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[1] Meander migration models include an as yet poorly investigated source of numerical
errors related to the computation of the channel curvature, which are amplified by the
procedure of adding and deleting grid points as the river planform evolves. The methods
adopted to reduce these errors may influence size, form, and migration rate of the
developing meanders, which creates uncertainties in the analysis of the results, limits the
model applicability, and makes it necessary to treat the bank erodibility coefficients as
calibration parameters. This becomes evident from a series of computational tests
performed in order to compare two different methods of error reduction in the computed
local channel curvature: cubic spline interpolations versus different levels of curvature
smoothing. Since the problems discussed are common to most meander migration models,
the tests performed were carried out for three models of different complexity. These were
derived by applying different degrees of simplification to the basic equations for water
flow and sediment motion of shallow curved channels.
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1. Introduction

[2] One-dimensional meander migration models are
increasingly used, for river restoration projects [Abad and
Garcı́a, 2006] as well as for geological reconstructions
[Howard, 1996]. They basically describe the location of
the channel axis as a function of time, which entails a
number of numerical complications. The quantification of
migration rates requires the computation of the channel
curvature, which needs to be estimated from the model
result. As this procedure is susceptible to positive feedbacks
in the computational errors, it has to be combined with an
error reduction technique, e.g., a smoothing filter [Crosato,
1990; Coulthard and Van De Wiel, 2006]. Moreover, as the
river planform develops, the channel length tends to change,
to the extent that it may be necessary to introduce or remove
points from the computational grid [Crosato, 1990; Sun et
al., 1996; Lanzoni et al., 2005]. This increases the errors
related to the computation of the local channel curvature
and makes a smoothing filter inevitable. The effects of
smoothing filters on the computed planform evolution have
hardly been investigated, so far.
[3] This work aims at exploring these effects by

comparing the results of some computational tests in
which different filters are used. In meander models the
computation of the local channel centerline curvature has a
prominent role, because the computed local erosion rates are
always, directly and indirectly, dependent on that. The
computed value of the local curvature depends on the

alignment of the points describing the channel centerline.
A small local deviation from a smooth centerline is seen by
the models as a small-scale (spurious) channel bend, which
tends to grow in time. Spurious bends always show up
during long-term computations, because introducing or
removing grid points always implies a small local deviation
from a perfectly smooth centerline. A numerical filter is
therefore needed to smooth out the spurious channel bends
which originate from an imperfect alignment of the grid
points. However, introducing such a filter has consequences
for the channel alignment and for the computation of
centerline curvature and erosion rates.
[4] The computational tests performed aimed at

simulating the long-term evolution of a series of meanders,
starting from an (almost) straight channel, with the objective
of quantifying the effects of using different filters on the
short- and long-term planimetric evolution and on the
erosion rates. Distinct methods were investigated: cubic
spline interpolations and different levels of ‘‘curvature
smoothing’’. In order to generalize the reasoning, three
meander models of different complexity were used in the
tests. They were derived from the mathematical model of
Crosato [1987, 1989] by applying different degrees of
simplification, and solved using the numerical code
MIANDRAS [Crosato, 1990].
[5] The results show that the choice of the method

affects to a great extent the shape and the migration
rates of meanders, although they should depend on the
physical model only. Therefore numerical aspects cannot
be overlooked when analyzing the results of meander
models. Another important consequence is that, in order
to reproduce the planform changes of real rivers, the
erodibility coefficients cannot be determined a priori as a
function of the local bank characteristics, but must be
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calibrated on historical migration rates. The erodibility
coefficients act in fact as bulk parameters, since they
incorporate many physical and numerical aspects that
influence the erosion rates.

