		- 2	ツタ						To the same of the			
		10 11 11 12 12 13 13 13 13	-		7	PREPAR	ED .		40	MECKED BY	PAGE	2 00 2	
10 10 10 10 10 10 10 10		10 10 10 10 10 10 10 10	~	_	2	E7	4	S	9	7	8	6	01
300, 420, 600, 800, 920, 980, 940, 650, 680, 320, 320, 320, 320, 320, 320, 320, 32	340, 420, 600, 80 340, 260, 0 2, 0 3, 135, 2370, 935, 90 0, 0 0, 0	300 420 600 800 920 920 940 650 650 650 50 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		3 4 5 6 7 0 9	**	7 18 19 20 21 22 23 24	25 26 27 28 29 30 31 33	2 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48	49 50 51 52 53 54 55 56 5	7 58 59 60 61 62 63 64	65 66 67 68 69 70 7. 72 73 74	75 76 77 78 79 80
340, 260, 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	340, 260, 0 2745, 23.2, 0 2744, 23.2, 0 3.243, (428, 0 0, 0 0	32.44 23.5 3 0 0 0 79.7 (27.3 957 7022 7758 2 32.4 4.6 5 0 0 0 0 79.7 (27.3 957 7022 7758 2 32.4 3.4 4.6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S	300,	420,		80	6	6	6	859		490
2.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	274% 23/2 3 3135, 2370 935, 90 3135, 2370 935, 90 3243, 428, 00 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	2.746, 23.72, 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S	340,	260	-							
2744 23.2 3 0 0 0 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2745 23/2 3 3/35 23/2 3 3/35 23/2 428 4 3/42 23/2 42 4 3/42 1/39 3/2 1/2 4 3/42 1/39 3/2 1/2 4 3/43 3/2 3/2 3/2 4 4/3 3/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	2.245, 23.25, 3.00, 0.00, 72.3, 95.7, 72.25, 7.758, 2.3 3.243, 74.28, 0.00, 0	N	2	0						O		
2745 23/2 3 0 0 19 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0	2744 2 2372 935 90 3135 2370 935 90 3243 (428	2744 23.2 3 0 0 0 0 19, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0	O					,		4	
3.355 2.370 9.35, 9.06, 7.927, 7.27.3 9.57, 7.022 7.558 2.3.2.3.2.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3	3135, 2370, 935, 90 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	3233 3233 3233 4426 5563 444 446 446 446 446 446 446 4	1	2746	m	0			,		0	1	0
3135, 2370, 935, 906, 1827, 1213, 957, 1022, 1758, 2 3243, 1428, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5563, 316, 1827, 2721, 2087, 1361, 879, 683, 615, 1442, 1239, 339, 41, 46, 50, 52, 55, 50 43, 33, 33, 41, 46, 50, 52, 55, 50 1772, 1732, 143, 144, 144, 144, 144, 144, 144, 144	3243	3135 2370 935 906 1827 1213 957 1022 1758 2 3243 (428	7	0	0							2	
3243 /428 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3243	3243 (428	1		2370	935	9	/	121	6	1022	17	2147
5563 318 1827 2722 2087, 1361 879 683 6/5, 1442 334 34 44, 46, 50, 50, 57 55 50, 57 55 50, 57		442 1139 31.16 1827 2722 2087 1361 379 683 675 1342 1442 379 683 675 1361 1442 379 683 675 1361 1379 13	K	(1	1428								
5563 316 1827 2722 2087 1361 663 615 663 615 1442 1334 334 41 461 50 52 52 55 50 43 43 34 33 34 41 461 50101010101010101010101010101010101010		5563 318 1887 2722 2087 1361 579 683 675 751 361 379 683 675 1565 379 683 675 1565 379 683 675 1565 379 1895 379 379 379 379 379 379 379 379 379 379	1	0	0			318			0		0
1442	1442	4442	L	0	0		4140		110	7 10	- 0		
1442, 1139, 38, 38, 41, 46, 50, 52, 55, 50, 33, 43, 43, 43, 46, 50, 52, 55, 50, 52, 55, 50, 33, 43, 43, 43, 44, 40, 40, 40, 40, 40, 40, 40, 40, 40	23-60-70-00-00-00-00-00-00-00-00-00-00-00-00	32, 35, 36, 39, 41, 46, 50, 52, 55, 50, 52, 50, 50, 30, 30, 30, 30, 30, 30, 30, 30, 30, 3	5	56	11	/	272		136		0	9	699
33, 33, 33, 33, 34, 43, 44, 44, 47, 47, 47, 47, 47, 47, 47, 47	23, 33, 38, 38, 38, 39, 44, 43, 44, 45, 45, 45, 45, 45, 45, 44, 45, 45	39. 39. 39. 35. 35. 39. 44. 39. 20. 22. 22. 22. 22. 20. 20. 20. 20. 20	2	1442,	1139						× -		
23 - 13 - 13 - 13 - 13 - 13 - 13 - 13 -	23 4 5 6 7 6 9 10 11 18 13 10 18 10 10 10 10 12 22 3 22 3 22 3 20 27 20 20 30 3. The My My Q P 7 10 10 10 10 10 10 10 10 10 10 10 10 10	3	>	37	38	m		1, 46,		8	55		4
2 3 9 5 9 7 9 9 10 11 12 12 13 14 12 12 12 12 12 12 12 12 12 12 12 12 12	2 3 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0	3	1	43	38						1		
are not shown	172 My My & Py T	1	-									1	
are not shown	Orc not Shown Orc not Shown Orc not Shown Shown Shown Orc not Shown Shown Orc not Shown Orc not Shown Orc not Shown Orc not	3 6 9 6 7 9 9 10 12 3 14 15 16 17 16 16 20 21 22 23 24 23 26 27 26 29 30 31	1		1	1	(, 3.1	,			1	\
		5 4 5 6 7 6 9 10 1. 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 30 31) -			23	and	cards	years	0	9	
		5 4 5 6 7 6 9 10 1. 2 1.3 1.4 1.5 1.6 1.7 1.6 1.9 20 21 22 23 24 25 26 27 28 29 30 31	4							13.1		20.8	
		5 4 5 6 7 0 9 10 1. 2 3 4 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 30 31	4										
	2 2 2 2 2 2 2 3 4 5 5 5 5 5 5 5 5 5	5 4 5 6 7 6 9 10 1. 12 13 14 15 16 17 18 18 20 21 22 23 24 25 28 27 28 29 30 31	4										62
	2 3 4 9 4 7 9 8 7 0 5 13 14 13 14 14 15 18 10 17 22 23 24 25 26 27 28 29 30 31	S 4 5 6 7 6 9 10 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.6 20 21 22 23 24 25 26 27 26 29 30 31	4	100	1000							0.014	
	3 4 9 6 7 9 9 10 1.2 1.3 1.4 1.5 1.6 1.7 1.9 1.9 20 2.1 22 22 3 24 2.5 22 8 3 0 3 1	5 4 5 6 7 6 9 10 12 3 4 15 16 17 18 18 20 21 22 23 24 25 26 27 28 29 30 31	4								F)	park gradul vag	MIER S
	3 4 9 6 7 9 9 10 1.2 1.3 1.4 1.5 1.6 1.7 1.9 1.9 20 2.1 22 22 3 2 4 2 5 2 2 2 2 2 3 2 4 2 5 2 5 4 2 5 2 5 4 2 5 2 5 4 2 5 2 5	S S C T S S C T S S C T S S S S S S S S S	-	100 (00 3-1	Cartillo per flor	order production	Water Comments	1		1			
	3 4 9 6 7 9 9 10 1.2 1.3 1.4 1.5 1.6 1.7 1.9 1.9 20 2.1 22 23 24 2.5 28 27 28 20 3.1	5 4 5 4 7 6 9 102 .3 .4 .5 .6 .7 .0 .0 .0 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	1	\$15.00	The sections	The state of the s		1			THE MEDICAL PROPERTY AND	85.4749 95.675 2.93	42.6
	3 4 9 6 7 9 9 10 1.2 1.3 14 15 16 17 18 18 20 21 22 23 24 25 28 27 28 29 93 1	5 4 5 6 7 6 9 10 12 3 14 15 16 17 18 18 20 21 22 23 24 25 26 27 28 29 30 31	1		STE 396 July Way	TO LE PORT TOPE OF		1		Part of the same	Total Target		14.1
	3 4 9 6 7 9 9 10 1.2 1.3 14 15 16 17 18 18 20 21 22 23 24 25 28 27 28 29 30 31	5 4 5 6 7 6 9 102 .3 .4 .5 .6 .7 .6 .8 .6 .7 .6 .8 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2		-	E-10-10-10-10-10-10-10-10-10-10-10-10-10-		The self-self-self-self-self-self-self-self-	TANK BANG A			S. S		100
THE PARTY OF THE P	3 4 5 6 7 8 8 102 .3 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 50 31	5 4 5 4 7 8 9 102 .3 14 15 16 17 18 18 20 21 22 23 24 25 28 27 28 29 50 31	1		22/2			1		The same of the sa	14.0 34.1	39.0 39.5 W	CE
	3 4 5 6 7 0 9 10 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	5 4 5 6 7 6 9 102 .3 .4 .5 16 17 18 18 20 21 22 23 24 25 28 27 28 29 30 31				the section of the second	Sell was fire	Western Wiles	The second second	18 18 18 18 1 45 1 45 1 45 1 45 1 45 1 4	the Sand Alban		

NY4 3 HAEL A STO4A 307000	:		1												
	178	35 P	IPER WS	MSTRT NLAY	2		NOUTL NM	NHING TOERV	RV METRC	RC 106ST	151	NIC	NIT		INTER
ST04A 367000.	1965 NMO 3	7	-	1 :	84	60	4	•	0	0	-	-	0	0	•
7000	:	C0SA		STAMN	TIN	TAIR	EVAP	PRCP	NI NO	TMAX	IMIN	CSOUT	SOLR	DEP	
	1.9		494973. 1	114700.	-2.	-2.	-2.00	-2.00	-2.	.59	*0	.584	-	32.81	
AIR	R TEMP COEF	F" INFLO	HIXING C	COEF	UIFFUSION	ON CUEF	EVA	AP HEAT COE		INSOLATION	N COEF				
	-2.0	-2.0	-2.0	5=				100							
STCAPE	454	125.	197.			607.	967.	1482.	1997		000	4200			
		8200	10341		1		21000.	25100.	29238	-		40800.			
1	144500	158300 336500	172224	186000	!	204000.	220000.	237000.	254593.	2	2000.	292000.			
TSTRT=	0.04	0.04	0.04				0.04	.1.0	42.0		42.0	42.0			
	0.14	0.14	0.14		! !	41.0	41.0	0.04	•••		0.14	41.0			
!			0.04			0.04	0.04	0.0	0.07		9	0.04			
STOUT	2000	27000.	76000	36,		211			• 1						
						RESERVOI	œ	TEMPERATURES							
YEAN DER	. 0	م د	4 5	2		30 ~	9 4	1	12 13	105	7 %		L	İ	202
	909	7.00	39.7	7	٦	39.6	39.8 39.	39.8	1	9.6	39.6	39.8	39.8 39.8	8 39.8	ł
1965		39.0 39.0	39.0	ł	39.0	39.6	39.0 39.0	39.0	39.0 39.0	0 39.0	39.0	39.04	39.0 39.0	0 39.0	39.0
1965	0 m		39.0	39.0 39.0	:		i	39.0	39.0 39.0	1	1	39.1	i	1	39.2
1965) (39		1 :	1	-	1 1	39.1	1 1	1 1	1 1	39.2	1 1	1 1	1 1
1965	~ = 0	301	;	1			.	39.2			- 1	39.4	1	Ì	
1905	20-0	ا ا	49.7 39.1 42.3	26.4	39.2	~ -	39.	W 20		1	1 1	39.7	1 1	1	1 1
1465	:	m N 0	. 55.2 39.3 44.0	56-4 27-4 39-3 39-3 44-9 46-5		39.4	39.5 39.	5 39.6	39.7 39.8 49.7 50.3	40. 51.	0 40.1 0 51.6	40.3 52.6	40.6 40 53.5 54	40.9 41.2 54.4 55.4	- ;
1965	3 10 4	9. 39		300) i	39.6	39.9 40.0	1.04	40.5 40.4	1 1	l i	41.2	24	ł i	1 1

	!		i			!	1				ļ				!	!			1		i		-	;	:			1	1			:	1						!		
58.9	47.0	ď	• (40.8		;	:	•			!				!	1					:				!			:	!			39.0	39.0			20.		. (39.0		•
58.9	•	56.0 56.0	•	40.5			-	•	• 1		20.0	973	292	_	38.0	S	4.E	3	•	•	•	•	•		28.	2 4	<u> </u>	9:6				39.0	39.0		41.9	70.			39.7		•
58.7	8	56.0 55.0	,	40.4			-	=		•	*	161	141	•	0		vo c		0	0	>		0		7	.		0.6				9.0	39.0		41.2	20.0		,	39.5	•	
58.6	•	56.0	;	40.2			1	7441		1243	3243	696973	57428 14700	47.	43.	65.	200		•	•	•	•	•	•	3243.	20					1	39.0	39.0	•	40.9			D 1	39.4	•	
58.3	m	56.0		40.1				0.0	9.4		_		93.	•		-	7.95	• i	•	•	•	•	•	•	-	47.0 54.3		9	•			39.0	39.0	٥	40.5	100	. ~) (39.3		
58.1	6	56.0		39.8			•	ŏ > v		7	7	64	262	•					0	•	0		0		0 21	2 2		0	0			39.6	39.0	٥	40.1	יוישני	. ~	, (39.2	•	
57.7	٠			39.8				•		175A.	1758.	694973	353344.	•	50.	65.	51.7		٠	•	•	•	•	•	1758.							39.0	39.0	٥	39.9	91	•	ÞÍ 81 (39.5	;	
57.4	å	56.0	•	39.7		٠		, 2					400	٠	55.0	65.0	. 5.24		•	•	•	•	•	•	22.	25		٩	•		13	39.0	• 1	-	39.7		: <	<u>.</u> ! ,	39.1	•	
57.1	42.1	56.0	40.8	39.7		3965		0		•		64	42	•	0	0				0		•	0		0 10	-		0			12	39.0	6	40.7	: 6	٥	42.0	• . J	39.1	•	
56.7	۰	•	49.8	<u>.</u> اہ	:	FOR 1	15	0	•	067	957.	6973	114700	•	52.	65		•	•	•	•	•	•	•	957.	957.		•!	• •! !	TURES	-	39.0		•	: 5	•	7	•	39.1	•	
56.3	-	•	9 0	39.6	•	3		301.0		2	31.0	~	158	6		š	45.9	:	•	•	•	•		27.0	6	43.0		0		EMPERA	2	000		•			-	•	39.1	;	
55.9	- 1	•	49.8	- 1	•	TEMPERAT	-	-	-	,		•	450	•	0	q	٠,		•	0	9		0		0	- - ~		0		RVOIK T		96.0		•			7 1 4		33.	•	
55.6	-	ທໍາ	49.7	o -	:	S AND	0		1	27.5	1875	1676	443474	51.	46.	65.	4.		•	•	•	•	•	•	~	~ 4		3	9	RESER	20	900	•	•	39.5		• -	•	34.1	•	
55.2	0.	ů.	-	39.6	•	FLOW		0.22 2.5	200	9	90	973	661	49.0		ŝ	0.0	3	•		0	•	•)) (•	0.00	1	•	•			39.0		•			41.5	•	39.1	•	
54.7	• 1	•	9.64	39.6	•			V	! 		ı	64	3-			9	•					•			0	, oo					9	39.0	39.0	39.2	39.4	. 9	7	•:	⊙ : √	•	
51.4	9.04	53.1	7.7.4	39.6				1867.	-	51.0	935	676473	321292• 114700•	46.	39.	65.	é :		•	•	•	•	i •	•	~	935.	• • •	•	• •		-	34.0	0.67	39.1	39.3		24.04	•	39.0	ů.	
30.64	40.04	•			•		4	0.0116	-					9		S	39.5	:	•		•	112.0	ن	3% 0	- 4	34.3		0 i 0			3	39.0	36.0	39.0	39.50				•1		
3	59.04 40.3	50.2	4.94	39.65	-			.		4 =	· > c	• •	26667	c		•	n e) -	. 0	•	ا				· •	۰ د و	•	91				9.0	2.0	39.0	39.0	•	•	47.5	-:	•	
3	0.04 0.04	- o o o	• •		•	i i		5563	216	SAAA	5883	494973	352498	38,	39.	. 65	36.5			` ~ ?	39.3	2746.	مرا	. 44. F.T.	3135	_	OUTLET	•	• •		. ~	39.0	39.0	39.0	39.0		30.00		•	ה ה ה	
4	39.9	C 4	\$ 5	6	•		4 C	1 - 2 75	9		172.3			51.5	42.2	65.0	\$ °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	T-80 00)		1011	2	 	Tuest			1480				-	39.0	34.0	39.	66		•	- 1	÷ (:
	2	=	:	7			•	-	1	7		,	į					3		:	u	200					ĘS.				->ER	¬	v.	•	<u>ا</u>	•	•		v		
5061	1465	447)! 	7,62			0		100	0,1161	RECOU	SIMA	STOR	4	THPIN	IMPHX	1001	Z Z	NHOO	400TL	JOUIL DELFASE	NYOO O	00UTL	PEI FASFO	N O	0001L	RELEAS	NHOD O	1001		YEAK	1966	1966	;	1300	3	0047		1466		

