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PREFACE

This Bulletin is the author's third that deals with the general field of biological
statistics of fish populations, The earlier ones date from 1948 and 1958, respectively,
and both are leng out of print. The present work began as a revision of the 1958 text,
but s¢ many changes, additions, and deletions proved desirable that it has become
in many respects a new work. Even so, the text does not attempt to include all the
developments in this field in recent years. The general plan and arrangement of
materials is similar to that of the [958 Bulletin, but it proved impossible to indicate
which passages are new and which are quotations from the earlier volumes, However,
where Examples are repeated this has been indicated. Methods which seem con-
ceptually similar are presented in the same chapter, proceeding from the simpler to
the more complex as far as possible. Some attention is given also to the historical
development of each topic, and this will be considered in somewhat greater detail
elsewhere. The amount of space that each topic receives varies with its importance
and with its availability. Procedures described in standard western journals are not,
as a rule, given detailed development: usually only the formulae most useful for
estimating population statistics are quoted, and a discussion of sampling error and
of the conditions which make them usable, More extended treatment is given to
methods taken from obscure sources and new developments or new aspects of existing
methods. This plan does not give ideal balance, but it does perhaps make for maximum
usefulness within a limited compass.

In selecting illustrative examples, no attempt has been made to give representa-
tion to effort in fishery research on a geographical basis: rather, examples close at
hand have usually been selected. The examples from “borrowed™ data involve risks
of misinterpretation, and are used here to illustrate methodology rather than as a
factual treatment of the situations concerned; although, at the same time, [ have tried
to be as realistic as possible, Some examples have been simplified for presentation
here, and others have been invented, in order to keep the text within bounds. How-
ever, the practicing biologist quickly discovers that the situations he has to tackle
tend to be more complex than those in any handbook, or else the conditions difter
from any described to date and demand modifications of existing procedures. It can
be taken as a general rule that experiments or observations which seem simple and
straightlorward will prove to have important complications when analyzed carefully
— complications that stem from the complexily and variability of the living organ-
ism, and from the changes that take place in it, continuously, from birth to death,
Two general precautions should always be taken. Firstly, divide up any body of data
into diflerent categories, tor example by the size, age, sex, or history of the fish in-
volved, and compare statistics calculated from the two or more subsets obtained in
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each such category. Secondly, divide the data on the basis of time (successive hours,
days, or seasons), and make similar comparisons.

From the point of view of fishery management, information from computations
of the kinds described in this Bulletin provide only a part of the basic information
upon which policy can be based. Sometimes, to be sure, they can provide the preater
part of the necessary information. In other situations they have as yet given only
equivocal answers to important questions. This is particularly true where several
species are possible occupants of and competitors for an important environment, and
their relative abundance may vary with the intensity of the fishery or with physical
changes. The fishery administrator has also the problem (often not an easy one) of
selecting an objective which his regulations are designed to serve, and this involves
questions of econoimics and public pelicy not touched on here. However, there is no
question that the increase of biological information has already improved, and will
continue to improve, the precision and effectiveness of fishery management.

Some attempt has been made to meet the needs of the beginning student of fishery
biology by working out certain examples in detail, even where this consists largely of
standard mathematical procedures. To be used as an introductory text book, however,
this Bulletin should be “cut down” by omitting less frequently used methods and by
choosing one among several alternative procedures where these exist. The choice
would depend partly on local problems and interests.

This Bulletin is of course not intended as a complete text book for fishery biolo-
gists. Methods of measuring fish, determining their age, marking, tagging, collecting,
and tabulating catch statistics — all these are mentioned only incidentally, although
they provide the data from which the vital statistics of a stock must be cstimated.
Books that treat these matters include Chugunova (1939), Gulland (1966), Lagler (1936),
Rounsefell and Everhart (1953), Royce (1972), and the International Biological Pro-
gram handbook edited by Ricker (1971a). Nor are we concerned here with other
animals and plants of the environment, with the fow of nutrient energy which main-
tains an aquatic population, or with the overall productivity of bodies of water. These
subjects are discussed in most textbooks of ecology, and various aspects pertinent to
fish production are treated in works by Dickie and Paloheimo (1974), Gulland (1971),
Moiseev (1969), Nikolsky (1965), Regiet (1974), Ricker (1946, 1969b), Walford (1958),
Weatherley (1972), and Winberg (1956).

The 1958 Bulletin included a list of individuals who had assisted in various ways.
Some of the same people have made further contributions, and I wish to acknowledge
also discussions or written comments from K. R. Allen, D. H. Cushing, J. A.
Gulland, G. J. Paulik, H, A. Regier, and B. J. Rothschild.

Computer calculations in this Bulletin have been done by K. R. Allen or J. A. C,
Thomson. A. A. Denbigh assisted in preparing the new figures. Mrs Barbara Korsvoll
prepared the typescript and has assisted with many of the computations.
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CHAPTER 1, — INTRODUCTION

1.1. THE PROBLEMS

The topics which can be considered as biclogical statistics of a fish population
include the following:

I. The abundance of the population, usually somewhat restricted as to age
or size.

2. The total mortality rate at successive ages, or even within each year.

3. The fraction of the total moertality ascribable to each of several causes, It is
possible at times to distinguish (a) deaths caused by fishing, (4) deaths caused
by predation other than human, (¢) deaths from disease, parasites, or senility;
{b} and (¢) together comprise “natural” mortality.

4. The rate of growth of the individual fish. In human populations the rate of
growth of individuals is not generally regarded as a vital statistic, However
growth rate ameng (ishes is much more variable than in man, and it may be
even more sensitive than mortality to changes in abundance and to environ-
mental variability.

5. The rate of reproduction, particularly as it is related to stock density.

6. The overall rate of surplus production of a stock, which is the resultant of
growth plus recruitment less natural mortality,

Historically, age and rate of growth were the first of these subjects to receive
wide attention, possibly because they require less extensive field work. Most of the
methods now in use for estimating growth rate had been evolyed by 1910, and their
potential sources of error have received close consideration.

The development of procedures for estimating population size and survival
rate started early but progressed much more slowly. In the past 25 years therc has
been much activity along theoretical lines, and numerous new applications. An
investigator now has a number of methods from which to choose one best suited to
the population he is studying, and he can increasingly use one method to check
another.

At first the study of reproduction or *year-class strength™ was considered mainly
in relation to environmental factors, but its relation to stock density has attracted
much attention in recent years,

Finally, the overail production of a fish stock, in relation to density und to rate
of fishing, has interested a number of authors since the middle 1920s, and there is
now a considerable body of information and a corresponding methodology.



1.2. DerNITIONS, USAGES, AND (GLOSSARY

The list below includes only a part of the varied terminology which has been used
in fish population analysis. More extended descriptions of some terms are given in
later sections. If a special symbol is associated with a term, it is shown-in parentheses.
Terms marked with an asterisk are not used in this book, at any rate not in a context
where strict definition is called for.

ABSOLUTE RECRUITMENT: The number of fish which grow into the catchable size
range in a onit of time (usually a year).

AcE: The number of years of life completed, here indicated by an arabic numeral,
followed by a plus sign if there is any possibility of ambiguity (age 5, age 5+)L

ANNUAL (or seasonal) GROWTH RATE {#): The incregse in weight of a fish per year (or
season), divided by the initial weight.

ANNUAL {or scasonal) TOTAL MORTALITY RATE (A): The number of fish which die
during a year (or season), divided by the initial number. Also called: actual
mortality rate, *coefficient of mortality (Heincke).

AVAILABILITY: 1. (#): The fraction of a fish population which lives in regions where
it is susceptible to fishing during a given fishing season (Marr 1951). This frac-
tion receives recruits from or becomes mingled with the non-available part of
the stock at other seasons, or in other years. (Any more or less completely iso-
lated segment of the population is best treated as a separate stock.)

2. (C/f or Y/f): Catch per unit of effort.

Biomass (B): The weight of a fish stock, or of some defined portion of it.

CATCHABILITY {g): The fraction of a fish stock which is caught by a defined unit of
the fishing effort. When the unit is small enough that it catches only a small part
of the stock — 0.01 or less — it can be used as an instantaneous rate in comput-
ing population change. (For fractions taken of various portions of the stock, see
“vulnerability.”} Also called: catchability coefficient, *force of fishing mortality
(Fry 1949, p. 24, in his Appendix, however, Fry defines the force of fishing
mortality as equivalent to our rate of fishing, F).

CATcH CURVE: A graph of the logarithm of number of fish taken at successive ages
or sizes,

CATCH PER UNIT OF BFFORT (C/f or Y/f): The catch of fish, in numbers or in weight,
taken by a defined unit of fishing effort. Also called: catch per effort, fishing
success, availability (2).

CONDITIONAL FISHING MORTALITY RATE (m): The fraction of an initial stock which
would be caught during the year (or season) if no other causes of mortality

1 While the above is recommended, other usages exisl. Roman numerals are frequently used in
North America, bul their cumbersomeness seems to outweigh any advantage. Some have used either
roman or arabic numerals lo indicate year of life, rather than years completed. For anadromous
fishes both the actual age and the age at seaward migration are frequently indicated. Several coenven-
tions are employed for this purpose, and it seems necessary to specify cach time which one is being
used.




operated (= 1€ ¥). Also called: annual fishing mortality rate, seasonal fishing
mortality rate. :

CONDITIONAL NATURAL MORTALITY RATE (#): The fraction of an initial stock that
would die from causes other than fishing during a year (or season), if there were
no fishing mortality {= 1 —e™). Also called: annual natural mortality rate,
seasonal natural mortality rate.

CriTicAL 817E: The average size of the fish in a year-class at the time when the instan-
taneous rate of natural mortality equals the instantaneous rate of growth in
weight for the year-class as a whole. Also called: *optimum size.

EFFECTIVE FISHING EFFORT (F/g): Fishing effort adjusted, when necessary, so that each
increase in the adjusted unit causes a proportional increase in instantaneous rate
of fishing,.

EFFECTIVENESS OF FISHING: A general term referring to the percentage removal of fish
from a stock, but not as specifically defined as either rate of exploitation or
instantaneous rate of fishing.

EquiLiBrium catcu (Cg): The cateh {in numbers) taken from a fish stock when it is
in equilibrium with fishing of a given intensity, and {(apart from the effects of
environmental variation) its abundance is not changing from one year to the next,

EquitizriuM YIELD (Yg}: The yield in weight taken from a fish stock when it is in
equilibrium with fishing of a given intensity, and (apart from effects of environ-
mental variation) its biomass is not changing from one year to the nexi. Also
called: sustainable yield, equivalent sustainable yield. (See also SURPLUS PRO-
DUCTION. }

ExprLorTATION RATIO (E): The ratio of fish caught to total mortality (= F/Z when
fishing and natural mortality take place concurrently). Also called: *rate of
exploitation.

Fisu 5TOCK: See STOCK.

Fisumng srrort (f): 1. The total fishing gear in use for a specified period of time, When
two or more kinds of gear are used, they must be adjusted to some standard type
{see Section 1.7).
2. Effective fishing eflort.

*FIsHING INTENSITY: |. Effective fishing eflort.
2. Fishing effort per unit area (Beverton and Holt).
3. Effectiveness of fishing.
*F1sHING POWER (of a boat, or of a fishing gear): The relative vulnerability of the stock
to different boats or gears, Usually determined as the catch taken by the given

apparatus, divided by the catch of a standard apparatus fishing at nearly the
same time and place,

FisHING succrss: Catch per unit of effort.

INSTANTANLEOUS RATES (in general): Sec¢ Section [.4. Also called: logarithmic, expo-
nential, or compound-interest rates,



INSTANTANEQUS RATE OF FISHING MORTALITY (F): When fishing and natural mortality
act cencurrently, F is equal to the instantancous total mortality rate, multiplied
by the ratio of fishing deaths to all deaths. Also called: rate of fishing; instan-
taneous rate of fishing; *force of fishing mortality {(see under CATCHABILITY).

INSTANTANLEOUS RATE OF GROWTH (G): The natural logarithm of the ratio of final
weight to initial weight of a fish in a unit of time, usually a year. When applied
collectively to all fish of a given age in a stock, the possibility of selective mortality
muyst be considered (Section 9.4).

INSTANTANEOUS RATE OF MORTALITY (Z): The natural logarithm (with sign changed)
of the survival rate. The ratio of number of deaths per unit of time to population
abundance during that time, if all dececased fish were to be immediately replaced
so that pepulation does not change. Also called: *coefiicient of decrease (Bara-
nov).

INSTANTANEQUS RATE OF NATURAL MORTALITY (M): When natural and fishing mortality
operate concurrently it is equal to the instantaneous total mortality rate, multi-
plied by the ratio of natural deaths to all deaths. Also called: *force of natural
mortality (Fry).

INSTANTANEOUS RATE OF RECRUITMENT {z): Number of fish that grow to catchable
size per short interval of time, divided by the number of catchable fish already
present at that time. Usually given on a yearly basis: that is, the figure just
described is divided by the fraction of a year represented by the “short interval”
in question, This concept is used principally when the size of the vulnerable stock
is not changing or is changing only slowly, since among fishes recruitment is not
usually associated with stock size in the direct way in which mortality and growth
are,

INSTANTANEOUS RATE OF SURPLUS PRODUCTION: Equal to rate of growth plus rate of
recruitment less rate of natural mortality — all in terms of weight and on an
instantaneous basis, In a “balanced” or equilibrium fishery, this increment
replaces what is removed by fishing, and rate of surplus production is numerically
equal to rate of fishing, Also called: *instantaneous rate of natural increase
(Schaefer),

MAINTAINABLE YIELD: “The Jargest catch that can be maintained from the population,
at whatever level of stock size, over an indefinite period. It will be identical to the
sustainable yield for populations below the level giving the MSY, and equal to
the MSY for populations at or above this level” (Gulland).

MAXIMUM EQUILIBRIUM CATCH (see MAXIMUM SUSTAINABLE YIELD).

MAXIMUM SUSTAINARLE YIELD (MSY OR Y g): The largest average catch or yield that can
continuously be taken from a stock under existing environmental conditions,
(For species with fluctuating recruitment, the maximum might be obtained by
taking fewer fish in some years than in others.) Also called; maximum equilibrium
calch (MEC); maximum sustained yield; sustainable catch.

*MECHANICAL INTENSITY OF FISHING: Fishing effort (1).
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NATURAL MORTALITY: Deaths from all causes except man’s fishing, including preda-
tion, senility, epidemics, pollution, etc.

NET INCREASE {OR DECREASE): New body substance elaborated in a stock, less the
loss from all forms of mortality.

PARAMETER: A *‘constant™ or numerical description of some property of a population
{which may be real or imaginary), Cf. statistic.

Pieces: Individual items, as in the expression “two dollars a piece” (German Stiick).
Individual fish,

ProbucTION: 1. (sense of Ivlev). The total elaboration of new body substance in a
stock in & unit of time, irrespective of whether or not it survives to the end of
that time. Also called: *net production {Clarke et al. 1946); *total production,

2. *Yield.

RATE OF EXPLOITATION (). The fraction, by number, of the fish in a population at a
given time, which is caught and killed by man during the year immediately follow-
ing (= FA/Z when fishing and natural mortality are concurrent), The term may
also be applied to separate parts of the stock distinguished by size, sex, etc. (See
also “rate of utilization.”) Also called: *fishing coefficient (Heincke).

RATE oF FISHING (F}: INSTANTANEOUS RATE OF FISHING MORTALITY,
*RATE OF NATURAL INCREASE: INSTANTANEOUS RATE OF SURPLUS PRODUCTION.

RATE OF REMOVAL: An inexactly-defined term that can mean either rate of exploita-
tion or rate of fishing — depending on the context (see Section 1.4.3).

RATE oOF UTILIZATION: Similar to rate of exploitation, except that only the fish Janded
are considered. The distinction between catch and landings is important when
considerable quantities of fish are discarded at sea.

RecrurrmeNT: Addition of new fish to the vulnerable population by growth from
among smaller size categories (Section 11.1),

RECRUITMENT CURVE, REPRODUCTION CURVE: A graph of the progeny of a spawning
at the time they reach a specified age (for example, the age at which half of the
brood has become vulnerable to fishing), plotted against the abundance of the
stock that produced them.

SEcULAR: Pertaining to the passage of time,

StaTisTic: The estimate of a parameter which is obtained by observation, and which
in general is subject to sampling error.

Stock: The part of a fish population which is under consideration from the point of
view of actual or potential utilization.

Succrss (of fishing): Catch per unit of effort.

SURPLUS PRODUCTION (Y'}: Production of new weight by a fishable stock, plus recruits
added to it, less what is removed by marural mortality, This is usually estimated
as the catch in a given year plus the increase in stock size (or less the decrease).
Also called: natural increase, sustainable yield, equilibrium catch (Schaefer).
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SURVIVAL RATE (S): Number of fish alive after a specified time interval, divided by the
initial number, Usually on a yearly basis.

SUSTAINABLE YIELD: Equilibrium yield.

UsaABLE SToCK : The number or weight of all fish in a stock that lie within the range
of sizes customarily considered usable {or designated so by law). Also called:
*standing crop.

UTILIZED $TOCK, UTILIZED POPULATION (V): The part, by number, of the fish alive at
a given time, which will be caught in future.

VIRTUAL porULATION: Ultilized stock,

VULNERABILITY: A term equivalent to CarcHABILITY but usually applied to separate
parts of a stock, for example those of a particular size, or those living in a par-
ticular part of the range.

YEAR-CLASS: The fish spawned or hatched in a given year. In the northern hemisphere,
when spawning is in autumn and hatching in spring, the calendar year of the
hatch is commonly used to identify the year-class (except usually for salmon).
Also called: brood, generation.

In the above, only the kinds of *rates” are defined which are most frequently
used. In general, for any process there will be an absolute rate, a relative rate and an
instantaneous rate (Sections 1.4, 1.3).

1.3. SyMBOLS

The symbols used are those of the “international” system (Gulland 1956a) as far
as possible, but quite a number of additional ones are required, of which those more
frequently used are shown below. The predecessors of this bulletin (Ricker 1948, 1958a)
used essentially the system recommended by Widrig {1954a, b}, and their symbols are
indicated below in square brackets.

a 1. a coeflicient used in the Ricker recruitment curve (Section 11.6.2)

2. the multiplier in the functional weight-length relationship (Section 9.3.1)
1. the slope of any line

2. the exponent in the functional weight-length relationship (Section 9.3.1)
2.71828 ...

fishing effort

annual growth rate

1. Ford growth coefficient (Section 9.6.4)

2. arate; used in various connections

length of a fish

conditional rate of fishing mortality

o=

w0

conditional rate of natural mortality

-Qag""‘

catchability [c]




,

L

Al

1. availability (1).

2. rate of accession (Section 5.3)

standard deviation

1. a point in time (often used as a subscript)

2. an interval of time (also Af)

3. age

1. rate of exploitation of a fish stock, or expectation of capture by man (p
of Ricker 1948)

2. the ratio of number of recoveries to number of marked fish released
(= R/M)

expectation of natural death (v of Ricker 1948}

weight of a fish

instantaneous rate of emigration

1. instantaneous rate of immigration
2. instantaneous rate of recruitment

annual (or seasonal) mortality rate [4]
annual {or seasonal) rate of disappearance of fish

weight (biomass) of a group of fish; for example of a year—class, or of an
entire stock

caich, in numbers — usually for a whole year

number of fish examined for tags or marks

escapement (of salmon, etc., past a fishery)

number of eggs

exploitation ratio {= F/Z)

(as subscript) an equilibrium level (see Appendix I11)

A= b

instantaneous rate of fishing mortality [p]
instantancous rate of growth [g]
I. Brody growth coefficient (Section 9.6.1)

2. any rate

3. cumulative catch (Chapter 6)
mean length at recruitment, in Baranov’s yield equation
asymptotic length, in the Brody-Bertalanfty growth equation

1. instantaneous rate of natural mortality [¢]
2. number of fish marked or tagged (also M)

number of fish in a year—class, population, or sample

1. abundance of a parental stock or generation
2, level of statistical probability

the constant which appears in the integration of Baranov’s yield computation
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R 1. number of recruits to the catchable stock
2, number of recaptures of marked or tagged fish
3. multiple correlation coefficient

S rate of survival (= -logeZ) [s]
S’ apparent survival rate (= -logeZ’)
U instantaneous rate of “‘other loss’ (includes emigration and, for tagged fish,
the shedding of tags)
VY 1. utilized stock, virtual population
2. variance
W., the mean asymptotic weight which corresponds to L
Y yield, catch by weight
Z  instantaneous rate of (total) mortality [7]
Z’ instantaneous rate of disappearance (total losses) from a stock
(=F+M4+U=Z+0U)
— (over a symbol) a mean valuc

Z  summation symbol

1.4, NUMERICAL REPRESENTATION OF MORTALITY

1.4.1. ToTAL MORTALITY RATE. The mortality in a population, from all causes,
can be expressed numerically in two different ways.

(a) Simplest and most realistic perhaps is the annual expectation of death of an
individual fish, or actual mortality rate, expressed as a fraction or percentage. This is
the fraction of the fish present at the start of a year which actually die during the year.

(b) If the number of deaths in a small interval of time is at all times proportional
to the number of fish present at that time, the fraction which remains at time ¢, of the
fish in a population at the start of a year (t = 0}, is:

AL . (1.1}

The parameter Z is called the instantaneous mortality rate. If the unit of time is 1 vear,
then at the end of the year (when ¢ = 1}:

! _ ez (1.2)

But Nj/Ng=8S =1-A;hence | - A = eZ or Z = —loge {1 — A); hence the instan-
taneous mortality rate is equal to the natural logarithm (with sign changed) of the
complement of the annual expectation of death,

The instantaneous rate Z also represents the number of fish (including new
recruits) which would die during the year if recruitment were to exactly balance
mortality from day to day, expressed as a fraction or multiple of the steady density of
stock.




The concept of an “instantaneous™ rate apparently continues to trouble students. Imagine a
year of a fish’s life to be divided into a large number # of equal time intervals, and let the quantity
Z/n represent the expectation of death of the fish during each such interval; or, in other words,
Z/n is the fraction of a large population which would actually die during cach time interval one-nth
of a year long. In such a relationship, Z is the instantaneous rate of mortality, expressed on a yearly
basis. The interval 1/n year is made short (# made large) so that the change in size of population
during each inferval will be negligible; that is, Z/z must be a small fraction, But of course the cumu-
lative effect of the death of Z/n of the fish over a large number of »ths of a year is quite important.
This can be illustrated by a numerical example. Let # = 1000 and Z = 2.8, Then during 1/1000 of &
year 2.8/1000 = 0.28% of the average number of fish present die. Since this is a very small number
of deaths, the difference between average number and initiat number can be ignored; and, of a popu-
lation of, say, 1,000,000 initially, about 2800 will die and 997,200 will remain alive, During the next
thousandth of the vear 0.28%, of 997,200 = 2793 die and hence 994,407 survive. Repeated 1000
times, this process leaves 1,000,000 (1 - 0.0028)1000 = 60,000 survivors. The mortality for the year
is therefore 940,000 fish, and the annual mortality rate is A = 0.940, as compared with the instan-
taneous rate of Z = 2.8. This relation is not quite exact, because 1000 divisions of the year are scarcely
enough to compute the relative sizes of these two rates with 3-figure accuracy. The value appropriate
to an indefinitely large number of divisions of the year is given by the relationship: (I - A) = ¢
where e = 2,71828, In this example, for Z = 2.8, A = 0.9392, so that the approximate calculation
was not far off. Obviously there is no limit to the possible size of Z, but A cannot exceed unity — that
is, no more fish can die than are actually preseni. On the other hand, when Z and A are small they
approach each other in magnitude. The table of Appendix I shows that when Z = 0.1 there is only
5% difference between them,

It has been suggested that mortality should not really be divided up into time
periods of less than a day, because of probable diurnal fluctuations in predation, etc.,
and hence that a calculus of finite differences should be employed, Actually, even 365
divisions of the vear is close enough to an “indefinitely large number” to make the
exponential relationship between Z and A accurate enough for our purposes, A more
penetrating consideration is that we are not, after all, interested in dividing up the
fish’s year into astronomically equal time intervals; for our purpose a physiological
time scale would be more appropriate, or perhaps one based on the diurnal and
seasonal variation in activity of the fish’s predacious enemies, It is only when total
mortality is subdivided into components whose eflect may vary-seasonally in different
ways, that time by the sun becomes important,

1.4.2. SuBDIVISIONS OF MORTALITY. There can be several causes of death among
the fish in a population: removals by man (fishing), predation, disease, accident, etc.,
each with its own rate. In practice we usually consider a division into only two types:
fishing, and natural mortality {which includes everything else). Each kind of mortality
has its own instantaneous rate, and the sum of these is the instantaneous total mor-
tality rate. If F represents the instantancous rate of fishing mortality, the expression
e represents the survival rate if there were nto natural mortality, and 1 -5 is the
corresponding couditional mortality rate it no other source of mortality existed, here
represented by s Similarly, if M is the instantancous rate of natural mortality,
1 —e™ is the conditional natural mortality rate. When fishing and natural mortality
act concurrently, they are competing for the same fish, so the conditional mortality
rates cannot be added. However, an expectation of death can casily be computed for
each cause of mortality, as described in Scction 1.5.2, and these are additive. The
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expectation of death by fishing is known as the rate of exploitation. The three kinds of
mortality rates can be summarized as follows:

Symbeol
1. Instantancous mortality rates )
Total . . . . . . . . . . . . . . . Z
From fishing (*‘rate of fishing’) . . . . . . . . . . F
From natural causes . . . e e e . M
II. Conditional mortality rates
From fishing . . . . . e e e e e m
From natural causes L. ’ n
III. Actual mortality rates (expectations of death)
Total e . e e A
From fishing {(“rate of exploitation™) . . u
From natural causes . . . . . . . . . . . v

1.4.3. PoruLAR USAGE. For popular descriptive purposes the usefulness of # and
F — rate of exploitation and rate of fishing — depends partly on the kind of fishery
involved. If fishing cccurs at a time when there is little or no recruitment, then a rate
of exploitation of, say, 659, shows the fraction of the vulnerable stock being utilized
each year; and to say that the rate of fishing is 10597, means little to the layman. The
situation is different, however, when fishing, recruitment, and natural mortality take
place throughout the same period of time: in that event, for example, with a 65%
rate of exploitation and 109, natural mortality, the year’s catch equals 1.21 times the
stock on hand at any given time. In such a case the rate of fishing, 12197, seems the
more concrete and realistic description of the effectiveness of the fishery.