2. Model Description

[6] Meander models compute the planform evolution of
meandering rivers. In order to do so, at every computational
time step they determine the lateral shift of the river, which
results from the local bank erosion and accretion rates.
A common assumption is that the river width remains
constant, which is achieved by assuming that the bank
accretion rate at one side of the channel equals the bank
erosion rate at the opposite side. The simplest (kinematic)
models relate bank erosion to the channel centerline curva-
ture with a phase lag to account for the downstream
migration of the meanders [Ferguson, 1984; Howard,
1984]. Dynamic models include descriptions for the flow
in the rivers, usually in linearized form. Since the model of
Ikeda et al. [1981], many meander models assume that bank
erosion is proportional to the local near-bank excess flow
velocity. This can be regarded as a linearization of Osman
and Thorne’s [1988] process of parallel bank retreat
with a Krone-Partheniades formulation for bank erosion
[Mosselman, 1992].
[7] The model of Ikeda et al. [1981], as well as the more

recent model of Abad and Garcı́a [2006], obtains the phase
lag between curvature and bank erosion from the momen-
tum and continuity equations of water, leading to a term
accounting for the longitudinal adaptation of the near-bank
excess flow velocity. The models of, among others, Crosato
[1987], Johannesson and Parker [1989], Howard [1992],
Sun et al. [1996], and Zolezzi and Seminara [2001] include
also the longitudinal adaptation of the water depth, which is
obtained by coupling the momentum and continuity equa-
tions for the water motion with a sediment transport formula
and a sediment balance equation. In this way models are
able to reproduce the formation of steady alternate bars
inside the river channel, which influences the near-bank
excess flow velocity and bank erosion. Some of these
models are compared and discussed by Camporeale et al.
[2005].

[8] The mathematical model of Crosato [1987, 1989]
computes the longitudinal profiles of the near-bank excesses
of flow velocity and water depth above the cross-sectionally
averaged values, named U and H, respectively (Figure 1).
These excesses are caused by the local channel curvature
and by upstream flow disturbances, such as a change of the
centerline curvature. The local bank erosion rate is assumed
to be a function of U and H. The excess velocity, U,
accounts for the effects of fluvial erosion, which is driven
by the local flow velocity [Ikeda et al., 1981]. The excess
water depth, H, accounts for geomechanical instability,
which is based on the consideration that bank instability
increases in case of toe erosion (higher near-bank water
depth) [Crosato, 1989]. With this type of formulation, the
cross-sectionally averaged values of velocity and water
depth, u0 and h0, become the threshold values below which
banks do not erode but accrete. The transverse profiles of
water depth and velocity are assumed to be perfectly point
symmetrical with respect to the channel centerline (point
bar–pool configuration, Figure 1), which implies that the
bank accretion rate equals the bank erosion rate at the
opposite side and that the river width remains constant.
[9] The basic equations are obtained from the steady state

2-D depth-averaged continuity and momentum equations
for water in shallow channel bends [Kalkwijk and De
Vriend, 1980], which, in order to simulate the interaction
between water and sediment, are coupled to a sediment
transport formula and to a sediment balance equation. The
effect of the outer bend superelevation of the water free
surface is retained in the momentum equations, but
neglected with respect to water depth in the continuity
equation (assuming a mildly curved channel). The equations
are linearized and, assuming that the timescale of the
meander development is much larger than the timescale of
the transverse channel bed adaptation, the temporal term in
the sediment balance equation is neglected. The implication
is that the model is not able to take into account the
migrating bars that form in channels with a low sinuosity
[Tubino and Seminara, 1990]. Another assumption is that
the timescale of the meander development is much smaller
than the timescale of the longitudinal bed slope adaptation.
The river bed slope is updated at every time step by dividing
the valley slope (considered as a constant and independent
parameter) by the river sinuosity.
[10] Upon linearization of the momentum and mass

balance equations for small U and H with respect to u0
and h0 the equation for the near-bank velocity excess
becomes [Crosato, 1989]:
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þ U
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where s is the downstream coordinate; h0 and u0 are the
cross-sectionally averaged values of water depth and
velocity, respectively; lW is the flow adaptation length,
given by lW = C2h0

2g
, in which C is the coefficient of Chézy

and g is the acceleration due to gravity; kB = mp
B
is the wave

number of the velocity and water depth perturbations
assumed sinusoidal in transverse direction (the near-bank
values of these perturbations are the near-bank excesses U
and H, Figure 1), with B being the river width and m the
number of branches inside the channel (for meandering