T

I,

1

1

11,

1

I

I

53.4	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	55.5 56.9 39.2 39.2	28.65 28.65 28.65	ni o	39.66	9.5 39.	6 39.7	9.6	40.1	*	• 0•		8.
3.5	43.4		45.4 5.5	47.2 47.	48	7	2 49.8	.4 51.	9.15 0	2.4 5	3.2 53.9	80	55.6 56.5
19.39 19.39	39.4	39.5 39.5 45.9 46.8	39.6	39.7 39.	9 39.9	51.9 52.	1 40.3	53.7 54.	3 55.0	41.2 41	.6 42.0	42.5	43.1 43. 58.9 59.
60.66 99.66	61.5 39.8	62.7 63.7 39.9 40.0	64.1	9	****	0.7 40.	9 41.1	104 410	42.0	3	9 43.	_	4 8.
9 -	5 47.5	i	21.1		8 SS	56.	1 56.4	9 57.	3 57.8	.3 5	59.	6.65	9
1.0,	100	f	40.8	3	41.	1.7 41.	9 42.2	2.5 42.	43.3	3	4	L.	46.5 47
11 48.1	•	, ,	2 - C	4 4	200 c	207 42	43.1	43.4 43.	5 43.1	3.7 43	4 54	43.9	44.1 - 44
2 40.4	1	40.4 40.4	40.4	40.4 40.4	4004	40.4 40.4	1001	*00 *00	4.04 4	40.4 40	4.04 4.	4.04	40.4 40
* ! !			•		OWS AND	MPERATUR		99					
YEAK	7 0300	2 776.1	3376.0		2031	9	677	1 14	9	769	1 25 0	766	12
2	i		2.			3	4	5.	1				v.
6-702	9 - 2948-0	966.0	-	270		1007.0	1	947.0	1426	2085	0 4523.	346	
2074	,	i	- 1	12	,		- 1	947.0	1426.	2085	l		0.6
	494973.	167449	494973	3618	494973.	494973.	494973.	494973	494973•	494973	. 494973	3. 49497 5. 13956	73 . 65.
	114700.	114700	114700.	71	1		ı	114700.	114700	114700			.00
51.6	1	!		5			9			9	•		~
41.9	•		:	410	1	- 69	5			3	3	0	01
65.0			0.59 39.3	•	65.0			62.0 47.9	n Ö	53.5	0 4	0.0.7.	2.0 2.3
'				3		9				4	3		
	137.00	0.		!	•	•	;	•	•		0	0.	0.
	3		9	•	0	0.		•	9		0.0	0	0 9
MELEASES THRU	JUTLET 2	•		•	•	•	•	•	•	•			•
	404		•	6,4	•	•	28.	.89			1051		
	0.804	9.0	•	6. E	0.0	0	78.0	16.0	43.		77	04	90
RELEASES THRU	OUTLET			•	•	•	•	•					
	2540-	ا م	1144.	2642	0 2777.0	1007-0	874.0	926.	1394	200	3472 3472		45.0
31	39.	34.1	39.3	• 0,	45		45.		51.	y,	4	•	•
	•	•	•	-	•	•	. •	•	•			•	
	•••	•••	•••	- 1	0.0	0.		010	•:.•		0,0	00	••
: 6	'		;		RESER	TEMPE	RATURE	1	1	ı		-	
° ,	- 2 0.5	•0•	40.2		2.04 2	70,	2 40.2		2 40.2	2.0	40.2 40.2	40.2	40.5
2 40	7.0°	40.7 40.4	£ 40•3	4 V	40.7	40.6 40.	8 41.0 2 40.2	40.2 40.	1	1	3 3	- 1	40.3 4
64	6.04	9	40.5	9	P.04-	4	2.15	.n	- 1	2.5	4	43	
7 4	1 1 1		2 40 - 2	1 4	- •	3 4	9.00	07	2			42.0	
; •	-	• 0 • 1	1.04	_ ;	4	+0+1 +0+	1 +0.1	-	-	•	-	9	40.2
f		į			•	:	1					ı	•

į			1					1			1				!	i			!		1	1		-	- 1		l	!		!			:		ļ !				•				1	,	
	7	40.5			<u> </u>	•	45.4	6	. !	4.4.4	9.49	4		;		55.2	46.8	1	39.7					Ì				;		i i					i i								!	;	
4	7	40.4		- 1	-	52.1	•	100	1	ë	63.4	u	• •	;	47.3	55.2	46.6		39.6			12			30.0	- 4		, A		39.0	-	D •	• ·	•	•	•	•	•	•	9	2230.0	42.8	i .		• •
-	4.1.4	•	6.97		•	26.1	41.6		;	ë	62.2	ú	42.A	j	•	55.2	46.3	1	39.5		I	1 27		1				114700		0			>	0	•		•	0	0			~	Ϊ.		• 0
,	3	•	9	- !,	0	51:3	41.3	:	1	ċ	010	4		Š	45.9	55.2	46.0	·I	39.5			1926	•	•	364.	3.5	2	4700	•			•	.	•	•		79	664	~	9	3700.	20	i	•	
0	46.5	40.5			0	000	_:	55.3		45.1	60.1	-	62.0	•	45.2	•	45.8	1	39.5			07 51	2.1			73.0		2	6	10	65.0	;	•! •!	•		0	•	•	•	5	173.0	53.0	! ! !		•
•	0.0	•	S	į,	0	•	6.04		: :	41.8	59.5	•	• I 7			55.2	45.5	1	39.5		!	İ		:	2	200	200	1		0					•			. 0	N	•	2 2	. 0			n 0
1	46.3	40.5			•	40.	40.8			÷	58.3		1719	•		55.2	45.2	1	39.5			043	ຸດ		1458	1459.0	21 A4 32	114700	67.	52.	Sil	7	•	•	•	1	6	61	**	4 2 7	1434	3	: !	•	65.
0	7475	•	'n	1	o:	. D	40.4	2	1	-	57.5	c	200	•		•	44.8	1	so r	•		9 114		:	172.	-11	200	700	یم	'n	•	;	•	•	•	•		9	å	a	0.80			ب د	67.0
-	9.0	40.2	*		0	F	40.5			41.1	26.7		1	•		25.1	644	ı i	U. C.	•	1961			. 0	0	-0.		: :			•	•	•	•	•	•	•				- ·	•		•	o c
٠	D	•	13		•	4.14	ď	51.1	•	ċ	55.9		20.0	•	43.0	•	44.2	13	39.5	•	S FOR		: 0		136	36	10	470	9	•	S.	9	•			!				:		46	- 1	ഗ	C d
_	0:	40.1			4	• 0	ď	50.5	,	40.8	•	_	o' -	•	5	55.0	43.9	15	~ (***	TURE	9 30 1	7	-	7	50		0.7	4	50.0	5	÷,	0.0	•	•	•	•	•	•	2	0.624	43.			- •!
17	C 6 + 5	40.1	3			V. 04	•	6.67		ċ	54.5	,	T. T.		45.4	•	43.6		37.6	•	TEMPER	- 1	•		•	• ,				0	•	•	•	•	•	•	5		•	:		•	÷		- - 0;
	(T	•	43.2	:	40	40.1	404	ا	•	•	53.4		1	•	42.1	•	4	64	.	•	US AND	7 . 76	0	~	1336	1336		1 3		6.0	65		*								1336	4			
17	7.14	•0•	42.		40	, ,	40.4			4	53.1	•	1,0	ñ	+1.	Ś	43.	5,5	96	•	FLO		: -		0	910.0		3	١	41.0	ů.	•	•	•	•	•	0	•	•	9		4 5	,	•	2 2
3	0. T.	40	45.6		4	ů.	40.4	48.2	:	40.5	52.4	3	317	•	4	53			39.5			mis		•	0	۰,		•	•	39.0	65.0	۳,	•	•	•	•	•		•		.	•		•	
,	*0.	4		53		4 n	1 4		\$	40			0 0	•		<u>.i.c</u>		į				- 1.73	7.01	7	1009	6001	20.67	11470	3	9.0	65	0 1	4							8	1000	3	•		
	40. C40.	•0•	1		7.07			45	90	40.		•	9 0	• • • • • • • • • • • • • • • • • • •	41.	Ų	4	4	m .	4		2 170	2010	, ,	2010.0	014.0	726	114700.	6.24	40.0	65.0	40°	0.0	•	•	•	5	•		1	0 0	40.0	•		. ·
	40.4	•0	3	'n	40,	4.4	9 0	44	62.7	0 7	47	9 .	•	•	7	64.	4	7		χ, Τ		ر م د	. د		_	_ `	i		•	0	J.C.	7. 0	o ~			Ç.	٠ ۲	: -	?			•	•		ا اد ه
	404		1			3		43.5					•	63.7		64	4	47	%	34.		٠, ٩	*	P	27175	2717.0	4747	11470	1	0,	Ę.	3	OTI ET	1			1			UTLET	7117		OUTLET		,
	404		4		1	•		6.27		•0	7.54	9	i	63.0	4	48.7		-	39.	30.00	!	YEAR		9	859.3	32			52.7	43.4	3,50	λ. υ.α	1 40 · C			وا	HAKO ODILE		_f e	\rightarrow			THRO		
		, L	İ		9 2		7		1	7		•	7		7 10		711	• 	ž 15					0 Y 1	~	~	د اع	Ž		2 G	X 7: 2 E.	10.7	MINNS		ֿו <u>ָ</u>	;	AELEASES LOMB	1		SES	2000	ب ب	TELEASES	CO14:4	ایے ہے
		1967			140	i	7			190	:	3	2		150		97	1	136		:	14.6	2) Q	00.1	REGUG	1	N I S	1	- -	Ĭ.	2	Z T T T T T T T T T T T T T T T T T T T	3	JOOL	Tool	אַ ב	JOUT.	TOUT	4E.	100	1001	ţ.	3	

APPENDIX 1

Calculation Procedure

A thermal analysis of a reservoir is made by calculating an energy balance. The energy balance accounts for all significant energy exchanges into and out of the reservoir. Figure Al-1 illustrates the driving forces which are considered in the energy balance. The arrowhead indicates whether a particular force can transfer energy into or out of the reservoir. Conduction can transfer energy in either direction dependent on the sign of the temperature gradient between air temperature and surface water temperature. Figure Al-1 also illustrates that vertical diffusion transfers energy between the horizontal isothermal layers of the reservoir. Assuming the initial state of a reservoir is adequately defined, the following procedure is used to conduct a thermal analysis of an existing or proposed reservoir:

a. Calculate the transfer of energy by conduction between the water and the atmosphere by the following equation:

$$E_1 = \Sigma FC_1 (T_A - TW_L) S_L$$
 (1)

where the summation is over all layers within the selected depth of energy penetration, and:

- E₁ = Energy transferred to the water within the selected depth of energy penetration in acre-feet-degrees F (or thousand cubic meters-degrees C)
- F = A factor which decreases linearly with depth from 1 at the surface to 0 at the bottom to properly account for the change in energy transfer with depth
- C, = A calibration coefficient between 0 and 1
- Γ_{Λ} = Monthly average air temperature in degrees F (or degrees C)
- TW_L = Water temperature of layer L in degrees F (or degrees C)
- S_L = Storage in layer L in acre-feet (or thousand cubic meters)
- b. Calculate the energy transferred to water from solar radiation by the following equation:

$$E_2 = KC_2 (R)(A)(ND)$$
 (2)

where the energy transfer is assumed to decrease linearly from a maximum at the surface to zero at the bottom of the selected depth and:

> Appendix 1 Page 1 of 7

evaporation - cools the water to some limited depth (approx. 30 feet).

effective radiation - warms the water to some limited depth.

(approx. 30 feet)

air-water conduction - can cool or warm the water to some limited depth (approx. 30 feet)

inflow - cools the water in each layer above the layer where it concludes its descent.

outflow - removal of energy and quantity from specific layers, causing redistribution of energy and quantity.

diffusion - heat transfer to the next lower layer. Tends to make the reservoir isothermal.

Figure Al-1. Energy Budget

- E₂ = Energy transferred to the water within the selected depth of energy penetration in acre-feet-degrees F (or thousand cubic meters-degrees C)
- K = A conversion constant = .0036 for English units (or .002 for metric units)
- C_2 = A calibration coefficient between 0 and 1
- R = Solar radiation in calories per sq. cm. per day (figure 2
 of main document)
- A = Reservoir surface area in acres (or thousand square meters)
- ND = Number of days in the month

1

c. Calculate the energy removed from the water by gross lake evaporation by the following equation:

$$E_3 = C_3 (H_E)(V_E)$$
 (3)

where the energy transfer is assumed to decrease linearly from a maximum at the surface to zero at the bottom of the selected depth and:

- E₃ = Energy removed from the water within the selected depth of energy penetration in acre-feet-degrees F (or thousand cubic meters-degrees C)
- C_3 = A calibration coefficient between 0 and 1
- H_E = Latent heat of vaporization plus approximate heat to warm water = 1062 BTU per pound (or 590 calories per gram)
- V_E = Volume of water evaporated in acre-feet (or thousand cubic meters)
- d. The coefficients in equations 1, 2, and 3 (along with the three coefficients in equations 4, 5, and 7) can be determined from recorded data. The energy calculated with equations 1, 2, and 3 is transferred in the order discussed, to (or from) the top several layers of reservoir water as a function of depth, decreasing linearly from a maximum at the top layer to a value of zero at the selected depth of energy penetration.
- e. Rainfall on the water surface is added to the reservoir volume at the average temperature of the top layer, and evaporation volume is subtracted from the top layer.
- f. Any thermally unstable layers are thoroughly mixed from the surface downward until no lower levels contain warmer water than exists at higher levels. This computation is constrained to temperatures above 4°C,

corresponding to the maximum density of water. If water is cooled below this temperature, the temperature of each layer from the surface downward is allowed to go negative until an amount of energy equal to that required to form ice has been extracted from that layer.

g. If the reservoir inflow is cooler than the surface temperature, it will descend and partially mix with the upper layers. The temperature of each layer and the temperature of the inflow that results from the exchange of energy between the inflow and the reservoir volume at each level is calculated by use of the following equations:

$$T_{L}' = T_{L} + C_{4} (T_{avg} - T_{L})$$
 (4)

$$T'_{I} = T_{I} + C_{4} (T_{avg} - T_{I})$$
 (5)

where: T' = Temperature at layer L in degrees F (or degrees C) after inflow energy transfer

T_L = Temperature at layer L in degrees F (or degrees C) prior to inflow energy transfer

 C_{L} = A calibration coefficient between 0 and 1

T = Average (weighted by volume) of inflow temperature and temperature of layer L in degrees F (degrees C)

T' = Temperature of inflow in degrees F (or degrees C) after
 inflow energy transfer

T_I = Temperature of inflow in degrees F (or degrees C) prior to inflow energy transfer

T = Average (weighted by volume) of inflow temperature and temperature of layer L in degrees F (degrees C)

The calculations involving equations 4 and 5 must be repeated for each layer. The inflow is thus warmed slightly as it descends to a level where the temperature equals the modified inflow temperature, but never descends below water which has a temperature of maximum water density (4°C). It is then added to the reservoir, and all water in higher layers is raised. A thermal stability check is made and any unstable layers are thoroughly mixed.

h. The temperature changes resulting from the vertical diffusion of energy can be calculated by the following equations:

$$T_{av} = \frac{\Sigma T_L V_L}{\Sigma V_L}$$
 (6)

$$T_{L}' = T_{L} + C_{5} (T_{av} - T_{L})$$
 (7)

Appendix 1 - Page 4 of 7

where the summation is for all layers L over a 10-meter range and:

1

T = Average temperature of all layers within a 10-meter range

T = Temperature at layer L in degrees F (or degrees C) prior to diffusion of energy

V = Volume in layer L in acre-feet (or thousand cubic meters)

T' = Temperature at layer L in degrees F (or degrees C) after diffusion of energy

 C_5 = A calibration coefficient between 0 and 1

This calculation involving equations 6 and 7 must be repeated for each set of layers 10 meters thick, starting at the bottom of the reservoir and proceeding upward a layer at a time. This process is repeated once per computation interval. If the computation interval is less than 6 times per month, the process is repeated 6 times per computational interval to insure adequate opportunity for diffusion of energy. It should be recognized that energy transfers computed for long intervals leave the reservoir in an unreal condition and that his diffusion computation is a practical means of overcoming this and accounting for diffusion.

- i. The releases assigned to specific outlets are made by withdrawing the required quantity from the storage available immediately above the outlet invert level, accounting for the total released quantity and energy.
- j. The temperature limits which apply to the remaining required release are calculated as follows:

$$T'_{max} = (T_{max}Q_T - Q_1T_1)/(Q_T - Q_1)$$
 (8)

$$T'_{min} = (T_{min}Q_T - Q_1T_1)/(Q_T - Q_1)$$
 (9)

where: T' max = Maximum desirable release temperature for remaining (after specific outlet releases) required release in degrees F (or degrees C)

T Maximum desirable release temperature for total release in degrees F (or degrees C)

QT = Total required release in acre-feet (or thousand cubic meters)

Release required through specific outlets in acre-feet (or thousand cubic meters)

Appendix 1
Page 5 of 7

- T = Temperature of water released through specific outlets in degrees F (or degrees C)
- T' = Minimum desirable release temperature for remaining (after specific outlet releases) required release in degrees F (or degrees C)
- T = Minimum desirable release temperature for total release in degrees F (or degrees C)
- k. The target temperature of the remaining required release is calculated by the following equation:

$$T = [E - T_N(V-Q)]/Q$$
 (10)

- where: T Target temperature of the remaining release in degrees F (or degrees C)
 - E = Reservoir energy above the lowest usable outlet in acre-feetdegrees F (or thousand cubic meters-degrees C)
 - T = The average of the "N" succeeding months' maximum and minimum temperature requirements in degrees F (or degrees C)
 - N = The number of future months of target temperature criteria used to determine a best release temperature
 - V = Reservoir volume remaining above the lowest usable outlet in acre-feet (or thousand cubic meters)
 - Q = Remaining release required during the current month in acre-feet (or thousand cubic meters)

Equation 10 is used to determine the discharge temperature of the remaining release (Q) such that the average temperature of the water remaining above the lowest usable outlet is changed to equal the average temperature of the selected number of succeeding months' maximum and minimum temperature requirements. If the target temperature calculated with equation 10 is outside the desirable range calculated with equations 8 and 9, the closest temperature limit is adopted as the target temperature.

