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• Stream fish Hg positively influenced by
Au mines, deciduous forests, urban
areas.

• Fish Hg negatively influenced by ever-
green forests and wetlands in Sierra
Nevada.

• Sediment Hg and MeHg affected by LOI,
grain size, land use and cover, Au
mines.

• Geospatial model predicts Hg in 5 fish
species as a function of length and
location.

• Model requiring sediment MeHg slight-
ly better than geospatial-only model.
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Widespread mercury (Hg) contamination of aquatic systems in the Sierra Nevada of California, U.S., is associated
with historical use to enhance gold (Au) recovery by amalgamation. In areas affected by historical Aumining op-
erations, including the western slope of the Sierra Nevada and downstream areas in northern California, such as
San Francisco Bay and the Sacramento River–San Joaquin River Delta, microbial conversion of Hg to methylmer-
cury (MeHg) leads to bioaccumulation of MeHg in food webs, and increased risks to humans and wildlife. This
study focused on developing a predictive model for THg in stream fish tissue based on geospatial data, including
landuse/land cover data, and the distribution of legacy Aumines. Data on totalmercury (THg) andMeHg concen-
trations in fish tissue and streambed sediment collected during 1980–2012 from stream sites in the Sierra Neva-
da, California were combinedwith geospatial data to estimate fish THg concentrations across the landscape. THg
concentrations of five fish species (Brown Trout, Rainbow Trout, Sacramento Pikeminnow, Sacramento Sucker,
and Smallmouth Bass) within stream sections were predicted using multi-model inference based on Akaike In-
formation Criteria, using geospatial data for mining history and landscape characteristics as well as fish species
and length (r2 = 0.61, p b 0.001). Including THg concentrations in streambed sediment did not improve the
model's fit, however including MeHg concentrations in streambed sediment, organic content (loss on ignition),
and sediment grain size resulted in an improved fit (r2 = 0.63, p b 0.001). These models can be used to estimate
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THg concentrations in stream fish based on landscape variables in the Sierra Nevada in areas where direct mea-
surements of THg concentration in fish are unavailable.

Published by Elsevier B.V.
1. Introduction

Use of mercury (Hg) to enhance gold (Au) and silver (Ag) recovery
by amalgamation has resulted in widespread Hg contamination of
aquatic systems in many areas worldwide (Hylander and Meili, 2003,
2005; Nriagu, 1994). Microbial conversion of Hg to mono-methylmer-
cury (MeHg), a potent neurotoxin (Wiener et al., 2003), leads to bioac-
cumulation of MeHg in food webs (e.g. Brigham et al., 2009; Chasar
et al., 2009; Driscoll et al., 2013; Grigal 2003; Lavoie et al., 2013;
Stewart et al., 2008), causing enhanced risk of MeHg exposure to
humans and wildlife in areas affected by historical precious-metal re-
covery operations. Historical Au mining and processing by amalgam-
ation caused inorganic Hg contamination on the western slope of the
Sierra Nevada (Alpers et al., 2005a; Alpers, 2015; Singer et al., 2013),
and downstream areas in northern California such as San Francisco
Bay and the Sacramento River–San Joaquin River Delta (Davis et al.,
2008, 2012; Donovan et al., 2013; Eagles-Smith et al., 2009; Gehrke
et al., 2011a,b; Hornberger et al., 1999).

Several previous studies have assessed the distribution of landscape
variables relative to Hg in fish and other biota at regional and national
scales in North America, with the goal of testing conceptual models
regarding biogeochemical and physical processes controlling Hg(II)-
methylation and MeHg bioaccumulation. Evers et al. (1998, 2003,
2007, 2011) evaluated spatial trends in northeastern North America,
with emphasis on ecosystem characteristics affectingMeHgbioaccumu-
lation in loons. Wiener et al. (2006) used information-theoretic model-
ing with Akaike Information Criteria (AIC; Burnham and Anderson,
2002) to determine that the following factors influenced MeHg in lake
water and fish in the Voyageurs National Park, Minnesota: lake water
pH, dissolved sulfate, and total organic carbon, an indicator of wetland
influence. Scudder et al. (2009) used a national U.S. database for Hg in
fish, plus total mercury (THg) and MeHg in streambed sediment and
stream water, to evaluate the influence of Hg sources (atmospheric,
Au and Hg mining, and urban), landscape factors including wetlands
and other land-use/land-cover types, and ecosystem characteristics
with regard to their effects on production and bioaccumulation of
MeHg. Other studies have used geospatial landscape variables to evalu-
ate patterns of Hg bioaccumulation in lake fish (Dittman and Driscoll,
2009; Drenner et al., 2011; Shanley et al., 2012; Nagorski et al., 2014;
Eagles-Smith et al., 2016), but few studies have addressed Hg in stream
fish.

It is well known that MeHg tends to increase with fish length and
trophic level, and varies with tissue type (Wiener et al., 2003). Wente
(2004) developed a statistical model (National Descriptive Model of
Mercury in Fish, NDMMF) that standardizes the concentrations of Hg
in fish among different species, individual samples of varying length,
and samples of different types.

The spatial distribution of Hg in fish tissue (that occurs predomi-
nantly as MeHg: Bloom, 1992; Kuwabara et al., 2007; Saiki et al.,
2009) and MeHg in predatory invertebrates has been shown to vary
among Sierra Nevada watersheds (Alpers et al., 2005b; May et al.,
2000; Slotton et al., 1997); and it has been suggested that historical
Au mining intensity and associated Hg losses from amalgamation dur-
ing Au processing are important factors influencing spatial trends in
MeHg bioaccumulation (Alpers and Hunerlach, 2000). Previous studies
of spatial variation in fish Hg in the San Francisco Bay, the Sacramento–
San Joaquin Delta, and its tributaries (Davis et al., 2008, 2012; Melwani
et al., 2007), identified some differences between watersheds draining
the Sierra Nevada, but did not identify a clear relationship with histori-
cal Au mining intensity. Many of the fish samples analyzed in the
rediction of fish and sedimen
0.1016/j.scitotenv.2016.05.08
previous studies were collected in the lower-elevation reaches of rivers,
in areas where there are no physical barriers preventing fish from mi-
grating betweenwatersheds, a phenomenon that may cloud any poten-
tial mining signal. In this study, focusing on stream reaches upstream of
dams that block fish migration allowed us to isolate the effects of
historical Au mining and evaluate the influence of land-use/land-cover
characteristics that may affect Hg(II) methylation and MeHg
bioaccumulation.

A robust predictive model for Hg in fish in streams is needed in the
Sierra Nevada of California to identify stream reaches likely to contain
fish with elevated Hg caused by legacy Au mining. The predictive
model would be used to prioritize sampling efforts designed to refine
lists of impaired water bodies (e.g. California SWRCB, 2012; Fig. 1) and
to identify remediation targets to reduce exposure of humans andwild-
life to toxic MeHg. The research goal of this study was to develop a pre-
dictive model for THg in stream fish tissue based exclusively on
geospatial data, including land-use/land-cover data and the distribution
of legacy Au mines.

2. Methods

2.1. Study area

The study area for the modeling effort described herein consists of a
portion of thewestern slope of the Sierra Nevada bounded on the south
by the Merced River watershed and on the north by the Feather River
watershed (Fig. 1). These watersheds contain thousands of historical
Au mines (Fig. 1). Within each watershed, river reaches were selected
above the lowest elevation dam to avoid problems with fish migration
between watersheds. The Cosumnes River (Fig. 1) is the only major
river in the study area that does not have a dam blocking fish passage.

Thewestern slope of the Sierra Nevada hosts the Sierra Nevada Foot-
hills (SNFH) Au belt, which includes the Mother Lode, a group of lode
mineral deposits consisting of low-sulfide Au-quartz veins (Ashley,
2002). The northern Sierra Nevada also hosts extensive placer Au de-
posits in Tertiary gravels (Yeend, 1974). The lode Au deposits of the
SNFH Au belt were mined primarily by underground methods; Au-
quartz ore was crushed by stamp mills where amalgamation with Hg
was commonly practiced from the 1860s through the 1930s, resulting
in the loss to the environment of approximately 1.3 × 106 kg of Hg asso-
ciated with the production of about 37 × 106 troy ounces (1.2 × 106 kg)
of Au (Churchill, 2000). Placer Au depositsweremined primarily by sur-
face methods including hydraulic mining and dredging; Hg losses from
amalgamation are estimated to have been about 4.5 × 106 kg associated
with production of about 68 × 106 troy ounces (2.1 × 106 kg) of Au, pri-
marily from the 1850s through the 1930s (Churchill, 2000).