Figure 1. Transverse variations of flow velocity and water
depth in a curved channel as assumed in the model. Legend:
u0 and h0, cross-sectionally averaged velocity and water
depth; U and H, near-bank excess of velocity and water
depth (near the outer bank the excesses are positive; near the
inner bank excesses are negative).
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rivers m = 1, for braided rivers m > 1); G is the curvature
term, given by G = 1

RC
(mp
2
), in which Rc is the local radius of

curvature of the channel centerline. The coefficient s has
been added to the transverse bed friction term in order to
reproduce the effects of the secondary flow momentum
convection, not previously included in the model, s is used
as a calibration coefficient and has value between 0 and 2.
[11] The equation for the water depth excess is derived

from the sediment transport and sediment balance equations
[Crosato, 1989]:

@H

@s
þ H
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¼ h0

u0
b� 1ð Þ @U

@s
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where lS is the bed adaptation length, given by ls = 1

mpð Þ2
h0(

B
h0
)2 f(q0), in which f(q0) = 0:85

E

ffiffiffiffiffi
q0

p
is an empirical

relation taking into account the effects of the transverse bed
slope [Talmon et al., 1995], with E being a calibration
coefficient and q0 the Shields parameter. In the equation b is
the degree of non linearity in the dependence of sediment
transport on the flow velocity, defined as b = u0

S0

dS0
du0
, with S0

being the cross-sectionally averaged value of sediment
transport per unit of channel width (b is equal to the
exponent in case of a power law dependence: S0 / u0

b). A is
the coefficient accounting for the effects of the curvature-
induced spiral flow on the bed shear stress direction, given
by the relation: A = 2a1

k2 (1 �
ffiffi
g

p

kC) [Olesen, 1987], where k is
the von Kármán constant and a1 is a calibration coefficient.
[12] The equation for the lateral shift of the channel axis

reads [Crosato, 1989]:

@n

@t
¼ EuU þ EhH ð3Þ

where n denotes the transverse coordinate, t is time and Eu

and Eh are the so-called ‘‘erodibility coefficients’’.
[13] Equations (1) and (2) give rise to a second-order

differential equation, which can be expressed either in the
variable H or U. The equations in H or U are identical in
the homogeneous part, whereas they are different in the
source terms. The equation in H reads as follows:
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[14] Depending on the value of the factor in brackets in
the second term, the solution of the homogeneous part of the
equations is either harmonic or purely exponential. The
harmonic solution represents the overshoot [Struiksma et
al., 1985] or overdeepening phenomenon [Parker and
Johannesson, 1989] and corresponds to a channel bed with
non propagating alternate bars [Seminara and Tubino,
1989]. It has the following form:

H sð Þ ¼ H 0ð Þ exp � s

LD

� �
sin

2p
LP

sþ sPð Þ
� �

ð5Þ

where H(0) is the near-bank water depth excess at the
upstream boundary (caused by a flow disturbance, such as a
change of curvature); H(s) is the near-bank water depth
excess at the distance s from the upstream boundary
(measured along the channel centerline); sP is the spatial
lag; 2p/LP and 1/LD are the wave number and damping
coefficient, respectively.
[15] The wave number and the damping coefficient

follow from substitution of equation (5) into the homoge-
nous version of equation (4):
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[16] If the damping coefficient, 1/LD, is large, nonpropa-
gating alternate bars are strongly damped and vanish within
a short distance downstream.
[17] For infinitely long bends with fully developed flow

the longitudinal gradients of water depth and flow velocity
vanish. Equations (1) and (2) become