1. Water is released to meet the target temperature calculated in step k by one of 2 operational release methods. Method 1 calculates the energy that could be released through the two nearest usable outlets that are above and below where the target temperature exists. With this method, maximum choice of temperatures is available for subsequent months. Method 2 selects the highest and lowest usable outlets, which leaves the temperature of the lake more uniform. Using either method, the quantity of water released through the two outlets is mixed so as to match the target temperature. ~

Appendix 1 Page 6 of 7 If it becomes necessary to use other outlets also, lower and higher outlets are used as required. If it is found that this process does not satisfy the target temperature, the release will be withdrawn only from the one outlet which will produce water with a temperature closest to the target temperature.

1

1

- m. The end-of-month storage and the temperature of the water in each layer is determined by redistributing the reservoir water to fill all the "empty spaces" resulting from the release. A thermal stability check is made and any unstable layers are thoroughly mixed.
 - n. The above computation procedure is repeated for each month.

Appendix 1
Page 7 of 7

APPENDIX 2

DEFINITION OF OUTPUT VARIABLES

٠,

	a set to the set of th
CISA	- Coefficient to convert inflow for 1 day to storage units per
2021	day, preceded by minus sign if inflow is in volume units
COSA	- Coefficient to convert outflow for 1 day to storage units per day, preceded by minus sign if outflow is in volume units
acoum	- Coefficient to convert storage units to cfs-days (or cms-
CSOUT	
	days)
DEP	- Depth of energy penetration in feet (or meters) - Evaporation during period in inches (or millimeters)
EVAP	- Evaporation during period in inches (or millimeters) - Calls for derivation of coefficients, when positive
IDERV	- Calls for derivation of coefficients, when positive
IDGST	- Calls for diagnostic printout, when positive
INFLOW	- Inflow during period in cfs (or cms)
INTER	- Number of computational intervals per month
IPER	- Number of first period in year
IYR	- Calendar year during which operation study starts
LAYER	- Depth of layer in feet (or meters)
METRC	- Positive value indicates use of metric system
MREL	- Index to specify the operational method of release
MSTRT	- Month number at which computation is to start during first
	year
NIC	- Number of local inflow locations to be read from cards
NIT	- Number of inflow locations to be read from tape
NLAYR	- Total number of layers in reservoir
NMINQ	- Number of outlet levels through which minimum flows are
	required
NMO	- Number of future months of target temperature criteria
	used to calculate best release temperature
NOTL	- Number of separate outflow distribution channels
NOUTL	- Total number of outlet levels
NPER	- Number of periods in year
NYR	- Number of years of study
OUTFL	- Actual outflow during period in cfs (or cms)
PER	- Calender month number
PRCP	- Precipitation during period in inches (or millimeters)
QMIN	- Required outflow, average for year
QOMIN	- Average required release through each outlet for period
QOMN	Possived release through each outlet for period
QOUTL	- Actual outflow through each outlet for period in cis (of cms)
REQDQ	- Input value of required outflow during period
	•

Appendix 2 Page 1 of 2

SOLR - Average solar radiation in calories per day for year STCAP - Storage capacity in acre-feet (or thousand cubic meters) at top of each layer STMN - Minimum permissible storage at end of period in storage units STMX - Maximum permissible storage at end of period in storage units STOR - Storage at end of period in storage units **STORA** - Initial storage in acre-feet (or thousand cubic meters) STOUT - Storage capacity at invert of each outlet in storage units STRMN Minimum permissible storage constant for year in storage units STRMX - Maximum permissible storage constant for year in storage units TA Average air temperature for period in degrees F (or °C) TAIR Average air temperature if same for all periods in *F (or *C) TIN - Average inflow temperature if same for all periods in °F (or °C) TMAX - Maximum permissible release temperature if same for all periods in degrees F (or °C) TMIN - Minimum permissible release temperature if same for all periods in degrees F (or °C) TMP IN - Average inflow temperature for period in degrees F (or °C) TMPMN - Minimum permissible release temperature for period in degrees F (or °C) **TMPMX** - Maximum permissible release temperature for period in degrees F (or °C) TPOUT - Release temperature for period in degrees F (or °C) TOUTL - Temperature of QOUTL **TSTRT** - Starting temperature profile in degrees F (or °C)

APPENDIX 3 INPUT REQUIREMENTS

1. Card Format

Input is entered in ten 8-column fields per card, except that the first column of each card is retained for card identification. Thus, the first item of data on each card occupies columns 2-8. If they are right justified in their field, whole numbers can be punched without decimal points. All integer numbers (identified by variable names starting with letters I through N) must be punched without decimal points. Where the value of a variable is zero, the field may be left blank. The first title card of each job must have an A in column 1 in order to identify the start of the job. In certain cases where a job is aborted, the computer can waste cards until it finds the start of the next job.

2. Multiple Jobs

When several jobs are to be computed during the same run (stacked jchiche data cards for the last job only are to be followed by five blank call: If only a single job is to be run, five blank cards must follow the data cards for that run. An A in column 1 of the first of the five blank cards is required.

3. Card Contents

A Three title cards are required at the beginning of each job. Alphabetical characters and numbers may be used in any of the fields of all three cards. The contents of the cards will be printed at the beginning of the program output. An A in column 1 of the first card is required.

B Job specification

A. A.

F <u>iel</u> d	Variable	Value	Description
1	NYR	+	Number of years of data
2	IYR	+	Calendar year during which operation study starts
3	NPER	+	Number of periods per year (not to exceed 12)
4	IPER	+	Number of first period in year; e.g., 1 if using calendar year or 10 if using water year
5	MSTRT	+	Month number of first period of computation for first year (ordinarily same as IPER, B-4) (-2 if TPER = 10)

B Job specification (continued)

Field Variable

Value

	6	NLAYR	+	Number of layers in reservoir (not to exceed 100)
	7	LAYER	+	Depth of layers in feet (or meters)
	8	NOUTL	+	Number of levels of outlets (not to exceed 9)
	9	NMINQ	0	All outlet releases are varied to meet target temperature criteria
			+	Number of outlets through which required releases will be specified
	10	IDERV	0	All five model calibration coefficients are known
			1	Positive integer indicates 1 or more coefficients are to be derived from observed temperature profiles
	11	METRC	0	English system of units are used (temperature values must be in °F)
			1	Metric system of units are used (temperature values must be in °C)
	12	IDGST	0	Suppresses diagnostic printout from optimization routine
			1	Calls for diagnostic printout from optimization routine
	13	NIC	0	No local inflow in a tandem reservoir system
			+	Number of tributaries having inflow data to be read from cards
	14	NIT	0	Run is for a single reservoir calculation or the upstream reservoir in a tandem system
			+	Number of tributaries having inflow and temperature data to be read from tape output calculated at an upstream reservoir for input to a downstream reservoir in a tandem reservoir system
** 2	eo i	<e< td=""><td>O</td><td>RUN USES AVERAGE K AND E VALUES IN D/S RIVER TEMP. CALCULATION</td></e<>	O	RUN USES AVERAGE K AND E VALUES IN D/S RIVER TEMP. CALCULATION
	endix 3 ge 2 of 14		ŧ	RUN USES YEARLY K AND E VALUES IN DISTRICTION Digitized by GOSE

Description

B Job specification (continued)

	В	Top abo	ecilication (continued	
		Field	<u>Variable</u>	<u>Value</u>	Description
		15	NOTL	0	Used for a single reservoir calculation
				+	Number of separate outflow distribution channels which deliver discharge to a downstream reservoir in a tandem reservoir system
		16	INTER	0	Program uses four computational intervals per month
				+	Number of computational intervals per month
		17	MREL	0	Uses the method of release which searches for the first usable outlet above and the first usable outlet below the layer which contains the desired release temperature
			·	1	Uses the method of release which draws water from the highest and lowest usable outlet
		18	NMO	0	Program uses 3 future months of target temperature criteria to calculate a best release temperature for any given month
*		19 20		+	Number of future months of target temperature criteria used to calculate a best release temperature for any given month
	C		distribution	channels	(NOTL, B-15, cards); omit if NOTL (B-15) is zero
		Field	Variable	<u>Value</u>	Description
		1	NOUL	+	Number of outlets releasing to distribution channel I
		2	KOUTL(I,K)	+	Outlet number K (numbered from bottom upward) which releases to distribution channel I (NOUL, C-1, items)
,	D	Job dat	ta		
		Field	Variable	Value	Description
		1	STORA	+	Initial reservoir storage in acre-feet (or thousand cubic meters)

Run does not include niver temps calc.

Run includes d/s niver Appendix 3

Discolouletien 3 of 14

*

19

NRIV

0

D Job data (continued)

3

<u>Field</u>	<u>Variable</u>	<u>Value</u>	<u>Description</u>
2	CISA	+	Coefficient to convert inflow rate to storage units per day
		-	Coefficient to convert inflow volume to storage units

Some examples are as follows:

Storage	units	Inflow units	CISA
acre-f acre-f acre-f thousan	eet eet ₃	cfs acre-feet day-second-feet cms 3 m	1.983472 -1.00 -1.983472 86.4 -10 ⁻³
COSA	+	Coefficient to convert storage units per day	outflow rate to
	-	Coefficient to convert storage units	outflow volume to

Some examples are as follows:

	Storage v	mits	Outflow units	COSA	
	acre-fe acre-fe acre-fe thousand thousand	eet eet l m	cfs acre-feet day-second-feet cms 3 m	1.983472 -1.00 -1.983472 86.4 -10 ⁻³	
4	STRMX	+	Maximum permissible sthousand cubic meters	_	eet (or
		-1	Monthly maximum permiread on K card in fir		ill be
		-2	Monthly maximum permited on K card for each	_	ill be

D Job data (continued)

Field	<u>Variable</u>	<u>Value</u>	Description
5	STRMN	+	Minimum permissible storage in acre-feet (or thousand cubic meters)
		-1	Monthly minimum permissible storage will be read on L card in first year only
		-2	Monthly minimum permissible storage will be read on L card for each year
6	TIN	+	Inflow temperature in degrees F (or C)
	•	-1	Monthly inflow temperature will be read on V card in first year only
		-2	Monthly inflow temperature will be read on V card for each year
7	TAIR	+	Average air temperature in degrees F (or C)
		-1	Monthly average air temperature will be read on M card in first year only
		-2	Monthly average air temperature will be read on M card for each year
8	EVAP.	+	Lake evaporation for year in inches (or millimeters)
		-1	Monthly lake evaporation will be read on N card in first year only
		-2	Monthly lake evaporation will be read on N card for each year
9	PRCP	+	Precipitation for year in inches (or millimeters)
		-1	Monthly precipitation will be read on O card in first year only
		-2	Monthly precipitation will be read on O card for each year

Appendix 3
Page 5 of 14

D Job data (continued)

<u>Field</u>	<u>Variable</u>	Value	<u>Description</u>
10	QMIN	+	Outflow in units corresponding to COSA (D-3)
		-1	Monthly outflow will be read on P card in first year only
		-2	Monthly outflow will be read on P card for each year
11	TMAX	+	Maximum permissible outflow temperature in degrees F (or C)
		-1	Monthly maximum permissible outflow temperature will be read on Q card in first year only
		-2	Monthly maximum permissible outflow temperature will be read on Q card for each year
12	TMIN	+	Minimum permissible outflow temperature in degrees F (or C)
		-1	Monthly minimum permissible outflow temperature will be read on R card in first year only
		-2	Monthly minimum permissible outflow temperature will be read on R card for each year
13	CSOUT	+	Coefficient to convert storage units to cfs-days (or cms-days) for output
	Some exa	mples are	as follows:
	Storage	units	CSOUT
	acre-fo		.504167 .011574

Appendix 3 Page 6 of 14

D Job data (continued)

<u>Field</u>

Variable

Value

	14	SOLR	+	Solar radiation in calories per sq. cm. per day
			-1	Monthly solar radiation will be read on S card in first year only
			-2	Monthly solar radiation will be read on S card for each year
	15	DEP	+	Depth of penetration of solar radiation, conduction, and evaporation energy in feet (or meters). The depth used for application should be the same as that used for calibration
			0	Uses programmed value of 32.81 feet (or 10 meters) for depth of energy penetration
E	Coeffic	ients:		
	Field	Variable	Value	Description
	1	VAR(1)	+	Air Temperature CoefficientIndex of energy transferred by conduction due to the difference between the air and water surface temperature
			negative value between 0 and -1	Initial estimate of index to be used for calibrating the air temperature coefficient
·			-1	Uses programmed initial index for calibrating the air temperature coefficient

Description

[†] Index equals zero if no energy is transferred and equals one if sufficient energy is transferred to reach equilibrium.

E Coefficients (continued)

<u>Field</u>	<u>Variable</u>	<u>Value</u>	Description
		negative value between 0 and -1	Initial estimate of index to be used for calibrating the inflow mixing coefficient
		-1	Uses programmed initial index the inflow mixing coefficient
3	VAR(3)	+	Vertical Diffusion Coefficient-Index of energy transferred between adjacent layers (downward) due to the difference in temperature between layers
		negative value between 0 and -1	Initial estimate of index to be used for calibrating the vertical diffusion coefficient
		-1	Uses programmed initial index to calibrating the vertical diffusion coefficient
4	VAR(4)	+	Evaporation Coefficient Index of energy lost from the reservoir water surface due to evaporation. The remaining energy required for the heat of vaporization is obtained by cooling the air.
		negative value between 0 and -1	Initial estimate of index to be used for calibrating the evaporation coefficient
		-1	Uses programmed initial index the evaporation coefficient
5	VAR(5)	+	Insolation CoefficientIndex of energy transferred to the reservoir due to solar radiation. The solar radiation energy that is not effective in warming the reservoir has been "lost" due to absorption and reflection within the atmosphere and reflection at the water surface

[†] Index equals zero if no energy is transferred and equals one if sufficient energy is transferred to reach equilibrium.

Appenidx 3 Page 8 of 14 E Coefficients (continued)

<u>Field</u>	<u>Variable</u>	<u>Value</u>	Description
		negative value between 0 and -1	Initial estimate of index to be used for calibrating the insolation coefficient

- -1 Uses programmed initial index the insolation coefficient
- F Required outlet releases (NOUTL, B-8, items); omit if NMINQ (B-9) is zero

<u>Variable</u>	<u>Value</u>	<u>Description</u>
QOMIN(K)	+	Required release from each successive outlet K in order of elevation (from bottom upward) with units corresponding to COSA
	-1	Monthly required release for each outlet K will be read on T cards in first year only
,	-2	Monthly required release for each outlet K will be read on T cards for each year
	-3	Monthly release will be varied to meet target temperature criteria and does not require T cards for outlet K

G Period lengths (NPER, B-3, items)

		Variable	<u>Value</u>	Description
		NDAYS(I)	+	Number of days in each successive period I
H	Storage	capacity	(NLAYR, B-6,	items)
		Variable	Value	Description

Variable	value	Description
STCAP(L)	+	Storage capacity in acre-feet (or thousand cubic meters) at top of each successive layer L (from bottom to top)

Appendix 3
Page 9 of 14

Digitized by Google

[†] Index equals zero if no energy is transferred and equals one if sufficient energy is transferred to reach equilibrium.

Initial reservoir temperature (NLAYR, B-6, items)

<u>Variable</u>	Value	Description
TSTRT(L)	+	Average temperature in degrees F (or C) for each successive layer L at start of computation (from bottom to top).

-1 Designates layers without any water.

Location of outlets (NOUTL, B-8, items)

<u>Variable</u>	<u>Value</u>	Description
STOUT (K)	+	Storage capacity in acre-feet (or thousand cubic meters) at lowest point that can discharge through outlet K (from bottom to top)

Maximum storage (NPER, B-3, items); Omit if STRMX (D-4) is positive. Supply for first year only if STRMX (D-4) is -1 and for every year if index is -2.

<u>Variable</u>	<u>Value</u>	<u>Description</u>
STMX(1)	+	Maximum permissible storage in acre-feet (or thousand cubic meters) at end of each successive period I

Minimum storage (NPER, B-3, items); omit if STRMN (D-5) is positive. Supply for first year only if STRMN (D-5) is -1 and for every year if index is -2.

<u>Variable</u>	Value	Description
STMN(I)	+	Minimum permissible storage in acre-feet (or thousand cubic meters) at end of each successive period I

Average air temperature (NPER, B-3, items); Omit if TAIR (D-7) is positive. Supply for first year only if TAIR (D-7) is -1 and for every year if index is -2.

Variable	Value	Description
TA(I)	+	Average air temperature for each successive period I in degrees F (or C)

Description

Appendix 3 Page 10 of 14

Vardable

17-1---

N Evaporation (NPER, B-3, items); Omit if EVAP(D-8) is positive. Supply for first year only if EVAP(D-8) is -1 and for every year if index is -2.