2.2. Data acquisition and database construction

Concentration data for THg and MeHg in streambed sediment and
fish were compiled from various sources, including national and state
environmental databases, published reports and documents, and previ-
ously unpublished research data. Data were imported into a relational
database (Microsoft Access, version 2013). Data were retrieved from
theUSGSNationalWater Information System (NWIS) and the California
SWRCB's California Environmental Data Exchange Network (CEDEN) on
February 1, 2012. Previously unpublished data from USGS studies con-
ducted during the 1990s and 2000s were imported into NWIS and the
study database. New data were generated for the study by sampling
water, streambed sediment, and fish at 25 locations during 2011–12.
t mercury in streams using landscape variables and historical mining,
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Fig. 1.Map showing locations of historical gold mines in the Sierra Nevada and historical mercury mines in the Coast Ranges, California (MRDS, Mineral Resources Data System; USGS,
2013). Red shading indicates stream segments, lakes, and reservoirs on 303(d) list indicating water-quality impairment caused by mercury (California SWRCB, 2012).
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The fish tissue data set included 1399 analyses of 1390 individual
fish (including 9 duplicate analyses for individual fish) collected during
1980–2012, representing 17 species (Supplemental material, Fig. S1).
Data were compiled for initial modeling, using a guild approach (Fig.
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
Sci Total Environ (2016), http://dx.doi.org/10.1016/j.scitotenv.2016.05.08
S2) (data sources in Supplementalmaterial, Tables S1–S4). It was deter-
mined that detailed modeling would work best using the five fish spe-
cies with the most samples: Brown Trout (210 fish), Rainbow Trout
(710 fish), Sacramento Pikeminnow (79 fish), Sacramento Sucker (93
t mercury in streams using landscape variables and historical mining,
8
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fish), and Smallmouth Bass (179 fish). These five fish species were rep-
resented by 1271 individual fish from 103 sites (Fig. S3, Tables S5–S6).

A small number of the fish tissue analyses (20 Rainbow Trout and 2
Brown Trout) were below the method detection limit (mean of
0.025 μg g−1 wet weight, ww). For modeling purposes, a concentration
of one-half of the detection limit was used for these censored data prior
to any other conversions such aswhole body to axialmusclefillet, or dry
weight (dw) toww, as described below.Most of the analyses ofmercury
in fish tissue were axial muscle fillet without skin. Some whole-body
fish analyseswere converted to axialmuscle fillet equivalent concentra-
tion using the following equation, from Peterson et al. (2007):

log filletð Þ ¼ 0:2545þ 1:0623 log whole‐bodyð Þ: ð1Þ

For the five species used in the detailed modeling, the following
numbers of samples were converted from whole body to axial muscle
fillet equivalent: Brown Trout, 55 of 210 analyses (26%); Rainbow
Trout, 110 of 710 samples (15%); Sacramento Pikeminnow, 26 of 79
samples (33%); Sacramento Sucker, 69 of 93 samples (74%) and
Smallmouth Bass, 100 of 179 samples (56%).

Many of the fish THg analyses were done on a ww basis and mois-
ture content was not determined. For samples for which only dw data
were available andmoisture content was determined, the fish THg con-
centration data were converted to ww. If moisture content was not
available for an individual fish sample, average percent moisture was
calculated by species (Table S7).

After applying the dw-to-ww conversion, 105 individual fish analy-
ses (out of 1399 from all species initially considered) had data for
whole-body fishMeHg, but not whole-body fish THg. We fit a linear re-
gression (r2= 0.99, p b 0.001) based on 239 fish samples from7 species
that had both fish MeHg and fish THg values, and used Eq. (2)

logðfishTHgÞ ¼ 0:022þ 0:98 logðfishMeHgÞ ð2Þ

where both fishTHg andfishMeHg are in units of μg g−1, to estimate fish
THg (ww) for the 105 individual analyses. The average proportion of
THg in the MeHg form was 89% (sd 6.0%) for the 239 samples, of
which 235 were from the five species used in modeling (Table S8).
Modeling of fish tissue mercury concentration in this study was done
using ww THg concentrations representing axial muscle fillet tissue
without skin. Because THg is commonly analyzed in fish tissue, and al-
most all mercury present in fish is in the form of MeHg, California regu-
lations refer to THg in fish (California OEHHA, 2013).

Sediment samples in the final data set included 106 THg analyses
from 73 sites (Fig. S4). Data for fish tissue and streambed sediment
that were used in the modeling came from 133 sites in all: 43 of the
sites had data for both fish tissue and sediment, 60 sites had fish tissue
data only, and 30 sites had streambed sediment data only. Predictions of
mercury in fish tissueweremade for the 133 sites with data for fish and
(or) sediment, plus an additional 52 sites without fish or sediment data
(Fig. S5), a total of 185 sites (Fig. S6).

2.3. Variable estimation and geographic information system methods

A Geographic Information System (GIS) approach was used to cre-
ate, interpret, and analyze spatial datasets representing potential
sources of anthropogenic disturbance for watersheds located within
the study area. Watersheds were generated for each sample site using
an automated process that leveraged the batch watershed delineation
capabilities that exist within the U.S. Geological Survey's StreamStats
application (Ries et al., 2009).

Spatial datasets representing landscapemetrics of watershed distur-
bance were created for each watershed from available national and re-
gional datasets (Table S9), and included elevation, slope, land cover
(base year 2006; Fry et al., 2011), road networks, soil characteristics, hy-
drography, dams, Au- and Hg-mine locations, surficial geology, and
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
Sci Total Environ (2016), http://dx.doi.org/10.1016/j.scitotenv.2016.05.08
population density. Additional mining-related metrics derived from
both private and public data were also evaluated (Orlando, 2016).

The value of each variable was calculated for each watershed where
the fish or sediment sample was collected (Table S10). All work was
conducted using ArcGIS, ArcMap 10.2 (Environmental Systems Re-
search Institute, Redlands, CA). Because of limitations in the numbers
of variables that could be evaluatedwithin themodeling framework ap-
plied during this project, not all landscapemetricswere evaluated. A list
of variables that were evaluated as well as those retained in the final
models is shown in Table S11.

2.4. Statistical analyses and modeling approach

Although GIS information was available at all 133 sites with Hg data
for fish and (or) sediment (Table S10), we were unable to model THg in
fish directly as a function of THg orMeHg in sediment and GIS variables
across all 133 sites because of the uneven sampling offish and sediment.
Instead, a comprehensive model was developed by employing a multi-
ple regression model obtained from a sequence of partial regression
models fitted to the same dataset (Neter et al., 1990). Because the par-
tial regressions were performed on overlapping but different subsets
of the 133 sites, it was assumed that regressions on these subsets are
representative of all 133 sites.

Statistical analyses and model development were done using a
three-stage approach: 1) evaluate which variables were correlated
with fish THg concentrations, 2) evaluate those variables that were cor-
relatedwith sediment THg andMeHg concentrations, and 3) determine
if sediment THg and (or) MeHg concentrations could be used together
with other variables to estimate fish THg concentrations (Fig. 2).

In Stage 1, fish THg was predicted using three different approaches:
Stage 1a predicted fish THg using only data for THg in sediment; Stage
1b made predictions of fish THg using only THg andMeHg in sediment;
Stage 1c used only geospatial (or GIS) data to predict fish THg. A total of
31 GIS variables were considered in Stage 1c modeling (Table S11).