U

lW

¼ 1
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H
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and the near-bank excesses U and H become simply
proportional to the local curvature (represented by G).
[18] A model based on equations (8) and (9) for the near-

bank flow and water depth excesses and on equation (3) for
the lateral shift of the channel axis is equivalent to a no-lag
kinematic model, because at every point the bank erosion
rate is proportional to the local curvature. In this case
meanders only grow in size, without migrating.
[19] If the relaxation effect is included in the flow

velocity equation, but not in the equation for the water
depth, the model becomes similar to the one developed by
Ikeda et al. [1981]. This is achieved by describing the flow
and water depth excesses with equations (1) and (9). The
maximum value of the flow velocity occurs downstream of
the maximum curvature, which causes meanders to grow in
size and to migrate downstream.
[20] All models including the relaxation effect in both

flow velocity and water depth equations, such as the model
of Crosato (based on equations (1) and (2)), simulate
meanders that grow in size and contemporarily migrate
both in downstream and upstream direction. The latter
depends on the position of alternate bars inside the channel
[Crosato, 1990].

3. Problem Definition

[21] In MIANDRAS, and in meander models in general, a
major source of numerical errors lies in the computation of
the channel centerline curvature that needs to be repeated at
every time step. There are several ways to compute the
curvature at point J; the simplest one is to compute the
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radius of curvature of the circle passing though the three
points J � 1, J and J + 1. A vector product can then be used
to assess the sign of the curvature, which indicates whether
the channel is turning to the right or to the left (this is
important to identify the inner and the outer bank in a river
bend). Unfortunately, this method is weak if the three points
are almost on a straight line, which occurs when the
curvature is very small, and if the points are very close to
one another. This can lead to two types of numerical errors;
one has to do with the value of the curvature, the other with
its sign. The second type of error is the most dangerous. A
mistake in the sign of curvature immediately leads to a
positive feedback, thus to a growing error (instability).
[22] Reducing the time step of the computations is not

effective in decreasing this type of error. Instead, it is
necessary to introduce a numerical filter that is able to
select developing bends based on their spatial scale and to
remove the spurious small-scale bends generated by local
inaccuracies. One simple method, here called ‘‘curvature
smoothing’’ [Crosato, 1990; Coulthard and Van De Wiel,
2006], averages the value of the curvature at point J with the
curvatures of preceding and following points. There are
many possible functions to be used; a simple one, which is
the one adopted by Crosato [1990] in the computational
model MIANDRAS, is the following weighted average:

GJ ¼ GJ�1 þ 2GJ þ GJþ1

4
ð10Þ

where GJ =
1

RCJ
(mp
2
) and RCJ is the radius of curvature of the

circle passing through the three points J � 1, J and J + 1.
With equation (10) (averaging) the curvature at point J
depends on the five points: J � 2, J � 1, J, J + 1 and J + 2.
This averaging, here referred to as ‘‘curvature smoothing’’,
can be repeated several times, which results in including
more and more points in the computation of the curvature.
This method smooths out small-scale bends, depending on
the number of points involved. The direct effect of applying
this method is the reduction of the curvature variations
along s, with consequent damping of the maximum values.
Indirect effects are the general lowering of the water depth
and velocity excesses, leading to a reduction of the bank
erosion rates.
[23] Other methods to smooth out small-scale spurious

bends are based on curve fitting. The curvature at point J
can be computed as the curvature of the best fitting circle
considering 5, 7, or more points, using, for instance, the
least squares method. Instead of a circle, one can also use a
parabola or another curve. Again, the number of grid points
taken into account selects the scale of the bends to be
removed. Sun et al. [1996] and Lanzoni et al. [2005]

used cubic spline interpolations, which is another way of
smoothing out small-scale bends. Spline interpolations
[Duris, 1977] include a parameter for varying the smooth-
ness of the fit, which can be used as an indirect way to select
the scale of the small-scale bends to be smoothed out.
The implication of applying this method is that the
curve describing the channel planform is altered, which
implies that the spline interpolation requires some sort of
optimization.
[24] The position of the grid points is not constant during