1.5, RECRUITMENT, STOCK, AND CATCH IN NUMBERS

1.5.1. TYPES OF IDEAL FISH POPULATIONS. A useful classification of fish popula-
tions is shown below. It is similar to that proposed by Ricker (1944, 1958a), but with
different numbering.

Type 1. Natural mortality occurs during a time of year other than the fishing scason. The popu-
lation decreases during the fishing season because of catch removals only.

Type 2. Natural mortality occurs along with the fishing; each oceurs at a constant instantansous
rate, or the two rates vary in parallel fashion, This is the type which has been most used in production
compulations.

The above types can be further divided on the basis of when recruitment occurs:

Type A. Recruitment takes place at a time of year when there is no mortality.

Type B. Recruitment is at an even absolute (linear) rate throughout the year, or is proportional
to the rale of fishing throughout the fishing season,

Recruitment types A and B can be combined with fishing types 1 or 2, All these
“types” are ideal rather than real, and will be approximated rather than met by

actual fisheries.

1.5.2, RELATIONSHIPS BETWEEN PARAMETERS, For all of the above types of fisheries,
the following relationships exist between the mortality and survival rates:

Instantanecus total mortality rate: Z=F-+ M (1.3)
Actual total mortality rate: A=1l-eZ=y-+tv (1.4)
Survival rate: S =e2 (1.5
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For Type I fisheries it is convenient to sfart the biological year at the time fishing
begins, and to consider that natural mortality occurs after fishing ends. We have then
the following relationships, additional to (1.3)-(1.5):

Rate of exploitation: u=m=1-¢F (1.6)
Conditional natural mortality rate: n=1-eM (1.7
Expectation of natural death; v o= a(l ~ u) (1.8)

For Type 2 fisheries, in which fishing and natural mortality operate concurrently,
the following relationships hold:

Conditional fishing mortality rate: m=1-¢F (1.9
Conditional natural mortality rate: n=1-egM (1.10)
Rate of exploitation: u = FA/Z (L.11)
Expectation of natural death: v = MA/Z (1.12)

Expressions (1.9)-(1.12) also imply the following:

Z ¥F M
m-An—mn = A {1.14)

Notice particularly that expressions (1.3)~(1.5) and (1.14) do not require that
fishing and natural mortality eccur at rates which are proportional within the year.
For example, a simple calculation will show that a 509, conditional rate of natural
mortality (n), combined with a 509, conditional rate of fishing mortality (m), gives a
759, total mortality rate (A), regardless of whether the two causes of death operate
concurrently, or consecutively, or in any intermediate fashion. On the other hand,
differences in the seasonal incidence of the two kinds of mortality can cause striking
changes in the relative magnitudes of the annual expectations of death (1 and »),
though the latter always add up to A. Expressicn (1.13) pertains only to the situation
where fishing and natural mortality are distributed proportionally within the year
(though it is not necessary that each be of a constant magnitude on an astronomical
time scale.)

To obtain a good approximation to either the Type 1 or Type 2 fishery it is
legitimate to set the limits of the fishery year in as convenient a manner as possible.
For example, to increase the resemblance to Type 2 it may be possible to arrange the
statistical year so that the mean time of fishing is at the middle of that year, with times
of little fishing distributed as symmetrically as possible at the beginning and at the
end.

If fishing is so distributed, seasonally, that neither the Type 1 nor Type 2 model
is realistic, the year can be divided into two or more parts and separate values of T,
M, etc., computed for each.
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1.5.3. SINGLE AGE-GRGOUPS, Consider a single age-group of fish in the recruited
(fully vulnerable) part of a stock. Its abundance during a year decreases from N to
NS, according to equation (1.2); for example, from the point A to the point By in
Fig. i.l, The gverage abundance during the year is the area of the figure under AB,,
divided by the length of the base (which is unity). In our symbols, this is:

t=1

— _ qfe? 1 N(l —eZ%) NA
N = Ne*zdt:N(*ﬁ_—)z———;=— 1.15
f -7 -Z Z Z (L.15)
1=0
A
80 |-
60
B
B
\\\-“.
40 |- \"\._
R ¢
B_z ---.---“--
20 | ---.__._.--‘-“--“-' '-c'
- S TT—-dcp
--------- C
B4 """ Gi
| 1 ] 1 B
2 3 4 5 6 7

Fig, 1.1. Exponential decrease in a stock from an initial abundance of 100 at
age 2, when the annual mortality rate is 0.2 (AC) and when it is 0.5 (AB). The
broken [fines indicate population structure during a period of transition from the
smaller to the larger mortality, (Redrawn from fig, 8 of Baranov 1918, by S, D.
Gerking.)

The total deaths, which equal NA by definition, are therefore Z times the average
population. Since the mortality is at each instant divided between natural causes and
fishing in the ratio of F to M, then natural deaths are M/(F + M) = M/Z times
NA, or (from 1.15) M times the average population; that is:

M wna=MNA R (1.16)
F+M z
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Similarly the catch is F times the average population;

C=FN = -Ii;*—“ (1.17)

This is often known as Baranov's eatch equation. It has also been derived stochastically
by Rothschild (1967).

1.5.4, SEVERAL AGE-GROUPS. A few kinds of commercial fish stocks consist of
single age-groups, to which the above expressions apply directly, More commonly
a stock consists of a mixture of ages, so that in order to obtain expressions for mortal-
ity, etc., of whole populations, consideration must be given to the recruits to the
stock, and the manner in which recruitment occurs. We will begin by considering
the equilibrium situation, first described in detail by Baranov (1918), where recruit-
ment is the same in all years; and with the further simplification that survival rate
is the same throughout life.

1.5.5. INSTANTANEOUS RECRUITMENT. Consider R recruits added to the catchable
stock of a species each year. Suppose the stock is of Type A, so that the recruits
become catchable during a brief interval of time, or for practical purposes all at
one instant, With a constant rate of survival, S, the recruits decrease in 1 year to
Re Z or RS, in 2 years to RS2, in ¢ years to RS'. Under these equilibrium conditions
the total population present just after recruitment in any year is found by summing
the converging geometric series:

N = R + ReZ + ReZZ + ...
= R(l +-8+82+..)

= R( i::m) - (11-{3) =§ (L.18)

At any other time of year the population will of course be somewhat less than this.
For example, at the half year it will be:

N = Re%5Z 4 ReM5Z 4 Re252 4
= RePS% (L | e2 4 2% )

RB—O'SZ
== (L.19)
Similarly, immediately before the annual influx of recruits the stock would be:
Re?Z RS
N = = 2
A ry (1.,20)

which s its least value,
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The average size of the stock over the course of a year {unit time), during which
it decreases from R/A to RS/A, is of course:

=1
fe“z’ de —
£=0

1.5.6. ConTiNUOUS RECRUITMENT. Consider a fishery of Type 2B, in which R
recruits enter a catchable stock at a steady absolute rate throughout the year, instead
of all at once. Suppose further that the stock is in equilibrium at density N, with
the number of recruits just balancing the number of deaths at all times. From (1.15),
the number of fish that die in the course of a year is the product of the number
present times the instantaneous mortality rate:

_R (1.21)

Z

N = X

>
> =
N

Total deaths = NZ (1.22)

Considering the fish on hand at the start of a year, the number of them that will
die during the year is of course:

Deaths of “old” fish = NA (1.23)
The mortality among recruits must therefore be the difference between these two, or:

Deaths of the year’s recruits = N(Z — A) {L.24)

But under equilibrium conditions the annual number of recruits must be the same
as the number of deaths, i.e.:

R = NZ (1.25)

Hence the number of recruits which die during their yvear of recruitment (expression
1.24) can also be written (substituting N = R/Z):

REZ-4) (1.26)
Z
The number of recruits which survive the year is therefore:
R(Z-A) RA
R B4
7z 7 (1.27)

The development of expression {1.27) just given is that of Ricker (1944). Beverton (1954, p. 140)
has developed it directly from the differential equation relating size of stock, N;, to instantaneous
mortality rate, Z, and to recruitment, R:

an,

5 = AN+ R (1.28)
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where R is the number of recruits which enter at a uniform absolute rate over a unit of time (in this
case, a year). Integrating the above gives the expression for number of catchable fish at time f as:

N, = 1% + Ke-2t (1.29)

where K is an integration constant. If we consider a stock consisting of a single year’s recruits, so that
N; = 0 when ¢ = 0, the constant K is equal to -R/Z, Hence the general expression for the number
of surviving recruifs at time ¢ becomes:

N=R R z_ ZBU —eZi) (1.30

(1.31)

as in (1.27) above,

During their second year of life the above survivors (expression 1.27) are subject
to the full mortality rate A, so that RA2/Z die and RAS/Z survive. The total popula-
tion of all ages, at the beginning of any year, is therefore found by summing the

geometric series:

RA | RAS & RAS?2
N o= e 2220 2
Z + Z Z T

R — 8= ]

=__f§(_1 S )zﬁéxlzg (1.32)
Z\1-8 zZ A Z

But since recruitment and mortality are continuous, the population is the same at

all times of year, and (1.32) represents the stock continuously on hand, N.

Since (1.32) is the same as {1.21), it appears that, regardless of the manner in
which recruitment occurs, under equilibrium conditions the average stock on hand over
the course of a year will be equal to R /Z. A practical corollary is the fact that numerical
examples in which recruitment is instantaneous (which are somewhat easier to con-
struct) are for many purposes acceptable models of populations in which recruitment
actually cccurs along with the fishing,

1.5.7. STOCKS IN WHICH MORTALITY RATE CHANGES WITH AGE. When mortality
" and survival rate change with the age of the fish, whether because of a variable rate
of natural mortality or variation in rate of fishing, no simple expressions for catch,
etc., in the whole stock are possible: the contribution of each year-class must be
summed separately. For example, with R recruits per year and continuous recruit-
ment, the stock is:

RA; |, RS:A; | RS35A1 | RSS5:8A
RAg , Ro2fr | RSynhr | Roadsmiy |
Zl Z]_ Zl Zl

(1.33)
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and the catch is:

FiRA; | F3RSA, | FaRS;SA;

A 1.34
Z, Z, Zy + (134

If, in addition, the number of recruits varies, the R terms too would have to carry
separate subscripts, Numerical calculations where these parameters vary are most
easily carried out in tabular form (e.g. Tables 8.2-8.4) though general formulae
have been given for the situation when Z changes once (Ricker 1944, p. 32).

1.6. GROWTH AND YIELD IN WEIGHT

From the time they are hatched, the individual fish in a brood increase in size,
at the same time as they are reduced in numbers. The mass of the whole brood,
at a given time, is determined by the resultant of the forces of growth and of mortal-
ity. Since man is usually interested in the weight, rather than the number, of fish
which he can catch, the individual rate of increase in weight must be balanced against
the rate of decrease in numbers in order to obtain an expression from which to com-
pute weight yields.

1.6.1. Use OF OBSERVED AVERAGE WEIGHTS. Possibly the simplest way to take
growth into account in constructing such a population model is to combine schedules
of age distribution with observed information on the average size of fish at successive
ages. An example is shown in Table 10.1 of Chapter 10. This procedure presents a
difficulty when any considerable deviation from the existing mortality rate is being
examined. For example, as mortality rate increases, the fish caught of a given age
will be smaller, on the average, because they decrease in numbers more quickly and
fewer survive to the larger sizes reached later in the year. (This is distinct from any
actual change in rate of growth that may occur.)

1.6.2. RATE OF GROWTH, When growth is exponential, it may be treated in the
same manner as mortality. There is a relative rate of growth, h, and a corresponding
instantaneous rate of growth, G. If w, is the weight of a fish at time ¢, and wy is its
weight at ¢ = 0, then the equation of exponential growth is:

Wy

We . oGt
o g (1.35

If the initial weight is taken as unity, at the end of a unit of time the weight is €<,

and it has increased by e® — 1 ; hence:

: h=e0-1

and
= loge(w,/wp) when ¢ = 1 (1.36)

For example, a fish which grew from 2 to 5 kg in unit time (say a year) would
have an absolute growth of 3 kg per year. Its relative or annuval growth rate is & = 3/2
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= 1.5 or 1509, per year. Its instantaneous rate of growth is G = loge(5/2) = 0.916
(on a yearly basis). Pairs of values of # | 1 and G are shown in columns 12 and 13
of Appendix 1.

In practice, growth is not usually exponential over any very long period of the
life of a fish, but any growth curve can be treated in this way if it is divided up into
short segments.

1.6.3. CHANGE IN STOCK SIZE WITHIN A YEAR. The simplest way to relate growth
to mortality is to calculate the mean instantaneous rate of growth (G) for each year
separately, and combine it with the instantaneous mortality rate (Z) for the year, to
give the instantaneous rate of change in bulk, G — Z. With time (¢} measured in years,
and putting By for the initial biomass of the year-class and B, for its biomass at
any fraction ¢ of a year later:

By e(G-L) (1.37)
By

provided that the rates of growth and mortality do not change with the seasons. If the
proviso holds, the average biomass of the year-class during the year can be found
from:
feat
B = [ Bee@-2rdr
=0
_ By{eS2 -1} or By(l ~ e-&-40)
G-Z Z-G

(1.38)

When G - Z is negative, this expression can be evaluated from column 4 of Appendix
I, putting Z — G for the Z of column 1. When G - Z is positive, the required values
are given in column 5, and Z of column 1 is equated to G - Z.

If growth and mortality are not constant, but vary seasonally in parailel fashion,
then (1.38) can be used to compute an average stock size, which can be thought of
as based on the fish’s physiological and ecological time scale instead of on astronom-
ical time. Whatever time scale is used, the average biomass of the year-class, B, can be
multiplied by any instantaneous rate or combination of rates, to show the mass of
fish involved in the activity in question, just as with mean numbers in Section 1.5:

ZB = total mortality, by weight (1.39)
FB = weight of catch (1.40)
MB = weight of fish that die “naturally” (1.41)

GB = production, or total growth in weight of fish during the year,
including growth in the part of the population which dies before
the year is finished (1.42)

(G—M)-]';’ = excess of growth over natural mortality (1.43)

(G-Z)B = net increase in weight of a year-class during the year (a .
negative value of course indicates a decrease) (1.44)
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The restriction on seasonal incidence of growth and mortality may sometimes
be serious, but the above expressions will be useful, at least as an approximation,
in most cases. There is often some tendency for the two opposed effects to vary in
a parallel fashion; for example, both growth and mortality may tend to be less in
winter than in summer, During their first year of life both growth and mortality rate of
a fish tend to change rapidly. Sometimes a quantitative seasonal breakdown can be
obtained for both, and can be used to calculate production more accurately {Ricker
and Foerster 1948),

1.6.4. CHANGE IN STOCK SIZE FROM YEAR TO YEAR. The restriction that seasonal
incidence of growth and mortality be proportional is not necessary for computing
the mass of the stock from one year to the next. That is, the weight of a year-class at
age ¢ -+ 1 is related to that at age ¢ as follows:

Byiy = BeG-Z (1.45)

regardless of how growth and mortality are distributed during the year,

In general, in the life history of a brood there will be one to several years during
which G -Z is positive and total bulk is increasing, followed by several years in
which G - Z is negative and buik is decreasing, In an unfished population, the mean
length or weight of the fish in a year-class when G = Z (growth just balancing mor-
tality) is called the critical size (Ricker 1945c¢). The same term is applied to the fish
in exploited populations at the point where G = M, that is, where the instantaneous
rate of growth is equal to the instantaneous rate of natural mortality.

1.7. F1sHING ErrFoORT AND CaTcH PER UNIT OF BFFORT

For greatest ease in estimating biological statistics, a fishery should ideally be
prosecuted exclusively by one kind of gear, which should be strictly additive in
effect — that is, each additional unit should increase the instantaneous rate of fish-
ing by the same amount. Further, the investigator should have a record of all gear
fished, and it should preferably fish for only one kind of fish. Tt usually happens
that these conditions are not satisfied, and much ingenuity has been devoted to
obtaining the best representative figure from incomplete or otherwise unsatisfactory
data. Good reviews of some of the problems are by Widrig (1954a), Gulland (1955a),
and Beverton and Parrish (1956).

1.7.1, MEASURES OF FISHING EFFORT, In general there can be more than one
measure of fishing effort. A simple index is the number of vessels in use, or the num-
ber of anglers on a lake. If the vessels differ in size, their total displacement is often
used, since the larger vessels usually catch more fish. If possible, number of vessels
or tonnage should be multiplied by time — either days at sea, or days or hours of
actual fishing, and so on. The measure of effort used will depend partly on what
information is available, but the aim is always to have a figure which is proportional
to the rate of fishing, F, as closely as possible, at least on a long-term average basis,

18




1.7.2. INCOMPLETE RECORD OF EFFORT. If records of catch are complete but
records of effort are incomplete, a good plan is to compute the catch per unit effort
for as much of the data as possible. This catch/effort, divided into the residual catch,
will give an estimated effort figure for the latter, which can be added to the known
effort to obtain a total. Sometimes effort records are complete and catch records
incomplete, permitting the same procedure in reverse,

1.7.3. DIFFERENT KINDS OF FISHING GEAR. When different kinds of fishing are
conducted on the same stock, the effort and catch taken by each is tabulated sepa-
rately, For an overall picture, it is necessary fo relate all kinds of effort to some
standard unit. 'This is best done from a comprehensive series of fishing comparisons
of the different gears under the same conditions. However, sometimes the gears are
so unlike that this is impossible. If one kind of gear predominates over the others
in a fishery, it may be sufficient to proceed as in the paragraph above: the effort of
all other gears is scaled to terms of the dominant gear by dividing their gross catch
by the catch/effort of the dominant gear. This has been done for many years for
the Pacific halibut, for example (Thompson et al. 1931). When two or more very
different gears are in extensive use — gillnets and traps, for example — it may be im-
possible to obtain a really satisfactory comparative measure of total effort from
year to year, particularly if the two gears tend to select different sizes of fish, or if
they are operated at different times of year,

~ 1.7.4, VARIATION IN EFFICIENCY OF GEAR, AND GEAR SATURATION. With most
kinds of gear, the fishing effort depends on the length of time it is in use, though
“fixed” gears like traps often fish continuously. However, from the time they are set
to the time they are lifted, some kinds of gear decrease in efficiency. For example,
baits can be eaten off hooks by trash fish or inveriebrates, nets can become fouled
and so are more easily avoided by the fish, etc. Also, the mere fact that some fish
are already caught can reduce efficiency: the fish already hooked leave fewer vacant
hooks on a set-line; in most kinds of traps, fish can leave as well as enter, and a point
of saturation may even be reached, so that effort depends partly on how often they
are emptied; in a gillnet, the presence of some fish already caught tends to scare
others away, so that saturation may be reached long before the net is full of fish
(Van Oosten 1936, Kennedy 1951). The extra time needed to lift or clear a net, when
fish are abundant, may appreciably decrease the time it is in the water and fishing,
hence decrease the effectiveness of a *“‘net-day™ or “trap-day.” Thus the catch per
unit time, for many kinds of gear, tends to decrease from the time they are set to
the time they are lifted, and the speed of this decrease is partly a function of the
abundance of the fish.

The reverse phenomenon is also sometimes encountered : for example, in trapping
for sunfishes near their spawning beds, the presence of fish in a trap appears to attract
others to if, so that dozens of fish may be taken in one small trap while adjacent
ones are nearly empty. Some Mississippi River fishermen are said to “bait” their
traps with a mature female during the spawning season.
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All such eflects demand care in assessing the fishing power of a unit of gear,
and standardizing it in some way.

1.7.5. VARIATION IN VULNERABILITY OF THE STOCK. Statements so far have con-
cerned only the simple situation where the whole of a fish stock is equally vulnerable
to the fishing in progress. In large-scale fisheries this is unlikely to be the true situation,
for several possible reasons.

No trouble arises if a portion of a species lives completely outside the range of
fishing operations and never mingles with or contribuics recruits to the fished popu-
fation, In that event consideration can be restricted to the vulnerable part of the stock,
and the rest is ignored for purposes of current vital statistics. Other possibilities
present greater problems:

1. Different portions of a fish stock, even one which is uniformly abundant
throughout its range, may be fished at differing intensities in different places because
of economic considerations or legal restrictions. If the various portions of the stock
intermingle at any time of year, it is necessary somehow to compule average statistics
of mortality, etc.

2. A situation similar to but more extreme than the above is where some parts
of the range of a population contain fish too sparsely concentrated, in too deep water,
or too remote from a harbor to be fished at all, yet these fish mingle with the fished
stock at times of year other than the fishing season. For example, in trawl fisheries,
and particularly in Danish seining, some parts of the fishing grounds are too rough
to be fished without loss of gear, and these areas provide “‘refuges” where a part of
the stock is not accessible.

Where a stock can be divided fairly sharply into a vulnerable and an invulnerable
portion, each year, the fraction which is exposed fo fishing is called the availability of
the population that year (Marr 1951).

3. Catchability can also vary within a year because of seasonal physiological or
behavior changes, and if a short fishing season is not exactly synchronized with this
behavior each year, the result is between-year differences in catchability,

4. Fish of different sizes may be caught with varying efficiency — either as a
result of selectivity of gear or because of differences in distribution or habitat. As
they grow, their vulnerability to the gear in use changes.

The feature common to all the above effects is that different parts of the stock
are subjected to different rates of removal by the fishery; that is, they differ in
vulnerability., This complicates the estimation of vital statistics, and introduces errors
which may be difficult to detect.

1f these stocks are treated as though the fishery were directed against a single
compact population, the effects above give to estimated vital statistics a somewhat
fictitious character. One can't be sure that they are really what they seem to be. For
example, some fisheries attack only the part of a stock which is fairly densely aggre-
gated at the edge of a bank, or along a temperature boundary, Decline in catch per
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unit effort during a season can give an estimate of the stock in that area (Chapter 6),
but the total population on which such fishing can draw, over the years, is consider-
ably greater because of replenishment of the area in the off season. Again, if fish of
certain sizes are more vulnerable than others, a Petersen tagging experiment (Section
3.2) is apt to overemphasize the vulnerable ones both in respect to tags put out and
recaptures made; hence the estimate of rate of exploitation is too high and the popu-
lation estimate is too low. However, for some purposes systematic bias of such kinds
is not too great a handicap, provided it does not vary from year to year. Tt is secular
changes in biological statistics that are of most interest, and changes will show up
even in the biased statistics.

When there are year-to-year variations in the distribution of the fishing, or in the
distribution and availability of the stock, or in the vulnerability of the stock as affected
by weather or age composition, the situation is more serious. Such variability makes
for changes in the estimated statistics that are not easy to distinguish from true
changes in the pepulation parameters. Comprehensive treatments of the theory of
variability in these respects have been given by Widrig (1954a, b) and by Gulland
(1955a).

Most of Widrig’s discussion is in terms of effect Mo, 2, the availability, r, of the stock in different
years, However, his (reatment seems equaily applicable to other kinds of variation in the vulner-
ability. Consider a static r}, representing the ratio of the catchability of the whole stock in year 7 to
an arbitrarily chosen standard catchability gs; so that: ‘

= qifgs (1.46)

Then ' can be substituted for r in Widrig’s computations, and the latter become applicable to a
wider class of phenomena — some of which, in practice, are very difficult to distinguish from avail-
ability anyway.

1.7.6. CATCH PER UNIT EFFORT AS AN INDEX OF ABUNDANCE., When a single homo-
geneous population is being fished, and when effort is proportional to rate of fishing,
it is well established that catch per unit effort is proportional to the mean stock
present during the time fishing takes place (Ricker 1940) — whether or not recruitment
from younger sizes takes place during that time. If the stock is not homogeneous —
not all equally vulnerable to fishing — total catch divided by total effort is propor-
tional to stock size only in special circumstances: when the relative quantities of
fishing eflort attacking different subsections of the stock do not change from year to
year, or when the relative size of the stock in the different subsections does not change
(Widrig 1954a).