In Stage 2, the factors influencing sediment THg and MeHg concen-
trations were assessed using the same 31 potential GIS predictor vari-
ables as used in Stage 1c, plus other variables. In Stage 2a, models
were derived predicting sediment THg using GIS variables, plus two
other ancillary variables: percent fines (b0.063 mm) and log10-trans-
formed loss on ignition (LOI, a measure of organic content) (Table
S11). In Stage 2b, sediment MeHg was predicted using the same vari-
ables as Stage 2a plus two other variables: sediment THg and sediment
THg normalized to LOI. Stage 2c consisted of the same variables as Stage
2b plus sediment reactive mercury (RHg), an operationally defined pa-
rameter representing the Hg(II) that is reduced to Hg(0) in a 15-min di-
gestionwith SnCl2 (Marvin-DiPasquale et al., 2011). Reactivemercury is
considered to approximate the fraction of the inorganic Hg pool that is
most prone to microbial methylation (Marvin-DiPasquale et al., 2006;
Marvin-DiPasquale and Cox, 2007).

Stage 3 modeling used the residuals from the models in Stages 1c
and 2 to determine whether sediment THg and (or) MeHg concentra-
tions could be used to improve the prediction of fish THg beyond that
obtained using GIS variables alone (as in Stage 1c).

The three-stage approach allowed use of all available data from all
sites and employed the strategy of partial regressions by modeling Hg
in fish as a function of GIS variables (Stage 1c, n= 103 sites), Hg in sed-
iment as a function of sediment variables (Stages 2a–b, n = 73 sites),
and finally a regression between the residuals of both stages (n = 43
stations) to assemble a fullmodel for Hg in fish as a function of sediment
and GIS variables (Stage 3).

In the analysis of models in each stage, AIC was used to select the
most parsimonious model from all potential combinations of variables,
with the following exceptions. First, some variables that were highly
related (Pearson correlation r N 0.75) or that were derived from the
same data (e.g. total forest and deciduous forest) were excluded
from appearing in the same individual model (Table S12). Pearson
t mercury in streams using landscape variables and historical mining,
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Fig. 2. Flow chart showing available data andmulti-stagemodeling approach. (A) Stage 1: predicting fish total mercury (THg) in axial fillet using sediment THg (Stage 1a); using sediment
methylmercury (MeHg) (Stage 1b), and using geospatial data (Stage 1c); (B) Stage 2: predicting sediment THg using geospatial data, loss on ignition, and percent fines (Stage 2a);
predicting sediment MeHg using geospatial data, loss on ignition, and percent fines (Stage 2b); predicting sediment MeHg using geospatial data, sediment THg and reactive mercury
(RHg), as well as loss on ignition and percent fines (not shown); Stage 3, predicting fish Hg from residuals in Stage 2a model (Stage 3a), and from residuals in Stage 2bmodel (Stage 3b).
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correlation coefficients between spatial variables are tabulated for non-
distance-weighted variables (Table S13) and distance-weighted vari-
ables (Table S14), with p values to indicate the degree of statistical sig-
nificance for correlation between each pair of variables. The two
mining-related variables (HydrPitsPLPct and AuMineDens) were not
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
Sci Total Environ (2016), http://dx.doi.org/10.1016/j.scitotenv.2016.05.08
significantly correlated, so they were allowed to occur in the individual
models.

The maximum number of spatial variables in each model stage was
determined based on sample size, using guidelines for multivariate
modeling (Burnham and Anderson, 2002), as summarized in Table
t mercury in streams using landscape variables and historical mining,
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Table 1
Model equations. Coefficients with additional precision are given in Supplemental materi-
al (Tables S18, S27, S31, and S34). Because of differences in units, relativemagnitude of co-
efficients doesnot indicate relative importance to themodel. Data for Variable Importance,
Parameter Likelihood, and beta coefficients, which indicate relative importance and influ-
ence of each variable, are given in Supplementalmaterial (Tables S24, S29, and S32). Order
of variables in each equation is based on variable type (mining, urban development, wet-
lands, forests). Values of constant denoting fish species: Csp = 0.39, Brown Trout; 0.37,
Rainbow Trout; 0.031 Sacramento Pikeminnow; 0.14, Sacramento Sucker; and 0,
Smallmouth Bass.

Model Equation

Stage 1c log(fishTHg) = −0.78 − Csp + 0.0019 length(mm) + 0.081
log(HydrPitsPLPct) + 0.0014 log(AuMineDens) + 0.010
log(TotalUrban) + 0.022 log(DevelopHigh) + 0.0078
log(DevelopMed) + 0.0050 log(PopDens) − 0.0086 log(TotalWetlnd)
− 0.046 log(WetlndEmHrb) – 0.030 log(WetlndWoody) + 0.085
log(ForestDecid) − 0.054 log(ForestEvrgr)

Stage 2a log(sedTHg) = −0.64 + 0.90 log(PctLOI) + 0.00028 pctFines + 0.19
log(HydrPitsPLPct) + 0.000017 log(AuMineDens) + 0.048
log(DevelopHigh) + 0.048 log(PopDens) − 0.0079
log(WetlndEmHrb) + 0.073 log(TotalForest) + 0.058
log(ForestEvrgr) + 0.12 log(ForestMixed) + 0.22 ElevationKm

Stage 2b log(sedMeHg) = −3.3 + 1.1 log(PctLOI) + 0.0019 pctFines + 0.15
log(HydrPitsPLPct) + 0.014 log(DevelopHigh) + 0.0016
log(DevelopMed) + 0.11 log(PopDens)

Stage 3b log(fishTHg) = −0.097 − Csp + 0.0019 length(mm)
+ 0.19 log(sedMeHg) − 0.21 log(sedPctLOI) − 0.00036 sedPctFines
+ 0.054 log(HydrPitsPLPct) + 0.0012 log(AuMineDens) + 0.012
log(TotalUrban) + 0.023 log(DevelopHigh) + 0.0087
log(DevelopMed) − 0.020 log(PopDen) − 0.0088 log(TotalWetlnd)
− 0.045 log(WetlndEmHrb) − 0.030 log(WetlndWoody) + 0.087
log(ForestDecid) − 0.051 log(ForestEvrgr)
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S15 (see Supplemental material text). Because AIC statistics are only
comparable among different models fitted to the same dataset, we
used AIC only to compare thesemodels and develop theweighted-aver-
agemodel, andwe relied on coefficient of determination (r2), defined as
the proportion of variance explained by the model (Kvalseth, 1985; see
Table S16), to compare weighted-average models based on different
subsets of the data (e.g. Stages 1a vs. 1b). Negative values of r2 are pos-
sible using this approach. Statistical significance (p) was calculated by
permutation test (20,000 random iterations).

All models predicting mercury in fish (Stages 1a, 1b, 1c, 3a, and 3b)
included species and length as predictor variables. Length-normalized
fish THgwas not used as a response variable in any of themodels. How-
ever, alternative r2 values based on length-normalized fish THg values
were computed for comparisonwith r2 values based on non-normalized
fish THg (Table S16; see Supplemental material).

3. Results

3.1. Stage 1: models predicting total mercury in fish using either sediment
or spatial data

3.1.1. Stage 1a: model predicting total mercury in fish using total mercury
in sediment

Prediction of THg in fish (fish THg) using only THg in streambed sed-
iment (sedTHg) was reasonably successful, with an r2 value of 0.53
(p b 0.001, Table S16). The same model predicts length-normalized
fish THg with an r2 value of 0.68 (p b 0.001). The Stage 1a modeling
was based on data for 43 sites where both sediment and fishwere sam-
pled (Table S16).

3.1.2. Stage 1b: model predicting total mercury in fish using total mercury
and methylmercury in sediment

Prediction of fish THg using both THg and MeHg concentrations in
streambed sediment (Stage 1b) was slightly more successful than the
models based only on sediment THg (Stage 1a), with r2 values of 0.56
(p b 0.001) for prediction of non-length-normalized fish THg and 0.70
(p b 0.001) for prediction of length-normalized fish THg (Table S16).
Stage 1b modeling, like Stage 1a, was based on data for 43 sites where
both sediment and fish were sampled. The results from Stage 1a and
1bmodeling provide a useful baseline for more complex models, as ex-
plained below.