<u>Variable</u>	<u>Value</u>	Description
EVP(I)	+	Lake evaporation in inches (or millimeters)

O Precipitation (NPER, B-3, items); Omit if PRCP(D-9) is positive. Supply for first year only if PRCP(D-9) is -1 and for every year if index is -2.

<u>Variable</u>	Value	<u>Description</u>		
PCP(I)	+	Precipitation in inches (or millimeters) for each successive period I		

P Required outflow (NPER, B-3, items); Omit if QMIN(D-10) is positive. Supply for first year only if QMIN(D-10) is -1 and for every year if index is -2.

<u>Variable</u>	Value	Description
QMN(I)	+	Required total release for each successive period I in units corresponding to COSA(D-3)

Danami - 24 ---

Q Maximum outflow temperatures (NPER, B-3, items); Omit if TMAX(D-11) is positive. Supply for first year only if TMAX(D-11) is -1 and for every year if index is -2.

<u>Variable</u>	Value	Description			
TMX(I)	+	Maximum permissible temperature of outflow for each successive period I in degrees F (or C)			

R Minimum outflow temperatures (NPER, B-3, items); Omit if TMIN(D-12) is positive. Supply for first year only if TMIN(D-12) is -1 and for every year if index is -2.

<u>Variable</u>	<u>Value</u>	Description			
TMN(I)	+	Minimum permissible temperatue of outflow for each successive period I in degrees F (or C)			

S Solar radiation (NPER, B-3, items); Omit if SOLR(D-13) is positive. Supply for first year only if SOLR(D-13) is -1 and for every year index is -2.

Appendix 3
Page 11 of 14
Digitized by GOOGLE

S (Continued)

Variable	Value	<u>Description</u>		
SOL(I)	+	Average solar radiation for period I in calories per sq. cm. per day (from figure 2 or table 2 in main document)		

T Required outlet releases (NPER, B-3, items) (NMINQ, B-9, pairs of cards); Omit for outlets having a QOMN value (F card) that is positive or -3. Supply first year only for outlets having a QOMN value (F card) of -1 and for every year if index is -2.

<u>Variable</u>	Value	<u>Description</u>
QOMN(I,K)	+	Required release in period I through specific outlet K, numbered by elevation (from bottom upward), with units corresponding to COSA(D-3). Only supplied for outlets where QOMIN (F card) is -1 or -2 (bottom to top)

U Inflow (NPER, B-3, values) (NIC, B-13, pairs of cards); Use local inflow for a downstream reservoir in a tandem reservoir system.

<u>Variable</u>	<u>Value</u>	Description				
QI(I)	+	Average inflow for each successive period I in units corresponding to CISA(D-2)				

V Inflow temperatures (NPER, B-3, items) (NIC, B-13, pairs of cards); Use local inflow temperature for a downstream reservoir in a tandem reservoir system. Omit if TIN(D-6) is positive. Supply for first year only if TIN(D-6) is -1 and for every year if index is -2.

<u>Variable</u>	Value	<u>Description</u>			
TI(I)	+	Average temperature of inflow for each successive period I in degrees F (or C)			

W Observed temperature profile dates (card required every year); omit if IDERV(B-10) is zero.

<u>Field</u>	<u>Variable</u>	<u>Value</u>	Description
1	np f l	+	Number of observed profiles during year
2	IDAY(K)	+	Date of each successive profile (NPFL, W-1, items); calendar month number followed by two digits for day of month, no decimal points

Appendix 3
Page 12 of 14

X Observed temperature profile, repeat for each value of IDAY (W card); omit if IDERV(B-10) is zero. Data should contain sufficient depth-temperature pairs to allow accurate interpolation between points for profile definition.

<u>Field</u>	<u>Variable</u>	Value	Description		
1	NOBS	+	Number of given points on profile		
2	STORX	+	Storage at time of profile		
3	DPTH(1)	0	Indicates TOB(1), X-4, value is the water surface temperature		
4	TOB (1)	+	Observed surface temperature in degrees F (or C)		
5	DPTH(2)	+	Depth below surface to TOB(2), X-6, in feet (or meters)		
6	TOB(2)	+	Observed temperature at DPTH(2), X-5, in degrees F (or C)		
7, et	:c	·	Repeat for increasing depths until NOBS (X-1) pairs are read		

A Five blank cards with A in column 1 of first card will cause computer to stop

4. SUMMARY OF INPUT CARDS

Notes: (1) Repeat NOTL (B15) times

(2) Omit if NMINQ (B9) is zero

* -1 for any of these items will call for monthly data that is the same for all years. -2 will call for different monthly data every year.

Notes: (3) Omit if NMINQ(B9) is equal to zero, otherwise repeat a number of times equal to the number of QOMIN values (F card) that are equal to -1 or -2.

- (4) Use local inflows and local inflow temperatures for a downstream reservoir in a tandem reservoir system. Repeat NIC(B13) times.
- (5) Omit if IDERV(B10) is less than or equal to zero. Repeat the X card for each value of IDAY (W card).
- # Supplied in first year if corresponding index marked with * is -1 and supplied every year in same order if index is -2.

**NEXT JOB CAN BE NEXT RESERVOIR OF TANDEM RESERVOIR SYSTEM

DEPARTMENT OF THE ARMY SACRAMENTO DISTRICT, CORPS OF ENGINEERS

THE HYDROLOGIC ENGINEERING CENTER 609 2D STREET. DAVIS, CALIFORNIA 95616

SPKHE

8 February 1972

SUBJECT: HEC Computer Program 723-X6-L2410

US Bureau of Reclamation ATTN: Jack Rowell 2800 Cottage Way Sacramento, California 95825

ACTION FO

- 1. The Reservoir Temperature Stratification computer program has been revised and a new source deck will be forwarded upon request. The old deck, identified by the date of November 1970 on the first card, should be discarded or marked superseded.
- 2. The new program contains some minor changes of the input requirements, a more refined routine for determination of the reservoir surface area, and the addition of an alternative method for making releases through multilevel intakes to meet downstream temperature criteria. Both methods for selection of intake level are discussed in paragraph 7f of the inclosed program description.
- 3. The new model has been verified at 13 lakes which have a wide variety of physical characteristics as shown in table 1. The calibration coefficients derived for the 13 lakes and the "least-square error" obtained in reproducing observed profiles are shown in table 2.
- 4. The use of the model for studying proposed lakes requires an estimate of the model calibration coefficients. A regional study of the model coefficients, using existing lakes with observed temperature profile data, is the best method for determining appropriate coefficients to use for proposed lakes or for existing lakes where temperature data do not exist. The difficulty of estimating the required coefficients accurately depends on the number of coefficients to be estimated and the amount of variability of the coefficients in a given region. Recent tests on the 13 lakes referenced in paragraph 3 have shown that the results of the basic model are not significantly affected by prespecifying .00 for the evaporation

SPKHE

8 February 1972

SUBJECT: HEC Computer Program 723-X6-L2410

coefficient and that the remaining calibration coefficients have less variation, as shown in table 3, when using this simplified version. However, regional studies should be conducted in the area where the model will be applied before conclusions are reached as to which version of the model will perform best. When the evaporation energy transfer function is eliminated (prespecifying .00 for its value), the radiation coefficient is used as an index of the net energy transfer effect of evaporation and radiation.

5. In many cases, there are little or no data available on temperature profiles in existing local reservoirs, therefore, generalized regional calibration coefficients have been developed. The regional values are given in table 4. The regional values should be used only as a last resort and may give results significantly less accurate than values derived at existing reservoirs in the region of interest.

FOR THE DISTRICT ENGINEER:

5 Incl

1. Prog Desc

2. Table 1

3. Table 2

4. Table 3

5. Table 4

LEO R. BEARD, Director

Les R. Rearl

The Hydrologic Engineering Center

TABLE 1

Lake Physical Characteristics
(at Full Pool)

<u>Lake</u>	State	Surface Area (Acres)	Depth (Feet)	Capacity (Thousand Ac-Ft)
Detroit	Oregon	3,700	` 370	470 .
Lookout Point	Oregon	4,340	235	480
Dorena	Oregon	2,340	125	130
Shasta	Calif.	29,800	490	4,550
Bullards Bar	Calif.	520	220	34
Englebright	Calif.	815	260	70
Folsom	Calif.	11,450	260	1,010
Pine Flat	Calif.	5,970	390	1,020
Lake Mead	Nevada	157,700	590	29,800
Milford	Kansas	32,300	105	1,160
Perry	Kansas	16,200	75	415
Pomme deTerre	Missouri	7,890	90	242
J. Percy Priest	Tenn.	14,200	85	390

1]

11

11

1

TABLE 2

Calibration Coefficients*

Basic Model

Reservoir	Standard Error (°F)	Air Temperature		Vertical Diffusion	Evaporation	Solar <u>Radiation</u>
Detroit	1.67	.81	.12	.04	.63	.19
Lookout Point	1.86	1.00	.07	.01	.00	.13
Dorena	2.25	.47	.52	.00	.34	.20
Shasta	1.09	1.00	.04	.01	.75	.17
Bullards Bar	3.84	1.00	.00	.03	.15	.18
Englebright	3.52	1.00	.02	.02	.07	.01
Folsom	1.14	1.00	.23	.02	.44	.22
Pine Flat	2.03	.96	.21	.01	.61	.36
Lake Mead	1.76	.86	.09	.04	.40	.23
Milford	2.38	1.00	.00	.27	.02	.16
Perry	2.96	1.00	.02	.00	.16	.17
Pomme deTerre	3.81	1.00	.00	.00	.29	.17
J. Percy Pries	3.83	.60	.01	.00	.32	.16

*Valid when using 10 meter depth of energy penetration for conduction, evaporation, and radiation and 4 computation intervals per month.

TABLE 3

Calibration Coefficients*

Simplified Model (4 Variables)

Reservoir	Standard Error (*F)	Air Temperature			Evaporation **	Solar Radiation
Detroit	1.67	.79	.10	.04	.00	.04
Lookout Point	1.86	1.00	.07	01	.00	.13
Dorena	2.41	.64	.39	.00	.00	.07
Shasta	1.24	1.00	.04	.01	.00	.01
Bullards Bar	3.91	1.00	.06	.03	.00	.17
Englebright	3.52	1.00	.07	.02	.00	.00
Folsom	1.22	1.00	.46	.01	.00	.04
Pine Flat	2.13	.85	.21	.01	.00	.18
Lake Mead	1.90	.80	.08	.04	.00	.07
Milford	2.37	1.00	.00	.09	.00	.15
Perry	2.87	1.00	.00	.00	.00	.10
Pomme deTerre	3.98	1.00	.00	.00	.00	.00
J. Percy Pries	t 4.05	.58	.00	.00	.00	.08

^{*}Valid when using 10 meter depth of energy penetration for conduction, evaporation, and radiation and 4 computation intervals per month.

^{**}Prespecified

TABLE 4

Regional Temperature Model Coefficients*

Air Temperature = 1.00

Inflow mixing = .10

Vert. Diffusion = .02

Evaporation = .00

The radiation coefficient seems to be a linear function of latitude. A generalized relation-ship could be developed using .08 at 45° and .20 at 35° N. latitude.

*Valid when using 10 meter depth of energy penetration for conduction, evaporation, and radiation and 4 computation intervals per month.

PROGRAM KEAVG

```
PROGRAM KEAVG(INPUT, OUTPUT, TAPE4)
     DIMENSION RH(12), EAPSI(10,9), WMPH(12), HS(12), CC(12), RS(12),
    +RFO(11), RF8(11), TA(12,94), XK(12,94), E(12,94), SHADE(12)
     DATA RH/76.,68.,63.,56.,51.,41.,34.,36.,40.,50.,64.,76./
     DATA(EAPSI(1,I), I=1,9)/.006,.010,.013,.018,.023,.029,.035,
    +.040,.044/,(EAPSI(2,I),I=1,9)/.008,.014,.023,.030,.037,.046,
    +.055,.064,.071/,(EAPSI(3,I),I=1,9)/.013,.024,.035,.048,.060,
    +.071,.084,.094,.107/,(EAPSI(4,I),I=1,9)/.017,.034,.054,.070,
    +.088,.106,.123,.141,.158/,(EAPSI(5,I),I=1,9)/.025,.050,.076,
    +.101,.127,.151,.177,.203,.229/,(EAPSI(6,I),I=1,9)/.036,.072,
    +.108,.144,.180,.215,.254,.290,.329/,(EAPSI(7,I),I=1,9)/.051,
    +.101,.153,.202,.254,.303,.354,.410,.460/,
    +(EAPSI(8,I),I=1,9)/.071,.140,.210,.280,.350,.422,.494,.562,
    +.650/, (EAPSI(9,I), I=1,9)/.097,.193,.290,.374,.485,.573,.640
    +.720,.850/,(EAPSI(10,I),I=1,9)/.130,.258,.389,.520,.640,.750,
    +.950,1.20,1.35/
     DATA WMPH/6.8,7.1,7.4,7.3,7.1,7.0,5.7,5.1,5.9,6.2,6.1,6.1/
     DATA HS/157.,247.,378.,520.,621.,683.,681.,608.,481.,
    +329.,201.,136./
     DATA CC/6.6,6.4,6.2,5.3,4.4,3.1,1.2,1.7,2.0,4.0,6.0,6.9/
     DATA RS/.11,.09,.07,.07,.06,.06,.07,.08,.10,.10,.11/
     DATA SHADE/.09,.08,.07,.06,.06,.06,.06,.06,.07,.08,.09,.10/
     DATA RF0/.74,.75,.76,.77,.78,.79,.80,.81,.825,.845,.865/
     DATA RF8/.864,.87,.877,.885,.893,.9,.908,.916,.923,.93,.938/
     NYR=56
201
     FORMAT(12F6.1)
     DO 200 II=1,NYR
     READ 201, (TA(I,II), I=1,12)
200
     CONTINUE
     DO 300 II=1,NYR
     DO 310 I=1.12
     IF(TA(I,II)-20.)2,2,3
  2
    L=1
     GO TO 11
     IF(TA(I,II)-110.)4,5,5
     L=10
     GO TO 11
     DO 8 N=30,110,10
     IF(TA(I,II)-N)6,7,8
     CONTINUE
     L=N/10-1
     GO TO 11
     L=N/10-2
     GO TO 17
     IF(RH(I)-10.)9,9,10
 11
     M=1
     GO TO 15
     DO 14 K=20,90,10
 10
     IF(RH(I)-K)12,13,14
```

PROGRAM KEAVG

```
14 CONTINUE
13
   M=K/10
15 EA=EAPSI(L,M)
    GO TO 24
12 M=K/10-1
    F=(RH(I)-(K-10))/10
    EA=EAPSI(L,M)+F*(EAPSI(L,M+1)-EAPSI(L,M))
    GO TO 24
   IF(RH(I)-10.)18,18,19
18 M=1
    GO TO 20
19 DO 23 K=20,90,10
    IF(RH(I)-K)21,22,23
23 CONTINUÉ
22 M=K/10
20 F=(TA(I,II)-(N-10))/10
    EA=EAPSI(L,M)+F*(EAPSI(L+1,M)-EAPSI(L,M))
    GO TO 24
21 M=K/10-1
    F=(RH(I)-(K-10))/10
    EAl=EAPSI(L,M)+F*(EAPSI(L,M+1)-EAPSI(L,M))
    EA2=EAPSI(L+1,M)+F*(EAPSI(L+1,M+1)-EAPSI(L+1,M))
    EA=EA1+((TA(I,II)-(N-10))/10)*(EA2-EA1)
24 EA=EA*2.0357896
    DO 27 K=1.10
    IF(CC(I)-K)25,26,27
   RF1=RFO(K)+(CC(I)-(K-1))*(RFO(K+1)-RFO(K))
    RF2=RF8(K)+(CC(I)-(K-1))*(RF8(K+1)-RF8(K))
    RF=RF1+(EA/.8)*(RF2-RF1)
    GO TO 28
26 RF=RF0(K+1)+(EA/.8)*(RF8(K+1)-RF0(K+1))
    GO TO 28
27
   CONTINUE
   ET=TA(I,II)
    D0 30 K=1,3
    IF(ET-20.)31,31,32
31 B=.102
    CB=.533
    GO TO 50
32 IF(ET-30.)33,33,34
33 B=.157
    CB = -.610
    GO TO 50
34 IF(ET-40.)35,35,36
35 B=.211
    CB=-2.223
    GO TO 50
36 IF(ET-50.)37,37,38
37 B=.292
```

3

PROGRAM KEAVG

```
CB=-5.525
      GO TO 50
  38 IF(ET-60.)39,39,40
  39 B=.404
      CB = -11.14
      GO TO 50
  40 IF(ET-70.)41,41,42
  41 B=.554
      CB = -20.17
      GO TO 50
  42 IF(ET-80.)43,43,44
  43 B=.744
      CB = -33.57
      GO TO 50
  44 IF(ET-90.)45,45,46
  45 B=.991
      CB = -53.34
      GO TO 50
  46 IF(ET-100.)47,47,48
  47 B=1.303
      CB = -81.57
      GO TO 50
  48 IF(ET-109.)49,49,49
  49 B=1.662
      CB = -117.49
  50 HNA=.97*RF*.0000000415*((TA(I,II)+460.)**4.)
      HNS=3.69*(1.-RS(I))*HS(I)*(1.-SHADE(I))
      HT=HNA+HNS
      XKT=15.7+(.26+B)*16.8*WMPH(I)
      FXKT=(XKT-15.7)/XKT
   ET1=(HT-1801.)/XKT
      ET2=.26*TA(I, II)/(.26+B)
ET3=(EA*25.4-CB)/(.26+B)
      XM=ET1+FXKT*(ET2+ET3)
      XKT2=XKT/.051
      ET=((XKT2**2.+4.*XM*XKT2)**.5-XKT2)/2.
  30 CONTINUE
      XK(I,II)=XKT
      E(I,II)=ET
 310
      CONTINUE
 300 CONTINUE
      DO 400 II=1,NYR
      WRITE (4,201)(XK(I,II),I=1,12)
      WRITE (4,201)(E(I,II),I=1,12)
 400
      CONTINUE
      END
#EOR
#EOI
```