Narrowing the discussion to geographical subdivisions of a population, for many
kinds of fishing the vulnerability of a stock in different subareas will tend to vary
approximately as stock density (fish present per unit area). If these are in direct pro-
portion, then an overall C// that is proportional to total stock size can be ebtained
by adding the C/f values for individual subareas, weighting each as the size of its
subarea (Helland-Hansen 1909, p. 8, Widrig 1934b, Gulland 1955a, expression 2.4},
However, il vulnerability does not vary as densily, then there is no completely satis-
factory substitute for a determination of absolute stock size separately in each subarea
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in each year. This rather gloomy conclusion is indicated, in effect, by Gulland’s ex-
pression (2.2). The least tractable populations are of those pelagic species which appear
in varying proportions in different parts of their range in different years,

1.7.7. COMPETITION BETWEEN UNITS OF GEAR, The term “‘gear compelilion” has
been used and discussed by a number of writers, but some confusion has resulted
from inadequate delinition. The sections above have dealt with the subject by im-
plication, but a specific treatment may be useful. At least three kinds of effects have
been included under the term:

1. A fish population is exploited by a fishery whose units of gear are scattered
randomly over it, so that all fish are exposed to the possibility of capture at short
intervals of time and there is no possibility of local depletion occurring. Further, the
units of gear do not interfere with each other in respect to the mechanics of their
operation. In such a situation, today’s calch by any new unit of gear reduces to-
morrow’s catch by the others, and thus in a sense it may be said to “compete” with
them. The competition takes the form of a faster reduction in the size of the population
as a whole, As the fishing season progresses, each unit catches fewer and fewer fish
{or at any rate fewer than it would have caught had there been no previous fishing
that year); and the more gear present, the more rapid is this decrease in catch.

2. If fishing gear is dispersed unequally over the population, its action tends
to produce local reductions in abundance greater than what the population as a
whole is experiencing, leading to a different type of competition, Suppose that a
population is vulnerable to fishing only in certain parts of its range (for example,
only near the shore of a lake; or on only the smoother ocean bottoms), Then fishing
in such areas produces a local depletion of the supply; additional nets set in the same
region increase the local depletion and catch per unit effort will fall off in proportion
to the local abundance, The magnitude of this fall will be cushioned if some fish from
the rest of the stock keep wandering into the fishing area and so keep the supply there
from dropping as far as it otherwise would. However, competition between units of
gear is intensified because catch per unit effort reflects the size of only the immediately
available restricted portion of the stock, rather than the stock as a whole,

3. Finally, if the setting of an additional unit of gear interferes directly with
other gear, there exists “phystcal” competition between them, which is independent
of population abundance, even locally. For example, too many anglers at a pool may
frighten the fish; setting a new gillnet near one already in operation may scare fish
away from the latter; or much fishing of a schooling fish may disperse the schools
and so reduce fishing success more than proportionally to actual decrease in abun-
dance. (There can also, of course, be physical cooperation between different units
of gear,)

Competition of type [ above can be considered normal and inevitable, It might
be beiter not to call it competition af all, since the term is usually meant to suggest
effects of types 2 or 3. Competition of types 2 and 3 may or may not be present in any
given situation — it depends entirely on the nature of the fishery.
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1.7.8. CoMPETITION BETWEEN SPECIES. When more than one species is caught by
the same gear, particularly the baited types (longlines and some traps), there can be
competition between species for the gear. In general, the more individuals of other
species present, the less efficient such gear becomes for catching the species of interest
(Gulland 1964a, Ketchen 1964).

Rothschild (1967) examined the mathematical aspects of this situation for baited-
hook types of gear and derived a stochastic expression for the probability of capture.
When two species are involved, the instantaneous rate of capture of species 1 is
estimated by:

, — i llogsng/N) 14
N~ Ny

where:
ng = the number of empty fishless hooks

n; = the number of hooks carrying species |

N

I

the total number of hooks

The instantaneous rate of capture of species 2 is the same as (1.47), with the subscript
1 changed to 2.

The probability of species | being caught on any hook in a (hypothetical) situation
where species 2 is absent is:

Py = 1-¢* (1.48)

This can be called the conditional rate of capture of species 1, and is analogous to
the conditional rate of fishing mortality (Section 1,5.2).

The above expressions can also be used where three or more species are caughi,
by letting ; be the catch of any species of interest, and n; the catch of all other species.

Rothschild assumes that no baits are removed from the hooks by “bites” that
catch no fish, which is somewhat unrealistic. His analysis can be extended to the
situation where some baits are removed from hooks without capture. Suppose that
in addition to its #; captures, species | has eaten sy ¢y baits without capture; similarty
species 2 has taken maa, baits without capture; and no baits are lost by any other
process. The number of fishless hooks can be divided into #e which have lost their bait
and np — ne which still have their bait. Hence:

may |- natz = e (1.49)

In general g; and @, will be unknown, but some idea of the severity of competition can
be had by assuming ¢y = @, = @; in which event, from (1.49):

He

a =

= - 1.50
ntnp (1.50)

Thus @ can be evaluated if a record is kept of empty hooks. We can then sub-
stitute 7y (1 + a) for my and my — ne for ny in expression {1.47) to obtain the
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instantaneous rate of removal of bails {including captures) by species 1; call this
Aie The conditional probability of removal of baits (including captures) for species

1 then becomes:
1 -eMa (1.51)

and the conditional rate of capture of species [ is:

1 -cta
Porg =—— 1.52
o1 s (1.52)

Expression (1.52} of course represents a situation at the other exireme from
(1.48), because it takes no account of the possibility that baits may simply fall off the
hooks, or that some may be eaten by species that are never captured.

1.8, MAXIMUM SUSTAINABLE YIELD

Much of the work on vital statistics has devolved about or been stimulated by
attempts to estimate the maximum equilibrium catch or maximum sustainable yield
for the stock. Some of this background is necessary for appreciation of the value or
significance of some of the methods which will be described.

A simple approach is shown in Fig. 1.2 (¢f. Russell 1931, Schaefer 1955), The
usable stack of a species is defined as the weight of all fish larger than a minimum
useful size, This stock loses members by natural deaths and, if there is a fishery, also
by the catch which man takes. The usable stock is replenished by recruitment from
smaller size categories, and by growth of the already-recruited members.

If a stock is not fished, all growth and recruitment is balanced by natural mor-
tality. If fishing begins, it tips the balance toward greater removals, and occasionally
fishing may steadily reduce the usable stock until it is commercially extinct. Much
more often a new balance is established, because the decreased abundance of the
stock results in (1) a greater rate of recruitment, or (2) a greater rate of growth, or
(3) a reduced rate of natural mortality.

Ideally, the effects of concurrent variation of all three of these rates, with respect
to size of the population, should be studied in order to define equilibrium yield and
compute its maximum value. In actual practice to date, it has been necessary to
abstract one or two variables for consideration, keeping the others constant, or else
to consider only the net result of all three. The various proposals for estimating
maximum sustainable yield differ principally in respect to which of these three rates
is permitted to vary with stock density, and in what way.

1. One group of methods assumes that rate of growth and rate of natural mor-
tality are invariable. The absolute number of recruits is considered unvarying from
year to year?, a condition which means that rate of recruitment increases when the
usable stock decreases, but only in a definite and narrowly-prescribed fashion, Such
methods are treated in Chapter 10; their greatest usefulness has been for describing

2 More exactly, the assumption is that the absolute number of recruits does not vary with stock
density, but it may fluctuate from year to year in response to environmental variability.
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F16. 1.2, Diagram of the dynamics of a fish stock (fish of usable
sizes), when there is no fishing and when there is a fishery.
{From Ricker 1958¢c.)

the short-term reactions of stocks to fishing, but they may have value in showing the
direction in which rate of fishing should be adjusted in order to move toward maxi-
mum sustainable yield.

2. Variation in recruitment is approached empirically in Chapters 11 and 12, The
results can be used directly to compute maximum sustainable yield in situations
where, as in the method above, the rates of growih and of naiural mortality do not
vary with size of stock. '

3. At least one author has considered rate of growth as the primary variable in
the adjustment of a stock to fishing pressure (Nikolsky 1953), particularly for fresh-
water fishes having comparatively short life histories. While this does not lend itself
very well to general regulation, Nikolsky suggests the determination of maximum
rate of growth for each species, and regulation of abundance until something close
to the maximum js achieved,

4. Finally, several authors have attempted to relate surplus production (potential
sustainable yield) of a stock directly to its abundance, without any direct information
on the rates of growth, recruitment, or natural mortality. Chapter 13 describes these
computations.

In addition to predicting the result of increasing or decreasing rate of fishing,
most of the methods outlined can also be used to predict the effect of varying the
minimum size of fish which is used by the fishery.

1.9, SAMPLING Error

In all of the methods of estimation to be discussed in subsequent chapters, the
probable size of the sampling error is an important consideration, It must be evaluated,
at least approximately, before any confidence can be placed in an estimate. When a
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computation of survival rate, for example, is calculated from recapture of only a few
marked fish, or from an age-class with only a few representatives in a sample, it must
be accepted with caution.

Available estimates of sampling variability or error are of two general sorts,
One type depends on random distribution of the fish or random sclection of all
pertinent types of fish by the fishing apparatus, and is computed from the frequency
distributions which are appropriate in the individual case (usually Gaussian, Poisson,
binomial, or hypergeometric). Examples of variances or standard deviations calcu-
lated on this basis are expressions (3.2), (3.4), (3.6), (3.8), (5.2}, (5.14), (5.15), (5.16).

For small samples the positive and negative limits demarcating zones of equal
confidence are not even approximately symmetrical about the observed value. In such
cases it is frequently useful to use the asymmetrical confidence limits calculated for
binomial distributions by Clopper and Pearson {1934}, and for Poisson distributions
by Garwood (1936) or Ricker (1937). The latter are given in Appendix 1T here; they
are especially simple to use, and can be employed as an approximation even when
the binomial charts are more appropriate. Both types are available in graphical form
in a paper by Adams (1951}, -

For larger samples a general idea of sampling variability can be had by regarding
the observed ratio of (say) the marked fish to the total fish in a sample (R/C} as
though it were the true ratio # which exists in the population. The expectation of
marked fish to be obtained is Cu, and its variance is given by the well-known formula:

V = Cu(l ) (1.53)

With large R, this {s approximated by:
V = R(1 -R/C) (1.54)

and the standard deviation is the square root of this. In the {very frequent) event
that R/C is small, this means that the standard deviation of the number of marked
fish retaken is a litile less than its own square root. Even when R/C is not especially
small, this rule is good enough for orientation, so as to have in mind the order of size
‘of the sampling variability to be expected. Similarly, the number of fish, », of a given
age 1n a sample can be regarded as having associated with it approximate limits of
confidence set by the normal frequency distribution with +/# as standard deviation —
provided if is not too small — less than 10, say. (For small numbers the binomial or
Poisson limits should be used.)

The second general type of estimate of sampling variability is calculated from some
form of replication in the data themselves. Such estimates will include part or all of
the variation which arises from non-random distribution of the different categories of
fish in the population being sampled: effects of grouping, for example. Objective
estimates of variability are involved in the methods of estimating confidence limits
used in Examples 3.6 and 6.1, and could be applied to 3.7, 11.1, etc. These estimates
tend to be more realistic than those based directly on random sampling theory,
though of course they are not necessarily exact; they are to be preferred when available.
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Limits of confidence, of either type above, should preferably be calculated for
statistics whose distribution is as nearly “normal” as possible, For example, in esti-
mating population size, N, by most of the available methods, estimates of the reciprocal
of N tend to be distributed nearly symmetrically about their mean. Confidence limits
computed from the normal curve are likely to apply fairly well to 1/N, whereas they
do not apply at all well to N (DeLury 1958), Hence computations of confidence limits
should be made in the first instance for 1/N, and then inverted to give the appropriate
asymmetrical limits for N itself. Similar situations often occur where the logarithms
of variates will have an approximately symmetrical or even nearly normal distribution,
whereas the variates themselves do not.

No kind of estimate of sampling variability can reflect or adjust for all the
systematic errors which may so easily arise from non-random fish distributions or
behavior. Systematic error usually tends to be larger than sampling error, and
discussions of various kinds cccupy much of the text to follow, Even if not larger,
systematic effects are not removed by using more observations or making bigger
experiments of the same type, so they deserve the closest attention.

Finally, in complex situations an elementary but very useful procedure is to
introduce a series of deviations of known size into the data and see what effect each
has on the final result.
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CHAPTER 2.-— ESTIMATION OF SURVIVAL RATE AND
MORTALITY RATE FROM AGE COMPOSITION

2.1. SURVIVAL ESTIMATED FROM THE ABUNDANCE OF SUCCESSIVE AGE-GROUPS

2.1.1, SmPLE SITUATIONS. The general method of estimating survival is by com-
paring the number of animals alive at successive ages. Long known in human demo-
graphy, this procedure became available to students of fish populations as soon as
age determinations began to be made on a large scale and from representative samples,
This occurred early in this century for North Sea species; the voluminous literature
on the plaice Pleuronectes plaiessa contains early estimates of mortality and survival,
as well as doubts concerning the representativeness of the samples available (Heincke
1913a; Wallace 19135).

If the initial number of fish of two broods, now age ¢ and age ¢ + I, was the
same, and if they have been subjected to similar mortality rates at corresponding ages,
then an estimate of survival rate from age ¢ to age ¢ 4+ 1 is obtained from the ratio:

N
§ = ! 2.1
N @.1)
where N represents the number found, of each age, in a representative sample. Gulland
(1955a, Part III) and Jones (1956) show that (2.1) is not the best estimate of S, but
is somewhat too large. However, the estimate of instantaneous mortality rate cor-
responding to 8, which is:

L= (lochH—I - IOcht) (22)

is without appreciable bias. Since it is usually desirable to use estimates of S and Z
that conform exactly to Z = -logeS, the estimates (2.1} and (2.2) are both com-
monly used.

In practice the samples available are often taken throughout a fishing seasen,
50 estimates from (2.1) and (2.2) perfain to the time interval approximately from
the middie of one season to the middle of the next. Such estimates are represented
here by § and Z.

If it can be assumed that survival is constant over a period of years, a combined
estimate can be made from a series of estimates of the form (2.1), by one of several
methods.

2.1.2. COMBINED ESTIMATES OF SURVIVAL RATE — HEINCKE'S METHOD, In any
random sample of a population the older ages will tend to be scarcer than the
younger; therefore, because of sampling varigbility, an S estimated from them is
less reliable than one [rom younger ages. A formula that weights successive ages as
their abundance was proposed by Heincke (1913b). Let the ages representatively
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sampled be numbered in succession séarting with zere for the youngest, so that suc-
cessive numbers of fish are Ny, Nj, N, etc.; ZN is the sum of these. Heincke's
estimate was of the mortality rate A:

N
A=Y 2.3
= | @3)
Since 8 = 1 - A, the corresponding estimate of survival rate becomes:
§ = ZN-To 2.4)
EN

Note that it is not necessary to know the number of fish in each age older than that
coded as 0, but only their total, Hence this formulacan be used when age determinations
of older fish are unreliable. But much obviously depends on the representativeness
of the youngest age used.

ExaMPLE 2.1, SURVIVAL RATE OF ANTARCTIC FIN WHALES, BY AGE COMPOSITION,
(From Ricker 1958a; data from Hylen et al. 1955.)

Age frequencies of male fin whales in Norwegian catches sampled in the 1947-
48 to 1952-53 seasons is given by the above authors as follows:

Ago 0 I 2 3 4 5 6+
Frequency (%) 0.3 2.3 12,7 17.2  24.1 4.1 29.5

Ages 4 and 5 are regarded as likely to be accurately determined, and they may possi-
bly be representatively sampled, so that survival between these ages can be estimated

from (2.1} as:

S = a5 _ 0.585
24.1

Alternatively, assuming a constant survival rate, ages 5 and older can be compared
with age 4 using (2.4):
_ 14.1 4 29.5
24.1 +14.1 +-29.5

This gives a larger figure than the simple comparison, and might suggest that older
whales really survive better than the age 4-5 group. However, strictly from these
data, without considering any accessory information that may be available, there
is no way to be sure that age 4 was as vulnerable to whaling as age 5, since the next
younger age {3) is obviously much less vulnerable, 1t might be safer therefore to
consider only whales of age 5 and older; again using (2.4):

_ 29.5
14.1 +29.5
The effect of any increase in whaling effort over the time these stocks were being

recruited would be to make this survival estimate greater than the average one pre-
vailing at the time the samples were taken (Section 2.6; see also Hylen et al.).

= 0.643

= 0.676
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2,1.3. COMBINED ESTIMATES OF SURVIVAL RATE -— ROBSON AND CHAPMAN'S
METHOD. According o Robson and Chapman (1961) the best estimate of 8 from age
census data is:

§___ T (2.5)
IN4+T-1
with sampling variance estimated as:
S( S - __Tiﬁ) (2.6)
ZN+T-2

T =N, +2N; +3N; + ...
EN = Ny Nj 4 Ny ...

An example of the application of these formulae is given in Example 4.3, below,

All the above formulae involving more than two ages assume that survival
rate is constant at all ages, that all year-classes are recruited at the same abundance,
and that all ages are equally vulnerable to the sampling apparatus. When these condi-
tions don’t apply, estimates of S are biased and confidence limits from their estimated
variance are, in general, too narrow. Robson and Chapman give a %2 formula for
testing whether these assumptions may not have been fulfilled. Actually in most
stocks differences in year-clags strength will be the major source of variability in
samples of moderate to large size, in which case the best estimate of S will be obtained
from a catch curve with equal weighting, described in Section 2.2,

2.1.4. ESTIMATES OF SURVIVAL RATE FROM A PORTION OF AN AGE SERIES. For one
reason or another we may wish to estimate survival rate from only a portion of an
age serics. 1f only 2 years are involved expression (2.1) can be used. For 3 years the
expression;

N+ Nipo
N4 Ny + Nz

@n

is possible, and similarly for 4 or more; however (2.7), like (2.1}, has a small positive
bias, Robson and Chupman (1961, p. 184) give suitable unbiased formulae analogous
to (2.5) and (2.6). In practice, however, the method of Section 2.2 will usually be
best, [or reasons given above,

2.1.5. SURVIVAL RATE FROM MEAN AGE. Expression (2.5) can be derived approx-
imately frem a consideration of the mean age of the fish in a catch, still assuming con-
stant recruitment and survival rate. If the calendar age (in years completed) of the
first completely vulnerable age-group in a sumple be called coded age 0, and it con-
tains N fish, the numbers of fish to be expected at subsequent ages are shown in
Table 2.1. The number of fish actually observed, that corresponds to the sum of
column 2 of the Table, is Ny + Ny + Na -+ ... = ZN of expression (2.5). Similarly
the observed sum correspending to the sum of column 3 is Ny 4 2Ny + 3N; + ...
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= T of expression (2,5). An estimate of the mean coded age in the population is the
quotient of these, and thus is an estimate of S/A:

T _NS /Ny _S

Mean coded age = — = (2.8)
EN A2 A A
To obtain an expression for S from (2.8), invert both sides and add 1:
IN T4+ ZEN A1
1 —_— . == ]_ -+ — = — 2.9
+ T T F 3”3 (2.9)

Inverting the second and fourth terms of (2.9) gives (2.5), except for the minor ad-
justment of -1 in the denominator of the latter. Thus an expression for annual mortal-
ity rate is:

A—1-§= L (2.10)
1 4 (mean coded age)

Tanre 2.1. Computation of mean age of the fish in a population,

1 2 3
Coded
age Frequency Product
0 Ny 0
1 NS NS
2 Np§2 2Nps?
3 NS 3NpS?
cte. etc, etc,
‘Totals No(l 84 8%24..) NoS(1 + 28 + 382+ ...)
. MNo  No _ _MNoS _ NoS
T1-8 A T(1-8) A2

2.1.6. MEAN TIME SPENT IN THE FISHERY. The mean coded age of the fish in a
sample is not necessarily the same thing as the mean time they have spent in the
fishery. In a Type 1 population, if recruitment is the same in successive years and
occurs instantaneously at the start of coded age 0, the mean time spent in the fishery
by the fish in a sample taken immediately after recruitment will evidently be equal
to the mean coded age, S/A. Throughout the year this mean time will increase, until
immediately before the next annual recruitment it will be 1 4+ S/A = 1/A.

In a Type 2 population, suppose that the constant number R recruits of each
year-class enfer the vulnerable stock uniformly over 1 year’s time, and let time O
be the start of that year. In that event the total number of fish present at any moment
will be, from (1.32), equal to R /Z. The sum of the products of (iime since recruit-
ment) and (number present), or fR,, is:

==} 0

R
fmngﬂﬁwzﬁ (2.11)

0 0
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The mean time that a fish spends in the fishery is (2.11) divided by R /Z, or:
Mean time = R /B _1 (2.12)
VLY A/

This result should not be confused with mean coded age, nor should it be applied
to stocks in which recruitment is markedly seasonal (see above). However, if a Type
1 population were to be sampled throughout a year in proportion to its abundance,
the mean time that the fish sampled had spent in the fully-recruited phase would be
equal to 1 /Z,

2.2, SiMpLE CATCH CURVES

Edser (1908) was apparently the first to point out that when catches of North
Sea plaice {Pleuronectes plaiessa) were grouped into size-classes of equal breadth,
the logarithms of the frequency of occurrence of fish in each class form a curve
which has a steeply ascending left limb, a dome-shaped upper portion, and long
descending .right limb which in his example was straight or nearly so through its
entire length. This was soon tecognized as a convenient method of representing
catches graphically. Heincke (1913b) plotted a number of curves of this type and,
combining them with information on rate of growth, computed mortality rates for
a series of size intervals of the plaice, equating these approximately to age. Baranov
(1918) later gave the name carch curve to the graph of log frequency against size,
and elaborated the theory of estimating mortality and survival from it in the situation
where fish increase in size by a constant absolute amount from year to year.

The same kind of plotting is useful for the simpler situation where age rather
than length is considered.! Most recent anthors plot log frequency against age directly,
and the name catch curve has been applied te this kind of graph as well (Ricker
1948). The catch curve has a considerable advantage over the simple ratios of Section
2.1, and over arithmetic plots of abundance at successive ages, when any kind of
variation in survival rate has to be examined.

The upper line of Fig. 2.1 is an example of a straight catch curve, pertaining
to the bluegills (Lepomis macrochirus) in a small Indiana lake (Ricker 1945a). Rate
of survival, §, from such a curve can be computed in two slightly different ways,
The flatter the right limb, the greater is the survival rate. The difference in logarithm
between age ¢ and age £~ [ is of course negative; it can be written with a positive
mantissa and then antilogged, giving S directly. Alternatively we could follow Baranov
in keeping the difference of (base 10) logarithm at its negative numerical magnitude,
changing the sign, and multiplying by 2.3026, which gives the instantaneous rate of
mortality, Z. A table of exponential functions will give the annual rate of survival, from
the equation 8 = e~ Since we will almost always want 1o know Z as well as S, one

1 The straightness of Edser’s and Baranov’s 1906 catch curve for Norih Sea plaice, plotied with
length on the abscissa, was evidently a temporary phenomenoa resulting from a recent increase in
fishing effort. Plotted with age on the abscissa it would become the concave curve characteristic of

such a situation (cf. Section 2.6), since rate of increase in length drops off sharply among the older
fish.
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method of computation is as convenient as the other. The annual mortality rate, A, is
equal to 1 - S. If survival rate during instead of berween successive years is desired,
it can be obtained by taking tangents on the curve at each age.

The ascending left limb and the dome of a catch curve represent age-classes
which are incompletely captured by the gear used to take the sample: that is, they
are taken less frequently, in relation to their abundance, than are older fish. This

A i X Il M L i "

2 4 6 8

FiG. 2.1. (A} Logarithms of numbers of bluegills of successive
ages, in a sample from Muskellunge Lake, Ind., 1942;
(B) Logarithms of the percentage representation of succes-
sive age-classcs of pilchards in the catch from California
walers, season 1941-42, (Redrawn from Silliman 1943.)

may come about either because younger fish are more thickly distributed in another
part of the body of water than that principally fished, or because they are less ready
to take the baits or enter the nets. Other things being equal, total mortality rate
will be increasing during this period of recruitment. However, it is impossible to
find out anything definite about the actual mortality rate during the years covered by
the left limb and dome of the curve, simply because sampling of the population is
not random?,

2 It is being assumed, of course, that the sample is taken from the commercial catch. If betler
means of sampling are available, they will push the representative part of the sample back to earlier
years, and in this way it may be possible to detecl and measure olherwise-inaccessible changes in total
mortality and in natural mertality, Jensen (193%) interprets some experimental trawl catches in this
manner.
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We turn then to a more promising part of the curve, the descending right limb,.
Straightness of this right limb, or any part of it, is usvally interpreted in the manner
described by Baranov, which involves the following conditions:

i. The survival rate is uniform with age, over the range of age-groups in question.

2. Since survival rate is the complement of mortality rate, and the latter is com-
pounded of fishing and natural mortality, this will usually mean that each of these,
individually, is uniform.

3. There has been no change in mortality rate with lime,

4. The sample is taken randomly from the age-groups involved. (If the sample
is representative of the commercial catch, this condition is implied in 2 above,)

5. The age-groups in question were equal in numbers at the time each was being
recruited to the fishery.

If these conditions are satisfied, the right limb is, in actuarial language, a curve of
survivorship which is both age-specific and time-specific.

Deviations from the above conditions often result in nonlinear right limbs of
the catch curve. Such nonlinear curves are quite common, and in the Sections to
follow we attempt to set up standards for the interpretation of some of the more
likely types. Equally important is the allied question: under what conditions can a
linear or nearly linear catch curve result from postulates other than the above?

ExampPLE 2.2. Two STRAIGHT CaTcH CURVES: FOR BLUEGILLS AND CALIFORNIA
SARDINES.

Catch curves having a straight right limb have already been treated adequately
by Baranov and others, and need little comment. An interesting selection is presented
by Jensen (193%). The bluegill example of Fig, 2.1A was selected for its close ad-
herence to theoretical requirements; much more often fluctuating recruitment makes
it necessary to use averages over a period of years to obtain a reasonably representative
survival rate. Silliman (1943, p. 4) has an example of a straight catch curve, repro-
duced here in Fig, 2.1B. It pertains to the season 1941-42 of the fishery for California
sardines (Sardina caerulea), and gives an estimated survival rate of about 0.20.