3.1.3. Stage 1c: model predicting total mercury in fish using geospatial data
In the first stage of the analysis using GIS data, factors influencing

fish THg concentration among watersheds was examined. First, a pre-
liminarymodel was derived to determinewhether therewasmore sup-
port for one or the other approach among three paired alternatives: (1)
species or guild, (2) distance-weighted GIS variables or non-weighted
GIS variables, and (3) fish total length or log10-transformed fish total
length. For thefirst of these comparisons, three separate guildswere de-
fined: (a) trophic level 3 (small forage fish, including Brook Trout, Rain-
bow Trout, and Brown Trout ≤250 mm total length), (b) trophic level 4
(larger, piscivorous fish, including all bass species, Sacramento Pikemin-
now, and Brown Trout N250 mm total length), and (c) Sacramento
Sucker, which was considered to be its own guild, because it does not
fit the definition of either trophic level 3 or 4. Other fish species had
an insufficient number of samples (b10) to be considered. The total
number of fish samples in the guildmodels was 1320 (Fig. S2), however
for purposes of using AIC to compare guildmodels to the species-specif-
ic models we restricted the data sample to the 1271 fish belonging to
the five species represented in the species-specific models (Table S8).
Models with species had a relative variable weight of 1.0, whereas
those with guild had a relative variable weight of b0.01. Therefore, we
excluded the guild approach from all further testing and species was in-
cluded as a fixed effect for five best-represented fish species in all fur-
ther fish models (Fig. S1, Table S8).
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
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The evaluation of distance-weighted versus non-distance-weighted
(or non-weighted) variables indicated that the relative variable weight
for the distance-weighted GIS variables was 0.40 and that for non-
weighted GIS variables was 0.60. Therefore, we did not distance-weight
any of the GIS variables in the final candidate model set for fish in Stage
1c.

Themost robustmodels using GIS data to predict fish THg (Stage 1c)
used data for 1271 fish from 5 species collected at 103 sites during
1980–2012. The individual best model (“top model”) subject to param-
eter limits (Table S15) describing fish THg concentrations among Sierra
Nevada watersheds (model 1c.01, Table S17) included four geospatial
variables (high intensity of urban development, deciduous forest,
woodywetlands, and emergent herbaceous wetlands), and the propor-
tion of the watershed area consisting of hydraulic pits and large placer
mines, with species and fish length as fixed effects, and site as a random
effect; this model had an Akaike weight of 0.104. Eight other individual
models provided a reasonably competitive fit to the data (ΔAICC b 2.0),
and, similar to the topmodel, each contained the proportion of cells in a
watershed categorized as deciduous forest and the proportion of the
watershed area consisting of hydraulic pits and large placer mines.
Each of these top nine models included a variable representing urban
development (either medium- or high-intensity urban development,
or total urban development) and a variable representing wetlands (ei-
ther woody wetlands or emergent herbaceous wetlands). The propor-
tion of cells in a watershed that were categorized as being evergreen
forest also appeared in three of the top nine models. The top model
(1c.01, Table S17) was 6.38 × 1013 times more likely than the null
model that included only fish species and fish length as fixed effects
and site as a random effect.

The weighted-average model for Hg in fish tissue from Stage 1c
modeling (GIS data only) is given in Table 1. The weighted-average
Stage 1c model (based on 1271 fish at 103 sites) had an r2 value of
0.61 (p b 0.001; Fig. S9, Table S16), indicating that the model explains
61% of the variation in non-length-normalized fish tissue Hg concentra-
tion for the 103 sites analyzed. Each observed sample (symbol in Fig. S9)
t mercury in streams using landscape variables and historical mining,
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can be compared vertically to the predicted geometric mean and confi-
dence interval obtained from that sample's respective covariate profile.

Results for the Stage 1c model are somewhat better than the results
for Stages 1a and 1b, which did not use spatial variables (Table S16). Be-
cause Stages 1a and 1b were based on 770 fish at 43 sites, for the pur-
pose of comparison, the performance of Stage 1c was evaluated for the
same subset of available data. For non-length-normalized fish THg, the
r2 value for Stage 1c (770 fish at 43 sites) was 0.62 (p b 0.001), which
was greater than the values for Stages 1a and 1b (0.53 and 0.57, respec-
tively; both p b 0.001). For predicting length-normalized fish THg, Stage
1c (770 fish at 43 sites) had an r2 value of 0.745 (p b 0.001), also greater
than the values for Stages 1a and 1b (0.675 and 0.702, respectively; both
p b 0.001).

Predictions from the Stage 1c model were made for five fish species
over a range of total length at 185 sites (Table S19). No predictionswere
made for fish species in areas where suitable habitat is not expected to
occur; for Sacramento Pikeminnow, Sacramento Sucker, and
Smallmouth Bass, no predictions were made for sites at elevations
N1000 m based on the natural range of these species (Moyle, 2002).
An example of the predictions compared with available data for a site
Fig. 3. Plots showing recentered partial residual total mercury (THg) in fish at the individual fi
hydraulic pits and placer areas, (C) gold mine density, (D) total urban development, (E) high d
wetlands, (I) emergent herbaceous wetlands, (J) woody wetlands, (K) deciduous forest, (L) ev
by adding a small number equal to 0.1 times the smallest actual positive value to facilitate plo
of Mining Influence Factor from Stage 1c model. Partial residual total Hg in fish was recentere
watershed covariates were set at mean values.
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with data for all five species (Greenhorn Creek at You Bet Road) can
be seen in Fig. S8.116. There is good overall agreement between ob-
served concentrations and predicted concentrations, within the 95th
percent confidence interval for nearly all of the data points. Plots of pre-
dictions for all 185 sites (103 with available fish THg data) are in Figs.
S8.1 through S8.185. Theperformance of the Stage 1cmodelwith regard
to predicted versus observed fish THg concentrations (Table S21) and
with regard to regulatory criteria (Tables S22 and S23) is discussed in
the Supplemental material text.

Fish length, proportion of hydraulicminepits andplacers, anddecid-
uous forest are the three variables with themost influence on predicted
fish THg in the Stage 1cmodel, which can be seen by the relatively steep
slopes compared to other variables on plots of partial residual fish THg
concentration (Fig. 3). These three variables also have the largest values
of Parameter Likelihood and Variable Importance (Table S24); these
terms are defined in the Supplemental material. The relative influence
of the three variables listed above compared to the other variables in
themodel can also be seen in the beta coefficients, which indicatemath-
ematical relationships between model variables and calculated predic-
tions of fish THg (Table S24). Variables with negative coefficients in
sh level (n = 1,271) for variables in weighted-average model 1c. (A) fish total length, (B)
ensity development, (F) medium density development, (G) population density, (H) total
ergreen forest. Variables in model, except fish length, were adjusted to avoid zero values
tting in log space and log-transformation for data analysis. Symbol color indicates value
d by adding the predicted Hg concentration for a 200 mm rainbow trout where all of the

t mercury in streams using landscape variables and historical mining,
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Table 1) (three wetland variables and evergreen forest) also have nega-
tive slopes in the plots of partial residual fish THg (Fig. 3) — see
Discussion (Section 4).

3.2. Models predicting THg or MeHg in streambed sediment

In the second stage of our analyses, factors influencing bed sediment
concentrations of THg (sedTHg) and MeHg (sedMeHg) were examined.

3.2.1. Stage 2a: model predicting THg in streambed sediment
To develop the Stage 2a model, data from 106 sediment samples

were analyzed for THg from 73 sites (Fig. S4), collected during 1999–
2012 (Table S25). First, a preliminary model set was analyzed to deter-
minewhether therewasmore support for (a) distance-weighted versus
non-distance-weighted GIS variables, and (b) LOI versus log10(LOI). The
relative variable weight for the distance-weighted GIS variables was
0.18 and the non-distance-weighted GIS variables was 0.81. Therefore,
none of the GIS variables were distance-weighted in the final candidate
Stage 2a model set. LOI had a relative variable weight of b0.01 and the
log10-transformed LOI had a relative variable weight of 1.0. Therefore
log10-transformed LOI was used in the final candidate Stage 2a model
set.

The best individual model describing sediment THg concentrations
among watersheds included elevation, the proportion of mixed forest,
the proportion of hydraulic pits and placer diggings, the density of peo-
ple within the watershed, and the LOI of sediment (with site as a ran-
dom effect; Table S26), and had an Akaike weight of 0.39. One other
model provided a reasonably competitive fit to the data (ΔAICC b 2.0),
andwas similar to the topmodel except that it contained high-intensity
urban development instead of population density. The top model in
Stage 2a was 3.62 × 1027 times more likely than the null model, which
only included site as a random effect.