TABLE B-2

KEAVG: VARIABLE DESCRIPTION

RH - RELATIVE HUMIDITY - %

EAPSI - VAPOR PRESSURE - PSIA

WMPH - WIND SPEED - MPH

HS - SOLAR RADIATION - LY/DAY

CC - CLOUD COVER - TENTHS

RS - SOLAR REFLECTIVITY

RF - RADIATION FACTOR

TA - AIR TEMPERATURE - °F

XK - HEAT EXCHANGE COEFFICIENT - BTU/FT2-DAY-F

E - EQUILIBRIUM TEMPERATURE - °F

SHADE - SHADE FACTOR - % REDUCTION IN SOLAR RADIATION

HNA - NET ATMOSPHERIC RADIATION

HNS - NET SOLAR RADIATION

FIGURE B-3
[FROM EDINGER AND GEYER (15)]

SHORTWAVE SOLAR REFLECTIVITY, R, FOR A WATER SURFACE


```
PROGRAM SACTEMP(INPUT,OUTPUT,TAPE11,TAPE21,TAPE22,TAPE23,TAPE24,
+TAPE25, TAPE19, TAPE27, TAPE28, TAPE29, TAPE30, TAPE31, TAPE18,
+TAPE33, TAPE20, TAPE34, TAPE35, TAPE36, TAPE37, TAPE38, TAPE39,
+TAPE40, TAPE47, TAPE42, TAPE43, TAPE44, TAPE45, TAPE46, TAPE48)
 DIMENSION QSC(12,56), TSC(12,56), XKY1(12,56), EY1(12,56), QS(12,56),
+TASC(12,56),FCONV(12),TCRIT(36),NTEMP(12,11,36),ATEMP(12,11),
+IYR(56), NAME(11), TEMP(12,53,56), XMTEMP(12,11), XKY2(12,56),
+EY2(12,56),CV(12,11),IAC58(12,56),IAC10(12,56),QCL(12,56),
+TCL(12,56),ACL(2),DF(53),SA(6,52),IQCC(12,56),ITCC(12,56),
+IGCID(12,56),ICBD(12,56),IAC15(12,56),IAC21(12,56),ITC(12,56),
+IWS(12,56),IFS(12,56),TFR(12,56),QFR(12,56),TAR(12,56),
+QAR(12,56), ISC(12,56), SCT(12), XKY3(12,56), EY3(12,56), XKY4(12,56),
+EY4(12,56),TCOW(12),TCOTTON(12),TBATTLE(12),TPAYNES(12),
+TANTLP1(12), TREDBK(12), TANTLP2(12), TELDER(12), TTHOMES(12)
+TCHICO(12), TMILL(12), TDEER(12), TSTONY(12), TBUTTE(12), TSACSL(12)
 DATA FCONV/16.262,18.005,16.262,16.806,16.262,16.806,16.262,
+16.262,16.806,16.262,16.806,16.262/
 DATA TCRIT/40.,41.,42.,43.,44.,45.,46.,47.,48.,49.,50.,
+51.,52.,53.,54.,55.,56.,57.,58.,59.,60.,61.,62.,63.,64.,
+65.,66.,67.,68.,69.,70.,71.,72.,73.,74.,75./
 DATA ACL/.64416,2.19648/
 DATA DF/.000,.017,.000,.010,.000,.012,.014,.038,.032,.325
+.028,.022,.037,.000,.207,.029,.000,.062,.029,.030,.039,.000,
+.069,.000,.150,.046,.107,.158,.000,.025,.144,.080,.000,.091,
+.199,.000,.000,.461,.079,.000,.411,.049,.000,.673,.000,
+.220,.036,.036,.035,.000,.000,.000,.000/
 DATA TCOW/44.3,48.3,52.4,57.7,65.5,74.0,81.0,79.6,73.5,
+62.3,52.3,44.9/
 DATA TCOTTON/46.0,48.8,53.1,59.0,67.4,73.3,76.8,75.0,69.4,
+62.4,52.6,46.6/
 DATA TBATTLE/45.2,47.3,49.4,52.2,57.2,61.1,64.3,62.9,58.9,
+53.9,49.4,45.7/
 DATA TPAYNES/46.4,48.2,53.6,59.0,62.6,71.6,71.6,71.6,69.8,
+64.4,51.8,48.2/
 DATA TREDBK/48.2,48.2,53.6,53.6,66.2,75.2,75.2,78.8,71.6,
+62.6,51.8,51.8/
 DATA TANTLP1/42.8,46.4,48.2,53.6,59.0,68.0,75.2,78.8,71.6,
+62.6,50.0,44.6/
 DATA TANTLP2/44.6,48.2,51.8,57.2,62.6,71.6,73.4,75.2,69.8,
+62.6,55.4,46.4/
 DATA TELDER/46.4,48.2,53.6,60.8,69.8,78.8,80.6,78.8,77.0,
+60.8,53.6,50.0/
 DATA TMILL/44.6,44.6,48.2,53.6,57.2,64.4,73.4,78.8,71.6,
+62.6,51.8,46.4/
 DATA TTHOMES/41.5,44.7,47.1,50.4,58.5,69.6,78.4,77.8,71.7,
+61.6,49.0,43.3/
 DATA TDEER/41.2,45.0,48.7,54.7,61.8,69.0,76.2,73.9,70.2,
+58.8,49.3,43.6/
 DATA TCHICO/42.8,48.2,50.0,57.2,60.8,69.8,75.2,75.2,69.8,
```

C

+59.0,51.8,44.6/

```
DATA TSTONY/45.6,48.5,52.9,56.8,61.9,68.2,73.6,76.8,72.7,
    +64.5,54.3,47.5/
     DATA TBUTTE/42.1,44.5,46.0,49.2,54.5,61.5,67.1,66.0,61.3,
    +54.4,47.3,42.8/
     DATA TSACSL/44.6,50.0,55.4,66.2,69.8,75.2,75.2,75.2,69.8,
    +60.8,51.8,46.4/
     NYR=56
            READ TEMPERATURE AND FLOW DATA
  11 FORMAT(1X,11A10/)
   5 FORMAT(12F7.0)
101 FORMAT(8X,6F8.2)
 105 FORMAT(14X,12I6)
 106 FORMAT(32X,916)
 107 FORMAT(14X,316)
373 FORMAT(1X, I5, 2X, 12F9.1)
     DO 10 N=1,NYR
     READ(22,373)(IYR(N),(TASC(I,N),I=1,12))
     READ(24,373)(IYR(N),(TSC(I,N),I=1,12))
     READ(28,373)(IYR(N),(TCL(I,N),I=1,12))
     READ(42,373)(IYR(N),(TFR(I,N),I=1,12))
     READ(45,373)(IYR(N),(TAR(I,N),I=1,12))
  10 CONTINUE
     READ(27,11)(NAME(I), I=1,11)
     DO 20 N=1,NYR
     READ(23,5)(QS(I,N), I=1,12)
     READ(25,5)(QSC(I,N), I=1,12)
     READ(29,5)(QCL(I,N), I=1,12)
     READ(43,5)(QFR(I,N),I=1,12)
     READ(46,5)(QAR(I,N), I=1,12)
  20 CONTINUE
     READ(31,106)(IAC58(I,1),I=1,9)
     READ(33,106)(IAC10(I,1),I=1,9)
     READ(30,106)(IQCC(I,1),I=1,9)
     READ(35,106)(ITCC(I,1),I=1,9)
     READ(36, 106) (IGCID(I, I), I=1, 9)
     READ(37,106)(IFS(I,1),I=1,9)
     READ(38,106)(IAC15(I,1),I=1,9)
     READ(39,106)(IWS(I,1),I=1,9)
     READ(40,106)(ICBD(I,1),I=1,9)
     READ(44,106)(IAC21(I,1),I=1,9)
     READ(47,106)(ITC(I,1), I=1,9)
     READ(48, 106)(ISC(I, 1), I=1, 9)
     DO 120 N=2,56
      \begin{array}{l} \text{READ}(31,105)\left(\text{(IAC58}(I,N-1),I=10,12),(IAC58}(I,N),I=1,9)\right) \\ \text{READ}(33,105)\left(\text{(IAC10}(I,N-1),I=10,12),(IAC10}(I,N),I=1,9)\right) \end{array} 
     READ(30,105)((IQCC(I,N-1),I=10,12),(IQCC(I,N),I=1,9))
```

TABLE C-1 3

```
READ(35,105)((ITCC(I,N-1),I=10,12),(ITCC(I,N),I=1,9))
      READ(36, 105)((IGCID(I, N-1), I=10, 12), (IGCID(I, N), I=1, 9))
      READ(37,105)((IFS(I,N-1), \hat{1}=10,12), (\hat{1}+S(I,N), \hat{1}=\hat{1},9))
      READ(38,105)((IAC15(I,N-1),I=10,12),(IAC15(I,N),I=1,9))
      READ(39,105)((IWS(I,N-1),I=10,12),(IWS(I,N),I=1,9))
      READ(40,105)((ICBD(I,N-1),I=10,12),(ICBD(I,N),I=1,9))
      READ(44,105)((IAC21(I,N-1), I=10,12), (IAC21(I,N), I=1,9))
      READ(47,105)((ITC(I,N-1),I=10,12),(ITC(I,N),I=1,9))
      READ(48, 105)((ISC(I, N-1), I=10, 12), (ISC(I, N), I=1, 9))
  120 CONTINUE
      READ(31,107)(IAC58(I,56),I=10,12)
      READ(33,107)(IAC10(I,56),I=10,12)
      READ(30, 107) (IQCC(I, 56), I=10, 12)
      READ(35,107)(ITCC(I,56),I=10,12)
      READ(36,107)(IGCID(I,56),I=10,12)
      READ(37,107)(IFS(I,56),I=10,12)
      READ(38, 107)(IAC15(I, 56), I=10, 12)
      READ(39, 107)(IWS(I, 56), I=10, 12)
      READ(40,107)(ICBD(I,56),I=10,12)
      READ(44, 107) (IAC21(1,56), I=10,12)
      READ(47,107)(ITC(I,56),I=10,12)
      READ(48, 107)(ISC(I, 56), I=10, 12)
      DO 121 J=1,52
      READ(34,101)(SA(K,J),K=1,6)
 121 CONTINUE
C
                   READ YEARLY K AND E VALUES
 602
      FORMAT(12F6.1)
      DO 610 N=1,NYR
      READ(21,602)(XKY1(I,N),I=1,12)
      READ(21,602)(EY1(I,N),I=1,12)
      READ(18,602)(XKY2(I,N),I=1,12)
      READ(18,602)(EY2(1,N), I=1,12)
      READ(19,602)(XKY3(I,N),I=1,12)
      READ(19,602)(EY3(I,N),I=1,12)
      READ(20,602)(XKY4(I,N),I=1,12)
      READ(20,602)(EY4(I,N),I=1,12)
 610 CONTINUE
C
           COMPUTE RIVER TEMPERATURES
      DO 200 N=1,NYR
      DO 100 I=1,12
      OBAT=12.
      IAC58(I,N)=IAC58(I,N)-12
      IF(IAC58(I,N).GE.O)GO TO 22
      QBAT=12.+IAC58(I,N)
      IAC58(I,N)=0
```

```
22 TEMP(I,I,N)=(TASC(I,N)*QS(I,N)+TSC(I,N)*QSC(I,N))/(QS(I,N)+TSC(I,N)*QSC(I,N))
    +QSC(I,N))
    Q=QS(I,N)+QSC(I,N)
     TI=TEMP(I,1,N)
    DO 300 J=2,53
 1 IF(Q-2000.)32,32,3
 32 A=SA(1,J-1)*(Q/2000.)
    GO TO 15
 3 IF(Q-4000.)4,4,35
 4 A=SA(1,J-1)+(SA(2,J-1)-SA(1,J-1))*((Q-2000.)/2000.)
    GO TO 15
 35 IF(Q-6000.)6,6,7
 6 A=SA(2,J-1)+(SA(3,J-1)-SA(2,J-1))*((Q-4000.)/2000.)
     GO TO 15
    IF(Q-8000.)8,8,9
 8 A=SA(3,J-1)+(SA(4,J-1)-SA(3,J-1))*((Q-6000.)/2000.)
    GO TO 15
 9 IF(Q-10000.)31,31,14
 31 A=SA(4,J-1)+(SA(5,J-1)-SA(4,J-1))*((Q-8000.)/2000.)
     GO TO 15
    IF(Q-25000.)12,12,12
 12 A=SA(5,J-1)+(SA(6,J-1)-SA(5,J-1))*((Q-10000.)/15000.)
 15 IF(J.GT.15)GO TO 17
     E=EY1(I,N)
    XK=XKY1(I,N)
     GO TO 18
17 IF(J.GT.36)GO TO 19
     E=EY2(I,N)
    XK=XKY2(I,N)
     GO TO 18
 19 IF(J.GT.41)GO TO 16
     E=EY3(I.N)
    XK=XKY3(I,N)
     GO TO 18
 16 E=EY4(I,N)
    XK=XKY4(I,N)
18 TF=(TI-E)*2.7183**(-XK*A/(5.39136*Q))+E
     IF(J.EQ.7)GO TO 51
     IF(J.EQ.14)GO TO 52
     IF(J.EQ.15)GO TO 53
     IF(J-16)49,54,48
48 IF(J-24)54,55,47
 47 IF(J-26)56,56,46
46 IF(J-33)156,57,45
156 IF(J.EQ.29)GO TO 69
     GO TO 56
45
    IF(J-37)158,58,44
    IF(J.EQ.36)GO TO 72
158
     GO TO 58
```

```
IF(J.EQ.38)GO TO 62
     IF(J.EQ.39)GO TO 62
     IF(J.EQ.40)GO TO 61
     IF(J.EQ.41)GO TO 62
     IF(J.EQ.42)GO TO 62
     IF(J.EQ.43)GO TO 64
     IF(J.EQ.44)GO TO 65
     IF(J.EQ.45)GO TO 66
     IF(J-49)67,67,43
     IF(J.EQ.50)GO TO 68
     IF(J.GT.50)GO TO 67
     QAC=IAC58(I,N)*FCONV(I)*DF(J)
     TAC=TCOW(I)
     IF(J.EQ.13)TAC=TCOTTON(I)
     TI = (TF*Q+TAC*QAC)/(Q+QAC)
     Q=Q+QAC
     GO TO 30
51 K=1
     TCLEAR=TCL(I,N)
     QCLEAR=QCL(I,N)
     IF(QCLEAR.EQ.O.)QCLEAR=1.
151 TCLEAR=(TCLEAR-EY1(I,N))*2.7183**(-XKY1(I,N)*ACL(K)/(5.39136*
   +QCLEAR))+EY1(I,N)
     IF(K.EQ.2)GO TO 152
     TAC=TCOTTON(I)
     QAC=IAC58(I,N)*FCONV(I)*DF(J)
     QCLEAR=QCL(I,N)+QAC
     IF(QCLEAR.EQ.O.)QCLEAR=1.
     TCLEAR=(TCLEAR*QCL(I,N)+TAC*QAC)/QCLEAR
     K=2
     GO TO 151
     QAC=QCL(I,N)+QAC
     TI=(TF*Q+TCLEAR*QAC)/(Q+QAC)
     Q=Q+QAC
     GO TO 30
     QAC=IQCC(I,N)*FCONV(I)
     TI=(TF*Q+TCOTTON(I)*QAC)/(Q+QAC)
     Q=Q+QAC
     GO TO 30
     QAC=IAC58(I,N)*FCONV(I)*DF(J)+QBAT*FCONV(I)
     TI=(TF*Q+TBATTLE(I)*QAC)/(Q+QAC)
     Q=Q+QAC
     GO TO 30
     QAC=IAC58(I,N)*FCONV(I)*DF(J)
     TAC=TPAYNES(I)
     IF(J.GT.18)TAC=TANTLP1(I)
     IF(J.EQ.23)TAC=TREDBK(I)
71
    TI=(TF*Q+TAC*QAC)/(Q+QAC)
     Q=Q+QAC
```

```
GO TO 30
    TI=TF
     Q=Q-(ITCC(I,N)*FCONV(I))
     GO TO 30
 56 QAC=IAC10(I,N)*FCONV(I)*DF(J)
     IF(QAC.EQ.O.)QAC=1.
     TAC=TANTLP2(I)
     IF(J.EQ.27)TAC=TELDER(I)
     IF(J.EQ.28)TAC=TMILL(I)
     IF(J.EQ.30)TAC=TDEER(I)
     IF(J.EQ.31)TAC=TDEER(I)
     IF(J.EQ.32)GO TO 169
     GO TO 71
69 QAC=ITC(I,N)*FCONV(I)
     IF(QAC.EQ.O.)GO TO 71
169 TAC=(TTHOMES(I)-EY2(I,N))*2.7183**(-XKY2(I,N)*4.752/
    +(5.39136*QAC))+EY2(I,N)
    GO TO 71
 57
    TI=TF
     Q=Q-(IGCID(I,N)*FCONV(I))
     GO TO 30
 58 QAC=IAC10(I,N)*FCONV(I)*DF(J)
    TI=(TF*Q+TCHICO(I)*QAC)/(Q+QAC)
     Q=Q+QAC
     GO TO 30
 72 QAC=ISC(I,N)*FCONV(I)
     IF(QAC.EQ.O.)GO TO 71
     TAC=(TSTONY(I)-EY2(I,N))*2.7183**(-XKY2(I,N)*6.336/
    +(5.39136*QAC))+EY2(I,N)
    TI = (TF*Q+TAC*QAC)/(Q+QAC)
     Q=Q+QAC
     GO TO 30
    TI=(TF*Q+EY3(I,N)*QAC)/(Q+QAC)
     Q=Q+QAC
     GO TO 30
62 QAC=IAC15(I,N)*FCONV(I)*DF(J)
     IF(J.EQ.38)GO TO 138
     IF(J.EQ.42)GO TO 130
     GO TO 29
138 IF(QAC.EQ.O.)GO TO 71
    TAC=(TBUTTE(I)-EY3(I,N))*2.7183**(-XKY3(I,N)*21.12/
    +(5.39136*QAC))+EY3(I,N)
     GO TO 71
    TI=TF
     Q=Q-(IWS(I,N)*FCONV(I))
     GO TO 30
    QAC=ICBD(I,N)*FCONV(I)
     GO TO 130
    Q=Q-(IFS(I,N)*FCONV(I))
```

```
TAC=TSACSL(I)
     GO TO 67
     QAC=QFR(I,N)
     TI=(TF*Q+TFR(I,N)*QFR(I,N))/(Q+QAC)
     Q=Q+QAC
     GO TO 30
     QAC=IAC21(I,N)*FCONV(I)*DF(J)
     IF(J.EQ.44)GO TO 71
129
     TI=(TF*Q+EY4(I,N)*QAC)/(Q+QAC)
     0 = 0 + 0AC
     GO TO 30
     TAC=1.01671534*EY4(I,N)-1.408196057
     GO TO 71
 68
     QAC=QAR(I,N)
     TI=(TF*Q+TAR(I,N)*QAR(I,N))/(Q+QAC)
     Q=Q+QAC
     TEMP(I,J,N)=TI
 30
300
     CONTINUE
100
     CONTINUE
200
     CONTINUE
            PRINT RIVER TEMPERATURE TABLES
475
     FORMAT(35X, *MONTHLY MEAN TEMPERATURES AT*, 1X, A10)
485
     FORMAT(20X, *MONTHLY MEAN TEMPERATURES AT*, 1X, A10)
376
    FORMAT(/2X,*YEAR*,9X,*J*,8X,*F*,8X,*M*,8X,*A*,8X,*M*,8X,
    1*J*,8X,*J*,8X,*A*,8X,*S*,8X,*O*,8X,*N*,8X,*D*/)
     FORMAT(///)
479
     FORMAT(/2X,*AVG*,3X,12F9.1)
     DO 800 L=1,53
     IF(L.EQ.1)GO TO 410
     IF(L.EQ.14)GO TO 410
     IF(L.EQ.17)GO TO 410
     IF(L.EQ.24)GO TO 410
     IF(L.EQ.33)GO TO 410
     IF(L.EQ.37)GO TO 410
     IF(L.EQ.40)GO TO 410
     IF(L.EQ.43)GO TO 410
     IF(L.EQ.45)GO TO 410
     IF(L.EQ.50)GO TO 410
     IF(L.EQ.53)GO TO 410
     GO TO 800
410
    K=K+1
     DO 450 N=1,NYR
     IF(N.GT.1)GO TO 474
     PRINT 508
     WRITE(11,508)
     PRINT 475, NAME(K)
     WRITE(11,475)(NAME(K))
```

```
PRINT 376
      WRITE(11,376)
      PRINT 373, (IÝR(N), (TEMP(I,L,N), I=1,12))
      WRITE(11,373)(IYR(N), (TEMP(I, L, N), I=1,12))
 450 CONTINUE
      DO 477 I=1,12
      ATEM=0.
      DO 478 N=1,NYR
      ATEM=TEMP(I,L,N)+ATEM
 478 CONTINUE
      ATEMP(I,K)=ATEM/NYR
 477
      CONTINUE
      PRINT 479, (ATEMP(I,K), I=1,12)
      WRITE(11,479)(ATEMP(I,K),I=1,12)
C
                  COMPUTE MEDIAN TEMPERATURES
 579
      FORMAT(2X, *MED*, 3X, 12F9.1)
      DO 577 I=1,12
      DO 578 N=1,NYR
      NG=0
      NS=0
      NL=0
      DO 601 M=1,NYR
      IF(TEMP(I,L,N)-TEMP(I,L,M))702,603,604
 702
      NG=NG+1
      GO TO 601
 603
      NS=NS+1
      GO TO 601
 604
      NL=NL+1
 601
      CONTINUE
      IF(NS.GT.NYR/2)GO TO 710
      IF(NL.EQ.NG)GO TO 710
      IF(NL.EQ.NG+1)GO TO 710
      IF(NS.GE.IABS(NG-NL))GO TO 710
 578
      CONTINUE
      XMTEMP(I,K)=0.
      GO TO 577
      XMTEMP(I,K)=TEMP(I,L,N)
 710
 577
      CONTINUE
      PRINT 579, (XMTEMP(I,K), I=1,12)
      WRITE(11,579)(XMTEMP(1,K), I=1,12)
C
                          COMPUTE COEFFICIENT OF VARIATION
      FORMAT(2X,*C.VAR*,1X,12F9.3)
      DO 670 I=1,12
      SD=0.
      DO 680 N=1,NYR
```

```
PROGRAM SACTEMP
```

```
SD=SD+(ABS(TEMP(I,L,N)-ATEMP(I,K)))**2.
      CONTINUE
 680
      CV(I,K)=((SD/NYR)**.5)/ATEMP(I,K)
 670
      CONTINUE
      PRINT 679, (CV(I,K), I=1,12)
      WRITE(11,679)(CV(I,K),I=1,12)
 800
      CONTINUE
C
              PRINT TEMPERATURE EXCEEDANCE TABLES
     FORMAT(////35X,*5-AGENCY STUDIES: DWR #144C (SALMON) *
     +*-1990 LEVEL
 518 FORMAT(////20X,*5-AGENCY STUDIES: DWR #144C (SALMON) *
     +*-1990 LEVEL
      FORMAT(6X, *TEMPERATURE EXCEEDANCE - NO. OF YEARS IN 56 YR STUDY*
 507
     +*(1922-77)*)
     FORMAT(21X, *EXCEEDING INDICATED TEMPERATURE*)
FORMAT(/2X, *TEMP-F*, 8X, *J*, 4X, *F*, 4X, *M*, 4X, *A*, 4X, *M*, 4X,
 513
     +*J*,4X,*J*,4X,*A*,4X,*S*,4X,*O*,4X,*N*,4X,*D*/)
 511
      FORMAT(3X, F4.1, 5X, 1215)
      KK=0
      DO 900 L=1,53
      IF(L.EQ.1)GO TO 510
      IF(L.EQ.14)GO TO 510
      IF(L.EQ.17)GO TO 510
      IF(L.EQ.24)GO TO 510
      IF(L.EQ.33)GO TO 510
      IF(L.EQ.37)GO TO 510
      IF(L.EQ.40)GO TO 510
      IF(L.EQ.43)GO TO 510
      IF(L.EQ.45)GO TO 510
      IF(L.EQ.50)GO TO 510
      IF(L.EQ.53)GO TO 510
      GO TO 900
 510 KK=KK+1
      DO 70 I=1,12
      DO 80 K=1,36
      NTEMP(I,KK,K)=0
      DO 90 N=1,NYR
      IF(TEMP(I,L,N).LE.TCRIT(K))GO TO 90
      NTEMP(I,KK,K)=NTEMP(I,KK,K)+1
  90
      CONTINUE
  80
      CONTINUE
  70
      CONTINUE
      PRINT 518
      PRINT 485, NAME(KK)
      PRINT 507
      PRINT 513
      PRINT 509
```

```
DO 550 K=1,36
PRINT 511,(TCRIT(K),(NTEMP(I,KK,K),I=1,12))
550 CONTINUE
PRINT 2
900 CONTINUE
END
#EOR
#EOR
```