While straight catch curves will probably usually be interpretable in the manner
proposed by Baranov and outlined in Section 2.2, two principal possible exceptions
should always be kept in mind; (1) a decrease in vulnerability to fishing with age,
and the consequent tendency toward increase in survival rate, will not be reflected
in the catch ratio, or will be very imperfectly reflected; and (2) long-term trends in
recruitment deflect the slope of a catch curve without introducing much or any
curvature. Cbviously, information on these topics is not to be looked for in the
catch curve, and must be obtained from other sources. To illustrate, Silliman ([943)
tentatively concluded that an increase in recruitment of about 13097 occurred be-
tween 1925-33 and 1937-42 in the pilchard stock. If any of this increase carried
over into the years when the fish of Fig. 2.1B were being recruited, the straight curve
computed for those years would be too steep, i.c. would suggest a survival rate
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less than the true one, Some idea of the possible magnitude of this effect can be had
from Silliman’s data, assuming rectruitment increased at a constant exponential
rate for ten years. If & represents this rate, we have el0k = 2.3, k = 0,083, and the
annual increase is 0.087. Thus the survival rate computed from the catch curve would
be less than the true rate by only about 99, of the former, even assuming the in-
crease in recruitment to have persisted through the entire formative period of Fig.
2.1B.

Another danger in interpreting a straight catch curve lies in the possibility
of a fortuitous balancing of opposed tendencies. For example, a straight curve like
Fig. 2.1A could conceivably result from the combination of a normally convex curve
(natural mortality rate increasing with age} with the effect of a recent increase in
rate of fishing, In view of the general increase in rate of fishing in the North Sea
and North Aflantic during the period 1920-35, one wonders whether the approx-
imate linearity of some of Jensen’s (1939) curves for cod, haddock, and plaice in
those waters has not been achieved in this manner. Such possibilities emphasize the
desirability of continuous sampling of a stock, and also the value of having informa-
tion on the level of fishing effort, etc., in successive years.

2.3, NoN-UNIFORM RECRUITMENT, USE OF CATCH PER UNIT EFFORT FOR ESTIMATING
SURVIVAL

2.3.1. RANDOM VARIATION IN RECRUITMENT. Moderate fluctuations in recruit-
ment from year-class to year-class, which are of an irregular character, make a catch
curve bumpy, but do not destroy its general form, and thus do not greatly affect
its value. Such irregularities are like those which result from random errors of sam-
pling, but with this difference: they do not tend to disappear as sample size is in-
creased. As a matter of fact, recruitment sufficiently uniform to make a reaily smooth
catch curve appears to be rather rare. A good way to reduce irregularities from
unstable recruitment is to combine samples of successive years. If fishing has been
fairly steady, and the population consequently is présumed to be in a state of equi-
librium except for the variations in recruitment, then quite a aumber of years can
be combined in this way. Even when secular changes in mortality rate have occurred
it may still be useful to combine samples of two successive years, as in this way a
considerable increase in the regularity of the curve may often be obtained without
too much sacrifice of information concerning the past history of the stock in question.

2.3,2, SUSTAINED CHANGE IN LEVEL OF RECRUITMENT, If' recruitment changes
suddenly from one steady level to a new one, and remains stabilized there, the effect
on the catch curve can easily be distinguished and interpreted. As Baranov has
shown, such a change shifts the position of a part of the right limb without changing
its slope.

2.3.3. EXTREME VARIATION IN RECRUITMENT. Sometimes recruitment is exceed-
ingly variable, adjacent year-classes differing by a factor of 5, 10, 25 or more; as
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shown, for example, by Hjort (1914) for cod and herring and by Merriman (1941)
for striped bass. This makes it practically impossible to use the usuval type of catch
curve for estimating survival rate: comparisons must be made within individual
year-classes, if at all.

2.3.4, TRENDS IN RECRUITMENT. More insidious than the above is the situation
where recruitment has a distinct trend over a period of years, In actuaiial language,
the survivorship curve obiained by sampling in a single season will then be time-
specific, and will not indicate actual mortality rates over the period concerned. Such
trends in recruitment are likely to be reflected in trends in catch, after a suitable
interval, but not all trends in catch result from variation in recruitment, The only
direct way to check on the possibility of trends in recruitment is to continue sampling
over a considerable period of years, the assumption being that a trend cannct con-
tinue indefinitely in one direction. However, it will be useful to examine the exact
nature of the shift in the catch curve which is produced by changing recruitment.

Examples of catch curves affected by a progressive change in recruitment are
shownin Fig. 2.2, Curves B and C. For comparison, Curve A is a curve of the Baranoy

4 8 12 16

Fig. 2.2. Effect of variation in recruitment on a catch curve
when there is a constant survival rate of 0.67 from age 7
onward. (A) Steady recuitment; (B) Curve based on the
same data as A, but recruitment has decreased with time by
5%, per year over the period of years shown; {C) Similar
to B, but recruitment has increased by 539 per vear; (D) Re-
cruitment has decreased at an accelerating rate; (E) Recruit-
ment has increased at a ratc which initially was accelerating,
but later flattened ofl, Abscissa — age; ordinate — loga-
rithmic units,
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type, based on uniform recruitment; its straight right limb has a slope correspond-
ing to a survival rate of 0.670. Curve B is based on the same data, except that recruit-
ment decreased by 5%, per year over the period of years shown, ie. it was 1.00,
0.95, 0.902, 0.857, etc., of its original value, in successive years. {The earlicr years
are to the right on the graph.) The right limb of Curve B is still straight, but it has
a slope which corresponds to a catch ratio {apparent survival rate) of 0.705, which
differs from 0.670 by 5%, of the former. Similarly, when recruitment increases by
59, per year, as shown by Curve C, the line is straight with a slope corresponding
to a catch ratio of 0.638, which differs from 0.670 by 5% (of 0.638). These and other
examples show that deviation of the true survival rate from the apparent survival rate,
when cxpressed as a percentage of the [atter, is numerically equal to the annual
percentage change in recruitment, but of opposite sign; i.e. when recruitment in-
creases, apparent survival rate decreases.

From the above it follows that to obtain a curved right limb of the catch curve
by varying recruitment, the rate of change in recruitment must vary from year (o
year. Two examples are shown in Fig. 2.2. Curve D shows the result of increasing
the absolute decrease in the rate of recruitment by 0.05 each year; i.e. recruitment
is 1.00, 0.95, 0.85, 0.70, etc., in successive years, A curved line is produced, but after
only 6 years it terminates, because recruitment has been reduced past zero! Curve
E shows the result of increasing recruitment in the same way. Here the annual rate
of increase in recruitment (ratio of each year’s increase to the preceding year’s level)
increases at first, and produces a short curved section, but soon the increase in the
actual level of recruitment catches up to the increase in rate of increase, and the
nearly straight section between age 7 and age 13 results. During the tenth year shown
(i.e. at age 7), recruitment is 3.2 times its original level; however, to produce a line
which would have the original curvature throughout its entire length for that period,
recruitment at age 7 would have become many times greater.

Such computations as these illustrate the fact that in order to obtain recognizably
curved right limbs by varying recruitment, the changes in recruitment would soon
become so great as to produce acute symptoms in other statistics of the fishery,
e.g. in fotal catch, average size of fish caught, relative abundance of young fish
in successive years, etc. Hence we can confidently expect that the effect of any reason-
able trend in recruitment will be to change the slope of the catch curve, without
appreciably changing its linearity, If any significant curvature does occur, its expldna-
tion should be sought elsewhere.

In interpreting a catch curve, it would be useful to have some independent
estimate of recruitment from year to year, as it might then be possible to infroduce
a correction for any trend which has occurred, Such information may be available
from other catch statistics, particularly the catch of the youngest age-groups, per
unit fishing effort. Information on the number of spawners (potential egg deposition)
in successive years might also seem to offer possibilities, but actually the relation
between eggs deposited and the resulting recruitment will usually be unknown,
cven apart from fortuitous variations; it is about as likely to be inverse as direct
(Chapter 11).
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2.3.5. COMPARISON OF ABUNDANCE OF INDIVIDUAL YEAR-CLASSES AT SUCCESSIVE
AGES, To reduce the error caused by variable recruitment, it is natural to try to follow
separate year-classes throughout their life, comparing the number present at age ¢
with the number at age ¢ 1, and so on. However, if this is attempted with ordinary
age composition data, trial computations will readily show that the presence of
an exceptionally numerous year-class depresses the estimated survival rates et all
ages in the year of its first appearance; afterward it makes them all too great for
4s many more years s it remains in the fishery. The geometric mean of survival rates
estimated over a period of years tend toward the true value for each age (assuming
the latter does not vary with time), but in practice there is usually little if any gain
in accuracy over what would be previded by taking the mean of the slopes of the
appropriate segments of the corresponding series of catch curves.

2.3.6. COMPARISON OF INDIVIDUAL YEAR-CLASSLS ON THE BASIS OF CATCH PER
UNIT OF EFFOrT. A means of avoiding some of the difficulties caused by variable
recruitment, of whatever type, is to compare catelt per unit effort of individual year-
classes, in successive years of their existence. The principal reason this method is
not used more often is the frequently great labor necessary to obtain 2 reasonably
representative measure of fishing effort, particularly when more than one type of
gear harvests o stock, or when the sume gear harvests two or more species having
overlapping but not identical distributions, and concentrates its attention now on
one, now on another. Furthermore, the advantages of using catch per unit effort
are to some extent offset by possibilities of systematic bias that ure not present in
the ordinary catch curve, For example, there may be distortion resulting from changes
in catchability of the fish from year to year, either from differences in distribution or
behavior of the fish themsclves, or [rom variations in the seasonal deployment of
the fishing apparatus, or {rom its variable eflectiveness becuuse of weather condi-
tions.

One great advantage ol survival rates estimated from catch per unit of effort
is the lact that they give information about the current situation: they appiy to the
interval between the middle (approximately) of the two fishing seasons sampled.
Ordinary caich-curve methods, by contrast, give estimates which tend to lag several
years behind the time the data are collected and which represent average conditions
during the years of recruilment (Section 2.6).

The method of comparisons of catel per unit effort has been used principally
with certain trawl fisheries, whose eflort is well standardized, and where the species
is available over a wide aren (Graham 1938b: Jensen 1939: Gulland 19552),

ExaMmreLe 2.3, SURVIVAL OF PLAICE OF THE SOUTHERN NORTH StA, ESTIMATED
rrOM CATCH PER UNIT OF EGFORT OF INDIVIDUAL YEAR-CLASSES, (From Ricker 1958,
after Gulland 1955, p. 43

Gulland's data for catch ol plaice {Plewronectes plaressa) per 100 hours of fish-
ing by standard trawlers, at successive ages in 3 years, are given in Table 2,2, The
ratio of C/fin successive seasons is an estimate of survival rate tor that year for the
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TaeLE 2,2, Catch per 100 hours of trawling for plaice in the southern North Sea in three seasons,
and survival rates estimated from this.

clr B clr ) i
Age 1950-51 S 1951-52 S 1952-53

2 39 a1 142

3 929 559 999

4 2320 2576 1424

5 1722 2055 2828
0,570 0.637

[ 389 982 1309
0,671 0.529

7 198 261 519
0.768 0.471

8 93 152 123
0.763 0.697

9 95 71 106
0.600 0.859%

10 81 57 61
0.741 0.702

11 57 G0 40
(0.576) (0.673)

12-4- 94 87 99
Geometric mean 0.665 0.642

year-class in question. For example, the year-class of 1945, age 5 during the 1950--51
season, decreased in abundance from 1722 per 100 hours in 1950-51 to 982 in 1951-
52; its estimated survival over that period was therefore § = 982/1722 = 0,570,
For ages above 11, where the data are lumped, an approximate S is obtained from, for
example, 87 /(57 - 94) = 0.576.

Gulland notes that there are no consistent trends in the S-values with age, and
little difference between the 2 years shown: unweighted geometric means are 0.665
and 0.642°,

2.4, RECRUITMENT TO THE FISHERY OVER SEVERAL AGES

2.4.1. GENERAL RELATIONSHIPS. Recruitment is here defined as the process of
becoming vulnerable to the fishing in progress, whether by movement into the region

3 If the logarithms of the three catch samples of Table 2.2 are plotied as ordinary catch curves,
they prove to be of the “concave™ type (Section 2.6), cach with a break in slope whose timing cor-
responds fairly well with the resumption of large-scalc fishing following the Second World War. The
slopes of the steeper left-hand (more recent) portions of the right limbs suggest a survival rate of about
0.41, which applies to the period 1946-50, approximately. Gulland (1968, p. 310) accounts for the
difference between this figure and the 0.64-0.66 of Table 2.2 on the basis that the year-classcs 1946-48
were much stronger than those of several previous years, It is also true that the two types of estimaie
apply to different series of years, but fishing cffort during 1946-50 averaged somewhat fess than that
during 1950-53 (Gulland 1968, Fig. 2).
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fished or by change in size or behavior, Different types of recruitment are outlined
in Section 11.1, but for the present purpose such distinctions are unnecessary.

At the risk of spending time on what may be an obvious proposition, we can
consider first the effect on a catch curve of having recruitment spread over several ages.
Table 2.3 shows such a population, in which total mortality rate increases from 0.3 to
0.6 during a recruitment period which is completed three years after the fish first enter
the fishery. If the population at the end of 1906 be randomiy sampled (the sample
taken by the fishery will not be representative), the ratios of the older age-groups
will represent the definitive survival rate 0.4, and the greater survival rates charac-
teristic of the years of recruitment appear only among the age-groups which are as
yet incompletely recruited.

TasLE 2.3, Decrease of different year-classes of a pepulation in successive years of their life, when
the total mortality rate is 0.3 at age 3, 0.4 .at age 4, 0.5 at age 5, and 0.6 at all later ages,

Year-class (year in which fry were hatched)

Year 1898 1899 1900 1901 1902 1903 1904
10,000
1901
7,000 10,000
1902
4,200 7,000 10,000
1903
2,100 4,200 7,000 10,000
1504
840 2,100 4,200 7,000 10,000
1905
336 840 2,100 4,200 7,000 10,000
1906
134 336 840 2,100 4,200 7,000 10,000
Ratio 0.4 0.4 0.4 0.5 0.6 0.7

This proposition becomies a little less obvious when the definitive survival rate
itself changes over a period of years, as shown later in Fig. 2.7. In that event the ratio
of two of the older age-groups in a catch may represent a survival rate which they
themselves have never actually experienced, but which is the definitive rate that used
to prevail among mature fish (now long dead) at the time when the given age-groups
were being recruited.

2.4.2. AGE OF EFFECTIVELY COMPLETE RECRUITMENT. Without a little study it
will often be difficult to decide at what age recruitment is effectively complete, parti-
cularly with convex caich curves, It is advisable io try to duplicate any observed
curve using trial values of the instantaneous rates of fishing and natural mortality in
order to get some idea of the actual situation. Since the lengih distribution of the fish
in any age-group, of most fishes, tends to be fairly close to normal, it can readily
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be assumed that the curve of recruitment will usually have a fairly symmetrical
shape: for example, the magnitude of F might be 0.01, 0.1, 0.5, 0.9, and 0.99 of its
definitive value, in successive years of recruitment of a given year-class. (Asymmetry
resulting from the median magnitude of F being something more or less than 0.5
will not affect our argument.) Now a facile assumption would be that the number of
years from the first age to the modal age of the catch curve would represent the
ascending limb of a symmetrical curve of recruitment, and that therefore an equal
number of years to the right of the mode would be affected by recruitment and should
be discarded in estimating survival rate.

Such an assumption would be misleading, for two reasons. First, the number
of fish in the first age taken (except sometimes when it is age 0 or age 1) tends to be
quite small, oficn of the same order of size as the number in the oldest age taken
(cf. Fig. 2.1, 2.6, 2.8, 2.12, 2.13). That is, the identity of the first age to be taken is
partly determined by the size of the whole sample. When the latter is of moderate
size (several hundred fish), the fish from an age-group for which rate of fishing (I)
is of the order of 0.01 of its definitive magnitude will probably be the first to appear;
if the sample is increased eighi- or ten-fold, an age-group may be represented for
which F is in the neighborhood of 0.001 of its definitive value. Now at the other
end of the symmetrical curve of recruitment, an age-group that is either 99.9%7,
vulnerable or merely 99%, vulnerable is for practical purposes completely vulnerable
when it comes to estimating survival rate. Even 95%, would be fairly satisfactory in
most cases. Consequently, the distance in years from the first age to the median age
of recruitment is practically always a year or two too great to be used as an estimate
of the distance to which recruitment will have a distorting effect beyond the median.

A second source of error is the fact that the modal age in the catch does not
necessarily coincide with the median age of recruitment. Examples ow that it
may be at an age either younger or older than the median, its exact position depend-
ing principally on the magnitude of the total mortality rate. When annuoal mortality
rate is moderate or smali (0.5 or less), at the beginning of recruitment at least, there
are usually two adjacent ages having much the same number of fish, with the mode
falling somelimes in the median age of recruitment, sometimes in the next older
age. In the latter event the distance from the first age present to the modal age would
be more than ever misleading, if it were considered as an estimate of the distance
to which the effects of recruitment extend beyond the mode.

Considering both of the effects just described, it appears that the modal age in
the catch will commonly lie quite close to the first year in which recruitment can be
considered effectively complete. In the examples used here there is at most one un-
usable age-group intervening between the first usable age and the modal age (or the
second of two nearly-equal ages), as shown by Fig. 2.8 and 2.12. When recruitment
is abrupt, the first year beyond the modal age seems usable, as illustrated in Fig. 2.1,
and in Fig. 2.9 the point for age 6 comes close to being usable.

2.4.3. VULNERABILITY VARYING CONTINUQUSLY WITH AGE. The question arises
whether a stable or “definitive” rate of fishing, beyond a certain age, is commonly
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achieved at all in fish populations. Perhaps F usually continues to increase through-
out life, or it might conceivably rise to a maximum and then decrease if the older
fish become too large to be captured or held by the hooks or nets in use. Obviously
no universal answer is possible to such a question, and to obtain information con-
cerning it usually requires more than a catch curve. The subject is closely related to
that of net selectivity, which is considered in Section 2.11 below.

2.4.4. AGE OR SIZE OF ARRIVAL ON THE FISHING GROUNDS. A distinction can
sometimes be made between the vulnerability of the whole of the stock al a given
size, and the vulnerability of that portion of it which is on the fishing grounds. In
fact, the term recruitment has been used (by Beverton, etc.) in the sense of physical
movement onto the fishing grounds, instead of its more common meaning of overall
increase in vulnerability to capture by the gear in use.

Occasionally it is possible to classify the reduced vulnerability of smaller fish
into a portion that results from their relative scarcity in places where most fishing
is carried on, and a portion due to their “habit” of avoiding capture by nets, hooks,
etc. For example, Rollefsen (1953) compared the sizes of Lofoten cod caught by
longlining and by purse seines (Fig. 2.3). Considering the latter to be representative
of the sizes of cod present (something which probably needs confirmation), it would
appear that vulnerability to hooks actually decreases with increase in length from
the smallest fish up to quite large sizes (60-110 cm or so). At the same time, the
vulnerability of the stock as a whole (as distinct from that part of it which assembles

on the Lofoten spawning grounds) to longline fishing increases at least up to a size
of 90 cm.
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Fic. 2.3. Length and age distribution of Lofoten cod taken by three kinds of gear.
(From Rollefsen 1953, fig. 1.)
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Another means of separating movement onto the fishing grounds from increas-
ing vulnerability of fish already there is given in Section 5.8,

2.5. CHANGE IN MORTALITY RATE WITH AGE

In addition to increase in fishing mortality rate by progressive recruitment,
there can be other types of change in mortality. Table 2.4 shows two balanced popula-
tions, consiructed on the basis that the survival rate, S, changes by the absolute
figure 0.1 in each year of life of the fish, and that all mortality is the result of fishing.

Tanie2.4. Effects of a change in survival rate with age on calch and on catch ratio, when all mortality
is the result of fishing.

Suivival Catch Survival Catch
Age rale Survivors  Catch ratio rate Survivors  Catch ratio
100,000 100,000
1 0.9 10,000 0.1 90,000
90,000 1.80 10,000 0.09
2 0.8 18,000 0.2 8,000
72,000 1.20 2,000 0,18
3 0.7 21,600 0.3 1,400
50,400 0.93 600 0.26
4 0.6 20,160 0.4 360
30,240 0.75 240 0.30
5 0.5 15,120 0.5 120
15,120 0.60 120 0.40
6 0.4 9,072 Q0.6 48
6,048 0.47 72 0.45
7 0.3 4,234 0.7 22
1,814 0.36 50 0.47
3 0.2 1,451 0.8 10
363 0.22 40 0.40
9 0.1 37 0.9 4
36 36

The left half of the Table is a recruitment sitnation, Catch ratios are consistently
higher than true survival rate, the discrepancy being 359, to 5097 over most of the
range covered,

In the right half of Table 2.4, where mortality decreases, catch ratio is always
less than the adjacent survival rates. Noteworthy is the fact that over the range of
survival rates from 0.5 to 0.9 there is not much change in catch ratio. If encountered
in practice, such a segment of a caich curve would probably be interpreted as substan-
tially mecting the uniform conditions mentioned ecarlier, the irregularities being
ascribed to small fluctuations in recruitment,

An example modelled after situations more likely to be encourntered in actual
investigations is shown in Fig. 2.4. The population described by these curves has an
instantaneous natural mortality rate of 0.2 during ages 1 through 10, This is combined
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Fia. 2.4. Calch curve for a population which has a constant fishing and
natural mortality rate from age 7 (o age 10, followed by a decrease in
rate of fishing (Curve A) or by an increase in natural mortality (Curve
B). Abscissa — age; ordinate — logarithmic units.

with a rate of fishing that increases from @.1 at age 1 to (.7 at age 7, then remains
steady for 3 more years, This latter is shown by the straight portion of the caich
curve from age 7 to age 10, and, if continued, would be represented by the dotted
projected line,

Three variations, after age 10, are examined. First, the rate of fishing is made to
decrease by 0.1 unit during each year of age, for 6 years, the result being shown by
Curve A, There are some fluctuations, but the net result differs, very little from the
dotted line, and would scarcely be distingnishable in an actual investigation. This
means that this section of the curve gives a fair estimate of survival rate during the
previous state of balance (ages 7 to 10), but does not reflect the actual survival rate,
which is rising. This is illustrated more graphically in Fig. 2.5A, in which the catch
ratio, R, is compared with the actual survival rate, S.

Secondly, the rate of natural mortality is made to increase from 0.2 to 0.9, as
shown by Curve B of Fig, 2.4 and 2.5, The decrease in survival is faithfully reflected
by the catch ratio, the latter being only inappreciably greater (Fig. 2.5B).

Finally, rate of fishing is made to decrease while natural mortality increases,
so that total mortality remains steady. The catch curve for this situation has not
been drawn in Fig. 2.4, since it almost coincides with Curve B. This means that the
curve obtained does not represent the actual survival rate, which (since survival rate
is constant) is the sloping dotted line of Fig. 2.4. Curve C of Fig. 2.5 shows the dis-
crepancy between catch ratio and survival rate.
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F1G. 2.5, Comparison of survival rates (8) and catch ratios (R) for the populations
of Fig. 2.4. (A) Decrease in rate of fishing; (B) Increase in natural mortality;
(C) Decrease in rate of fishing compensated by an equivalent increase in natural
mortality. Abscissa — age: ordinate — survival raie and catch ratio.

Additional examples of the effects of continuous change in rate of fishing with
age have been computed by Beverton and Holt {1956). Panels (a)-{¢) of their Fig,
2 illustrate cases where F decreases, while in panels (F)-(h) it increases. In panel (i),
F increases to a maximum and then decreases; this proves to be a particularly mis-
leading situation, since the right limb of the catch curve is nearly straight, but in-
dicates an apparent survival rate not much more than half the actual.

From the above and similar examples, the following conclusions can be drawn:

1. An increase (or decrease) in natural mortality rate, among the older fish of a
population, is correctly represented by the catch curve, when rate of fishing is the
same for all the ages involved.

2. A decrease in rate of fishing, among the older fish in a population, is not
correctly reflected in the catch curve, and in many situations the resulting curve
approximates closely to the survival rate obtaining at ages prior to the decrease in
rate of fishing.

3. When rate of fishing increases with age throughout life, the catch curve is
useless for estimating survival rate: in effect, the curve consists only of the portions
which we have called the ascending limb and dome, and the catch ratio between
successive years is always greater than the true survival rate, often very much greater.
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4. When natural mortality increases with age, and rate of fishing decreases,. the
catch curve tends to represent the survival rate characterized by the observed natural
mortality plus the original rate of fishing.

5. Hence, altering the wording of 1. a little, an increase in natural mortality rate,
among the older fish of a population, is at least reasonably well represented by the
catch curve, whether rate of fishing is steady or whether it decreases.

In so far as these conclusions involve the rate of fishing, they apply only when
the latter has been stabilized for enough years that all the fish involved have been
subjected to the appropriation rates for each age, throughout their life. If this is not so,
there is no restriction on the type of curve which may be obtained when rate of fishing
varies with age. For example, if a new fishery begins to attack & previously unexploited
population, the number of fish taken at each age will be the product of the abundance
at that age and the rate of fishing at that age. Thus the ratio of the number of fish taken
at age ¢ to the number at age ¢ — 1 will be the product of the natural survival rate times
Fi/Fi.1, the ratio of the rates of fishing at the two ages.