The weighted-average model for sedTHg from Stage 2a is given in
Table 1. The weighted-average model for Stage 2a had an r2 value of
0.73 (p b 0.001, Table S28, Fig. S10). Plots of partial residuals of sedTHg
versus the eleven variables in the Stage 2a model show the extent to
which sedTHg is influenced by each variable (Fig. S11). Variables LOI
(Fig. S11a), and hydraulic pits and placer diggings (Fig. S11c) showed
the steepest slopes on the partial residual plots, indicating greatest im-
portance to the model.

3.2.2. Stages 2b and 2c: models predicting methylmercury in streambed
sediment

Next, factors influencing sedMeHg concentrations were examined
among watersheds. MeHg data for 77 sediment samples from 73 sites
sampled during 1999–2012 were used (Table S25). First, a preliminary
model set was analyzed to determine which transformation had more
support for distance-weighted versus non-distance-weighted GIS vari-
ables, LOI versus log10(LOI), and sedTHg versus sedTHg/LOI. The relative
variable weight for the distance-weighted GIS variables was 0.30 and
for the non-distance-weighted GIS variables was 0.31. For simplicity,
we did not distance-weight any of the GIS variables in the final candi-
date model set. LOI had a relative variable weight of 0.03 and the
log10-transformed LOI had a relative variable weight of 0.96. Therefore,
log10(LOI) was used in our final candidate model set. Concentration of
sedTHg had a relative variable weight of 0.07 and the sedTHg/LOI trans-
formation had a relative variable weight of 0.04. For simplicity, sedTHg
was not normalized by LOI in the final candidate model set.

The best Stage 2b model describing sedMeHg concentrations among
watersheds included the proportion of thewatershed area consisting of
hydraulic pits and large placer mines, population density, LOI of sedi-
ment, and the proportion of fines in sediment (with site as a random ef-
fect; Table S30), and had an Akaike weight of 0.46. One other model
provided a reasonably competitive fit to the data (ΔAICC b 2.0), and
was similar to the top model except that it did not include the
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
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proportion of fines in sediment. The top model was 1.79 × 1020 times
more likely than the null model which included only site as a random
effect.

The weighted-average model for sedMeHg from Stage 2b is given in
Table 1. The weighted-average model for Stage 2b had an r2 value of
0.71 (p b 0.001, Table S28, Fig. S12). Plots of partial residuals of sedMeHg
versus the six variables in the Stage 2bmodel (Table 1) show the extent
to which sedTHg is influenced by each variable (Fig. S13). The variables
LOI, hydraulic pits and placer diggings, and population density showed
the steepest slopes, indicating their importance to the model.

Stage 2c modeling was an attempt to see if concentration data for
sediment reactive mercury (sedRHg) would improve the prediction of
sedMeHg in Stage 2b. In addition to sedRHg and GIS variables, candidate
variables in Stage 2c models included THg, LOI, and THg normalized by
LOI. A total of 51 analyses for sedRHg were available from 48 sites. The
final Stage 2c model did not contain sedRHg as a variable; it did not
meet AIC criteria for importance.

3.3. Stage 3: models of fish THg using geospatial and streambed sediment
variables

In the third stage ofmodeling, the first two stages of analyses for fish
and sediment, predicted separately, were used to estimate the residual
fish THg and bed sediment THg andMeHg concentrations for each sam-
ple-defined watershed using model averages for each candidate model
set. For this analysis, there were 43 watersheds for which residuals for
fish THg, sedTHg, and sedMeHg concentrations could be estimated.

The r2 values for the Stage 3a model for fish THg based on sedTHg
(see Supplemental material) do not represent a significant improve-
ment over the Stage 1c model that does not include bed sediment vari-
ables. However, the Stage 3bmodel for fish THg based on sedMeHg does
represent a small but significant improvement.

The final predictive Stage 3b model for fish THg within a watershed
in the Sierra Nevada based on sedMeHg is given in Table 1. The Stage 3b
model had an r2 value of 0.63 (p b 0.001) when predicting fish THg, and
an r2 value of 0.75 (p b 0.001) when predicting length-normalized fish
THg (Table S16); both r2 values are slightly larger than the correspond-
ing values for the Stage 3a and Stage 1c models.

4. Discussion

Variables that appear in all themodels derived in this study are sum-
marized in Table 2. The result from this studywith themost general ap-
plicability is the Stage 1c model that predicts fish THg using geospatial
variables for which data are available throughout the study area. The
landscape variables with the most influence on predicted fish THg in
the Stage 1c model — those related to historical mining, forests, wet-
lands, and urban development — are discussed here along with limita-
tions and assumptions of this model, visualization of model results,
and potential uses of this model for resource management.

4.1. Influence of historical mining

Of the four variables related to historical mining that were consid-
ered in the modeling, two were included in the final Stage 1c model:
hydraulic mine pits and placer diggings (HydrPitPLPct), and gold mine
density (AuMineDens). The influence of these two variables was
combined to give aMining Influence Factor (MIF). TheMIFwas comput-
ed so that it represents a multiplication factor for fish THg concentra-
tion; that is, one can multiply a fish mercury concentration in a
watershed unaffected by mining (with zero values of HydrPitPLPct and
AuMineDens) by the MIF for a given watershed or stream reach to esti-
mate fish mercury concentration in the area corresponding to that
MIF, assuming that values of all other variables do not vary. Sites with
at least 0.1% of their upstream watershed area consisting of hydraulic
mines and placer diggings have MIF values N1.5, and sites with N1.0%
t mercury in streams using landscape variables and historical mining,
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Table 2
Summary of variables in predictivemodels. [%Wsarea, percentage of watershed area; NLCD, National Land Cover Dataset;mi2, squaremile; km, kilometer; ft, foot; ha, hectare; lbs, pounds;
mm, millimeter; ng, nanogram; g, gram; s, sediment; Hg, mercury; LOI, loss on ignition; RHg, reactive mercury; THg, total mercury; sedTHg, sediment total mercury; sedMeHg, sediment
methylmercury;+, indicates variableswith positive influence infinalmodel for that stage;−, indicates variableswith negative influence infinalmodel for that stage; O, indicates variable
that was evaluated but not included in final model for that stage; M, indicates response variable predicted by model]

Short variable
name

Units Long variable name and
definition (see Table S10)

transform Stage 1a:
fishTHg-
sedTHg

Stage 1b:
fishTHg
-sedMeHg

Stage 1c:
fishTHg-
GIS

Stage 2a:
sedTHg-
GIS

Stage 2b:
sedMeHg-
GIS

Stage 2c:
sedMeHg-
RHg-GIS

Stage 3a:
fishTHg-
sedTHg- GIS

Stage 3b:
fishTHg-
sedMeHg- GIS

ElevationKm km Site elevation O + O − − O
DevelopMed %Wsarea NLCD23 (developed,

medium intensity)
log10 + O + O + +

DevelopHigh %Wsarea NLCD24 (developed, high
intensity)

log10 + + + O + +

TotalUrban %Wsarea Combined urban (low,
medium, high) (sum of
NLCD22, NLCD23, NLCD24)

log10 + O O O O +

ForestDecid %Wsarea NLCD41 (deciduous forest) log10 + O O O + +
ForestEvrgr %Wsarea NLCD42 (evergreen forest) log10 − + O − − −
ForestMixed %Wsarea NLCD43 (mixed forest) log10 O + O O − O
TotalForest %Wsarea Combined forest (sum of

NLCD41, NLCD42, NLCD43)
log10 O + O − − O

WetlndWoody %Wsarea NLCD90 (woody wetlands) log10 − O O O − −
WetlndEmHrb %Wsarea NLCD95 (emergent

herbaceous wetlands)
log10 − − O - − -

TotalWetlnd %Wsarea Combined wetland (sum of
NLCD90, NLCD95)

log10 − O O O − −

AuMinesDens km−2 Gold mine density log10 + + O O + +
HydrPitsPLPct %Wsarea Hydraulic pits and placer

diggings
log10 + + + + + +

soilpH pH units Area-weighted median soil
pH

log10 O O O − O O

PopDens persons
km−2

Population density log10 + + + + − −

sedPctFines % Percent fines in sediment
(b0.063 mm)

+ + + − −-

sedLOI Weight
%

Loss on ignition,
log10-transformed

log10 + + + − −

sedTHg ng g−1 Total mercury in sediment
(dry)

log10 + + M O + + O

sedTHgNorm ng g−1 Total mercury in sediment
normalized by LOI
(sedTHg/sedLOI)

log10 O + O O

sedRHg ng g−1 Reactive mercury in
sediment (dry)

log10 O

sedMeHg ng g−1 Methylmercury in
sediment (dry)

log10 + M M +

fishTHg μg g−1 Total mercury in fish, axial
muscle fillet or equivalent
(wet)

log10 M M M M M

Len mm Fish total length + + + + +
Spp Fish species − − − − −
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have MIF values N2.0. MIF values were computed for 185 stream
reaches that were modeled (Table S38). The highest MIF value for a
site was 2.56 for Shady Creek at Tyler Foote Road in the South Yuba
River watershed (site 74, Fig. S6), a site where 73% of the upstreamwa-
tershed is composed of historical hydraulic mine workings.