PROGRAM FEATEMP

C

```
PROGRAM FEATEMP(INPUT,OUTPUT,TAPE51,TAPE20,TAPE53,TAPE54,
    +TAPE50, TAPE52, TAPE55, TAPE56, TAPE57, TAPE58, TAPE27, TAPE21, TAPE11,
    +TAPE42, TAPE43)
     DIMENSION IQTD(12,56),TOD(12,56),XKY2(12,56),EY2(12,56),
    +TTAB(12,56),FCONV(12),TCRIT(36),NTEMP(12,12,36),ATEMP(12,12),
    +IYR(56), NAME(12), TEMP(12,12,56), XMTEMP(12,12), RM(12), IQTAB(12,56),
    +CV(12,12),QOD(12,56),IQD13(12,56),IQR13(12,56),IQKR(12,56),
    +QCC(24,21),WCC(24,21),CC(24),TY(12),IQ56(12,56),XKY1(12,56),
    +EY1(12,56),QFR(12,56)
     DATA FCONV/16.262,18.005,16.262,16.806,16.262,16.806,16.262,
    +16.262,16.806,16.262,16.806,16.262/
     DATA TCRIT/40.,41.,42.,43.,44.,45.,46.,47.,48.,49.,50.,
    +51.,52.,53.,54.,55.,56.,57.,58.,59.,60.,61.,62.,63.,64.,
    +65.,66.,67.,68.,69.,70.,71.,72.,73.,74.,75./
     DATA RM/0.0,0.0,67.9,67.3,59.0,50.8,44.0,27.7,12.4,9.3,7.4,0.0/
     DATA TY/46.5,47.6,50.3,53.3,59.7,65.4,69.1,66.3,64.6,
    +60.1,50.8,47.6/
     NYR=56
     F1 = .022
     F2 = .836
     F3=.142
           READ TEMPERATURE AND FLOW DATA
  11 FORMAT(1X,12A10/)
108 FORMAT(F8.2,2F8.0)
   5 FORMAT(12F7.0)
 105 FORMAT(14X,12I6)
 106 FORMAT(32X,916)
 107 FORMAT(14X,316)
 373 FORMAT(1X, I5, 2X, 12F9.1)
     DO 4 K=1,18
     D0 3 L=1.21
     READ(58,108)(CC(K),QCC(K,L),WCC(K,L))
     CONTINUE
     CONTINUE
     DO 10 N=1,NYR
     READ(50,373)(IYR(N),(TOD(I,N),I=1,12))
     READ(51,5)(QOD(I,N), I=1,12)
  10 CONTINUE
     READ(27,11)(NAME(I), I=1,12)
     READ(52, 106)(IQKR(I, 1), I=1, 9)
     READ(53,106)(IQTD(I,1),I=1,9)
     READ(54,106)(IQTAB(I,1),I=1,9)
     READ(55, 106)(IQ56(I, 1), I=1, 9)
     READ(56,106)(IQD13(I,1),I=1,9)
     READ(57,106)(IQR13(I,1),I=1,9)
     DO 120 N=2,56
     READ(52,105)((IQKR(I,N-1),I=10,12),(IQKR(I,N),I=1,9))
```

PROGRAM FEATEMP

```
READ(53, 105)((IQTD(I, N-1), I=10, 12), (IQTD(I, N), I=1, 9))
      READ(54, 105)((IQTAB(I, N-1), I=10, 12), (IQTAB(I, N), I=1, 9))
      READ(55,105)((1Q56(1,N-1),1=10,12),(1Q56(1,N),1=1,9))
      READ(56,105)((IQD13(I,N-1),I=10,12),(IQD13(I,N),I=1,9))
      READ(57, 105)((IQR13(I, N-1), I=10, 12), (IQR13(I, N), I=1, 9))
  120 CONTINUE
      READ(52,107)(IQKR(I,56),I=10,12)
      READ(53, 107)(IQTD(I, 56), I=10, 12)
      READ(54,107)(IQTAB(I,56),I=10,12)
      READ(55,107)(IQ56(I,56),I=10,12)
      READ(56,107)(IQD13(I,56),I=10,12)
      READ(57,107)(IQR13(I,56),I=10,12)
C
                  READ YEARLY K AND E VALUES
 602
      FORMAT(12F6.1)
      DO 610 N=1,NYR
      READ(20,602)(XKY1(I,N),I=1,12)
      READ(20,602)(EY1(I,N), I=1,12)
      READ(21,602)(XKY2(I,N), I=1,12)
      READ(21,602)(EY2(I,N),I=1,12)
610
      CONTINUE
C
           COMPUTE RIVER TEMPERATURES
      DO 200 N=1,NYR
      DO 100 I=1,12
      TEMP(I,1,N)=TOD(I,N)
      Q=QOD(I,N)+FCONV(I)*IQKR(I,N)
      TI = (QOD(I,N)*TOD(I,N)+FCONV(I)*IQKR(I,N)*EY1(I,N))/Q
      TEMP(I,3,N)=(TI-EY1(I,N))*2.7183**(-2.5774*XKY1(I,N)/Q)+EY1(I,N)
      TI=TEMP(I,3,N)
      Q=IQTD(I,N)*FCONV(I)
      D0 30 J=4,12
      DO 40 K=1,18
      IF(RM(J-1).GT.CC(K))GO TO 41
  40
      CONTINUE
  41
      DO 85 M=1,2
      DO 50 L=1,21
      IF(Q-QCC(K-1,L))42,43,50
  50
      CONTINUE
  43
      W=WCC(K-1,L)
      GO TO 44
  42 W=WCC(K-1,L-1)+((Q-QCC(K-1,L-1))/(QCC(K-1,L)-QCC(K-1,L-1)))*
     +(WCC(K-1,L)-WCC(K-1,L-1))
      IF(M.EQ.1)W1=W
      IF(M.EQ.1)K=K+1
  85
      CONTINUE
      K=K-1
```

PROGRAM FEATEMP

```
W2=W
    W=W1+(W2-W1)*((CC(K-1)-RM(J-1))/(CC(K-1)-CC(K)))
    A=.5*(RM(J-1)-CC(K))*(W+W2)
    IF(RM(J)-CC(K))45,51,47
   W3=W1+(W2-W1)*((CC(K-1)-RM(J))/(CC(K-1)-CC(K)))
    A=.5*(RM(J-1)-RM(J))*(W+W3)
    GO TO 51
45 DO 95 L=1,21
    IF(Q-QCC(K+1,L))61,62,95
   CONTINUE
   WK=WCC(K+1,L)
    GO TO 63
   WK=WCC(K+1,L-1)+((Q-QCC(K+1,L-1))/(QCC(K+1,L)-QCC(K+1,L-1)))*
   +(WCC(K+1,L)-WCC(K+1,L-1))
   IF(RM(J)-CC(K+1))64,65,66
63
   A=A+.5*(CC(K)-CC(K+1))*(W2+WK)
    K=K+1
   W2=WK
    GO TO 45
   A=A+.5*(CC(K)-CC(K+1))*(W2+WK)
    GO TO 51
   W3=W2+(WK-W2)*((CC(K)-RM(J))/(CC(K)-CC(K+1)))
   A=A+.5*(CC(K)-RM(J))*(W2+W3)
   IF(J.GT.6)GO TO 52
    TEMP(I,J,N)=(TI-EY1(I,N))*2.7183**(-XKY1(I,N)*A/
   +(1021.091*0))+EY1(I,N)
    GO TO 53
52 TEMP(I,J,N)=(TI-EY2(I,N))*2.7183**(-XKY2(I,N)*A/
   +(1021.091*Q))+EY2(I,N)
   IF(J.EQ.4)GO TO 71
    IF(J.EQ.5)GO TO 72
    IF(J.EQ.6)GO TO 71
    IF(J.EQ.7)GO TO 73
    IF(J.EQ.8)GO TO 74
    IF(J.EQ.9)GO TO 75
    IF(J.EQ.10)GO TO 77
   TI=TEMP(I,J,N)
    GO TO 30
72
   QFB=QOD(I,N)+FCONV(I)*(IQKR(I,N)-IQTD(I,N))
    TTAB(I,N) = (TEMP(I,3,N) - EY1(I,N)) *2.7183**(-32.9163*XKY1(I,N)/
   +QFB)+EY1(I,N)
    TEMP(I,2,N)=TTAB(I,N)
    QTAB=IQTAB(I,N)*FCONV(I)
    TI=(TEMP(I,J,N)*Q+TTAB(I,N)*QTAB)/(Q+QTAB)
   Q=Q+QTAB
    GO TO 30
   QAC=IQ56(I,N)*FCONV(I)*F1
   TI = (TEMP(I,J,N)*Q+EY2(I,N)*QAC)/(Q+QAC)
    Q=Q+QAC
```