The considerations above are of particular importance in dealing with catch
curves which have the right limb convex upward. Theoretically, such could result
from a steady increase in rate of fishing with age; but this situation seems likely to
be uncommon, except possibly in sport fisheries where there is great interest in large

‘specimens (Section 2.4). On the basis of what has been found up to this point, a curve

that is convex to the very end will ordinarily indicate an increase in natural mortality
rate with age, among the older ages at least, since a decrease in rate of fishing with
age does not cause much or any deflection of the catch curve in either direction. On
the same basis, a concave curve could only mean that natural mortality in the popu-
lation decreases with age. However, aliernative explanations of curvature are available
when there has been a change in mortality rate with time (Section 2.6).

ExampLE 2.4, SURVIVAL RATE IN AN UNEXPLOITED HERRING POPULATION: A
Convex Catcir Curve. (From Ricker 1948.) _

Dr A, L. Tester has brought to my attention some convex catch curves of excep-
tional interest. During the fishing season of 1938-39 a population of herring (Clupea
pailasiy on the east coast of the Queen Charlotte Islands, British Columbia, was
exploited commercially for the first time. Five samples totalling 580 fish were taken
and their ages determined. The points of Curve A of Fig. 2.6 are the logarithms of
the percentage representation of each age-group. The unsmoothed curve appears
generally convex, but is quite bumpy, because of the moderate fluctuations in recruit-
ment which are encountered among herring from this general region.

To smooth out the curve and get a representative picture of the age distribution
of natural mortality, there are several possible procedures. A simple freehand curve
fitted to the data for 1938-39 is shown in Fig. 2.6A. As a check on the investigator’s
judgment the curve can be smoothed by a running average of 3, as shown in Fig. 2.6B.
This procedure of course tends to flatten the dome of the curve, so that the modal
point should not be considered at all in drawing a new frechand curve, and even the
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point to either side of it will be a little depressed, Also the curve is extended one year
at either end by the process. The left-hand end does not concern us, but at the right-
hand end it may “improve” the picture because the point for age 12, represented by
no fish in the sample, would be —w on Curve 2.6A. Actually, of course, there are very
likely a few fish of this age or even older in the population, so that the delay in the
asymptotic fall of the curve suggested in Fig. 2.6B is according to expectation,

To get a belter idea of the primitive distribution of natural mortality it is also
possible to use data for later years, to help smooth out the curve. They have this
disadvantage, that each additional year used brings the influence of the fishery farther
into the catch, and accordingly fewer ages can be considered representative of the
original natural mortality rate. Curve 2.6C shows the combined data for 1938-39
and 1939-40, giving each year equal weight, while Curve 2.6D is based on the com-
bined data for the first 4 vears of the fishery.

The percentage annual survival rates found by taking tangents at successive ages,
on the four curves of Fig. 2.6, are shown below for ages whose relative numbers are
not affected by the new fishery (or very little so):

Age 6 7 3 9 10 11 12
Curve
A 72 63 58 52 42 28 -
B 69 66 60 52 47 31 -
C - . 54 48 4] 29 21
D - - - 48 43 32 19

The figures for age 6 are slightly less than what was determined from the actual slope,
because of the proximity of age 5, for which recruitment is presumed to be somewhat
incomplete. The determination of the age distribution of mortality in unexploited
populations such as this is of special interest, because often it may be the only clue
to the natural mortality rate under conditions of exploitation,

Under conditions of a developed fishery, the original convexity of the catch curves for British
Columbia herring stocks tends to be diminished, but is still quite recognizable (Tester, 1955). In the
southern part of the North Sea, Jensen (1939) also shows strongly convex curves for herring in two
areas. Jensen sugpests increased natural mortality or emigration among older fish, and net selectivity
making younger fish more vulnerable, as possible causes of the convexity of the North Sea curves.
In regard to the last, the analysis of this Section shows that net selectivity of this sort would not in
fact produce any appreciable curvature, so this possibility can be ruled out, The reason is that while
such nets sample the older stock less completely than the younger, they also permit more fish to
survive to the older ages, and the combination of these two opposed tendencies results in a fairly
straight catch curve (cf. Fig, 2.4A).

Catch curves for a number of other species under unexploited conditions have
now been obtained, and all indicate an increase in natural mortality among the older
fish. From northern lakes there is information for sauger (Stizostedion canadense),
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F1G. 2.6. Catch curves for a population of herring from the
Queen Charlotte Islands, B.C. {A) Apge composition during
the first vear of exploitation, 1938-39;(B) Thesame, smoothed
by a running average of 3; (C) The combined samples of
1938-39 and 1939-40; (D) The combined samples for ihe
first 4 years of exploitation. All curves arc in terms of the
logarithms of the percentage frequency at cach age, set one
log-unit apart on the figure, with the ordinate scale applying
to Curve D. (From unpublished data of A, L., Tester.)

rock bass (Ambloplites rupestris), whitefish and lake trout (Ricker 1949a, Kennedy
(1953, 1954b). A similar increase in natural mortality was observed in fished lakes
among perch (Perca flavescens), black crappies (Pomoxis sparoides), yellow bullheads
{Ameivrus natalis), and several other species in Indiana (Ricker 1945a); the survival
rates in these instances being estimated from recoveries of marks. Althongh the more
heavily fished bluegills in the same waters had a nearly straight catch curve (Fig. 2.1A)
it is probable that originally they survived less well at the older ages then present: we
must assume that no individual of any species is capable of living forever. Also, a
sample of older plaice than those available to Gulland (Example 2.3) would probably
behave similarly.

2.6. CHANGE IN MORTALITY RATE wiTH TIME

All of the conclusions obtained in the last Section presuppose that, however
they may vary with age, the rate of fishing and rate of natural mortality for any
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given age are constant from year to year. But the effort used in a fishery can vary
from year to year for a variety of reasons. Some fisheries are of recent origin, and the
gear in use has been expanded since their beginning. Others have passed through a
profitable phase, and now their decreased return per unit effort tends to drive off
boats which formerly fished them, Economic conditions play a large part in deter-
mining what constitutes profitability and thus affect total fishing effort. Hence a
consideration of secular change in rate of fishing cannot be avoided. Similar changes
in natural mortality rate may possibly occur at times; their effects can readily be
examined, but they are not considered here.

2.6.1. INSTANTANEGUS RECRUITMENT. Table 2.5 shows a population in which the
survival rate for fish of all catchable ages is 0.7, 0.6, and 0.5 in 3 successive calendar
years, then remains steady at 0.4 for 4 years. In this situation (unlike Table 2.3) the
commereial catch will sample the population representatively, since recruitment
to the fishery occurs abruptly. Such a random sample of the population, taken at
the start of any given year, would have successive age-groups represented in propor-
tion to the figures in the horizontal rows of the table, beginning with the youngest
at the right. Each of the catch ratios shown in the last row represents the ratio of
all of the pairs of figures in the two adjacent columns above it. Obviously then, no
matter at what time year-classes ¢ and ¢ - 1 are sampled, the ratio of their abundance
is a measure of the survival rate which existed during the first year that year-class
t — 1 became vulnerable to fishing. Thus the survival rates which we estimate from age-
frequencies in a catch are ancient history. They pertain to past years, to the time

TaBLE 2,5. Decrease of successive year-classes in a population acted on by a survival rate which
decreases for 3 years and then remains steady, but is always the same for fish of all recruited ages
during any given year.

Year-class

Year S 1898 1899 1900 1901 1902 1903 1204 1905
10,000
1901 0.7
7,000 10,000
1902 0.6
4,200 6,000 10,000
1903 0.5
2,100 3,000 5,000 10,000
1904 0.4
840 1,200 2,000 4,000 10,000
1905 0.4
336 480 800 1,600 4,000 10,000
1906 0.4
134 192 320 640 1,600 4,000 10,000
1907 0.4
54 77 128 256 640 1,600 4,000 10,000
Catch ratio 0.7 0.6 Q.5 0.4 0.4 0.4 0.4
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when the year-classes involved were being recruited to the catchable size range,
and are independent of what survival rates have prevailed since that time. In terms
of the catch curve, this means that the slope of any given part of the curve will repre-
sent the survival rate which prevailed at the time the fish in question were being
recruited to the fishery.

2.6.2, GRADUAL RECRUITMENT. In the example just given recruitment takes
place suddenly, one age being completely vulnerable, the next younger one com-
pletely invulnerable. In practice, recruitment usually takes place less abruptly, and
is often gradual. A model of that sort has been constructed in the following manner:
a stock of fish which gains a uniform number of recruits each year is considered to
have an unchanging instantaneous natural mortality rate of 0.2. To this is added a
rate of fishing which increases for the first 6 years after the fish enter the fishery,
as follows:

Year of life (starting with the first vulnerable age)................ 1 2 3 4 5 6 T+
Percentage of the definitive rate of fishing.... ... 0.5 5 20 45 70 90 100

These values ate approximately those estimated from an actual fishery.

The definitive rate of fishing varies in successive calendar years as shown in
Table 2.6. Adding 0.2 to the rate of fishing gives the definitive instantaneous mortality
rate for each year, and from Appendix I the annual mortality rate and survival rate
were found in the usual manner. The same statistics were estimated for each year of
recruitment, at each level of (definitive) total mortality. Armed with these survival
rates, a comprehensive table was prepared, analogous to Table 2.5, showing the num-
ber of surviving fish in each successive brood for a series of years sufficient to give the
coniplete historyrof the period of change. Annual deaths in each age category were
found by subtraction for 4 different years — the Ist, 7th, 12th and 24th — and by divid-
ing these between fishing and natural mortality in the ratio of FF to M, the number of

TABLE 2.6. Rates of fishing in successive calendar years for the model populations of Section 2.6.2.

Instantaneous mortalily rales Actual

mottality Survival

Year Fishing® Natural Total rate rate

F M Z A S
Uptol 0.2 0.2 0.4 0.330 0.670
2 0.3 0.2 0.5 0.394 0.606
3 0.4 0.2 0.6 0.451 0.549
4 0.5 0.2 0.7 0.503 0.497
5 0.6 0.2 0.8 0.551 0.449
6 0.7 0.2 0.9 0.593 0.407
7 and later 0.8 0.2 1.0 0.632 0.368

1For fully-recruited age-groups.
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each age-class in the catch was computed. The logarithms of these values are shown
in Fig. 2.7, curves A to D.

Curve A, showing the catch after an indefinite number of years of steady survival
rate 0,670, is a simple catch curve with 6 years involved in the left limb and dome
(corresponding to the 6 years of recruitment) and a long straight right limb.

Curve B, based on the catch in year 7, when the survival rate of 36.89; was
first achieved, shows by its partially concave right limb that survival rate has been
decreasing. Howgever, the curve is not representative anywhere of the current survival
rate, Its steepest part, beiween age 7 and age 8, corresponds to a survival rate of
5197 that is, approximately the survival rate of 3 years previously (year 4 in the
schedule above). For a series of years near its outer end the curve is still straight,
and here represents the original survival rate of 0.67.

Curve C is based on the catch in year 12, after the 36.8%7 survival rate has been
stabilized for 6 years. Here, for the first time, there appears a portion of the cuive
(age 7 to age 8) which is steep enough fo represent the current rate of survival. The
slope of the curve at older ages gradually decreases, and between ages [7 and 18
it still has the original slope. Between ages 7 and 1, and also 15 to 18, there is not
much change in slope; consequently, even if there were considerable fluctuation in
recruitment, a fairly good estimate of both the old and the new survival rate could
be made from a curve such as this, simply by measuring its greatest and its least
slope, on the right limb. The region between ages 11 and [5 shows the maximum
curvature, (A caich curve which would have no such variation in rate of change in
curvature would result if mortality rate were to change gradually over the whole
series of years involved.)

Curve D is the new balanced population, which only appears after 18 years of
the new mortality rate of 0.632. It is similar to A, but of course has a much steeper
slope of the right limb.

The types of curve obtained during a period of transition from a larger to a
smaller rate of fishing, and hence of total mortality, are shown by Curves E and F
of Fig. 2.7. The change is quantitatively the same as shown by B and C, but in reverse.
Starting from the balanced situation of Curve D, after ¢ years’ progressive decrease
in mortality rate Curve E is obtained. Such a curve, if found in an actual investigation,
would scarcely be interpreted as indicating a recent decrease in mortality, since the
whole region up to age 11 could well be in the range of recruitment. Hence the survival
rate estimated would be that indicated by the straight outer limb, and would of
course be wide of the current value, but representative of the former value,

Curve T, representing conditions 11 years after the mortality rate began to
decrease, and 5 years after it was stabilized at 0,670, is a convex curve entirely ana-
logous to concave Curve C, There is the same region of maximum curvature between
ages 11 and 15, with rather flat portions to either side of it. In practice, the outer
end of such a curve might be interpreted as representing a state of near balance, but
the region from age 7 to age 11 would again present difficulty, because of the
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Fig. 2.7. Catch curves illustrating changes in raie of fishing with time. In
every instance recruitment is complele following the first 6 ages shown,
and the instanlaneous rate of natural moriality is the same, 0.2, for all
apges and years. (A) Constant rate of fishing of 0.2; (B) Rate of fishing has
increased from 0.2 to 0.8 during the preceding 6 years; (C) Five years
after B, with rate of fishing stabilized at 0.8; (D) Balanced curve for rate of
fishing 0.8; {E) Rate of fishing has decreased from 0.8 to 0.2 during the
preceding 6 years; (F) Five years after E, with rate of fishing stabilized
at 0,2, Abscissa — age; ordinatc — logarithmic units,

possibility of incomplete recruitment. Even if this were ruled out, it would be harder
to estimate current survival rate here than on the same part of Curve C, because
there is no point of inflection,
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In general then, secular changes in rate of fishing result in curved right limbs of
the catch curve, these being concave if fishing has increased, and convex if fishing has
decreased. The latter type will usually be much harder to interpret in terms of the
survival rate in past years, for two principal reasons: (1) there is danger of confusion
with the type of convex curve which results from a natural mortality rate which
increases with age, and (2} it is difficult or impossible to delimit the part of the curve
affected by incomplete recruitment. The concave type of curve, on the other hand,
is not likely to occur except as a result of increased fishing, and the point of maximum
slope on the right limb will always give the most recent available estimate of survival
rate,

It is difficult to express the relationships of this section in quantitative terms,
but for the examples worked out to date the following statements seem to be true:

1. If the peak of recruitment is at age m, the survival rate estimated at age n on
the catch curve pertains to a period approximately » — s years prior to the date the
sample was taken, except as noted below.

2. When the bulk of recruitment occupies a period of say 2x years (x years from
the first important age to the modal age in the catch), the most recent representative
survival rate observable on the catch curve will pertain to a period x years ptior to
the date the sample was taken.

3. If mortality becomes stabilized following a period of change it will, strictly
speaking, require 2x years for the new stable survival rate to begin to appear in the
catch curve, though for practical purposes a somewhat shorter period will usually
suffice.

Obviously it will be desirable to have as much information as possible about
fishing effort in past years when interpreting a catch curve. The simple fact that effort
has decreased, or increased, or remained fairly steady will be of considerable value.
If good quantitative estimates of effort are available, then it may be possible to
interpret different segments of the curve in relation to fluctuations in the rate of fishing,
or perhaps even to compute the actual rate of fishing and of natural mortality by
Silliman’s method (Section 7.3).

2.6.3. ILLUSTRATION. An example of the effect of an increase in rate of fishing is
seen in Fig, 2,6D. Although this curve represents the average age distribution for the
first 4 years of this herring fishery, there is a distinct concave section immediately to
the right of the dome which reflects the much greater mortality rate that prevailed
after the fishery began. (In a curve for year 4 by itself this concavity would be con-
siderably accentuated.) By contrast, the curves for the unfished stock (Fig. 2.6A and
B) were smoothly convex,

EXAMPLE 2.5, SURVIVAL OF THE LOFOTEN Cop STOCK: CONCAVE CATCH CURVES,
{(From Ricker 1958a.)

Rollefsen (1953) presented length frequencies of cod (Gadus morhua) caught by
three kinds of gear in the 1952 Lofoten fishery: purse seines, longlines, and gillnets.
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He also tabulated the distribution of ages in the three kinds of samples (Fig. 2.3). The
three gears differ considerably in the range of sizes they select, and the stock itself is a
selection of the marture fish from the great shoals which roam the Barents Sea. Con-
sequently the chances of obtaining a representative survival rate from these data
might appear particularly unfavorable,

Logarithmic plots of the three age distributions are shown in Fig. 2.8. Thers is
moderate, but not excessive, variation in recruitment from year o year; the year-
class of 1937, age 15 in 1952, was a particularly good one. The right limbs of the three
distributions are all markedly concave upward. From the analysis of Sections 2.5
and 2.6, this could either be a result of a decrease in rate of natural mortality (not
fishing mortality) with age, or a result of a recent increase in rate of exploitation of
the stock as a whele. The second alternative is much more likely.
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Fii. 2.8, Catch curves for Lofoten cod taken by three kinds of gear, The ordinate
divisions are 1 log unit. {Data from Rollefsen 1953.)

Examples of annual survival rates computed from the slopes of the freehand
lines are as follows:

Age interyal Purse seines Longlines Gillnets

11-12 S = 0.33 S = 0.29 S = 0.30
12-13 S = 0,50 S = 0.40 S = 0.37
13-14 S = 0.63 S = 0.56 S = 0.60
14-16 (avg.) S = 0.75 S = 0.76 8 = 0,75
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The seines suggest a somewhat greater survival rate than the other gears, up to age
14, but the other curves would be useful to a first approximation, From age 14 onward
there is little difference between the three, though of course the seine curve should be
more reliable because it is based on a larger sample of the old fish, We may coenclude
that even knowledge of the existence of considerable net selectivity should not dis-
courage attempts to obtain some kind of information about survival rafe from age
distribution,

Rollefsen points out that purse seining has been only recently introduced at
Lofoten, and that it takes larger fish than the two historic methods, Insofar as the
purse seine has increased the overall rate of fishing it would contribute to a {temporary)
concavity of the catch curves; however the greater vulnerability of /arge fish to the
seines would tend (o have the opposite effect.

ExaMpPLE 2.6. SURVIVAL 0F LAKE WINNIPEGOSIS WHITERISH: A SINUOUS CATCH
CurvE. (From Ricker 1948.)

An interesting curve, for the whitefish (Coregonies clupeaformis) of Lake Winni-
pegosis, is shown in Fig. 2.9. The data are taken from Bajkov (1933, p. 311), who used
them to compute the whitefish population of the lake by Derzhavin’s method (Section
8.1); hence he presumably considered them representative. The right limb has two
steep portions, separated by a peried of 4 years in which it is considerably flatter,
More than one kind of irregularity might produce such a curve, In terms of possible
variations in fishing, the concave part of the curve would suggest an increase, and the
convex pari a decrease, in fishing effort over the corresponding times in past years. A
second possibility is that there may have been a pronounced cyclical trend in recruit-
ment: an increase for several years, followed by 4 years of decrease, then 2 or more
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TG, 2.9, Catch curve for the whitefish of Lake Winnipegosis, 1928. Abscissa —
age; ordinate — logarithm of the percentage of the catch which occurs at each
age. (From data of Bajkov 1933.)
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years of increase. Finally, the two steeper parts of the curve might indicate a younger
and an older range in which natural mortality is relatively heavy, separated by a period
of less severe natural mortality from age 8 to age 12.

TapLE 2.7. Number of gillnets licensed on Lake Winnipegosis, Manitoba, compared with rate of
survival and instantaneous rate of mortality of whitefish, as deduced from the catch curve,

Year Neis 3 Z Year Nets S zZ
1915 No data 0.55 0.60 1921 3304 0.84 0.18
1916 2745 0.63 0.46 1922 4112 0.87 0.14
1817 9535 0.68 0.39 1923 5560 0.87 0.14
1918 8580 0.72 0.33 1924 5763 0.76 0.27
1919 No data 0.75 0.29 1925 6722 0.66 0.42
1920 7730 0.80 0.22 1926 7422 0.63~ 0.45+

Dr K. H. Doan courteously compiled data (shown in Table 2.7) on the number
of gillnets used on Lake Winnipegosis and also found out that Dr Bajkov’s samples
were taken during the winter fishing season early in 1928. From the catch curve it ap-
pears that recruitment is spread over ages 3 through 3, or perhaps even 6; age 4 will be
taken as the mode. Hence the slope at age ¢ on the curve reflects the survival rate
t—4 years previous to 1928, Taking tangents on the curve at successive ages gives
the series of survival rates (8) shown in Table 2.7, and after 1916 a suggestive inverse
refationship between them and the gear used is evident. The direct relation between
number of nets and instantaneous rate of total mortality (Z) is about as good; theo-
retically it should be somewhat better. The relationship could be “improved” by
drawing the catch curve in the light of the net data; as actually drawn, sudden changes
are obscured by rounding of the curve. On any system, the points for ages 16 and
17 (1915 and 1916) are wide of the expected value, which suggests a sharp increase in
natural mortality rate among the oldest fish, such as is found among whitefish else-
where, Aside from the last-mentioned effect, it would seem that fluctuations in fishing
effort alone may be sufficient to account for the sinuous shape of this catch curve.

It would be pressing the data too far 10 attempt any more exact analysis, Number of nets licensed
has cbvious limilalions as a measure of fishing effort. We should, for example, expect them to be
more efficiently utilized as time goes on, since motors were introduced among the fishing fleet during
the period shown, and doubtless other improvements in cfficiency of utilization occurred. We should
also expect more intensive utilization of nets when prices were good {1917-20, 1925-29) than when
markets were slack. Some such consideralions are necessary to explain why the instantaneous rate
of mortality more than doubled between 1921-23 and 1925-26, whereas the number of nets was
scarcely doubled. Considering that {here is some natural mortality, an increase in fishing effort should
be followed by a somewhat fess than proportional increase in instantanecus mortality rate. Another
factor which should be considered is the possibility of a decrease in recruitment, since in the later
histery of this lake the whitefish disappeared as a commercial fish,

Notice that the curve of Fig, 2.9 is one of the type which does not show the current
(1928) survival rate, since fishing effort was increasing right up to the time the sample
was taken. The steepest slope of the curve, corresponding to § = 0.63, represents the
survival rate about 2 years carlier.
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TABLE 2.8. Fishing effort (hours of trolling), catch, and age of the catch of Opeongo lake trout.

Catch by ages
Fishing
effort
Year (hours) Catch 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1936 2,030 2,600 30 95 128 233 474 665 478 260 118 57 19 25 10 15 11
1937 2,240 2,700 0 4 34 198 650 1025 555 176 38 4 8 0 0 o
1938 1,630 1,650 12 74 127 275 420 439 195 90 3 3 0 3 0 0
1939 1,380 1,550 39 36 116 221 321 393 223 %0 47 24 13 15 4 4 4
1940 1,170 1,400 20 84 82 224 434 364 120 46 14 6 0 0 0 0
1941 1,130 1,100 8 79 144 275 235 200 104 22 11 11 11 0 0 0 0
1942 570 630 7 18 46 117 217 121 53 28 9 2 2 0 0 0
1943 710 900 [ 42 42 121 272 211 133 42 0 24 6 0 0 0 0
1944 920 1,050 8 26 84 114 197 202 198 93 44 31 9 22 9 4 4
1945 1,400 1,420 0 11 32 69 170 352 373 159 84 37 21 43 16 37 16
1946 1,740 1,220 19 30 78 116 240 325 217 93 47 26 11 7 0 7 4
1947 1,230 885 3 30 55 85 217 221 153 76 18 12 3 0 6 3 3
Mean percentage. ................ 0.8 3.0 58 12.5 23.2 26.6 16.1 6.3 22 1.3 06 0.7 0.3 0.4 0.2




ExampLE 2.7. A SeERIES OF CaTcH CURVES FOR LAKE OppONGO LAKE TROUT,
{From Ricker 1958a.)

Fry (1949) tabulated the catch of lake trout (Salvelinus namaycush) in Lake
Opeongo by ages, based on a nearly-complete creel census and a scale sample usually
of about a third of the catch (Table 2.8). Three considerations make interpretations
of these catch curves difficult: (1) the lake became accessible to motorists first in
19335, so that in that year fishing effort increased sharply from a previous lower level;
(2) the catch is taken almost wholly by trolling, with which kind of fishing there may
be not only the slow recruitment to maximum vulnerability indicated by the table, but
afterward a gradual decrease in vulnerability — perhaps because larger fish are harder
to handle and not easily boated by unskillful fishermen (but see Example 8,2); and
{3) Fry (p. 31) notes that the scale census was partly voluntary and therefore not
completely random because of a tendency for possessors of big fish to bring their
catch in for appraisal and approval.

Point 2 above would tend to make estimates of mortality rate too great among
older fish, whereas point 3 would make them too small. As far as the latter is concerned,
fish smaller than 4 kg would scarcely be exhibition pieces in a lake where those over
3 kg were fairly conunon, and fish of age 11 or less rarely exceeded 4 kg, so there
need be little uneasiness about selective sampling of ages through 11.