Symbols color-coded byMIF value on various plots help to elucidate
the extent of mining influence on fish THg concentrations in the study
area. On plots of fish THg concentration (axial muscle fillet or equiva-
lent, log scale) versus total length for each of the five modeled fish spe-
cies (Fig. 4), the distribution of symbol colors based on MIF clearly
shows that sites with higher fish THg for a given length of fish tend to
have higher MIF values (red and orange symbols). However, there are
some examples of fish from sites with low values ofMIF (green symbols
in Fig. 4) that have relatively high fish THg for their length, indicating a
non-mining source and (or)more efficientmethylation andbioaccumu-
lation of Hg.

The MIF-coded color symbols also show the influence of mining on
scatter plots of sedTHg and sedMeHg versus various sediment parame-
ters (Fig. 5 and Figs. S16–S18). The patterns of color symbols in Fig. 5a
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
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and b representing MIF value with regard to THg are more systematic
than those in Fig. 5c and d relating to MeHg, indicating qualitatively
that mining has a stronger influence on THg distribution than on
MeHg distribution in streambed sediment.

Numerous other studies have documented Hg contamination in
water, sediment and biota associated with losses during amalgamation
processing at historical Au and Ag mines in western North America,
such as in California (Alpers et al., 2005b; Stewart et al., 2008) and Ne-
vada (Lechler et al., 1997; Stamenkovic et al., 2004) and elsewhere, in
areas of historical Au and Ag mining as well as areas where artisanal
Au mining with loss of Hg continues (Telmer and Viega, 2009; Viega
et al., 2006), such as in Brazil (Belger and Forsberg, 2006; Kehrig et al.,
2008; Roulet et al., 1998; Silva-Forsberg et al., 1999), French Guiana
(Guedron et al., 2009), Indonesia (Arifin et al., 2015), Suriname (Mol
et al., 2001), and Tanzania and Zimbabwe (van Straaten, 2000). This
study is novel in that it relates fish Hg concentrations quantitatively to
the distribution and density of historical preciousmetal mining in com-
bination with other geospatial variables including land-use/land-cover
data.
t mercury in streams using landscape variables and historical mining,
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4.2. Influence of forests

Models predicting fish THg in this study (Stages 1c, 3a, and 3b) con-
sistently included a positive influence fromdeciduous forests and a neg-
ative influence from evergreen forests (Tables 1 and 2). Other studies
have noted differences in THg andMeHg cycling in deciduous versus ev-
ergreen (coniferous) forests that may help to explain this effect. For ex-
ample, leaf litter was found to be higher in MeHg in deciduous forests
compared with coniferous forests in the Adirondack Mountains of
New York (Munson et al., 2008). Fluxes of THg and MeHg to the forest
floor in coniferous forests are typically dominated by throughfall,
whereas fluxes in deciduous forests are dominated by litterfall
(Demers et al., 2007; Grigal, 2002; Lindberg, 1996). Evergreen (conifer-
ous) forests tend to have higher foliar THg concentrations than decidu-
ous forests (e.g., Grigal, 2002;Hall and St. Louis, 2004;Obrist et al., 2012;
Rasmussen et al., 1991), likely caused by longer (multi-year) exposure
time and higher surface area for incorporation of dry Hg deposition
(Grigal, 2003; Obrist et al., 2016). In a study comparing deciduous and
coniferous standswithin forests of northernNewEngland, U.S.A., organ-
ic soil horizons were higher in THg in the coniferous forests, whereas
similar concentrations of THg were found in mineral soil horizons in
the two forest types (Richardson and Friedland, 2015). Concentrations
of dissolved organic carbon (DOC) in pore water and surface water
tend to be higher in coniferous forests comparedwith deciduous forests,
which affects transport of dissolved THg by aqueous complexation
(Brigham et al., 2009; Grigal, 2003; Miller et al., 2007). In a study in
the Adirondack Mountains, Demers et al. (2007) found that Hg is trans-
ferred from soil to decaying leaf litter that concentrates Hg in the organ-
ic soil horizons and increases residence time on the forest floor. In the
Lake Huron Watershed, Michigan, U.S., Rea et al. (2001) determined
that foliar leaching as well as wash-off of dry deposition contributed
to net throughfall in deciduous forests. Obrist et al. (2011, 2016) deter-
mined that litter is enriched in THg compared to aboveground plant tis-
sues (foliage and bore wood).

In our Sierra Nevada study area, deciduous forests typically occur at
lower elevation than evergreen forests. Correlations with elevation are
negative for non-distance-weighted deciduous forest (r = –0.37,
p b 0.001) and positive for evergreen forest (r = 0.20, p = 0.01)
(Table S13; similar results for distance-weighted variables in Table
S14). Deciduous forests have a weak but significant positive correlation
with two mining-related parameters that were ultimately not used in
the modeling: Hg losses from Au hard-rock mines (r = 0.195, p =
0.02) and estimated Hg losses from placer and hard-rock Au mines in
the USGS Significant Deposits database (Long et al., 1998) (r = 0.17,
p= 0.04). Correlations between deciduous forest and themining-relat-
ed parameters thatwere used in themodelingwereweaker and not sig-
nificant: r = 0.15 and p = 0.07 with AuMineDens; r = 0.063 and p =
0.45 with HydrPitsPLPct (Table S13). However, the nature of themodel-
ing approach used accounts for variations in each variable separately on
partial residual plots (Fig. 3) so the deciduous forest effect is not likely to
be merely a proxy for mining influence.

Another important difference between deciduous and evergreen
forests is soil pH; it is well known that evergreen forests soils are rela-
tively acidic (e.g. Ste-Marie and Paré, 1999). There is a strong negative
correlation in our study area between soil pH and evergreen forest
Fig. 4. Plots showing total length versus total mercury concentration in axial-muscle fillet
(or equivalent) forfivefish species from streams in the SierraNevada, California. A) Brown
Trout, (B) Rainbow Trout, (C) Sacramento Pikeminnow, (D) Sacramento Sucker, (E)
Smallmouth Bass. Symbol color indicates Mining Influence Factor from Stage 1c model.
Regression lines are specific to each site with fish THg data; slopes of regression lines
were constrained to be parallel for each species. Values of r2 indicated on each plot
represent results of a regression unique to each fish species that considered only fish
length and station name as predictors. r2 values, ranging from 0.735 for Sacramento
Sucker to 0.888 for Brown Trout, can be considered as an upper bound for multivariate
models such as those derived in this study to predict fish tissue THg concentrations in
stream reaches with geospatial data including the distribution of historical Au mines.

t mercury in streams using landscape variables and historical mining,
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Fig. 5. Plots showing relations between sediment totalmercury (sedTHg), sedimentmethylmercury (sedMeHg), sediment loss on ignition (sedLOI), and sediment percent finer than 0.063
mm (sedPctFines). (A) sedTHg vs. sedLOI, (B) sedTHg vs. sedPctFines, (C) sedMeHg vs. sedLOI, (D) sedMeHg vs. sedPctFines. Symbol color indicatesMining Influence Factor from Stage 1c
model. Pearson correlation coefficient (r), and p-value shown for each plot.
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(r= –0.77, p b 0.001) and aweaker positive correlation between soil pH
and deciduous forest (r = 0.24, p = 0.003; Table S13). The pH of lakes
and reservoirs is known to affect aqueous Hg speciation, and therefore
Hg cycling, and MeHg formation and bioaccumulation, however the ef-
fects of pH and interactions with DOC can vary from significant to non-
significant (e.g. Watras et al., 1998).