PROGRAM FEATEMP

```
GO TO 30
     QAC=IQ56(I,N)*FCONV(I)*F2
      TI = (TEMP(I,J,N)*Q+TY(I)*QAC)/(Q+QAC)
      Q=Q+QAC-IQD13(I,N)*FCONV(I)
      GO TO 30
  75 QAC=IQ56(I,N)*FCONV(I)*F3
      GO TO 78
     QAC=IQR13(I,N)*FCONV(I)
      IF(QAC.LE.O.)GO TO 76
      GO TO 78
  76 Q=Q+QAC
      TI=TEMP(I,J,N)
  30 CONTINUE
      QFR(I,N)=Q
 100
      CONTINUE
 200
     CONTINUE
C
           COMPUTE TEMPERATURE EXCEEDANCE
      DO 60 L=1,12
      DO 70 I=1,12
      DO 80 K=1,36
      NTEMP(I,L,K)=0
      DO 90 N=1,NYR
      IF(TEMP(I,L,N).LE.TCRIT(K))GO TO 90
      NTEMP(I,L,K)=NTEMP(I,L,K)+1
  90 CONTINUE
  80 CONTINUE
  70 CONTINUE
  60 CONTINUE
C
             PRINT RIVER TEMPERATURE TABLES
 475 FORMAT(35X,*MONTHLY MEAN TEMPERATURES AT*,1X,A10)
 485 FORMAT(20X, *MONTHLY MEAN TEMPERATURES AT*, 1X, A10)
 376 FORMAT(/2X,*YEAR*,9X,*J*,8X,*F*,8X,*M*,8X,*A*,8X,*M*,8X,
     1*J*,8X,*J*,8X,*A*,8X,*S*,8X,*O*,8X,*N*,8X,*D*/)
   2 FORMAT(///)
 479 FORMAT (/2X, *AVG*, 3X, 12F9.1)
      DO 400 L=1,12
      DO 450 N=1,NYR
      IF(N.GT.1)GO TO 474
      PRINT 508
      WRITE(11,508)
      PRINT 475, NAME(L)
      WRITE(11,475)(NAME(L))
      PRINT 376
      WRITE(11,376)
```

PROGRAM FEATEMP

```
474
      PRINT 373, (IYR(N), (TEMP(I, L, N), I=1, 12))
      WRITE(11,373)(IYR(N), (TEMP(I,L,N), I=1,12))
 450
      CONTINUE
      DO 477 I=1.12
      ATEM=0.
      DO 478 N=1,NYR
      ATEM=TEMP(I,L,N)+ATEM
 478 CONTINUE
      ATEMP(I,L)=ATEM/NYR
 477
      CONTINUE
      PRINT 479, (ATEMP(I,L), I=1,12)
C
                  COMPUTE MEDIAN TEMPERATURES
 579
     FORMAT(2X, *MED*, 3X, 12F9.1)
      DO 577 I=1.12
      DO 578 N=1,NYR
      NG=0
      NS=0
      NL=0
      DO 601 M=1,NYR
      IF(TEMP(I,L,N)-TEMP(I,L,M))702,603,604
 702 NG=NG+1
      GO TO 601
 603 NS=NS+1
      GO TO 601
 604
     NL=NL+1
 601 CONTINUE
      IF(NS.GT.NYR/2)GO TO 710
      IF(NL.EQ.NG)GO TO 710
      IF(NL.EQ.NG+1)GO TO 710
      IF(NS.GE.IABS(NG-NL))GO TO 710
 578 CONTINUE
      XMTEMP(I,L)=0.
      GO TO 577
 710
     XMTEMP(I,L)=TEMP(I,L,N)
 577
      CONTINUE
      PRINT 579, (XMTEMP(I,L), I=1, 12)
C
                          COMPUTE COEFFICIENT OF VARIATION
     FORMAT(2X,*C.VAR*,1X,12F9.3)
      DO 670 I=1,12
      SD=0.
      DO 680 N=1,NYR
      SD=SD+(ABS(TEMP(I,L,N)-ATEMP(I,L)))**2.
 680 CONTINUE
      CV(I,L)=((SD/NYR)**.5)/ATEMP(I,L)
 670 CONTINUE
```

PROGRAM FEATEMP

```
PRINT 679, (CV(I,L), I=1,12)
 400 CONTINUE
      DO 410 N=1,NYR
      WRITE(42,373)(IYR(N),(TEMP(I,12,N),I=1,12))
      WRITE(43,5)(QFR(I,N),I=1,12)
 410 CONTINUE
C
             PRINT TEMPERATURE EXCEEDANCE TABLES
 508 FORMAT(////35X,*5-AGENCY STUDIES: DWR # 75D (BASE)*
     +*-1990 LEVEL *)
 518 FORMAT(///20X,*5-AGENCY STUDIES: DWR # 75D (BASE)*
     +*-1990 LEVEL *)
 507 FORMAT(6X, *TEMPERATURE EXCEEDANCE - NO. OF YEARS IN 56 YR STUDY*
 +*(1922-77)*)
513 FORMAT(21X,*EXCEEDING INDICATED TEMPERATURE*)
 509 FORMAT(/2X,*TEMP-F*,8X,*J*,4X,*F*,4X,*M*,4X,*A*,4X,*M*,4X,
     +*J*,4X,*J*,4X,*A*,4X,*S*,4X,*O*,4X,*N*,4X,*D*/)
 511 FORMAT(3X,F4.1,5X,1215)
      DO 500 L=1,12
      PRINT 518
      PRINT 485, NAME(L)
      PRINT 507
      PRINT 513
      PRINT 509
      DO 550 K=1,36
      PRINT 511, (TCRIT(K), (NTEMP(I,L,K), I=1,12))
 550 CONTINUE
      PRINT 2
 500
      CONTINUE
      END
#EOR
#EOI
```

C

```
PROGRAM NARTEMP(INPUT, OUTPUT, TAPE1, TAPE3, TAPE4, TAPE12,
    +TAPE2, TAPE6, TAPE45, TAPE46)
     DIMENSION RL(8), TNIM(12,84), XKY(12,84), EY(12,84), A(8), C(8),
    +FPDIV(12),QNIM(12,84),TCRIT(36),NTEMP(12,9,36),ATEMP(12,9),
    +IYR(84), NAME(9), TEMP(12,9,84), XMTEMP(12,9), FPDIV7(12), FPDIV8(12),
    +CV(12,9),FCONV(12),IQNIM(12,56),IQCAR(12,56),IQFP(12,56),
    +QAR(12,56)
     DATA RL/2.86,4.73,1.89,4.10,2.02,.75,4.58,2.01/
     DATA XK/77.8,94.9,110.5,136.,137.4,174.3,162.4,154.,133.8,
    +97.8,78.2,75.1/
     DATA E/45.9,52.5,57.2,62.1,69.4,74.5,78.4,77.1,73.5,64.9,53.9,
    +45.1/
     DATA A/102.516, -55.404, -55.404, 252.912, 190.912, 190.912,
    +150.912,150.912/
     DATA C/67.242,88.702,88.702,30.044,30.044,
    +30.044,30.044,30.044/
     DATA FPDIV/244.,252.,276.,336.,423.,571.,
    +602.,602.,571.,325.,286.,244./
     DATA FPDIV/244.,252.,49.,67.,81.,118.,
    +114.,114.,118.,65.,67.,33./
     DATA FPDIV8/81.,90.,211.,269.,325.,454.,472.,472.,454.,
    +260.,218.,195./
     DATA TCRIT/40.,41.,42.,43.,44.,45.,46.,47.,48.,49.,50.,
    +51.,52.,53.,54.,55.,56.,57.,58.,59.,60.,61.,62.,63.,64.,65.,
    +66.,67.,68.,69.,70.,71.,72.,73.,74.,75./
     DATA FCONV/16.262,18.005,16.262,16.806,16.262,16.806,16.262,
    +16.262,16.806,16.262,16.806,16.262/
     C1=62.4
     C2 = 86400.
     NYR=56
           READ NIMBUS TEMPERATURE AND FLOW DATA
  11 FORMAT(1X,9A10)
   5 FORMAT(12F7.0)
 373 FORMAT(1X, I5, 2X, 12F9.1)
105
     FORMAT(14X, 12I6)
     FORMAT(32X,916)
106
107
     FORMAT(14X,316)
     READ 2
     DO 10 N=1,NYR
     READ 373, (IYR(N), (TNIM(I,N), I=1,12))
  10 CONTINUE
     READ(3,11)(NAME(I), I=1,9)
     READ(4,106)(IQNIM(I,1),I=1,9)
     READ(2,106)(IQCAR(I,1),I=1,9)
     READ(6, 106)(IQFP(I, 1), I=1, 9)
     DO 20 N=2,NYR
     READ(4, 105)((IQNIM(I, N-1), I=10, 12), (IQNIM(I, N), I=1, 9))
```

```
READ(2,105)((IQCAR(I,N-1),I=10,12),(IQCAR(I,N),I=1,9))
      READ(6, 105)((IQFP(I, N-1), I=10, 12), (IQFP(I, N), I=1, 9))
 20 CONTINUE
      READ(4,107)(IQNIM(I,NYR), I=10,12)
      READ(2,107)(IQCAR(I,NYR),I=10,12)
      READ(6,107)(IQFP(I,NYR),I=10,12)
C
                   READ YEARLY K AND E VALUES
602 FORMAT(12F6.1)
      DO 610 N=1,NYR
      READ(1,602)(XKY(I,N),I=1,12)
      READ(1,602)(EY(\dot{I},\dot{N}), \dot{I}=1,12)
610 CONTINUE
C
           COMPUTE RIVER TEMPERATURES
      DO 200 N=1.NYR
      DO 100 I=1,12
      TEMP(I,1,N)=TNIM(I,N)
      TI=TNIM(I,N)
      DO 50 L=1,8
      IF(L.GT.2)GO TO 19
      FLOW=IQNIM(I,N)*FCONV(I)
      GO TO 18
  19 IF(L.GT.5)GO TO 21
      FLOW=(IQNIM(I,N)-IQCAR(I,N))*FCONV(I)
      GO TO 18
  21 FLOW=(IQNIM(I,N)-IQCAR(I,N)-IQFP(I,N))*FCONV(I)
  18 W=C(L)*ALOG10(FLOW)+A(L)
  22 ALPHA=-XKY(I,N)*W*RL(L)*5280/(C1*C2*FLOW)
      TF=(TI-EY(\dot{I},\dot{N}))*2.7183**ALPHA+EY(I,N)
      TEMP(I,L+1,N)=TF
      TI=TF
  50 CONTINUE
      QAR(I,N)=FLOW
     CONTINUE
 100
 200 CONTINUE
      DO 30 N=1,NYR
      WRITE (45,373) (IYR(N), (TEMP(I,9,N), I=1,12))
      WRITE (46,5) (QAR(I,N), I=1,12)
 30 CONTINUE
C
           COMPUTE TEMPERATURE EXCEEDANCE
      DO 60 L=1,9
      DO 70 I=1,12
      DO 80 K=1,36
      NTEMP(I,L,K)=0
```

3

1

```
DO 90 N=1.NYR
      IF(TEMP(I,L,N).LE.TCRIT(K))GO TO 90
      NTEMP(I,L,K)=NTEMP(I,L,K)+1
  90
      CONTINUE
  80
      CONTINUE
  70
      CONTINUE
  60
      CONTINUE
C
             PRINT RIVER TEMPERATURE TABLES
 475
      FORMAT(35X, *MONTHLY MEAN TEMPERATURES AT*, 1X, A10)
 485
      FORMAT(20X, *MONTHLY MEAN TEMPERATURES AT*, 1X, A10)
      FORMAT(/2X,*YEAR*,9X,*J*,8X,*F*,8X,*M*,8X,*A*,8X,*M*,8X,
 376
     1*J*,8X,*J*,8X,*A*,8X,*S*,8X,*O*,8X,*N*,8X,*D*/)
      FORMAT(///)
      FORMAT(/2X,*AVG*,3X,12F9.1)
 479
      DO 400 L=1,9
      DO 450 N=1,NYR
      IF(N.GT.1)GO TO 474
      PRINT 508
      WRITE(12,508)
      PRINT 475, NAME(L)
      WRITE(12,475)(NAME(L))
      PRINT 376
      WRITE(12,376)
      PRINT 373, (IYR(N), (TEMP(I, L, N), I=1, 12))
      WRITE(12,373)(IYR(N), (TEMP(I,L,N), I=1,12))
 450
      CONTINUE
      DO 477 I=1,12
      ATEM=0.
      DO 478 N=1,NYR
      ATEM=TEMP(I,L,N)+ATEM
 478 CONTINUE
      ATEMP(I,L)=ATEM/NYR
 477
      CONTINUE
      PRINT 479, (ATEMP(I,L), I=1,12)
C
                   COMPUTE MEDIAN TEMPERATURES
      FORMAT(2X, *MED*, 3X, 12F9.1)
 579
      DO 577 I=1,12
      DO 578 N=1,NYR
      NG=0
      NS=0
      NL=0
      DO 601 M=1,NYR
      IF(TEMP(I,L,N)-TEMP(I,L,M))702,603,604
 702 NG=NG+1
      GO TO 601
```

```
603 NS=NS+1
      GO TO 601
 604
     NL=NL+1
 601 CONTINUE
      IF(NS.GT.NYR/2)GO TO 710
      IF(NL.EQ.NG)GO TO 710
      IF(NL.EQ.NG+1)GO TO 710
      IF(NS.GE.IABS(NG-NL))GO TO 710
 578 CONTINUE
      XMTEMP(I,L)=0.
      GO TO 577
 710 XMTEMP(I,L)=TEMP(I,L,N)
 577 CONTINUE
      PRINT 579, (XMTEMP(I,L), I=1,12)
C
                         COMPUTE COEFFICIENT OF VARIATION
 679 FORMAT(2X,*C.VAR*,1X,12F9.3)
      DO 670 I=1,12
      SD=0.
      DO 680 N=1,NYR
      SD=SD+(ABS(TEMP(I,L,N)-ATEMP(I,L)))**2.
 680 CONTINUE
      CV(I,L)=((SD/NYR)**.5)/ATEMP(I,L)
 670 CONTINUE
      PRINT 679, (CV(I,L), I=1,12)
 400 CONTINUE
C
             PRINT TEMPERATURE EXCEEDANCE TABLES
 508 FORMAT(////35X,*5-AGENCY STUDIES: DWR #144C (SALMON)*
     +*-1990 LEVEL*)
 518 FORMAT(///20X,*5-AGENCY STUDIES: DWR #144C (SALMON)*
     +*-1990 LEVEL*)
 507 FORMAT(6X, *TEMPERATURE EXCEEDANCE - NO. OF YEARS IN 56 YR STUDY*
     +*(1922-77)*)
 513 FORMAT(21X, *EXCEEDING INDICATED TEMPERATURE*)
 509 FORMAT(/2X,*TEMP-F*,8X,*J*,4X,*F*,4X,*M*,4X,*A*,4X,*M*,4X,
     +*J*,4X,*J*,4X,*A*,4X,*S*,4X,*O*,4X,*N*,4X,*D*/)
 511 FORMAT(3X,F4.1,5X,1215)
      DO 500 L=1,9
      PRINT 518
      PRINT 485, NAME(L)
      PRINT 507
      PRINT 513
      PRINT 509
      DO 550 K=1,36
      PRINT 511, (TCRIT(K), (NTEMP(I,L,K), I=1,12))
 550 CONTINUE
```

PRINT 2
500 CONTINUE
END
#EOR
#EOI

TABLE D-1 SACRAMENTO RIVER (SACTEMP)

Input Files

Tape No.	File name	Variable name	Description	DWRSIM control points (Jan 1985 NETWK)
10	200			
18	RBKE1	XKY2, EY2	K&E: Red Bluff	
19	COLKEL	XKY3, EY3	K&E: Colusa	
20	SACKEL	XKY4, EY4	K&E: Sacramento	
21	REDKE1	XKY1, EY1	K&E: Redding	
22	TASCXXX	TASC	Temp Ab, Spring Creek	Shasta Reservoir output
23	QSXXX	QS	Flow Bl Shasta	Shasta Reservoir output
24	TSCXXX	TSC	Temp from Spring Creek	Whiskeytown Res. output
25	QSCXXX	QSC	Flow from Spring Creek	Whiskeytown Res. output
27	SACNAME	NAME	Sac. River Station Labels	•
28	TCLXXX	TCL	Temp Bl Whiskeytown	Whiskeytown Res. output
29	QCLXXX	QCL	Flow Bl Whiskeytown	Whiskeytown Res. output
30	QCCXXX	IQCC	Flow from Cottonwood Creek	IN73
31	AC58XXX	IAC58	Accretions from DA58	IN74
33	AC10XXX	IAC10	Accretions from DA10	IN75 + IN77 + RF78
34	SACRA	SA	Sacto River Reach Areas	
35	TCCXXX	ITCC	Tehama CC Diversion	DV74
36	GCIDXXX	IGCID	GCID Diversion	DV77
- 37	FSXXX	IFS	Fremont Weir Spills	DV43
38	AC15XXX	IAC15	Accretions from DA15	IN30
39	WSXXX	IWS	Wilkins Sl. Diversion	DV30 + DV66
40	CBDXXX	ICBD	Colusa Basin Drain	RF65 + RF32
42	TFRXXX	TFR	Temp from Feather River	Feather River output
43	2FRXXX	QFR	Flow from Feather River	Feather River output
44	AC21XXX	IAC21	Accretions from DA21	IN43 + RF84 - DV44 + RF50
45	TARXXX	TAR	Temp from American River	American River output
46	QARXXX	QAR	Flow from American River	American River output
47	TCXXX	ITC	Thomes Creek Inflow	LIN75
48	SCXXX	ISC	Stony Creek Inflow	IN76
	!			