Several catch curves from Table 2.8 are plotted in Fig. 2.10. All are concave,
decreasing in slope at about age 12; this decrease is probably mainly the result of
selection of large fish in scale sampling, but it is more pronounced during or just
after periods of increasing fishing effort, as would be expected. The most useful
slopes of these graphs are for ages 9-11, as indicated below:

Rate of Instantaneous
Avg effort survival mortality rate
Period hours S Z
1936 2030 0.50 0.70
1937-39 1780 0.30 1.21
1940.-42 260 0.35 1.06
1943-45 1010 0.43 0.85
1946-47 1480 0.42 0.87

The 1936 estimated mortality rate of 0.70 reflected, in part, the pre-1933 period of
lighter fishing. The increase to 1.21 in 1937-39 is presumably the result of the in-
creased exploitation, but the full effect of 2000 hours per vear does not have a chance
to be manifested, A residual effect of the 1936-39 years of heavy fishing remains in
the samples of 1940-42, shown by the moderately large Z = 1,06, though actual
fishing was least in the latter period. Considering that important recruitment extends
over about 5 years, the only peried where age 9-11 survival rate is approximately in
balance with the observed (ishing effort is 1943-45, The value Z = 0.85, or 437
survival per year, must be appropriate to a mean fishing effort of about 980 hours per
year (mean of 960 and 1010). The 2 later years of greater effort, 1946-47, were sufficient
to raise this only slightly.
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Fig. 2.10. Catch curves for Opeongo trout. Abscissa — apge; ordinate —
log frequency. (Data from Fry 1949.)

2.7. CatcH CURVES BASED ON LENGTH FREQUENCIES

It was mentioned earlier that in Heincke’s and Baranov’s original catch curves
the logarithm of frequency per unit length interval was plotted against length, and
that the relation of length to age was estimated separately. There are situations in
which this method appears very attractive, For example, when assembling a repre-
sentative sample of the catch from a widely scattered fishery, it may be necessary to
sample so many fish that determination of the age of all of them becomes very tedi-
ous, or the scales needed for age determination may not always be forthcoming. In
such a situation there would be two curves available: (A) a curve of mean length
against age, based on a relatively limited body of data, and (B) a representative curve
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of the logarithm of frequency (log N) against length, based on all the samples avail-
able, suitably weighted. The two curves can be combined by taking the slope on each
at corresponding points, i.e. at a given age on Curve A, and at that age’s correspond-
ing mean length on Curve B. The former would be represented by dl/dt = k say,
and the latter by d(log N)/df = —Z’', where [ represents length in centimeters and
¢t is age. Hence d(log N)/dt = -Z'k, and Z = 2.30Z'k, according to Baranov’s
method of estimation described in Section 2.2,

Unfortunately, this method of computation suffers from a serious limitation:
it is useful only on curves, or parts of them, where the increase in length of the fish is a
constant number of centimeters per year. For this information we are again indebted
to Baranov (1918), who in his fig. 12, reproduced here as Fig. 2.11, shows an artificial
catch curve (A{B)) based on length, which was formed by adding up the contributions,
to each length-interval, of a succession of overlapping age-classes which decrease in
numbers by 509, per yvear (Z = 0.69). Up to age 7, the mean length of the fish is
made to increase twice as fast as from age 7 onward. The result is that while the first
slope of the catch curve (Z)) obtained from ages through mean age 6, multiplied by the
first rate of growth (k;), will yield the true instantaneous meortality rate 0.69; and the
increased slope {Z3) from age 9 onward, multiplied by the slower rate of growth
(k) for older fish, also gives the value 0.69; yet there is an interval from mean age
6% to mean age 8%, approximately, in which the slope of the catch curve bears no
simple relation to the survival rate.

1 have constructed a similar population model in which rate of growth decreased
continuously instead of changing suddenly, Without presenting the details, the annual
mortality rate put into the model was A = 0.4, while the rates “recovered” from it at
different ages by the method of the last paragraph were 0.20-0.22. As a matter of
fact, when mortality rate is small and fairly steady, and rate of increase in length is
decreasing at a moderate rate, the number of fish at certain intermediate sizes exceeds
the number at smallcr sizes nearby, as is shown by Curve CD of Fig, 2.11, and has
been demonstrated for an actual fish population by Hart (1932, fig. 4). In that event
d(log N) /df becomes a positive coefficient in places, and could not possibly be used to
estimate mortality rate in the manner described above.

Mortality rates estimated as above from rate of growth and length frequencies
always tend to be too small, if absolute rate of increase in length is decreasing with
age. Elster (1944, p. 294), for example, used a combination of Jength frequency dis-
tribution and rate of growth to compute a total mortality rate of 8897, per year for
Blaufelchen (Caregonus wartmanni} of commercial size in the Bodensee. Although
this is a rather high rate, the method of estimation tends to make it somewhat too
small, rather than too large.

At present, then, catch curves based on length frequencies are much less useful
than those based on age, even when the successive ages overlap thoroughly and make
a smooth curve, Their slope can be used for an unbiased estimate of survival rate only
if the absolute increase in mean length of the fish between successive ages is uniform
over a range of ages which, in terms of corresponding mean lengths, is somewhat
greater than the range of lengths over which the slope of the graph is to be measured,
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Fic. 2.11. Synthelic population curves made by summing the contributions, to
successive length-classes, of several overlapping age-groups, each normalily
distributed as to length, The dotted bell-shaped curves arc the length distri-
butions of successive age-groups, each hall as numerous as the preceding; (he
rate of increase in length decreases between ages 7 and 8 to half of its previous
magnitude. Curve AB is the sum of the dotted curves, and shows the length
frequencies of the total population. Curve AB; shows the logarithms of length
frequencies of the pepulations, and is equivalent to a catch curve. Curve CD is
a synthetic curve similar (o AB, based on fish which have the same rate of growth
but which decrease in numbers by only 209 per year. Abscissa — length;
ordinate — frequency (log frequency for A;B;). (Redrawn from Baranoy 1918,
by S. D. Gerking.)

ExampLE 2.8, SURvIVAL OF PaciFic HaLiBuT: A Concave CAaTcH CuURrvE BASED
ON LENGTH FrEQUENCY DisTRIBUTION. (From Ricker 1948, slightly moedified.)}

Catches of Pacific halibut (Hippoglossus hippoglossus) taken for tagging by
Thompson and Herrington (1930), south of Cape Spencer, have been used to con-
struct a catch curve based on length frequencies. The catches of 1925 and 1926 are
combined to smooth oul some of the irregularities in recruitment®. The catch curve
(Fig. 2.12) is plotted in terms of frequency per 5-cm length interval (near the end the
average for a 10-cm range has been used). Dunlop has shown that the mean length
of commercially caught Goose Island halibut tended to increase by a little less than
5 cm for each year’s increase in age, from age 4 to age 14; between age 9 and age 14
it is exactly 5 ¢m per year (Thompson and Bell 1934, p. 25). This is indicated on Fig.

4 The 2 years also difter in that there are relatively more small fish in 1926 and more large ones in
1925, However, between ages 9 and 13 their curves have much the same slope. Since censiderably
more fish were handled in [926, it would be somewhat betier to give each year equal weight, b this
has not been done here,
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Fic. 2.12. Catch cueve for the Pacific halibut population (southern grounds),
from samples taken for tagging in 1925 and 1926. Abscissa — mean length (imm)
of successive 5-centimeter length groups. (Ages indicated are only approximate,
and at ages below 1X are typical of the sample only, not of the population,)
Ordinate — logarithm of the number of fish taken at each length interval. (From

data of Thompson and Herrington 1930.)

2.12 by roman numerals above the approximate mean length of each age-group.
" Beyond age 14 there is little direct information on rate of growth; from the situation
in other fishes, a decrease in rate of increase in length might be anticipated among old
individuals. For estimating survival rate, the curve of Fig. 2.12 will be useful only
frem age 9, which is probably the first fully recruited age, to age 14, where lincarity
of growth may cease. Within these limits, the curve is noticeably concave, and this
suggests a recent decrease in survival rate. Accordingly, the slope of the steepest part
of the curve, between ages 9 and 10, will come closest to being an estimate of its
current magnitude.
The revised estimates (Anon, 1962, table 7) of the halibut fishing effort in south-

ern waters (Area 2) are shown below in terms of thousands of “skates™ of gear set:

Year

1911
1912
1913
1914
1915
1916

Effort

237
340
432
360
375
265

Year

1917
1918
1919
1920
1921
1922

Effort

379
302
325
387
488
488

Year

1923
1924
1925
1926
1927
1928

Effort

494
473
441
478
469
537

If there had been a continuous increase in fishing effort and thus in total mortality
rate right up to 1925-26, the curve of Fig. 2.12 would not be steep enough anywhere
to represent the current rate of survival. However, there were two periods of more or
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less stable fishing effort, of which the more recent is 1921-27, when effort averaged
476,000 skates. This period lasted 7 years, or a year or two longer than it takes halibut
to become completely vulnerable to fishing. Consequently by analogy with Curve C of
Fig. 2.7 we can expect that the steepest part of the catch curve will in fact represent
the survival rate which actually prevailed when the samples were taken. This steepest
slope occurs between ages 9 and 10, and is -0.066 log units per centimeter, which
corresponds to —0.33 log units per year. Hence Z = 2.303 % 0.33 = 0.76, A = 0.53,
and § = 0475,

We can also make an estimate of the survival rate which obtained among fully
vulnerable fish in 1916-20, when fishing cffort averaged 332,000 skates per year.
This will be given by the slope of the line from ages 10 to 14 inclusive, and corresponds
to § = 0.61 and Z = 0.49. Obviously there is an inconsistency here. The Z values
of 0.76 and 0.49, less natural mortality, should be propertional to fishing effort,
whereas in fact the fishing efforts of 1921-27 and 1916-20 do not differ nearly enough
for this. There are two possible explanations: the estimate of Z for 1916-20 may
be in error, because it is getting into the region where the catch curves for the separate
years do not agree too well; alternatively, or in addition, the efficiency of a skate
of gear may have improved with time, as fishermen became better acquainted with
the grounds,

2.8. CarcH CURVES FOR ANADROMOUS FISHES

Anadromous fishes may conveniently be divided into three categories: (1) those
which reproduce only once and then die; (2) those which may reproduce in each of
2 or more successive years; (3) those which may reproduce more than once, but at
intervals longer than 1 year. All three types usually have one feature in common,
that fishing tends to be concentrated on the migrating fish which are about to mature
and reproduce.

The best-known examples of the first type above are found among Pacific salmons
(Oncorkhynchus spp.). A catch curve from a sample of the migrating run of such fish
is obviously of no value for estimating mortality rate, though the information may
occasionally be used to estimate survival rate in another manner (Section 8.9).

Anadromous fishes of group 2, of which the Atlantic salmon (Salmo salar) and
shad (Alosa sapidissima) may be taken as examples, present a somewhat different
picture, Here catches taken from the spawning run can be made to give information
about mortality rate, provided the maiden fish can be distinguished from those which

5 Thete is fairly good agreement between this fisure and the survival rate of 0,416 estimated by
Thompson and Herrington (1930, p. 70) from recaptures during 4 years of halibut tagged in 1925,
The agreement, however, is partly accidental, since halibut of all sizes tagged were used in their
estimate, and those which, for at least a year after marking, were in the incompletely-vulnerable size
range, were retaken relatively less frequently in the year after tagging than in later years. Since the
majority of fish used were of this sort, this effect is quite important, and makes their estimate of
apparent survival rate too Algh. Using completely vulnerable fish only, the tagging data yield an ap-
parent survival rate of 0.33. Possible explanations of the discrepancy between this figure and the 0.47
obtained here are given in Example 4.4, below,
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have already spawned at least once. Beginning with the firsté age-group in which
practically no maiden fish occur, the abundance of successive ages from there on
will reflect the population survival rate between them, subject to the usual provisos
regarding random sampling, uniformity of recruitment, and so on. However, it may
be found, and this is usual among salmon, that recidivists are so rare as to constitute
only a minor part of the total caich, apparently because of a heavy post-spawning or
ocean mortality which is not the result of fishing. Shad, on the other hand, seem to
survive in larger numbers and to greater ages (Fredin 1948},

Finally, the very interesting situation in which more than 1 year elapses between
spawnings has most of the characteristics of the one just discussed. If fish are caught
only in the spawning migration, the survival rate obtained from the catch curve is the
{geometric) mean annual rate for all the years between one spawning migration and
the next (not the overall survival for the total time elapsed between one migration
and the next.) Among anadromous fishes, this behavior is best known among stur-
geons (Acipenser); non-anadromous salmonoid fishes in some northern lakes appear to
spawn only in alternate years.

ExameLe 2.9, Catcy CurvE FOR KURA RIVER STELLATE STURGEON. (From
Ricker 1948.)

Derzhavin’s (1922) comprehensive study of the sevriuga or stellate sturgeon
{(Acipenser steflatus) of the Kura River contains information on a wide variety of
topics. From his table (p. 67) of the age and sex composition of this sturgeon caught

6 Tf both the age and the number of spawnings of each fish can be determined, such comparisons
can be made for all age-groups.
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FiG, 2.13. Calch curves for the stellale sturgeon of the Kura River. (A) muales;
(B) females; () sexes combined. Abscissa — age; ordinate — logarithm of the
number of fish occurring at cach age, per thousand of the total sample, for
curves A and B; curve C is drawn iwo units higher. (From data of Derzhavin
1922.)
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in the Caspian Sea near the mouth of the river, the catch curves of Fig. 2.13 are
plotted. When the sexes are segregated, the males are seen to occur at a much younger
average age than the females. Since the fish are taken on their spawning run, this
indicates that the males mature earlicr, on the average, Derzhavin gives 12-15 years
for males and 14-18 years for females as the principal range of ages at first maturity,
though some of either sex were taken as early as 8 years. Sevriuga of both sexes spawn
““at intervals of several years, possibly five,” but it is not known whether the two sexes
have the same average interval between spawnings. If the elapsed time were longer for
the younger females, as is suggested by Roussow’s (1957) work with Adcipenser fulves-
cens, it would explain the longer ascending limb of their catch curve.

A point of general interest is that when vulnerability of fishing depends on
maturity, differences in age at maturity of the two sexes tend to broaden the left limb
and flatten the dome of the catch curve, when the sexes are not separated. In ordinary
fisheries, a difference in rate of growth of the sexes will have a similar effect. However,
it will probably rarely happen that the dome will actually have a dent in it, as was
found for the Kura sevriuga.

2.9. STRATIFIED SAMPLING FOR AGE COMPOSITION

When an overall random sample is used to plot the catch curve and estimate
survival rate in a stock, there is commonly a serics of older ages which are represented
by only a few individuals if the sample is of any ordinary size — say 100 to 1000 fish,
The same is usually true of one or a few of the youngest ages, which ages may be of
interest in examining net selectivity, etc. If good information concerning these terminal
ages is desired, special effort must be expended on them. -

1. A very simple plan is to take a special sample of the catch for fish above
a certain size. For example, 1/1000 of the caich might be used for the general sample,
and 1/100 of the large fish for the special one, Growth or survival rates computed
from the special sample are used for the older ages (Ricker 19552). However, this
procedure is not particularly efficient, since some of the fish whose scales or otoliths
arc read in the special sample must be discarded because they belong to ages incom-
pletely represented in-the size range -of that sample. Also, this consideration makes it
rather unlikely that it would be profitable to use more than two different sampling
fractions.

2. Ketchen (1950) suggested a different plan, which works well when a really large
representative length sample can be obtained for the whole catch. Dividing the caiches
into length groups one centimeter broad, otoliths are collected for age determination
from fish in the large sample, up to some fixed number in each length group or (in
the terminal groups) to such smaller numbers as are available. From the percentage
representation of each age in its otolith sample, an age composition for each length
group of the representative length sample was determined, and the whole added by
ages to build up an estimate of the age composition of that sample, thus of the catch7.

7 From a large length sample of cod, Fridriksson {1934) took a subsample for age defermination
and applied this computational procedure, thus decreasing the influence of sampling error and of any
possible systematic bias in the subsample. However the advantage gained in this way is ordinarily
small compared to what is afforded by Ketchen’s procedure.
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Obviously methods 1 and 2 above might advantageously be combined, when
time or facilities for taking a large length sample are not available, In fact, by grafting
Ketchen’s procedure onto it, the method of using different sampling ratios is consi-
derably improved: no age-determined fish need be discarded, a complete (computed)
catch curve is obfained, and more than two different sampling fractions might some-
times be employed to advantage.

Both of the methods above imply that it is desirable to have more accurate
information on the sparsely represented ages than what a moderate-sized single
sample will supply — which is not necessarily true for all purposes, although generally
$0,

3. When catches from a stock are landed by many boats, at many ports, and
over a considerable period of time, the assembling of a single representative lengih
or age distribution becomes very complex — involving nrumerous individual samples
which are eventually combined inio one representative picture using a series of
weighting factors. Details for particular situations have been published, but no
general description would be profitable. Subsampling by length for the age determina-
tions may be of great assistance, but sometimes age at a given length will differ signi-
ficantly between different catches, Several papers describing problems and methods
in use are included in Yolume 140, Part I, of the Rapports et Procés-Verbaux of the
International Council for the Exploration of the Sea; see especially Pope (1956) for
a discussion of stratified sampling.

Exampir 2,10, AGE COMPOSITION OF A I.LEMON SOLE CATCH OBTAINED BY KETCHEN’S
STRATIFIED SUBSAMPLING METHOD. (From Ricker 1958a.)

Table 2.9, provided by Dr K. S. Ketchen, is 2 computation of age composition
of a random catch sample (Y) using a subsample (X} stratified by length, for lemon
sole (Parophrys vetulus). Up to 10 otoliths were read in each subsample, the age
frequencies being in the left half of the Table. These are applied pro rata to the actual
numbers in the Y-sample, in the right-hand side of the Table. Totals of these columns
represent the estimate of age composition of the catch. This would be used to estimate
survival rate, recruitment, etc., subject to the various considerations outlined earlier
in this Chapter.

Selection of the best maximum number of fish to be included in each length-
class is a matter of some importance (cf. Gulland 1955a). It depends on the breadth
of the length-classes used and hence the total size of the sample to be “aged”, on the
number of samples actually or potentially available to represent the fishery under
consideration, on the degree of difference between intrasample and intersample
variability, and on the labor involved in taking additional samples.

2.10. EFFECTS OF INACCURATE AGE DETERMINATIONS ON ESTIMATES OF SURVIVAL RATE

The methods and some of the problems of age determination are discussed
briefly in Chapter 9. The most accurate method may differ for different species and
stocks, but all methods are subject to error of greater or less magnitude. When com-
parisons are made, it is commonly found that different individuals will reach different
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TaBLE 2.9.  Age distribution in a sample of male Strait of Georgia Iemon soles as determined from a stratified subsample.

Size- Age-groups in X Calculated age representation in Y
class Subsample Sample
{cm) (59} 4 5 ) 7 8 9 Y) 4 5 6 7 8 9
27 5 I - . 5,0 1.0
28 3 4 2 . . 3.0 4.0 2.0
29 10 4 4 1 1 N 30 12.0 12.0 3.0 3.0
30 10 1 5 4 . 51 5.1 25.5 20.4
. 31 10 .. 3 2 - . 54 43.2 10.8
« 32 10 1 7 1 1 . 48 4.8 336 4.8 4.8
33 10 1 3 3 2 1 41 4.1 12.3 12.3 8.2 4.1
34 10 2 6 1 1 .. 27 5.4 16.2 2.7 2.7
35 10 1 4 3 .. 2 13 1.3 5.2 3.9 2.6
36 6 . . 1 3 2 6 1.0 3.0 2.0
37 3 . . 1 1 1 . 3 1.0 1.0 1.0
38 1 . 1 . 1 1.0
Totals 95 289 34.0 138.3 76.7 26.6 10.8 2.6
Percentage 11.8 47.9 26.5 9.2 3.7 0.9




conclusions from certain scales, otoliths, etc. Usually 80-909, agreement between

. two individuals is considered good, and for older ages of long-lived fish it can decrease

to 509, or less. How does error of this sort affect estimates of survival ? Simple numer-
ical models reveal that when true survival rate is constant beiween ages there is no
consistent bias in either of the following situations: (1) the percentage of positive
and for negative error in age reading is the same at all ages; and -(2) positive and
negative errors are equal at each age, but may increase or decrease with age.

When negative error exceeds positive, and this difference increases with age,
estimated survival rates will in general tend to differ from the true rates. Table 2.10 and
other models show that the size of the difference can vary from a small overestimate to
a large underestimate, depending on the magnitude of the errors and on the true sur-
vival rate. For Model A the error in estimated survival rate is mostly negative, but it is

TaBLE 2,10, Two models of effects of error in scale reading on estimates of survival rate (S), for a
population in which true S= 0.5 at all ages. Column 2 shows the true age structure for both models.
Model A: At all ages 10% of scales are read 1 yr too high; at ages 3 through 6, 109 are read 1 yr
too low; at age 7, 20%: at age 8, 309 and so on., N’ represents the age readings obtained and S’
is the apparent survival rate computed {from them. Mode!l B; The numbers of scales shown in column
8 are misread too low, the average number of years too low increasing with age: the contributions
of successively older ages to a given age are shown in columns 9-12, (For example, of the 50 misread
scales of age 11, 5 are taken to be of age 10, 20 of age 9, 15 of age 8, and 10 of age 7). N" and 8’
are as in Model A,

1 2 3. 4 5 6 7 8 9 10 11 12 13 14
Model A Medel B
Age N - + + N’ S - -+ 4+ 4+ + N’ s’
3 12800
4 6400 1280 1280 320 6720 0 0 0 ] 0 6400
0.500 0.500
5 3200 640 640 160 3360 0 0 0 0 0 3200
0.521 0.547
[ 1600 320 320 160 1760 0 80 40 20 10 1750
0.500 0,497
7 800 240 160 120 880 8 80 40 20 10 870
0.455 0.452
8 400 160 80 80 400 126 60 30 15 8 393
0.475 0.395
9 200 100 40 50 190 120 40 20 10 5 155
0.473 0.142
10 100 60 20 30 90 100 5 g G 3 22
0.478 0.273
11 50 35 10 18 43 50 0 1 3 2 G
0.465 0.167
12 25 20 5 10 20 25 0 0 1 0 1
0.400 0,000
13 12 11 2 5 8 12 0 0 0 0
0.500
14 6 6 1 3 4 4] 0 0 0 0
15 303 1 _ 3

69



not very large in spite of what would appear to be rather large errors in ageing the fish.
Furthermore, al the younger ages the error is zero or in one case positive, so that a
weighted overall estimate of S would differ little from the true value 0.5. The reason
is that there is at all ages some positive error, as well as negative, and the more abun-
dant fish of the younger age of any adjacent pair add importantly to the apparent
number in the older. In Model B all errors are negative (age read too low) and
the error is serious at older ages. The first affected survival estimate (age 5-6) is too
great, the second is almost ““on,” and older estimates rapidly become much too small,
Again a weighted estimate of 8 for all ages would not be far off the mark; but if the
bias in ageing were not suspected, the investigator would conclude that mortality
rate increases rapidly with age.

The most effective method of checking age determinations, when it is feasible,
is probably to observe the progress of a markedly dominant year-class in scale samples
over a period of years. Another method is to release marked or tagged fish, recapture
them after a year or more, and check their growth against their scale pattern and
against the mean growth rate of the population; however, the process of capturing
and the mark or tag can affect both scale structure and growth rate. In any event
great care should be taken to avoid any large consistent bias in age determination.

ExampLE 2.11. EFFECT OF INACCURATE AGE READING ON SURVIVAL ESTIMATES
oF Ci1scoEs. (From Aass 1972.)

The usual method of determining age of ciscoes (Coregonus albula and allied
species) has been from their scales, usually a fairly reliable method. However Aass
(1972) decided to check cisco ages from Lake Mjbsa in Norway by using otoliths,
and obtained a very different picture (Fig. 2.14). Not only was the average age much
greater, but there was a marked 3-year periodicity in the appearance of strong year-
classes. This picture was substantiated by results of tagging, and particularly by the
regular-progression of the dominant generations.

Using mean age frequencies obtained from the scales, the estimate of survival
rate between ages 4 and 5 is 0.17; the ratio of age 4 to age 3 is less (0.24), but there
is no assurance that age 3 is fully recruited. The otolith ages of course produce a much
gentler caich curve: its slope becomes gradually steeper from age 3 to age 12. From a
freehand smoothed curve, estimated survival rate decreases from about 0.69 for age
5-6 to 0.38 for age 9-10. Since samples were taken from seines that retained fish of
sizes down to and including all of age 2, probably ages 5 and older were representa-
tively sampled.

2,11, SELECTIVITY OF FISHING GEAR

Almost all kinds of fishing gear catch fish of some sizes more readily than others,
and the subject has been investigated in some detail for certain gears.

2.11.1. GILLNETS. Both theoretical and observational studies of gillnet selectivity
are fairly numerous. Herring (Clupea harengus) have been a common object of study
in salt water, beginning with Baranov (1914) and including papers by Hodgson (1933),
Olsen (1959), [shida (1962, 1964), and Holt (1963). In fresh water the lake whitefish
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Fla. 2.14. Age frequency histograms for ciscoes of Lake Mjgpsa as determined
from scales (left) and from otoliths (right). (From Aass 1972, fig. 3.}

‘(Coregonus clupeaformisy has been a favorite species (McCombie and Fry 1960,
Berst 1961, Cucin and Regier 1966, Regier and Robson 1966, and Hamley 1972).
Other contributions arc by Baranov (1948), Andreev (1955), Gulland and Harding
(1961), Hamley and Regier (1973), and Peterson (1954).

Most authors have computed only the relative vulnerability of each size of fish to a
given size of net using a unimodal selection curve either approximately or exactly
normal in shape. If two or more mesh sizes were combined into a common selectivity

curve, it was assumed that all meshes caught the same fraction of the fish present at
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their respective modal lengths of maximmm vuoluerability. However, experimental gill-
netting over many years has shown that really small meshes caich far fewer fish than

somewhat larger onecs, whereas fish of the sizes best caught by small meshes must

generally be more numerous than larger ones. Ricker (1949a) and Hamley (1972)
demonstrated this effect quantitatively for whitefish, using the DeLury method of
estimating catchabilities (Section 6.3).