the numerical simulations. In general, the distance between
grid points increases as a meander grows, but it can also
happen that grid points approach each other, for instance
when due to meander migration at a certain location a bend
disappears. With increased distances between successive
grid points, the channel centerline looses smoothness and
appears more and more like a series of circle segments.
Besides, the larger the distance the lower the model reso-
lution and the more inaccurate the numerical procedure is.
With decreased distances between successive grid points,
the curve through a number of successive grid points can be
confused (by the program) with a straight line, which
increases the susceptibility to numerical errors. These prob-
lems introduce the necessity of inserting new grid points
when the distance between two successive grid points has
become too large and of deleting grid points when the
distance has become too small [Crosato, 1990; Sun et al.,
1996]. Unfortunately, the procedure of inserting grid points
can also be the origin of new small-scale spurious bends. It
is practically impossible to insert the new grid point exactly
on the channel centerline, without any small errors in its
coordinates. The method to improve the accuracy of the
computations can thus become the source of new compu-
tational errors. In practice, the procedure of inserting and
deleting grid points makes the use of smoothing filters
inevitable.

4. Methods

[25] With the objective of quantifying the effects
of different smoothing filters on the shape and size of
developing meanders and on the erosion rates, several
numerical tests were carried out using the program
MIANDRAS. The tests regarded the two types of smooth-
ing filters that can be distinguished in previous works:
curvature smoothing [Crosato, 1990; Coulthard and Van
De Wiel, 2006] and cubic spline interpolations [Sun et al.,
1996; Lanzoni et al., 2005]. Curvature smoothing was

Table 1. Flume Conditionsa

Value

Valley slope 0.003
Channel width, m 0.60
Discharge, m3/s 0.685 	 10�2

D50 sediment, mm 216
D50 sediment, mm 271
Chézy, m1/2/s 21.6

aExperiment by Struiksma and Crosato [1989].

Table 2. Model Choices

Value

Sediment transport
Formula E-Ha

b 5
Calibration coefficients

a1 (equation (2)) 0.50
s (equation (1)) 2.00
E (equation (2)) 0.50

Erodibility coefficients
Eu (equation (3)) 0.116 	 10�5

Eh, 1/s (equation (3)) 0.00
Time step, days 4

aEngelund and Hansen [1967].
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applied at two different levels: applying equation (10) once
(local curvature based on 5 points) and applying equation
(10) four times (local curvature based on 11 points).
Computational tests also included a run without filters, in
which the channel centerline curvature was computed from
the circle passing through 3 points (the current grid point
plus the proceeding and following points).
[26] Three different mathematical models were tested, all

based on the same equation for the lateral channel shift
(equation (3)): (1) a generic no-lag kinematic model (near-
bank flow and water depth excesses derived from
equations (8) and (9)), (2) an Ikeda-type model (near-bank
flow and water depth excesses derived from equations (1)
and (9)), and (3) the model of Crosato (near-bank flow and
water depth excesses derived from equations (1) and (4),
which are based on equations (1) and (2)).
[27] The computational tests used the values of channel

width, discharge, valley slope and sediment characteristics
of the straight flume experiment carried out by Struiksma
and Crosato [1989], summarized in Table 1, but with
an initial centerline alignment given by a low-amplitude
sinusoid. Several preliminary runs were carried out in order
to optimize a number of parameters (listed in Table 2),
as well as the minimum and maximum distances between
successive grid points, based on which the model inserts
and deletes grid points. The step size used for the discrete
cubic spline coincided with the maximum distance
between grid points. Spline interpolation was also optimized
by comparing the channel centerline alignments before and
after interpolation. This optimization regarded the amount
of smoothing in comparison to data fitting, which is
weighted by the parameter r. Small values of r enhance
the smoothness of the approximation, whereas large values
of r improve the fitting of the points [Duris, 1977]. On the
basis of the results of the preliminary runs r was given a
value of 20.