XXX denotes DWRSIM RUN #

TABLE D-2 FEATHER RIVER (FEATEMP) AND AMERICAN RIVER (NARTEM1)

INPUT FILES

Tape No.	File name	Variable name	Description	DWRSIM control points (Jan 1985 NETWK)					
			FEATHER RIVER MODEL (FEATEMP)						
20	OROKE1	XKY1, EY1	K&E: Oroville						
21	MARKE1	XKY2, EY2	K&E: Marysville						
27	FEANAME	NAME	Feather River, Station Labels						
50	TODXXX	TOD	Temp. Bl Oroville Dam	Oroville Res. output					
51	QODXXX	QOD	Flow Bl Oroville Dam	Oroville Res. output					
52	KRXXX	IQKR	Kelly Ridge Inflow	IN7					
53	TDXXX	IQTD	Therm. Div Dam Rel.	DV7					
54	TABXXX	IQTAB	Therm. Afbay Rel	RF67					
55	Q56XXX	IQ56	Accretions from DA56	IN37					
56	D13XXX	IQD13	Net Divert. from DA13	DV37 - RF35 - RF36					
57	R13XXX	IQR13	Net Accr. from DA13	RF39 - DV42					
58	FEAQW1	CC, QCC, WCC	Feather River Geometry						
			AMERICAN RIVER MODEL (NARTEM1)						
File	NIMXXX	TNIM	Temp. Bl Nimbus Dam	Folsom Res. output					
1	LARKE1	XKY, EY	K&E: Sacramento	•					
2	QCARXXX	IQCAR	Carmichael Diversion	DV41					
3	NIMNAME	NAME	American River Station Labels						
4	QNIMXXX	IQNIM	Flow Bl Nimbus Dam	RF9					
6	QFPXXX	IQFP	Sacramento City Diversion	DV64					
	XXX deno	tes DWRSIM RUN	#						

TABLE D-3 SACRAMENTO RIVER BASIN RESERVOIR AND STREAM MODEL FILE ORGANIZATION

CLAIR ENGLE - WHISKEYTOWN		OUTPUT
SUBTRIN, TRIN1 (RES. MODEL) TRINxxx (RES. INPUT) TP1 - LEWKE1		TP32 - LEWXXX (LEW. DAM TEMP.) TP24 - TSCXXX, TP28 - TCLXXX TP25 - QSCXXX, TP29 - QCLXXX
SHASTA		
SUBSHAS, SHAS1 (RES. MODEL) SHASxxx (RES. INPUT)	→	TP22 - TAXCxxx TP23 - QSxxx
OROVILLE		
SUBOROV, OROV1 (RES. MODEL) OROVxxx (RES. INPUT)	→	TP50 - TODxxx TP51 - QODxxx
FOLSOM		
SUBAUB, AUBURN (RES. MODEL) FOLXXX (RES. INPUT) TP1 - FOLKE1	→	TP2 - NIMxxx
FEATHER RIVER		
SUBFEA, FEATEMP (RIV. MODEL) TAPES (SEE TABLE D-2)		TP42 = TFRxxx TP43 = QFRxxx
AMERICAN RIVER		
SUBAR, NARTEM1 (RIV. MODEL) NIMxxx TAPES (SEE TABLE D-2)	-	TP45 - TARxxx TP46 - QARxxx
SACRAMENTO RIVER		
SUBSAC, SACTEMP (RIV. MODEL) TAPES (SEE TABLE D-1)	→	TP11 - SACxxx (OUTPUT FILE)
NOTES: xxx - RUN CODE		SUBxxxx - SUBMIT OR PROCEDURE FILE

TPxx - TAPE NO.

→ - PROGRAM EXECUTION

TABLE E-1

PROGRAM QMANN

```
PROGRAM QMANN(INPUT, OUTPUT, TAPE1)
      DIMENSION CS(24), EGLE(24), S(24), A(24,21), R23(24,21), WD(24,21),
     +XN(24,21),Q(24,21)
     DATA EGLE/225.,207.,207.,150.,126.4,105.,94.,80.,72.,61.,60.,57.,
     +54.,48.,45.,44.,37.,36.,35.,34.,33.,27.,19.,11./
    FORMAT(8X, F8.2, 8X, 3F8.2, F8.4)
      DO 10 I=1,24
      DO 20 J=1,21
      READ 1,CS(I),A(I,J),R23(I,J),WD(I,J),XN(I,J)
  20
     CONTINUE
 10 CONTINUE
      DO 30 I=1,23
      S(I)=(EGLE(I)-EGLE(I+1))/((CS(I)-CS(I+1))*5280.)
      IF(S(I).EQ.0.)S(I)=.0001
 30 CONTINUE
      S(24)=S(23)
      DO 40 I=1,24
      DO 50 J=1,21
      Q(I,J)=(1.49/XN(I,J))*A(I,J)*R23(I,J)*(S(I)**.5)
  50
     CONTINUE
     CONTINUE
  40
     FORMAT(F8.2, F8.0, F8.0)
      DO 60 I=1,24
      DO 70 J=1,21
      WRITE(1,2)(CS(I),Q(I,J),WD(I,J))
  70
     CONTINUE
 60
     CONTINUE
      END
#EOR
#EOI
```

TABLE E-2

QMANN: VARIABLE DESCRIPTION

- CS CROSS SECTION RIVER MILE MILES ABOVE MOUTH
- A CROSS SECTIONAL AREA BELOW EACH ELEVATION FT2
- R23 HYDRAULIC RADIUS
- WD SURFACE WIDTH OF EACH ELEVATION FT
- XN MANNING'S N (ROUGHNESS COEFFICIENT)
- EGLE STREAM CHANNEL ENERGY GRADE LINE ELEVATION AT EACH CROSS SECTION FT
- S SLOPE OF REACH
- Q FLOW AT EACH CROSS SECTION WIDTH FT3/S

RM	Q	W
75.38 75.38	0. 0. 3. 16. 61. 123. 741. 1727. 3011. 4576. 6380. 8437. 10719. 13209. 15888. 18777. 21866. 25148. 28665. 32306. 36173. 0. 1. 27. 133. 324. 604. 1105. 1657. 2415. 3955. 8186. 10857. 13850. 16653. 20191. 24082. 28468.	0. 6. 91. 171. 203. 265. 299. 301. 308. 311. 313. 316. 323. 325. 328. 300. 1. 22. 58. 114. 147. 187. 249. 308. 374. 419. 467. 585. 729. 835. 867.
56.16	33895.	895.
56.16	39453.	922.
52.56	0.	1.
52.56	0.	4.
52.56	0.	19.
52.56	14.	54.
52.56	98.	98.
52.56	293.	141.
52.56	637.	187.

RM	Q	W
52.56 52.56 52.56 52.56 52.56 52.56 52.56 52.56 52.56 52.56 52.56 52.56 52.56 52.56 52.26	1152. 1893. 2900. 4197. 5912. 7963. 10385. 13159. 16474. 20164. 24232. 28671. 33558. 38891. 0. 2. 60. 342. 850. 1578. 2511. 3620. 4970. 6509. 8687. 11147. 13793. 16679. 19760. 22832. 25753. 29171. 33454. 37998. 42302. 0.	245. 308. 366. 422. 475. 571. 645. 7731. 753. 772. 102. 156. 187. 217. 244. 272. 344. 390. 421. 448. 505. 542. 578.
49.26	42302.	878.
45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56	85. 175. 331. 600. 964. 1443. 2012. 2640. 3372. 4221.	97. 143. 185. 218. 245. 269. 295. 324. 351.

Coorla

RM	Q	W
45.56 45.56	5137. 6258.	416. 437.
45.56	7809.	448.
45.56	9516.	455.
45.56	11351.	465.
45.56 45.56	12952. 14688.	486. 515.
43.61	0.	0.
43.61	57.	134.
43.61	220.	178.
43.61	497.	216.
43.61 43.61	912. 1473.	249. 279.
43.61	2104.	326.
43.61	2962.	361.
43.61	3979.	397.
43.61	5171.	431.
43.61 43.61	8053. 11759.	503. 575.
43.61	15902.	692.
43.61	21926.	833.
43.61	29260.	1294.
43.61	39765.	2134.
43.61 43.61	52094. 68428.	3176. 4415.
43.61	104111.	5400.
43.61	152624.	5672.
43.61	211706.	5920.
40.88	0.	0.
40.88 40.88	238. 765.	339. 355.
40.88	1515.	370.
40.88	2470.	386.
40.88	3620.	401.
40.88	4941.	417.
40.88		432.
40.88 40.88	8148. 10026.	448. 463.
40.88	14281.	494.
40.88	19292.	525.
40.88	25001.	556.
40.88	31564.	1035.
40.88 40.88	40081. 51399.	2407. 3333.
40.88	67136.	4085.
40.88	85885.	5633.
40.88	132758.	5850.
40.88		5916.
40.88	262484.	5983.

1

RM	Q	W			
38.26 38.26 38.26 38.26 38.26 38.26 38.26 38.26 38.26 38.26 38.26 38.26 38.26 38.26 38.26	0. 194. 621. 1235. 2015. 2958. 4056. 5303. 6715. 8250. 11824. 16025. 20825. 26358. 32677. 41292. 57314. 84903. 144589. 223044. 316615.	0. 180. 189. 199. 209. 219. 228. 238. 248. 258. 277. 316. 426. 803. 2813. 4995. 5625. 5654. 5684.			
36.07 36.07 36.07 36.07 36.07 36.07 36.07 36.07	0. 40. 146. 325. 608. 1155. 2080. 3229. 4598.	0. 91. 115. 140. 269. 462. 496. 531. 565.			
36.07 36.07 36.07 36.07 36.07 36.07 36.07	6210. 10211. 14723. 20131. 26166. 32648. 38349. 50523. 65517. 105777.	600. 636. 706. 797. 922. 1170. 2410. 4094. 5031.			
36.07 36.07 36.07 33.23 33.23 33.23 33.23 33.23 33.23	164933.	6436. 6460. 6483. 0. 213. 229. 246. 333. 462. 486.			

RM	Q	W
33.23 33.23 33.23 33.23 33.23 33.23 33.23 33.23 33.23 33.23 33.23 33.23 33.23 33.23 33.23 33.23 30.68 30.68 30.68 30.68 30.68 30.68 30.68 30.68 30.68 30.68 30.68 30.68	2808. 3793. 4893. 7594. 10592. 14121. 18260. 23024. 26348. 31346. 38063. 57542. 86098. 120041. 0. 183. 587. 1164. 1898. 2789. 3827. 4998. 6330. 7781. 11155. 15123. 19698. 26414. 35817. 51229. 78558. 113859. 179382. 258283. 349832. 0.	509. 532. 556. 581. 629. 752. 1506. 2658. 3486. 4715. 159. 168. 176. 185. 194. 202. 211. 228. 246. 246. 4736. 4736. 185. 194. 202. 246. 4736. 246. 4736. 27
28.43	20.	88.
28.43	91.	127.
28.43	222.	156.
28.43	415.	180.
28.43	672.	204.
28.43	1002.	224.
28.43	1398.	244.
28.43	1875.	263.
28.43	2449.	277.
28.43	3811.	303.
28.43	5483.	325.
28.43	7449.	348.
28.43	10270.	699.

RM	Q	W
28.43 28.43 28.43 28.43 28.43 26.25	14011. 18548. 23880. 30531. 42351. 53978. 69846. 0. 11. 67. 172. 323. 526. 791. 1116. 1506. 1959. 3168. 4821. 6784. 9095. 11744. 14759. 18233. 22017. 29340. 40404. 56910. 0. 25. 101. 200. 324.	811. 963. 1058. 1416. 1522. 2120. 2199. 0. 99. 145. 173. 204. 237. 264. 291. 318. 345. 410. 432. 488. 563. 638. 716. 798. 1042. 2069. 4034. 4834. 0. 138. 138. 399. 145. 104. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 4034. 2069. 2070. 2089
26.25 26.25 26.25 26.25	11744. 14759. 18233. 22017.	638. 716. 798. 1042.
26.25 26.25 21.86 21.86 21.86	40404. 56910. 0. 25. 101.	4034. 4834. 0. 138. 195.
21.86 21.86 21.86 21.86 21.86 21.86	5990. 8804. 12085. 15757. 19970. 24595.	658. 677. 695. 719. 1044.
21.86 21.86 21.86 21.86 21.86	24595. 29982. 37022. 48332. 61422. 77650.	1252. 1323. 1651. 1855. 2506. 2535.

RM	Q	W
13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.16 8.76 8.76 8.76 8.76 8.76 8.76 8.76 8.7	0. 11. 67. 199. 426. 776. 1257. 1903. 2711. 3717. 6002. 9563. 15073. 22535. 32047. 41494. 54305. 75655. 119316. 173636. 235968. 0. 9. 55. 162. 342. 635. 1039. 1530. 2212. 3037. 4616. 7806. 14240. 23116. 34348. 48081. 68631.	0. 42. 84. 127. 169. 211. 253. 380. 515. 702. 854. 974. 1114. 1415. 1689. 2592. 2918. 2968. 31. 61. 127. 156. 185. 227. 259. 300. 819. 1252. 259. 300. 819. 1252. 259.
8.76 8.76 8.76	98304. 157572. 234559.	2771. 2784. 3409.
8.76 4.38 4.38 4.38 4.38 4.38	321498. 0. 8. 50. 147. 297. 577.	3431. 0. 30. 58. 84. 127. 151.
4.38	953.	175.

RM	Q	W
4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.38	1336. 1985. 2731. 4798. 8043. 13478. 20619. 29658. 41144. 56751. 77114. 114506. 163227. 216250. 0. 7. 47. 132. 259. 520. 872. 1166. 1786. 2467. 4951. 8099. 12205. 17213. 23193. 30317. 38421. 47484. 62629. 79885. 98773.	236. 269. 329. 438. 628. 765. 878. 1043. 1319. 1559. 1683. 1695. 2040. 29. 54. 77. 127. 127. 1246. 279. 358. 385. 439. 505. 506. 506. 506. 506. 506. 506. 506

Table F-1 BUREAU TEMPERATURE MODEL VERIFICATION SACRAMENTO RIVER - 1987 AVERAGE MONTHLY TEMPERATURES - °F

Location	J	<u>F</u>	<u>M</u>	<u> </u>	M	J	J	<u> </u>	<u>s</u>	0	N	D	Avg.
PREDICTED TEMPERATURES													
Kesvick	46.7	46.4	47.5	47.1	47.6	48.0	50.7	54.1	54.6	53.1	52.0	46.9	
Clear Creek	46.5	47.1	48.7	48.2	49.1	49.5	52.1	55.4	56.0	53.9	51.8	46.6	
Cottonwood Cr.	46.4	47.8	49.9	49.4	50.7	51.2	53.7	56.8	57.5	54.8	51.7	46.3	
Red Bluff	45.8	48.2	51.8	52.1	53.8	54.2	56.4	59.7	60.5	56.5	51.9	46.0	
	MEASURED TEMPERATURES												
Keswick	48.7	47.8	47.5	47.8	48.5	49.0	51.6	54.7	55.9	54.6	53.7	50.6	
Clear Creek	-	-	47.9	49.9	51.2	51.2	53.2	55.4	56.0	54.9	52.7	-	
Cottonwood Cr.	47.8	-	50.2	50.7	50.4	52.6	54.0	57.3	58.6	56.9	-	•	
Red Bluff	-	49.0	50.5	52.8	53.5	54.5	56.2	58.8	59.6	57.8	53.3	47.0	
				PRE	OICTED ·	- MEASU	RED						
Kesvick	-2.0	-1.4	0.0	-0.7	-0.9	-0.1	-0.9	-0.6	-1.3	-1.5	-1.7	-3.7	1.3
Clear Creek			0.8	-1.7	-2.1	-1.7	-1.1	0.0	0.0	-1.0	-0.9		1.0
Cottonwood Cr.	-1.4		· - 0.3	-1.3	0.3	-1.4	-0.3	-0.5	-1.1	-2.1			1.0
Red Bluff		-0.8	1.3	-0.7	0.3	-0.3	0.2	1.1	0.9	-1.3	-1.4	-1.3	0.8
AVG.	1.7	1.1	0.6	1.1	0.9	1.1	0.6	0.6	0.8	1.5	1.3	2.5	1.0

Notes: Measured temperature from DWR continuous recorders AVG. = Absolute value averages

i

Table F-2
BUREAU TEMPERATURE MODEL VERIFICATION
AMERICAN RIVER - 1981
AVERAGE TIME PERIOD TEMPERATURES - °F

Location	Aug 14-19	Aug 27-31	Sept 2-10	Sept 12-18	Sept 20-25	Sept 27- Oct 1	0ct 3-23	Oct 24- Nov 5	AVG
PREDICTED TEMPERATURES									
Cordova Park	66.4	69.8	68.1	70.4	65.6	64.4	61.0	57.3	
Watt Avenue Bridge	68.2	72.8	70.2	72.9	66.8	65.1	61.3	57.9	
H Street Bridge	68.9	73.9	71.0	73.6	67.3	65.4	61.5	58.2	
16th Street Bridge	69.8								
MEASURED TEMPERATURES									
Cordova Park			68.1	68.2	66.4	65.2	62.8		
Watt Avenue Bridge	67.9	69.9	69.4	70.9	66.7	64.9	62.2	58.3	
H Street Bridge	70.1	71.8	71.7	72.3	69.0	67.2			
16th Street Bridge	70. 0								
PREDICTED - MEASURED									
Cordova Park			0.0	2.2	-0.8	-0.8	-1.8		1.1
Watt Avenue Bridge	0.3	2.9	8.0	2.0	0.1	0.2	-0.9	-0.4	1.0
H Street Bridge	-1.2	2.1	-0.7	1.3	-1.7	-1.8	•		1.5
.16th Street Bridge	-0.2								0.2
AVG	0.6	2.5	0.8	1.8	0.9	0.9	1.4	0.4	1.2

Notes: Measured temperatures from Bureau and City of Sacramento records AVG = Absolute value averages