The best study in this fleld is by Hamley and Regier (1973), who used recaptures
of marked fish to estimate vulnerability of Dexter Lake walleyes (Stizostedion vitreum)
to gillnets. Percentage recaptures increased with mesh size, and they also increased
with {ish size considering the gang of nets as a whole. They also found that the walleye
selection curves for each mesh were bimodal, corresponding to two methods by which
these fish were caught, “wedging” and “tangling,” Similar effects have been observed
for other toothy fishes, particularly trout of several species; for example, Ricker
(1942c) found a trimodal pattern for cutthroat trout (Salmo clarkiy and char (Salvelinus
maima) in Cultus Lake.

2.11.2. TraprNETS. A comprehensive study of selectivity of fairly large trapnets in
three Michigan lakes was made by Latta (1959). Ten species of fish were marked by
removal of a fin, and the percentage recapture of each size-class was computed.
From the data presented graphically, the percentage of recaptures tended to increase
throughout the whole length range for rock bass (dmbloplites rupestris), yellow
bullheads (Jetalurus naralis), white suckers (Catostomus commersoni), and (in two
out of three lakes) for bluegills (Lepomis macrochirus). In a third lake bluegill re-
captures were almost independent of size, and this was true of largemouth bass
(Micropterus salmoides) in one lake (if 2 years® results are averaged). For largemouth
bass in another lake there was a [airly definite indication of a peak of vulnerability
at an intermediate size, and this was true in a single experiment with brown bullheads
{(Ietalurus nebulosus). For all species the average size of recaptures was greater than
that of the fish at tagging, though no growth had occurred meanwhile. Using a similar
procedure, Hamley and Regier (1973, fig. 1) found that vulnerability of walleyes
(Stizostedion vitreun) to trapnets increased steeply throughout their whole size range.

It is surprising that traps should be so selective, and particularly that the vulner-
ability of a species sometimes increases right up to the largest individuals present.
The suggestion has been made that this might reflect greater activity on the part of
larger fish, but the observed behavior of large fish in captivity does not support this.
Possibly they are merely more prone to seek out secluded areas, and the entrance of
a trap would qualify,

2.11.3. TRAWLS AND LINES. A rate of fishing independent of age, above some
minimum, would be rather likely in trawl fisheries, and Hickling (1938) in fact found
that rate of return of tags from North Sea plaice (Pleuronecies platessa) tended to
level off above a tagging length of about 25 cm.

In a line fishery for lingcod (Ophiodon elongatus), which begin to be caught at
about 40 cm, there was no great change in rate of recapture of tagged fish in the prin-
cipal size range, 66-90 cm; but among the few fish taken from that size up to 120 cm
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there was some decrease in rate of return -— possibly resulting from an increase in
natural mortality at great ages (Chatwin 1958).

Using the utilized-stock methed, Fry (1949) and Fraser (1955) found that vul-
nerability increased in sport fisheries for lake trout (Salvelinus namaycush) and
smallmouth bass (Microprerus dolomieui) over a broad range of ages. For the trout
there was a suggestion of subsequent decline in vulnerability among the oldest fish,
ages 10-13 {cf Example 8.2).

2.11.4, ESTIMATION OF SURVIVAL RATE. Obviously if larger fish are increasingly
vulnerable to a given gear, older fish will tend to be increasingly overrepresented and
hence any estimate of survival rate from age distribution will tend to be too larpe.
The amount of error decreases rapidly with age, however, because annual length
increments are small among older fish and there is a broad range of fish sizes at each
age. For example, Ricker (1949a) found that there was no consistent change in rate
of removal of whitefish from a small lake by a gang of gillnets over the range 33-51
cm fork length, which included ages from 11 to 26; hence survival estimates were
considered reliable over this range.

Latta (1959, table 5) shows four examples in which a simple catch curve over-
estimated the survival rate by 28-619¢. However, in the one case where the details
are given the uncorrected survival rate should have been regarded as useless anyway,
because of differences in year—class strength and (possibly) increase in mortality rate
with age: the ratic of age 6 to age 5 is far less than that of age 5 to age 4, and age 7 is
missing completely, although a fish of age 8 did occur. This is not to discount Latta’s
methed of estimating a weighted mean survival rate, which depends on tag recaptures
(Chapter 4). In general, bias in catch-curve survival estimates from size-specific
vulnerability seems unlikely to be large among the older fish in a sample, though this
should not discourage effor(s (o ussess it, or to use other more reliable methods of
eslimation when they are available. The general effects of changing vulnerability are
discussed in Section 2.5.







CHAPTER 3. — VITAL STATISTICS FROM MARKING:
SINGLE SEASON EXPERIMENTS

3,1. GENERAL PRINCIPLES OF POPULATION ESTIMATION BY MARKING METHODS

Attaching tags to fish, or marking them by mutilating some part of the body,
was first done to trace their wanderings and migrations. Toward the close of the last
century, C. G. J. Petersen (1896, etc.) began the practice of using marked fish to
compute, first, rate of exploitation, and, secondly, total population, of fish living in
an enclosed body of water. These procedures have been widely adopted. The names
usually applied are “sample censusing,” “estimation by marked members,” the
“mark-and-recapture method,” the “Petersen method,” and the *Lincoln index.”

The principle of this method was discovered by John Graunt and used in his “Qbservations on
the London Bills of Mortality,” first published in 1662 — a work that marks the starting point of
demographic statistics (E. 5. Pearson personal communication). Children born during a yvear were the
“marked” individuals, and the ratio of births to population was ascertained from a sample. About 10
years after Petersen’s first work, Knut Dahl employed the same procedure to estimate trout popula-
tions in Norwegian tarns. Applications to ocean fishes started toward the end of the first decade of the
century, Sample censusing of wild birds and mammals began rather belatedly with Lincoln’s (1930)
estimate of abundance of ducks from band returns, while Jackson (1933} introduced the method to
entomology.

The principal kinds of estimates which can be obtained from marking studies
are:

1. rate of exploitation of the population
size of the population

3. survival rate of the population from one time interval to the next; most
usefully, between times one year apart

4, rate of recruitment to the population

Of course not all mark-and-recapture experiments provide all this information;
often only population size is involved. Since about 1950 there has been much activity
in developing a variety of procedures for marking and recovery and, for any given
precedure, there may be a variety of statistical estimates suited to different conditions.
Somsz of the more comprehensive p;lpers are by DeLury (1951}, Chapman (1952,
1954), and Cormack (1969},

The general types of procedure invelved are as follows:

1. Single census (Petersen type). Fish are marked only once; subsequently a
single sample is taken and examined for marked fish. Whereas the marking should
ideally be restricted to a short space of time, the subsequent sample may be taken
over quite a long period.
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2, Multiple census (Schnabel type). Fish are marked and added to the popula-
tion over a considerable period, during which time (or at least during part of it)
samples are taken and examined for recaptures. In this procedure samples should be
replaced: otherwise the population is decreasing and the population estimate cannot
refer to any definite period of time -— unless, of course, the samples are a negligibly
small fraction of the total population. There is some computational advantage in
marking all fish taken in the samples, but it is not essential.

3. Repeated censuses. Procedures for estimating survival rate from two successive
Petersen or Schnabel censuses were developed by Ricker (1942b, 1945a, b).

4, “Point” censuses. Samples for marking and for obtaining recoveries are
made at three or morel periods or “points” in time, these periods being preferably
short compared with the intervening periods. The first sample is for marking only,
the last for recoveries only, and the intermediate one or ones for marking end recovery.
A different mark is used each time, and subsequent sampling takes cognizance of the
origin of each mark recovered. This type of census is well adapted to estimating
survival rate and recroitment.

In experiments using tags, individual fish can be identified each time they are recaptured. In some
inscct marking experiments an individual has been given an additional mark each time it is recaptured,
which serves to identify its previous recapture hisiory. Methods for cstimating population, survival
rate, and recruitment from this information have been devised by Jackson (1936, etc.), Dowdeswell
et al, (1940), Fisher and Ford (1947), Cox (1949), Leslie and Chitty (1951), Bailey (1951), Chapman
(1951, 1952), Leslie (1952), and ofhers. These methods vary with tho kind of grouping of recaptures
used, and with the mathematical model employed; they often require complicated tabulations and
solving complex expressions.

With any of the above four methods, there are two or three possible procedures
in taking the second or census sampdle,

a. Direct census. In direct censusing, the type usually done, the size of the sample
or samples taken is fixed in advance, or is diclated by fishing success, etc.

b, fnverse census, In inverse censusing, the number of recapiures to be obtained
is fixed in advance, and the experiment is stopped as soon as that number is obtained
(Bailey 1951). This procedure leads to somewhat simpler statistical estimates than
direct sampling. A more important consideration, possibly, is that since the size of
the relative sampling error of any estimate depends mainly on the absolute number
of recaptures made, fixing the number of recaptures determines the sampling accuracy
of the result within fairly narrow limits. Inverse censusing is likely to be most useful
with single censuses, but it can also be applied to multiple censusing (Chapman 1952).

In practice, sampling can be and probably usually is somewhat intermediate
between direct and inverse. An experimenter may have time for up to two weeks
of census sampling, for example, but would be glad to stop earlier if a reasonable
number of recaptures has been taken. However, if he decides to finish at the end of a
certain day, rather than at exactly the time the nth recapture is made, the procedure
is most akin to direct sampling.

1If only two points are used, this method is indistinguishable from the Petersen type.
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¢. Modified inverse sampling. A. procedure described by Chapman (1952} works
toward a predetermined number of wmmarked fish in the sample, but here the only
advantage appears to be statistical convenience.

d. Sequential censuses. If the problem is to find whether a population is greater
or less than some fixed number, sampling can be done by stages and terminated
whenever this point is setfled, at any desired degree of confidence. Suitable formulae
are given by Chapman (1952).

Only the better-known, easier, or more practical of the above procedures will be
presented here. The simple Petersen situation is described first, followed by a review
of possible systematic errors, then a description of other procedures.

3.2. PETERSEN METHOD (SINGLE CENSUS)

3.2.1. SmpPLE PETERSEN ESTIMATES. A number of tagged or marked fish are
put into a body of water. Record is then kept of the total number of fish caught out
of it during a year or other interval, and of the number of marked ones among them.
We have:

M number of fish marked

C catch or sample taken for census

R number of recaptured marks in the sample

We wish to know:

u rate of exploitation of the population
‘N size of population at time of marking

An estimate of rate of exploitation of the population is given by:

v (3.1)

Leslie (1932) shows that this is an unbiased maximum likelihood estimate. Assuming
random mixing of marked and unmarked fish, its variance is found from the binomial

distribution to be:
C( M
MN\" N)

With large numbers of recoveries, R/C can be used as an approximation for the
unknown M /N, giving:
R(C -R)
Vi) = ————— 32
W = = o (32)

Similarly, an unbiased estimate of the reciprocal of population abundance
is, by direct proportion:

—= = (3.3)



The large-sample sampling variance of (3.3} is:

R(C-R}
VUNY = = o (3.4)
The reciprocal of (3.3) is a consistent estimate of N; that is,
MC C
Ne=——=— 3.5
R " (3.3)
with a sampling variance of:
M2C(C - R)
VIN) = —5— (3.6)

This is expression (2.6) of Bailey (1951). However, values of MC/R are not symmet-
rically distributed, whereas those of R/MC are; thus if the normal curve of error
is used to calculate limits of confidence, it is best to calculate them for 1 /N using
(3.4), and then invert them to obtain Jimits for N,

Confidence limits can be obtained more simply, however, by treating R as a
Poisson or binomial variable (whichever is appropriate), obtaining limits for it directly
from a chart or table (Appendix II), and substituting these in (3.5).

3.2.2. ADJUSTED PETERSEN ESTIMATE. Although expression (3.5) is a consistent
cstimate of N, in that it tends to the correct value as sample size is increased, it is
not quite the best estimate?, This is true whether sampling is direct or inverse. Bailey
(1951) and Chapman (1951) have shown thai with ordinary “direct” sampling (3.5)
tends to overestimate the true population. They proposed modified formulae which
give an unbiased estimate in most situations. Chapman’s version is as follows (omitting
~1, which is of no practical significance):

_ M+ HEe+D

ES
N R+

(3.7)

1t is usually worthwhile to use (3.7) in place of {3.5) in direct sampling, even though
with large values of R there is little difference.

The large-sample sampling variance for N* in (3.7) is given by Chapman as
approximately equal to:

(M DXC 4 Y(C-R)  NXC-R)
(R -+ 1)*R +2) (C+ IR +2)
Again, however, it is better to obtain approximate confidence intervals from charts

or tables appropriate to the binomial or Poisson distributions, using R as the entering
variable (cf. Example 3.1).

V(NY) = (3.8)

2Thal a best estimate does not remain a best estimate when inverted is one of the uncomfortable
facts of statistical life. The same is true between a statistic and any function of it, other than a linear
one. For analogous examples scc Sections 2.1 and 11.4.2,
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Expressions (3.3)-(3.8) are applicable whether the fish captured are removed
from the population or whether they are returned to it (Chapman 1952, p. 300).

Bailey’s (1951) expression corresponding to (3.7) differs slightly:

_MC+1
R+ 1

N (3.9)
and his expression for the variance is simifarly adjusted, but practically these are indistinguishable
from Chapman’s formulae.

For “inverse” sampling — which ceases when a predetermined R has been taken — (3.5} is close
to being an unbigsed estimate of N. Nevertheless, a modified formula is slightly better (Bailey, p. 298):

_CM +1)
==

N 1 (3.10)

3,23, STATISTICAL BIAS IN PETERSEN ESTIMATES. Expression (3.7) provides an
unbiased estimate of N if (M + C)> N, so that there is no chance that R might be
zero because of sampling variability (Chapman 1951, Robson and Regier 1964),
If this condition is not met the estimate N* has negative bias. Provided N.>> 100 this
bias is close to:

~Ne-MC/N 31D

For MC/N = 3 the exponential in (3.11) is 0.050, and for MC/N = 4 it is 0.018.
Therefore, in practice, a less stringent condition can be used: that MC be greater
than four times the true population N, in which event the probability of bias will be
less than 29, (Robson and Regier 1964).

Since true N is unknown it is more convenient to have a rule based on an observed
statistic, the number of recaptures (R). For the Poisson situation (l.e. when M /N is
small) the lower confidence limits in Appendix JI will indicate the probability of
R = 0 for any observed R, and thus whether systematic bias of this type is likely.
For 959 confidence, true R will not be less than 1 if observed R = 3 or more; and
for 999, confidence this is true when observed R = 4 or more. If M /N is not small,
these limits are somewhat tmote severe than is necessary. Thus the probability of
statistical bias can be ignored if recaptures number 3-4 or more.

Similar statistical bias exists when very small numbers of recaptures are made with
other kinds of estimates of population, survival rate, and rate of exploitation, de-
scribed in the sections and chapters to follow.

3.2.4. SAMPLING ERROR AND SAMPLE SIZE. Sampling errors for Petersen estimates
are most easily obtained from tables or charts of fiducial limits for the binomial,
Poisson, or normal approximations to the hypergeometric distribution. Suitable
charts have been published by Clopper and Pearson (1934), Adams {1951), and
Davis (1964), while Ricker (1937 and Appendix If here) tabulates limits for the
Poisson distribution: the latter can be used as an approximation for the others, since
they will never give too favorable a picture. The observed number of recaptures R
is entered in the x column of Appendix I, and the 959, or 999, confidence limits
read off. The latter are then substituted for R in (3.5} or (3.7), and corresponding

79



(2]
<o, “0, 0
4. %o o
(v] 7
?O OQO JDOO OOO
% "o, % N 00,000
0, S0, 04NN 209,
LY Oy o b N
%, %o, o NN
/(?O OO % r\\ s, 100,000
O Ioo \\ =
& Y 70, RS LY
PO A N § S
ot (¢) OO B, \\‘ N % \\ N
(\Q G:Oo JOOO \\ \\ \ \\ 5
o o, Op v N N N N N
(2] o AN N M N \
& ) N ™
oF 52) 22} \\ N \‘ \\\ 10,0002
0, %, AS = - 3 g
8 O o SIS SIS, b\ .
?O (&) LY N N \\ AN I 8
L7 ) h, \"\\ LA N \\‘ 4, A, \\\ -
5 % N NS I NS NN 3
%0, °)< \\ \\ N \\ YN \\ YT £
iy (] N N N o
“p HHIN_ N AN N 000 8
<2 > ey ™ - 5
»0, N A o
v Oo L, AN N, AN AN E
‘o, AN AN AN 5
. P AN ANEE NS SN (RN q
% WANHIIN NARSHINN NA NN \\ \\
D AN TN N N N
o A N N
N [e]¢]
p o1 N X 5, " X,
O, LY LY kY .y Y
(o] AN X X LY
X X X, Y Y |
A AY Y 1] a0
40 100 1,000 10,000 100,000 1,000,000

Number marked

FiG, 3.1. Combinations of number of marks (M) and number subscquently examined for marks
(C) for a series of population sizes (N — curved lines), which will provide Petersen estimates of
N that in 95%, of trials will deviate no more than 25% from the true value of N, (From Robson
and Regier 1964, fig. 5.)

limits for N are obtained. Provided R >4, so that the statistical bias of Section 3.2.3
is improbable, these represent the likely limits of error for the population estimate.
Robson and Regier (1964) have combined statistical bias with sampling error
in a series of charts that show the combinations of M and C (fish marked and fish
examined for marks) that will provide estimates with error no greater than 509,
25%,, or 109, of the true value 19 times in 20. The most useful of these, that for large
populations and 259%, accuracy, is reproduced here as Fig. 3.1. The expected number

of recaptures when obtaining this degree of accuracy, with 95%, confidence, varies

from approximately 25 to 75 for populations from 102 to 109,

Robson and Regier (1964) alse discuss in detail the optimum allocation of
resources in Petersen experiments to increase accuracy as much as possible.

ExampLE 3.1. TrouTt IN UrPER RODLT TARN: A SIMPLE PETERSEN EXPERIMENT.
(From Ricker 1948, slightly modified.) '

An early application of Petersen’s method was made by Knut Dahl, beginning
in 1912, He wished to estimate the population of brown troul (Safmo trutta) of some
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small Norwegian tarns, as a guide to the amount of fishing they should have. From
100 to 200 trout were caught by seining, marked by removing a fin, and distributed
in systeimatic fashion around the tarn so that they would quickly become randomiy
mixed with the unmarked trout. Shortly afterward, more seining was done, and the
fraction of marked fish in the catch determined. In the account which T have (Dahl
1919, 1943), the actual numbers of fish marked and recaptured are not given, but
from the resulting estimates for the 1912 experiment in Upper Ridli tarn, the follow-
ing table is prepared, in which these figures are of the right general magnitude:

Total number Number of

of trout marked trout Ratio

In the sample-—

Actual number 177(C) 57(R) 0.322

Limits of 959, confidence ... 46-71 0.26-0.40
In the tarn—

Actual number 33(N) 109(M)

Limits of 95%, confidence 417-272
Ratio of catch to population 0.52
Limits of 959, confidence 0.42-0.65

The steps in preparing this schedule are as follows: The ratio of marked to
total trout in the sample is first estimated as 57/177 = 0.322, and by reference to
Clopper and Pearson’s (1934) chart the 959, limits of confidence of this ratio are
0.26 — 0.40. Multiplying these by 177, the limits of confidence for the actual number
of recaptures are 46-71. The best estimate of the number of fish in the population
is now calculated from (3.7) as:

(M IC-H1) 10 X178
R4+ 58

®

= 337

By substituting 46 and 71 for R in the above, the confidence limits for N* are 417
and 272,

In this experiment the product MC = 19,300, which is much more than 4 times
any possible population size; thus bias of the type discussed in Section 3.2.3 is com-
pletely negligible.

Finally, rate of exploitation is v = R/M = 57/109 = 0.52; its range for 95%,
confidence is 46/109 = 0.42 to 717109 = 0.65. In Dahl’s experiment the rate of
exploitation played an important part, for he undertook to fish the tarn until about
half of its fish were removed, as estimated from recovery of marked ones.

3.3, ErFrict o RECRUITMENT

A straightforward application of formulae 3.1-3.10 is justified only if a number
of conditions are met, chief among which are the following:

1. The marked fish suffer the same natural mortality as the unmarked.

2. The marked fish are as vulnerable to the fishing being carried on as are the
unmarked ones,
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3. The marked fish do not lose their mark.

4. The marked fish become randomly mixed with the unmarked; or the dis-
tribution of fishing effort (in subsequent sampling) is proportional to the number
of fish present in different parts of the body of water.

5. All marks are recognized and reported on recovery.

6. There is only a negligible amount of recruitment to the catchable population
during the time the recoveries are being made.,

All of these conditions are of general applicability to experiments of this type,
and are discussed in more detail below. Number 6 is essential to the estimate of
population, but not to estimating rate of exploitation. Notice that natural mortality
will not interfere with the accuracy of the resulis, as long as it is the same for both
marked and unmarked groups. The population estimate obtained applies to the time
at which the marked fish were released.

Of the requirements above, the condition that recruitment be negligible is one
that often will not be met. Where it is not, the estimate of population is too great.
A correction for this effect can be applied by one of several methods.

I. If the population being estimated is divided into age-groups which overlap
only a little in length, then by choosing the lower limit of size of fish to be marked
at the trough between two age-groups, a boundary can be established whose position
will advance as the season progresses and the fish grow larger. In this way there will
be little or no recruitment into the marked size range, and C and R should remain
in strict proportion throughout the time recoveries are obtained; always provided
that the marked fish grow as much as the unmarked, and that they suffer the same
mortaliLy,

2, If the age-groups in the fishery overlap so thoroughly that no such point of
demarcation can be found, the growth rate of the fish throughout the season can
sometimes still be estimated by scale-reading. Suppose, for example, that we wish an
estimate of the fish 200 mm long or longer as of July 1st. Assume for the moment
that a sufficient number of fish can be marked immediately prior to July I to give
adequate recoveries later. Take the scales from a sample of fish canght near July 1
and ascertain the mean growth increment, from the time of the last annulus, of fish
of the two age-classes whose mean length lies nearest to 200 mm. From time to time
throughout the fishing season take additional samples and determine the increment
of these same age-classes. By applying these increments proportionately, the average
seasonal growth of fish which on July 1 were 200 mm long can be defermined with
fair accuracy. Now by including only fish greater than this size in the daily catches
(C), the effect of recruitment is avoided, and the population estimate consequently
will be a true one,

3. When information on growth rate is not obtainable in the detail necessary
for the method just outlined, an approximate correction, which is far better than
none at all, can often be made. First calculate the per annum rate of growth of fish
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of the appropriate size, using scales from a single group of fish taken at any time
(though consideration must be given to possible effects of selective sampling, cf.
Section 9.1.3), Then divide by the fraction of the growing season that is concerned,
ie. from July 1 to the successive days of the fishing season on which fishing is done.
Add these successive values to 200 mm and proceed as above.

The fact that recoveries are being made over a considerable period of time,
rather than on a single day or other short interval, is in itself no obstacle to the accurate
estimation of population, after the effects of recruitment have been excluded.

If it were necessary to mark fish for a considerable period prior to July 1 in
order to get a sufficient number, the same procedure as described above could be
extended backward. That is, fish less than 200 mm could be marked in May and
June, the exact minimum size in successive weeks to be determined by an examination
of rate of growth prior to July 1. It is not essenfial that such smaller fish be used,
provided the total mortality rate remains substantially the same over the lengih
range in question, but it will provide more fish for marking than would otherwise be
available. In either event there is a disadvantage in extending the marking period
too far backward, for natural mortality will remove some of the marked fish before
July I and make subsequent population estimates too great, If necessary, approximate
corrections can be made for this by deducting the estimated mortality for the fraction
of the growing season concerned.

4, A method that does not involve age or growth estimates has been described
by Parker (1955). After a marking, addition of new fish to the catchable population
“dilutes” the marks, and the ratio of recaptures to total sample, R,/C,, tends to fall
off with fime, 7. If this fraction is plotted against time and a line fitted, the intercept
at 7 = 0 is an estimate of R,/C, at time of marking, which can be divided into the
number marked, M, to get an estimate of initial population. It may be preferable
to use some transformation of R,/C, in the graph: the logarithm may be convenient,
or the arcsin of its square root as used by Parker.

This method is most useful when the experiment extends over a sufficient period
of time for recruitment to be quile pronounced. An estimate of error in the trans-
formed R, /C, can be made by calculating the standard deviation from the regression
line and then the standard error of the intercept at ¢ = 0 (see Snedecor 1946, section
6.9). Transformed back to original units and converted to population by dividing
into M, these limits will generally be wider than those based on Poisson or hypet-
geometric theory. They wili also be more realistic, since the variation about the regres-
sion line may be greater than expected because of non-random distribution and
sampling,

Examprre 3.2, BLUEGILLS IN MUSKELLUNGE LAKE: A PETERSEN EXPERIMENT

WITH RECRUITMENT ELIMINATED BY MiANS OF LENGTH ANALYSIS. (From Ricker 1948,
slightly medified.)

Figure 3.2 shows the length distribution of bluegills (Lepomis macrochirus)
handled in a marking experiment on Muskellunge Lake, Indiana (Ricker 1945a),
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Fig. 3.2. Length frequency distribution of bluegills caught
in traps (left) and by fishermen (right) in Muskellunge Lake,
Ind., 1942, by semimonthly periocds. Each ordinate division
represents 20 fish. The vertical broken line represents the
minimum size of fish marked, and the minimum size which
could legally be taken by fishermen. Ordinale — frequency;
abscissa — length {cm).