Additional studies of deciduous versus evergreen (coniferous) for-
ests in the Sierra Nevada are needed to determine whether forest type
has a direct or indirect influence on mercury cycling, methylation, and
bioaccumulation in fish. In particular, the effects of elevation, climate,
pH, and DOC and their effects on Hg speciation and Hg-organic interac-
tions should be considered in such studies.

4.3. Influence of wetlands

The models derived in this study in Stages 1c, 3a, and 3b each indi-
cate a negative influence of wetlands on fish tissue THg, and the Stage
2a model indicates a negative influence of emergent herbaceous wet-
lands on sediment THg (Tables 1 and 2). These resultswere unexpected,
given numerous other studies that have found positive correlations be-
tween wetland abundance and MeHg formation and bioaccumulation.
Previous studies on a national scale for the continental U.S. (e.g.
Krabbenhoft et al., 1999; Scudder et al., 2009) showed that watersheds
with abundant wetlands tend to have fish with higher THg (predomi-
nantly as MeHg; Bloom, 1992). Other studies at a regional scale (e.g.
Chasar et al., 2009; Drenner et al., 2011; Shanley et al., 2012) have
also shown a positive correlation between wetlands and fish THg, or
MeHg in othermatrices. It is alsowell known thatwetlands are typically
favorable sites for MeHg formation and bioaccumulation (e.g.
Krabbenhoft et al., 1999; Lacerda and Fitzgerald, 2001; Langer et al.,
2001).

The negative influence of wetlands on fish tissue THg and bed sedi-
ment THg in this studymay possibly be explained by the distribution of
wetlands in the Sierra Nevada, which are typically either (1) at the
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
Sci Total Environ (2016), http://dx.doi.org/10.1016/j.scitotenv.2016.05.08
higher elevations of the watershed, where there are relatively few his-
torical gold mines (e.g., Fig. S7), and where streambed sediment and
soils have lower THg concentrations because of the relative absence of
mining-related contamination, or (2) at lower elevations in California's
Central Valley, outside of the study area. As a consequence of the rela-
tively small amount of wetlands in the vicinity of the historic gold
mines in the study area, the overall percentage of wetlands upstream
of a given sampling point is not a good predictor of THg in fish. A similar
finding was made by Melwani et al. (2007, 2009) who also did spatial
analysis of fish mercury data in northern California. It is possible that
there are complex interactions between wetlands, elevation, and min-
ing that confounded our ability to estimate their effects individually
within the context of the linear models that we applied. Future model-
ing efforts would need to explore nonlinear effects or interactions be-
tween variables to address this possibility.

Plots of partial residual fish THg versus wetland variables (Fig. 3h–j)
indicated that sample-defined watersheds with the most abundant
wetlands (N0.02% of watershed area) tended to have MIF values near
1.0 (minimal mining influence). Similar trends can be seen on plots of
wetland variables versus sedTHg concentrations (Fig. S18). These rela-
tionships are consistentwith the negative values of the Pearson correla-
tion coefficient (r) in Figs. S18a–b and the negative coefficient for
emergent herbaceous wetlands in the Stage 2a model (Table 1). Fur-
thermore, a significant negative correlation was found between emer-
gent herbaceous wetlands and Au mine density (r = –0.26, p =
0.002; Table S13).

It is expected thatwatershedswithwetlands in areas affected byhis-
torical Au mining would exhibit elevated MeHg. In fact, some historical
hydraulic mining sites have ponds that fill abandonedmine pits (Alpers
et al., 2005a). These are sites of locally elevated THg andMeHg in water
and sediment, and can have elevated MeHg in invertebrates and frogs
(Alpers et al., 2005b; Alpers, 2015). Although flooded hydraulic mine
pits act as wetlands, they are typically not included in theNationalWet-
land Inventory (NWI) dataset that was used in this study. Using an
t mercury in streams using landscape variables and historical mining,
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expanded wetland coverage that includes flooded mine features would
possibly change the results of the modeling with regard to wetland in-
fluence on fish and sediment THg.

4.4. Influence of urban development

Models developed for this study to predict fish THg (Stages 1c, 3a,
and 3b) consistently have a positive influence from geospatial variables
involving urban development, including high- andmedium-density de-
velopment and total urban area (Table 1). Population density was less
consistent, showing a positive influence on the Stage 1c model and a
negative influence on the Stage 3a and 3b models (Table 1).

Other studies which have investigated the influence of urban devel-
opment or human population density on Hg cycling have produced
mixed results. In the MERGANSER model (Shanley et al., 2012),
human population density has a positive influence on Hg in fish tissue
and loon blood inNewEngland lakes; the observed correlationwas pos-
sibly attributed to enhancedmobilization of Hg related to landscape dis-
turbance, such as timber harvesting. Several studies found that urban
settings cause increased yield of atmospherically deposited Hg because
of a higher proportion of impervious surfaces (e.g. Brigham et al., 2009;
Domagalski et al., 2016; Journey et al., 2012; Shanley et al., 2008; Tsai
and Hoenicke, 2001). Urban settings can also be sources of Hg and pos-
sibly MeHg from household and industrial waste.

In contrast, several other studies found a negative effect of urban de-
velopment on MeHg in water, sediment, and fish. On a national scale in
the continental U.S., developedwatersheds had lower concentrations of
MeHg inwater, sediment, andfish thanundeveloped areas (Brumbaugh
et al., 2001; Krabbenhoft et al. 1999; Scudder et al., 2009). These studies
emphasized that undeveloped watersheds tend to have higher propor-
tions of forests and wetlands, environments typically favorable to mi-
crobial methylation of Hg. Regional-scale studies by Chen et al.
(2005), Kamman et al. (2005) and Marvin-DiPasquale et al. (2009)
also showed a negative influence of urban development on MeHg in
water and sediment. Chen et al. (2005) concluded that higher MeHg
bioaccumulation in lakes was associated with forested watersheds
where atmospheric deposition is the primary source of Hg and where
relatively low pH was coupled with relatively low primary production.
Lower concentrations of chlorophyll-a in the water column of lakes is
typically associated with higher concentrations of MeHg at lower tro-
phic levels, and a lack of biodilution (e.g. Allen et al., 2005; Kamman
et al., 2005; Lange et al., 1993; Pickhardt et al., 2002; Simonin et al.,
2008); the higher MeHg concentrations propagate up the food chain,
resulting in higher MeHg concentrations at higher trophic levels such
as piscivorous fish (e.g. Stewart et al., 2008) relative to lakeswith higher
chlorophyll-a concentrations.

In the Sierra Nevada study area, the four variables directly associated
with urban development (high- and medium-density development,
total urban area, and population density) had negative correlations
with evergreen forest (r= –0.63 to –0.69; p b 0.001) andwith elevation
(r= –0.29 to –0.34; p b 0.001; Table S13). Conversely, high-density de-
velopment had a positive correlation with deciduous forest (r = 0.34,
p b 0.001; Table S13). Therefore, the positive effect of urban develop-
ment in themodels predicting fish Hg in this study may reflect process-
es in deciduous forests that typically occur at similar elevation as the
developed areas, i.e., b1000 m above sea level.

4.5. Implications for resource management

Results of this study include a predictive model that can be used by
resource managers and water-quality regulators to prioritize sampling
efforts designed to refine lists of impaired water bodies (e.g. California
SWRCB, 2012) and to identify remediation targets to reduce exposure
of humans and wildlife to toxic MeHg. To evaluate the utility of the
model, an analysis was performed of model performance with regard
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
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to predicting fish THg over or under 0.2 μg g−1(ww), a regulatory
threshold used by the State of California.