[28] Apart from the preliminary runs, the numerical tests
performed to quantify the effects of the numerical filters
for the different models had the same initial conditions,
coefficients, time step, minimum and maximum distances
between grid points and r (only for spline interpolations).
The bank erodibility was assumed spatially uniform. The
initial conditions are listed in Table 3. The numerical tests
are summarized in Table 4.
[29] The model of Ikeda et al. [1981], as well as several

other meander models [e.g., Johannesson and Parker, 1989;
Howard, 1992; Sun et al., 1996], does not include a
formulation for the geotechnical component of the bank
migration rate. For this reason in the computational tests the
erosion rate was only related to the near-bank velocity
excess (Eh = 0). In the model of Crosato the longitudinal
variation of near-bank water depth and velocity excesses
can be described by two damped sinusoids having the same
wavelength, but with a phase lag (equation (5)). The
maximum value of U occurs more downstream than the
maximum value of H. Taking into account also the geo-
technical component of the bank migration rate would
systematically move the position of the maximum erosion
rate more upstream, but would not change the conclusions
of the analysis. The occurrence of cutoffs was not taken into
account, implying that meanders may cross each other in
their final development stages.

5. Results

[30] The results of the preliminary runs showed that
the optimal distance between successive grid points had
the order of half the channel width. More in general, the
distance had to be larger than approximately one third of the
channel width and smaller than the channel width. The basis
of this rule is merely empirical. The computational results
showed that when the distance between successive grid
points was less than approximately one third of the channel
width, the model became more susceptible to numerical
errors, with as implication the growth of spurious small-
scale bends. When the distance between successive grid
points was larger than one channel width the model results
became unacceptably inaccurate.
[31] The results of the numerical tests showed that the

effects of using a different method to smooth out small-scale
bends were the strongest for the no-lag kinematic model,
which, due to its immediate response to the local curvature,
is the most susceptible to instability (Table 4). In this case,
without filter the program stopped almost immediately.
Spline interpolations yielded a jumbled channel alignment,
which was comparable to the alignment obtained when
smoothing the curvature once (curvature based on five

Table 3. Initial Conditions

Value

Initial sinusoidal planimetry
Sinuosity 1.00
Length, m 6.00

Amplitude, m 0.01
h0, m 0.045
u0, m/s 0.25
q0 0.38
lS, m 0.84
lW, m 1.08
LP, m 6.04
1/LD, 1/m 0.129

Table 4. Numerical Tests Performed

Model
Number of
Time Steps No Filter

Curvature Smoothing
5 Grid Points

Curvature Smoothing
11 Grid Points

Spline
Interpolation

No-lag kinematic 250 program stops
almost immediately

program stops
after 190 time steps

(760 days)

normal end normal end

Ikeda type 250 normal end normal end normal end normal end
Ikeda type 1000 normal end normal end normal end normal end
Crosato 250 normal end normal end normal end normal end
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points, Figure 2a). Curvature smoothing repeated four times
gave a smoother alignment. With 11 grid points all small-
scale bends were smoothed out, but the channel centerline
was still a bit irregular (Figure 2b). Since the erosion rates in
the kinematic model are directly proportional to the local
curvature, meanders grew but did not migrate.
[32] The Ikeda-type model and the model of Crosato

remained stable also without using a numerical filter
(Table 4), but in general this does not always occur, because
it depends on the set of parameters used. With the same
setup the Ikeda-type model and the model of Crosato result
in different migration rates. In order to obtain meanders in a
similar development stage, the runs with the Ikeda-type
model had to be 4 times longer (covering 4000 days instead
of 1000).
[33] The results of the Ikeda-type model are shown

in Figure 3a (using curvature smoothing once) and 3b
(using spline interpolations). With this model the different
numerical filters resulted in meanders with similar shape,
but different development stages. This indicates that for the
Ikeda-type model the numerical filter used mainly
influences the speed of meander growth. In a reach far from
the upstream and downstream boundaries, the averaged

maximum migration rate without smoothing filter was
0.388 	 10�3 m/d, with curvature smoothing (curvature
based on five points) 0.341 	 10�3 m/d and with the
optimized cubic spline interpolation 0.475 	 10�3 m/d.
The differences can be attributed to the filter used because
all parameters had identical values in all computational
tests.
[34] The results of computational tests performed with the

model of Crosato (summarized in Table 4) are shown in
Figures 4a (using curvature smoothing once) and 4b (using
spline interpolations). This time, after the same number of
time steps meanders not only have different sizes, but also
different shapes: those obtained with curvature smoothing
once (Figure 4a) have a shape similar to the meanders
obtained with the Ikeda-type model (Figures 3a and 3b),
whereas those obtained using the cubic spline interpolation
(Figure 4b) are more distorted. Far from the upstream and
downstream boundaries, the average maximum migration
rate without smoothing filter was 1.70 	 10�3 m/d, with
curvature smoothing once 1.65 	 10�3 m/d; and with the
optimized cubic spline interpolation 1.58 	 10�3 m/d. The
conclusion is that the numerical filter can affect both growth
rate and shape of developing meanders.

Figure 2. No-lag kinematic model. Meander development is after 760 days. Output is every 40 days,
and distances are in meters. (a) Curvature smoothing once (curvature based on 5 grid points), program
terminated after 190 time steps (760 days). (b) Curvature smoothing four times (curvature based on
11 grid points).

Figure 3. Ikeda-type model. Meander development and channel migration are after 4000 days. Output
is every 400 days, and distances are in meters. (a) Curvature smoothing once (curvature based on 5 grid
points). (b) Cubic spline interpolation.
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[35] The channel centerline alignments obtained with
different numerical filters (Crosato’s model) at different
stages of meander development are compared in Figure 5.
Comparing size and form of the meanders obtained with the
different numerical filters after the same number of time
steps allows observing that with the increasing of the

computational time the differences in meander amplitude
reduce, whereas the differences related to the form of the
meanders increase. In practice, this means that for long-term
predictions the uncertainties related to the meander ampli-
tude that are due to the numerical filters tend to reduce, but

Figure 4. Crosato’s model. Meander development and channel migration are after 1000 days. Output
every is 100 days, and distances are in meters. (a) Curvature smoothing once (curvature based on 5 grid
points). (b) Cubic spline interpolation.

Figure 5. Channel centerline alignments obtained with Crosato’s model using different filters.
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the uncertainties related to the form of meanders tend to
increase.

6. Discussion and Conclusions

[36] The foregoing has shown that meander migration
models have a particular source of numerical errors that has
received little attention, so far. This source is related to the
necessity of using numerical filters to reduce the errors
related to the computation of the local channel curvature.
The numerical tests with three conceptually different
meander models showed that size, form and migration rates
of meanders depend on the numerical filter used.
[37] The no-lag kinematic model resulted stable only

when applying curvature smoothing four times. The
Ikeda-type model [Ikeda et al., 1981; Abad and Garcı́a,
2006] was the least affected by the choice of the filter,
which seemed to influence only the growth rate of
meanders, but not the shape. The same dependence can be
expected for kinematic models with a space lag [Ferguson,
1984; Howard, 1984] and for other meander models that,
although based on different approaches, can be classified as
belonging to this category, such as the models of Lancaster
and Bras [2002] and the cellular model of Coulthard and
Van De Wiel [2006]. Instead, the model of Crosato [1987]
was affected by the smoothing filter in both growth rate and
shape of meanders. This model behaves like the one of
Ikeda et al. [1981] when the damping coefficient 1/LD
(equation (7)) is large, but when this is small there is a
strong dependence on the upstream curvature changes. The
same likely applies also to the other meander models

capable of reproducing the overdeepening phenomenon
[Johannesson and Parker, 1989; Howard, 1992; Sun et
al., 1996]. The conclusion is that model output should be
analyzed by taking into account all uncertainties, not only
those related to the physical simplifications in the governing
equations and to the values of the parameters used but also
the uncertainties related to the numerical aspects.
[38] Non propagating alternate bars can be observed in

real rivers, where they influence bank erosion and channel
migration. The model reproduction of these bars (over-
deepening) and of their effects on bank erosion should
therefore be as accurate as possible. Unfortunately, error-
reducing numerical filters can influence this because the
removal of small-scale bends, by reducing the longitudinal
curvature variations, can also imply the suppression of
nonpropagating alternate bars in their early stage. In the
present computational tests, the formation of point bars
in midmeanders only occurred when using the spline
interpolation (Figure 6). As these bars did not form in
the computation without smoothing filters (Figure 7), one
might argue that the spline interpolation introduces realistic-
looking but, in fact, unrealistic effects. However, which one
is the method that gives the most realistic results? The
answer can only be given by reproducing formation and
growth of large meanders from a straight channel in
laboratory. For this type of experiments the approaches of
Smith [1998] (using cohesive soil) and of Gran and Paola
[2001] (with riparian vegetation) appear the most promising.
[39] The computational tests performed do not represent

real situations (input based on data from a flume experiment
and uniform bank erodibility). Moreover, they simulate the
planimetric evolution of an initially almost straight channel