4.5.1. Model predictions relative to regulatory threshold
The performance of the Stage 1cmodelwas evaluatedwith regard to

its ability to predict correctlywhether or not afish of a particular species
and size range at a specific sampling site would be above or below the
threshold concentration of 0.2 μg g−1 ww, a value that is currently
being used by the State of California for regulatory purposes. The analy-
sis is similar to that done by Kamman et al. (2004) for fish in lakes of
New Hampshire and Vermont with regard to local regulatory criteria.
Our analysis was done only for fish N150 mm in total length, and only
for fish that were used to calibrate themodel. Criteria for agreement be-
tween predictions and observed data are described in table S36; results
of the evaluation are summarized in Table S37 (additional details in
Supplemental materials text). Overall, the Stage 1c model gave an accu-
rate prediction for 89% (108 of 121) of the species-specific site-length
bins with regard to whether a fish of a certain length would be above
or below 0.2 μg g−1 ww (Table S37).

4.5.2. Visualization of model predictions
Maps showing predicted fish THg concentrations were prepared to

visualize the locations of water bodies with elevated THg based on
Stage 1c model results. An example of such a map is show in Fig. 6 for
350-mm Rainbow Trout in the Yuba River watershed. The Yuba River
watershed has a high proportion of the data used in the modeling: 37
of the 103 sites with fish tissue data (36%) and 73 of the 185 sites
where predictions were made (39%). Similar maps for other fish spe-
cies-length combinations in the Yuba River and other watersheds with-
in the study area are available in the Supplemental material (Fig. S19.1
through S19.56). The maps can be used to visualize differences in fish
THg for various lengths of a species, differences between species in the
same watershed, or differences between watersheds for various spe-
cies-length combinations.

Average values of MIF for watersheds in the study area (Fig. 7) were
computed using results for the 185 modeled sites (Table S38). The Bear
Creek watershed had the highest average MIF value (1.76), followed by
Deer Creek, in the southern part of Yuba River watershed (1.70).

4.5.3. Potential uses of predictive models
A potential use of the predictive model for fish THg in Sierra Nevada

streams is to prioritize sampling efforts designed to refine lists of im-
paired water bodies. Maps displaying model results (Fig. 6 and Fig.
S19) can be compared with maps showing water bodies listed as im-
paired for beneficial uses because of Hg contamination (Fig. 1). Stream
reaches where fish THg greater than N0.2 μg g−1 ww (or a different reg-
ulatory criterion, as needed) is predicted by themodel, but are currently
not listed as impaired, because of lack of data, can be prioritized for field
sampling.

In watersheds where remediation of legacy Au mine sites with Hg
contamination is being considered, the model could potentially be
used to evaluate the potential benefits of remediation in terms of ex-
pected decreases in fish THg. Values ofmodel variables related to histor-
ical mining could be reduced to evaluate scenarios in which Hg sources
from those mine sites are remediated, so the magnitude of lowering of
fish THg concentrations that would result from such remediation can
be evaluated. There are typically multiple legacy sources of Hg contam-
ination in watersheds affected by historical Au mining; realistic expec-
tations are needed regarding the benefits of remediating one or more
sites in a watershed so that limited resources for cleanups can be used
most effectively.

4.5.4. Assumptions and limitations of predictive models
Predictivemodels derived in this study are based on the assumption

that temporal (inter-annual) variations in fish tissue THg and sediment
chemistry were small compared with spatial variations. To evaluate
t mercury in streams using landscape variables and historical mining,
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Fig. 6.Map showing Stage 1cmodel predictions for fish total mercury (in axial fillet) for 350mmRainbow Trout in the Yuba Riverwatershed, California. Goldmine locations fromMineral
ResourcesData System (MRDS; USGS, 2013); hydraulic pit locations fromOrlando (2016). Additionalmaps forfivemodeled species in SierraNevadawatersheds in Supplementalmaterial,
Figs. S19.1 through S19.56.
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year-to-year variations comparedwith variation among sites, we used a
mixed effects model with species, length, and variance components due
to site and year. The variance among sample years is about 1/10th the
variation among sites, and a little more than 1/2 the variation that oc-
curs between individual fish from the same site in a given year.

Data regarding inter-annual variation of sediment THg and MeHg
are limited to the 2011 and 2012 sampling events at 3 sites. Year-to-
year variations in THg were b10% in material screened to b0.063 mm,
but were higher in material screened to b2 mm. Analyses of replicate
samples were also more variable for the THg in the coarser size fraction
compared with the finer size fraction. Year-to-year variations in sedi-
ment MeHg and MeHg/THg ratio were larger than those for THg,
reflecting that MeHg is generally more variable than THg on a seasonal
and inter-annual basis. There was no systematic increase or decrease in
MeHg or MeHg/THg from 2011 to 2012.

Based on the available data, the assumptions regarding inter-annual
variability of fish THg, sediment THg and sediment MeHg appear to be
reasonable. Land-use/land-cover data from 2006 were used together
with fish data from 1980–2012 and sediment data from 1999–2012 to
construct the models. It is also assumed that the spatial data properties
did not change dramatically from year to year during these periods.
Urban development intensity and population density have increased
in some parts of the study area over the past 20 years, especially near
major highways. This introduces some bias in the models in that the
fish data from the 1990s were compared with land-use/land-cover
data from 2006. Because the areas that experienced urban growth dur-
ing this time period were spatially limited, we infer that impacts to the
model based on this assumption are minimal.
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
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Atmospheric Hg deposition was not considered as a variable in this
study because reliable data were not available on a sufficiently fine spa-
tial scale for geospatial analysis. Downscaling of wet THg deposition
data (e.g. Mercury Deposition Network http://nadp.sws.uiuc.edu/mdn/
, using PRISM) could potentially provide data for modeling purposes
on awatershed scale (e.g. Domagalski et al., 2016). However, dry Hg de-
position is thought to be of equal or greater importance in parts of Cal-
ifornia, and there is a lack of reliable information or calibrated models
on dry THg deposition (Domagalski et al., 2016). A similar modeling ef-
fort using atmospheric Hg deposition, when reliable geospatial cover-
ages become available, would be helpful to investigate whether
variations in atmospheric deposition can help to explain variability in
fish THg, sediment THg, or sediment MeHg that are not explained by
the geospatial variables considered in this study.

5. Summary and conclusions

A comprehensive set of statistical calculations was made to use
available data for THg and MeHg in fish and bed sediment, together
with geospatial data in the Sierra Nevada, to develop predictive models
for fish tissue in streams. Results indicated thatfish tissueHg concentra-
tions, accounting for species and length, can be predicted using spatial
data formining history togetherwith other landscape characteristics in-
cluding land use/land cover.

A model requiring only geospatial data (r2 = 0.61, p b 0.001) pre-
dicts fish tissue Hg concentrations correctly with respect to over or
under 0.2 μg g−1 ww (a regulatory threshold used by the State of
California) for 89% of size-species combinations tested. Data for THg in
t mercury in streams using landscape variables and historical mining,
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Fig. 7. Map showing distribution of watershed-average values of Mining Influence Factor from Stage 1c model in study area. Gold mine locations from Mineral Resources Data System
(MRDS; USGS, 2013); hydraulic pit locations from Orlando (2016).
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streambed sediment did not improve the geospatial-only model. How-
ever, incorporating data for MeHg in streambed sediment, along with
sediment organic content (loss on ignition), grain size, and geospatial
data, resulted in an improvedmodel (r2=0.63, p b 0.001). It is expected
that these models will be useful to the State of California and others to
predict areas where mercury concentrations in fish are likely to exceed
regulatory criteria.

Systematic differences in fish THg were demonstrated between fish
species and between sites. A Mining Influence Factor (MIF) was com-
puted for each site considered, based on the contribution of two min-
ing-related variables that appeared in the geospatial-only model.
Values of the MIF varied from a minimum of 1.0 (no mining influence)
Please cite this article as: Alpers, C.N., et al., Prediction of fish and sedimen
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to a maximum of 2.58 at a site in the South Yuba River watershed
where placer-mined landsmake upmore than 70% of the upstreamwa-
tershed. The MIF represents a multiplier on predicted fish THg concen-
tration. Watershed-average MIF values ranged from 1.00 (Tuolumne
River) to 1.77 (Bear River).

Although themodels developed in this study are specific to the study
area with regard to predictive capability, a similar approach could be
used in other areaswhere there are non-atmospheric sources of mercu-
ry such as mining, industrial activity, and/or urban sources. In areas
where reliable data are available for wet and dry atmospheric mercury
deposition, atmospheric sources could also be included as a geospatial
variable in landscape analysis of factors affecting fish THg.
t mercury in streams using landscape variables and historical mining,
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