Figure 6. Detail of the final bed topography after
1000 days with Crosato’s model using cubic spline
interpolations. Distances are in meters. A slight midmeander
point bar is observable (arrow).

Figure 7. Detail of the final bed topography after
1000 days with Crosato’s model without using a smoothing
filter (curvature based on 3 grid points). Distances are in
meters.
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during a relatively long time interval, which for a real river
may correspond to several centuries. For shorter simulations
and real rivers the choice of the smoothing procedure can be
expected to produce a higher impact on the erosion speed
than on the shape of the meanders.
[40] The difference in erosion speed between models

and smoothing filters is remarkable. This implies that for
real rivers it is not possible to determine the erodibility
coefficients a priori, based on bank properties, presence of
vegetation, etc., and creates the necessity of always cali-
brating the erodibility coefficients on field observations,
historical maps, aerial photographs and remote-sensing
imagery. When using this type of models the physical bank
characteristics can only explain a part of the differences
between the erodibility coefficients at different points. In
practice, the erodibility coefficients act as bulk parameters
that encompass many schematization effects. This means
that, for the time being, these models require non physical
calibration of the erodibility coefficients in order to comply
with reality.
[41] The most recent management approaches [Silva et

al., 2004] are based on the idea that rivers need some vital
space to accomplish their functions, which introduced the
concept of ‘‘river corridor’’ or ‘‘streamway’’ with the
slogan: ‘‘freedom space to the river’’ [Malavoi et al.,
2002]. The river corridor is an artificially maintained,
regularly flooded, alluvial belt where the river is allowed
to erode its banks, in a controlled ‘‘natural’’ state. Uncon-
trolled bank erosion could take away valuable land and for
this reason the knowledge of bank erosion processes,
meander evolution and cutoffs is of essential importance
for the design of such corridors [Piégay et al., 2005]. The
width of the river corridor is determined by the meander
amplitude and by the occurrence of cutoffs, which is in turn
governed by the form of the meanders. For what numerical
aspects concerns the model of Crosato [1987] appeared
more suitable for long-term predictions of the amplitude
rather than form of meanders. Therefore when used to
predict cutoffs the model should be appropriately calibrated
on previous occurrences.

Notation

A coefficient, dimensionless.
b degree of nonlinearity of sediment transport on the

flow velocity, dimensionless.
B river width, m.
C Chézy coefficient, m1/2/s.
E calibration coefficient, dimensionless.
Eh erodibility coefficient (geomechanical instability), 1/s.
Eu erodibility coefficient (fluvial erosion), dimensionless.
g acceleration due to gravity, m/s2.
H near-bank water depth perturbation (near-bank excess

with respect to h0), m.
h0 cross-sectionally averaged water depth, m.
kB transverse wave number of velocity and water depth

perturbations, 1/m.
LD longitudinal damping length, m.
LP longitudinal wavelength of flow and water depth

perturbation, m.
m number denoting the transverse perturbation mode or

number, dimensionless.

n transverse coordinate, m.
Rc radius of curvature of the channel centerline, m.
s downstream coordinate, m.
sP spatial lag, m.
t time, s.
U near-bank velocity perturbation (near-bank excess with

respect to u0), m/s.
u0 cross-sectionally averaged velocity, m/s.
a1 calibration coefficient, dimensionless.
G curvature term, 1/m.
q0 Shields parameter, dimensionless.
k von Kármán constant, dimensionless.
lS bed adaptation length, m.
lW flow adaptation length, m.
s calibration coefficient, dimensionless.
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