The population was sampled with two kinds of traps, which took small fish and larger
fish, respectively; although unfortunately the intermediate length range, 60 to 90 mm,
was poorly sampled. From length frequencies and scale-reading the stock could be
divided into age-groups fairly well, as shown by the arrows in Fig, 3.2. Fish of 123
mm and longer were marked. Recaptures were oblained in traps and from fishermen’s
catches from June 16 to September 7. From the figure, the legal-sized population ([25
mm group and up) at the beginning of (his period contained a majority of 3-year-old
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and older fish, but by the end of summer the 2-year-old group had almost completely
grown into the fishery, and the older ones contributed only a minor share of the
catch. The point of division moves from between the 135- and 140-mm groups in
May to between the 165- and 170-mm groups in the latter part of August, advancing
5 mm each half-month, The fact that the marked fish grew as rapidly as the unmarked
was shown by the increase in the minimum size of marked fish recaptured of
about 5 mm each half-month following June 15. (In a later experiment different
marks were used for fish greater and less than 142.5 mm in early June, with the same
result.)

The data of the experiment are summarized in Table 3.1. Considering first the
fish of age 3 and older, the ratio of marked to unmarked is about the same in traps and
in fishermen’s catches, so the combined estimate of 28 /727 = 0.0385 gives ihe mean
fraction of marked ones in the population. The estimated population as of the first
half of June is therefore 140/0.0385 = 3640; or better, from (3.7), N* = 141 X
728 /29 = 3540. Since MC is much greater than 4NN, there is no appreciable statistical
bias, though there is a fairly large random sampling error.

The estimate 3540 is doubtless slightly high because no account is taken of natural
mortality during the short period marking was in progress. An approximate
correction for this could be made, but it would be unlikely to exceed about 5%.

Rate of exploitation by fishermen is estimated very simply from Table 3.1 as
u = 23/140 = 16%,. The correction just mentioned would slightly increase this esti-
mate, as would an allowance for fish caught by the few boats whose catches were
not checked.

Tasre 3.1, Bluegills marked prior to June 16, 1942, in Muskellunge Lake; number of recaptures;
and the catch from which recaptures were laken.

Half-month period 6-11 7-1 7-11 81 8-I1 9-1 Total

A. Age 3 and older fish: 140 marked

Traps
Recaplures, ......ovvvivivnnen 3 0 1 0 1 e 5
Totalcalch, .................. 33 50 21 10 12 e 128
Fishermen
Recaplures, . .ovvvviiiiinnanns 3 9 8 2 1 0 23
Totalcatch. . ..o, 120 230 165 39 36 9 599
B. Age 2 fish: 90 marked, of legal sizc in carly June
Traps
Recaptures. .................. 2 0 0 0 0 - 2
Total catch (legal in early June)., 77 25 10 5 8 s 125
Total catch (whole age-group)... 487 187 80 21 20 795
Fishermen
Recaplures. ... vvveiieinnn.. 1 5 6 1 4 0 17
Total catch (legal in early June).. 44 96 92 44 80 19 375
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Turning now to the age 2 fish of Table 3.1, we observe that the ratio of marked
to unmarked “legal” fish is smaller in trap recaptures than in fishermen’s, but not
significanily so. Combining the two, the best estimate of population in early June,
from (3.7), is N*= 91 x 501 /20 = 2280. The rate of exploitation by fishermen is
u = 17/90 = 199, not significantly different from that for larger fish.

We can also try to estimate the size of the whole of the age 2 group of fish from
the trap records, by assuming the marked and unmarked portions to be equally
vulnerable to trapping. From the table, the whole age-group should be 7957125 = 6.36
times as numerous as is the part of it which was of legal size in early June (compare
the relative sizes of the parts of the age-group in June 1-15 on either side of the dotted
line in Fig, 3.2). The whoele age 2 brood is therefore estimated as 6.36 X 2280 =
14,500 fish.,

3.4. EFFECTS OF MARKING AND TAGGING

3.4.1. DIFERENTIAL MORTALITY. A frequent effect of marking is extra mortality
among marked fish, either as a direct result of the mark or tag, or indirectly from
the exertion and handling incidental to marking operations. In either event recoveries
will be too few to be representative; thus population estimates made from them will
be too great and rates of exploitation will be too small. For example, Foerster (1936)
found that yearling sockeye salmon (Gncorhynchus nerka) marked by removal of the
ventral fins survived to maturity only about 38%, as often as did unmarked ones.
Foerster’s method of estimating and correcting for this error depended on special
circumstances of the migratory behavior of the salmon,,so it is usually necessary
to look to other methods. One approach is to compare returns from different kinds
of tags or marks. If one method of marking obviously involves more mutilation of
the fish than another, yet both marks are recaptured with equal frequency, then
neither is likely to be producing any significant mortality. The opposite result, how-
ever, while suggesting that mortality is caused by the more severe procedure, would
not necessarily exonerate the milder one. Neither result would shed light on effects
of capture and handling, as distinct from the marking proper. When fish are being
tagged, and are more or less obviously bruised or abraded in the process of capture,
it is possible and useful to keep a record of the degree of injury and apparent vigoer
for each fish separately. When recaptures come in, these can be checked against the
record to see if the less vigorous fish are less frequently retaken.

Both of the above checks were made in an experiment on Shoe Lake, Indiana
(Ricker 1942b). Half the bluegill and other sunfishes (Lepomis spp.) were marked
by removing the two pelvic fins; the other half were given a jaw tag in addition to
the mark. It turned out that tagged fish were retaken as frequently as untagged
in traps, but in anglers’ catches they were much less numerous than untagged ones;
this sitvation lasted through the second summer of the experiment. Among tagged
fish, there was no association between rate of recapture and an estimate of trap
damage based chiefly on the extent to which the tail was split. Because the tag pro-
duced a rather serious and prolonged lesion, while the fin scars and tail membranes
bealed quickly, it was concluded that trapping, handling, removing the fins, and even
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the presence of the tag all resulted in very little or no mortality; but that the tag,
presumably by interfering with feeding, vitiated estimates of population made from
recoveries of line-caught fish. On large-mouthed fishes, however, the jaw tag interferes
much less with normali feeding.

Another disadvantage of jaw tags, doubtless related to the above, was that
they reduced the growth rate markedly in all species of fish on which they were used.
This is not too important, pechaps, since the number on the tag makes it possible
to identify the size class to which the fish belonged when tagged. Fortunately, when
medium-sized fish are marked by removing a fin or fins, no such retardation of growth
occurs (Example 3.2; Ricker 1949b).

3.4.2. DIFFERENCES IN VULNERABILITY OF MARKED AND UNMARKED FiSH. A more
insidious source of error is a tendency for marked or tagged fish to be either more,
or less, vulnerable to fishing than are native wild fish. This may result from several
CaUuses.

1. If the fish used were not originally part of the population being estimated,
they may obviously behave differently, whether or not they are marked or tagged.
This consideration usually makes hatchery-reared fish, or wild fish from strange
waters, useless for estimating native populations.

2. When tags are used, the tag itself may make a fish more, or less, vulnerable
to fishing. The jaw-tagged bluegills mentioned above are a case in poingt: the tagged
ones were much less vulnerable to angling. Another example is of salmon tagged
with two disks joined by a wire passing through the body. Though excellient from
several standpoints, these “Petersen disks” made the fish more vulnerable to gillnets
than untagged fish, because the twine caught under the disk.

3. Of more general applicability are differences in behavior as a result of tagging
or marking, Capturing and marking a fish subjects it to physiological stress (Blaclk
1857 and many subsequent authors), and possibly psychological disturbance as well.
Thus it is not surprising to find them behaving differently afterward, for a longer or
shorter period. For example, marked centrarchids, when first released, usually swim
down and burrow into the weeds, The same tendency, if it persists, might make them
more apt fo enter a trap funnel than an untouched fish, Any fish, after marking, may
be “off its feed”, and thus less likely to be caught by methods involving baited hooks.
If marking makes a fish less inclined to move about, it will be less apt to be caught
in fixed gear like traps or gillnets, but it may be more likely to be caught in moving
gear like seines or otter trawls. With other fish a tag may be a stimulus resulting in
increased or mote erratic movement for some days or weeks. For example, Dannevig
(1953, fig, 3) found that tagged cod were retaken by gillnets with rapidly decreasing
frequency over the first 15-20 days after tagging, but during the same period recaptures
from hook gear remained steady (1948) or actually increased (1949).

Eiffecis of these sorts will generally be hard to detect, and hard to distinguish
from actual mortality due to tagging. Rate of recapture in successive weeks or months
after tagging may provide suggestive information. S0 may comparisons of recaptures
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by diflerent methods of fishing, for vulnerability to one kind of gear may be affected,
bui not to another, as in the case of the jaw-tagged sunfish or the cod mentioned
above. What makes the use of these criteria difficult is that ordinarily recaptures are
nene too numerous, and their limits of sampling error may be so wide that significant
systematic errors are hard to demonstrate.

ExampLE 3.3. CORRECTION FOR ErrFECTS OF TAGGING ON VULNERABILITY OF
CHUM SALMON IN JOHNSTONE STRAIT, B.C. (From Ricker 19358a, after Chatwin 1953.)

Chum salmon (Oncorkynchus keta) were tagged at two siies along their migration
route from Queen Charlotte Sound through narrow [00-mile-long Johnstone Strait
into the Strait of Georgia (Table 3.2). The fish moved from Area 12 (upper Johnstone
Strait) through Area 13 (lower Johnstone Strait), and were tagged about midway
along each Area.

TapLE 3.2. Chum salmon tagged and recovercd in Upper Johnstone Strait and Lower Johnstone
Strait, with estimated percentage returns for fish enrering the strait.

Percentage recovery by localities

No.
Tagging locality tagged Area 12 Arca 13 Other Unknown  Total
Area 12.. ... . ool 1733 15.98 10.09 11.74 1.73 39.54
Area 13, .. o i 1952 0.15 14.65 14.81 1.33 30.94
Entrance of 12 (computed). . .. AR 13.10 10.44 12.81 1.45 37.80

Recaptures of Area !2 fish were expected to be about twice as great in Area 13
as in 12, since they were exposed to only half of the Area 12 fishery and there was
about the same amount of fishing in each Area. In fact, however, more were caught in
12 than in 13 (15.989 and 10.099, respectively). This fact, plus a consideration of
times of tag recoveries, indicated that the tag or the tagging procedure delayed
the fish’s movement by a few days. (Similar effects have been observed in river tagging;
see Killick 1955.)

For estimating rate of exploitation, the data of the chum experiment have two
defects: (1) there is the extra vulnerability due to the tagged salmon’s delay in resuming
migration; and (2) it would be desirable to refer the resulis to a (hypotheiical) tagging
point for fish as they first enter the fishery at the upper end of Area 12, Chatwin made
both these adjustments in a single operation, by assuming that fish tagged in Area 13
were delayed to the same degree as those tagged in Area 12. The rate of recovery of
tagged fish entering Area 13 is, from Table 3.2, 10.09/(1- 0.1598; = 12.01%,; as
compared with 14.65% recovery of those tagged in Area 13, If the same relation
applies in Area 12, where 15.98%, of local tags were retaken, the corrected rate of
exploitation in Area 12, applicable to untagged fish entering the Area, is:

12,01 X 15.98/14.65 = 13.10%
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Of the 86.90% which remain after {raversing Area 12, 12,019, are taken in Area 13,
or 10.44% of the original arrivals to the fishery. In a similar way the recaptures below
Area 13, of fish entering Area 12, were estimated as 12.817. These three percentages
are then added, and increased by the small percentage of “unknown” recaptures,
10 obtain a final representative rate of exploitation of 37.8%7. However, there were 2
few other complications in the situation, one being the possibility of incomplete re-
porting of tags recaptured.

In this experimeni only the rate of exploitation could be estimated, and not
the total population, because in the lower Strait of Georgia the Johnstone Sirait
chums became mixed with others, and the catch statistics cannot distinguish them by
origin.

3.5. Loss oF MaRrks or TAGS

Another source of error in population estimates concerns the tags or marks
themselves. Tags have been placed, at one time or another, on many different parts
of a fish. The conventional strap tag is usually attached either at the base of the tail
fin, on the gill cover, or around the lower or upper jaw. Tags attached with wires
are usually run through the flesh near or beneath the dorsal fin. Visceral tags are
inserted into the body cavity. Whatever tag or tagging site is used, it is important
that the attachment be reasonably permanenti, if results of the experiment are to be
used to estimate population abundance. Evidence of nonpermanent attachment can
sometimes be had by examining a sample of the catch closely, to detect scars left by
shed tags.

When fish are marked, rather than tagged, a similar loss of the mark may occur.
An early method of marking, used by Petersen on plaice, was to punch holes in the
dorsal fin, For more normally-shaped fish the usual method, in fresh water at least,
is to remove ene or more fins, Many fishes possess considerable power of regeneration
of fins, especially when they are cut not too close to the base. I have seen regenerated
pectoral fins of large crappies (Pomoxis annularis) which were perfect except for a
certain waviness of the rays; these had been clipped about one-fifth way from the
base a year ecarlier. Experience in Indiana with posi-fingerling largemouth bass
(Micropierus salmoides), black crappies (Pomoxis nigromaculatus), and a variety of
sunfishes (Lepomis), bullheads (Ferafurus), and yellow perch (Perca flavescens) showed
that the pectoral fins did not regenerate at all, and the pelvic fins usually did not,
when cut as closely as possible to the base. At most, the pelvic fins regenerated im-
perfectly, so they could be distinguished by even a quick inspection, and very rarely
did both fins of a pair regenerate significantly.

For really young fish, results have been more variable, Young Indiana bass,
530 to 75 mm long when clipped, exhibited at most a very imperfect regeneration
of pectoral or pelvic {ins over a period of two or three months in ponds, or up to
eight months in aquaria (Ricker 1949b). However, Meehan (194() reported that
young largemouth bass marked in Florida usually regenerated closety-clipped pectoral
and ventral fins perfectly within a few weeks. Possibly this is associated with more
rapid growth in southern waters. The anal and soft dorsal fins of even large
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centrarchids, however, regenerated quickly and often practically perfectly, no matter
how closely cut.

In salmonid fishes regeneration is apparently less easy, and dorsal, anal, and
adipose fins, as well as the paired fins, have all been used with good results. Some
regeneration may occur, particularly of the adipose, but it is practically always
imperfect, unless the cutting is done when the fish are very small. Il is comparatively
easy to check on the cxtent of fin regeneration by keeping a number in captivity, or
by sampling wild marked stock at frequent intervals, or by using two unassociated
fins for the mark,

A source of error similar to regeneration is the natural absence of fins from wild
fish. Among Pacific salmon their frequency evidently varies from stock to stock
and from year to year (Foerster 1935; Davidson 1940; Ricker 1972, p. 54). They can
be numerous enough to complicate interpretation of single-fin experiments when
recoveries are obtained at low incidence over a wide area. Other kinds of fish have
been less studied from this point of view, but I have never seen naturally-missing fins
among spiny-rayed fishes in fresh water, '

3.6, NoN-rANDOM DISTRIBUTION OF MARKS AND OF FISIING ErrorT

To make a marking experiment representative, either the marked fish, or the
total fishing effort, must be randomly distributed over the population being sampled.
Consider a population consisting of 10,000 fish in each of two halves of a lake, 20,000
in all. Twice as many traps are set in one half as in the other, so that, both for marking
and for recoveries, one end is sampled twice as efficiently as the other, In an experiment
of the Petersen type, 1/5 of the fish at one end are marked, and 1/10 of those at the
other, Similarly, after mixing of the marked fish into the unmarked, 1/5 and 1/10,
respectively, are taken and the marked fish among them recorded. Eliminating sam-
pling error, the result is as follows:

First half Second half Total
Actual population (N).. 10,000 10,000 20,000
Number marked (M).... 2,000 1,000 3,000
Sample taken (C).......... 2,000 1,000 3,000
Recoveries (R).............. 400 100 500

If the data are treated as a whole, the estimated population is 3000 X 3000/500 =
18,000, which is 109, low. This error can be avoided, however, by considering the
two halves of the lake separately and calculating the population of each. When
there is any reason to suspect unequal fishing effort in two or more parts of a lake,
it will be valuable to divide the experiment into parts in this way, as was done for
example by Lagler and Ricker (1942). This type of error always tends to make the
result of a commen calculation less than the sum of the separate calculations.

C. H. N. Jackson seems to have been the first to point out that if either the mark-
ing or the subsequent sampling is done randormly, the estimate obtained is not biased.

3The randomness is relative to the population structure; it need not necessarily exist in any geo-
graphical sense.
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For example, if after the non-randem marking in the illustration above a random
sample were taken, say of one-fourth, the total number of fish in it would be 5000,
and the number of marked fish 750, giving a population estimate of 3000 5000/750 =
20,000, the correct figure.

To play safe, it is well to try to make both marking and subsequent sampling
random, even though either one singly would suffice. Proceeding in this way, it was
not difficult to obtain a representative picture of the populations of most of the spiny-
rayed fishes of small Indiana lakes (Ricker 1942b, 1945a, 1955a; Gerking 1953a).
Other information concerning the randomness of the procedure can be obtained
by comparing the ratio of marked to unmarked fish caught by different types of gear,
or gear set in different situations, provided the gear does not tend to select marked
from unmarked fish, or vice versa. Schumacher and Eschmeyer (1943) tested the
randomness of distribution of their marked fish in a pond of 28 hectares, by draining
it and recovering a large part of the total fish present. They found the ratio of marked
to unmarked fish, of several species, to be little different from what they had previ-
ously computed from their trap samples, but bullheads (Zetalurus spp.), carp (Cyprinus
carpio) and bigmouth buffalo (fetiobus cyprinelius) showed significant or near-
significant differences. This they attribute to the fact that a large part of the pond
was too shallow for their nets, the fish in question being presumably insufficiently
active to attain a random distribution during the two weeks of their experiment.
Similarly Lagler and Ricker (1942) found little mixture of the fish populations of
two ends of a long narrow pond, over a two-months’ period. Additional tests have
been reported by Carlander and Lewis (1948), Fredin (1950), and others.

A salutary measure, when it is feasible, is to take the sample in which recaptures
are sought by using an entirely different kind of gear from that used to catch fish for
marking. For example, if fish for marking arc taken in traps, and recoveries are
obtained by angling, there is little likelihood of similar bias being present in both
gears.

Large lakes, river systems, and ocean banks present even more difficult problems.
Many ocean fisheries cover so wide an area that representative tagging of the whole
population is impossible, while fishing effort may vary greatly from bank to bank,
This makes it necessary to select smaller units for examination, in which event the
problem of wandering may be troublesome,

River fish also are amenable to enumeration by Petersen’s method, if they are not
of a roving dispesition; and as a matter of fact their populations often prove to be
surprisingly stable (Scott 1949; Gerking 1953b). Adjustments for a small amount of
movement were made by these authors, this being determined by sampling at sites
above and below the section under consideration.

The first report of an application of the Petersen method to a migrating fish
was apparently by Pritchard and Neave (1942). Coho salmon (Oncorftynchus kisurch)
were tagged at Skutz Falls on the Cowichan River, British Columbia, and recoveries
were made in tributaries of Cowichan Lake, many miles upstream. Close agreement
of the tagged:untagped ratio in widely-separated tributaries provided evidence that
tagging had been random with respect to the destination of the fish and to their
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expectation of recovery. Howard (1948) deseribed a more extensive study with sockeye
salmon (0. nerka) at Cultus Lake, British Columbia, noting various kinds of hetero-
geneity in the data and the procedure necessary for a reasonably reliabie result.

3.7, UNEQUAL VULNERABILITY OF F1SH OF DIFFERENT SIZES

Unequal vulnerability of different sizes of fish to fishing gear is a source of
systematic error in population eslimates similar to that just discussed, It can be
illustrated by the same numerical data as used in Section 3.6, putting, in place of the
two halves of the lake, two size groups of fish, one twice as vulnerable to fishing as
the other. Detection of possible unequal vulnerability can be accomplished by com-
paring the rate of recapture of marked fish of different sizes, when enough recaptures
are made to minimize the effects of sampling error. However, differential mortality,
or different behavior of marked fish as compared with unmarked, might give a similar
picture if it affected, for example, small fish more than targe ones.

In general, it is likely that variation in vulnerability with size, though a common
enough phenomencn, will not usually be a sericus problem. For one thing its effects
can be minimized by excluding from consideration fish near the limits of vulnerability
to any given type of fishing gear, or by using less selective types of gear for experiments
of this sort, or by dividing the fish into two or more size groups. Even in the example
of Section 3.6, which probably represents a rather extreme situation, the
bias in population estimate was only 109. Cooper and Lagler (1956) found that the
efficiency of an electric shocker varied from about 7% for 3-inch trout up to 409, for
11-inch ones; even so, a Petersen estimate made for the whole population was only
309, low. Similarly, for Seber—Jolly population estimates (Section 5.4), Gilbert (1973,
fig. 3, 4) illustrated the negative bias obtained for a number of mixtures of fish having
different catchabilities.

What should always be avoided is the combining of data concerning two or more
species to make a common estimate. There may sometimes be a temptation to do this,
when data are available for two or more species of similar kind and size, with only a
few recaptures for each; but obviously different species may differ greatly in vulner-
ability over the whole size range of both, and consequently such a combined estimate
can be much too low. Thus in small Indiana lakes the redear sunfish (Lepomis micro-
lophus) is about 10 times as vulnerable to trapping as is the similar bluegill (L. macro-
chirys), while its abundance is usually about a fifth of that of the bluegill (Ricker [943a,
1953a). In an experiment based wholly on trap data, the number of redears marked
would be twice the number of bluegills, and the number of marked redears recaptured
would be 20 times the number of marked bluegills. A calculation similar to that of
the last section will show that if the two species were to be treated as a unit, the
resulting population estimate would be less than the combined population of the
two species by 649 An example is provided by Krumholz (1944), who found that
the sum of the estimates of the population of bass (Micropterus), bluegills, and
pumpkinseeds (Lepomis gibbosus) in a small lake, when calculated separately, was
19,080, whereas the figure obtained from an estimate made by lumping all species
together was 9700.
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ExAMPLE 3.4. PLAICE PLANTED IN THISTED-BREDNING: A PETERSEN EXPERIMENT
wITH UNEQUAL VULNERABILITY BY S1ZE, (From Ricker 1948.)

Petersen (1896, p. 12) marked 10,900 out of §2,580 plaice transported into
Thisted-Bredning, one of the expansions of the Limfjord, by punching a hole in the
dorsal fin. These fish were of almost commercial size and were available to fishermen
the same year. Two samples of plaice from the fishery were examined, 1000 in all,
of which 193 had the mark. Now this is a curious result, for the fraction of marked
fish in the sample (0.193) is greater than in the original number transported (0.132);
whereas, i any native fish at all were present in Thisted-Bredning, we should expect
the fraction of marked ones in the sample to be smalier.

To see if the difference is greater than could be ascribed to sampling error, we
proceed as follows:

Limits
of 959,
Transported In the sample confidence
Total number..............coeve 82,580 1000
Number of marked ones........ 10,900 193 168-222
Ratio.....oooiviiviiiccieeeeeene 0.132 0.193 0.168-0.222

Only once in about 40 times, on the average, would a similar sample have a frac-
tion of marked ones as low as 0.168, whereas the actual fraction put in was 0.132, We
may accordingly conclude, as did Petersen, that the experiment does not wholly
meet the requirements of random sampling. A possible disturbing factor would be,
for example, a tendency for markers to select larger fish for marking, combined with
a tendency for larger fish to be more quickly caught by fishermen than smaller ones.
Though there is thus an element of uncertainty in the actual determination, there is
no reason to question Petersen’s conclusion that the Thisted-Bredning plaice were
almost all of imported origin.

Notice that the rate of commercial exploitation cannot be calculated in this ex-
ample without knowing either the total number of fish, or the total number of marked
fish, which were removed from the broad. Petersen did make estimates of rate of
exploitation, 'but for this he used tagged fish.

ExamrLe 3.5. A PrrerseN ESTIMATE OF THE LEMON SOLES OF HECATE STRAIT:
ADIJUSTMENTS FOR SIZE DIFFERENCE IN YVULNLRABILITY, AND FOR MIGRATION. (From
Ricker 1938a, after Ketchen 1953.)

Ketchen (p. 468) tagged and released 3003 English soles (Parophivs vetulus)
into a population being actively fished in Hecate Strait, British Columbia. Recaptures
were made by comimercial boats. However, the average length of the commercial
catch was somewhal greater than that of the group fagged. To obtain an cstimate
of the stock of commercial sizes, the number of tags released was reduced by an
approximate factor obtained by superimposing the two frequency distributions
(Fig. 3.3). The lined area of the graph includes 23.9 **per cent units,” so the number
of tags put out was reduced by this percentage, o 22835, (Of these, 30 had been retaken
before the start of the period shown in Table 3.3.)

93



—— TAGGED FISH
~——— COMMERGIL CATCH

(o]
Iy
T
Y

FREQUENCY (%}
on

30 40 50

LLENGTH ~ ¢m
FiG. 3.3. Length frequency distributions of lemon soles taken by the
commercial fishery, and of those tagged and released, as percentage.
The lined region comprises 23.9% of the area of cither polygon, and
represents the percentage by which the number of tags must be reduced
to obtain the number “effectively” tagged for this fishery. (From
Ketchen 1953, fig. 3.)

Two factors affected the representativeness of the recoveries. First, the stock
was moving gradually northward, so that new fish were entering the fishing area and
old ones (including tagged ones) were moving out. Secondly, tagging was done from
a single boat and the tagged fish, whether from their position or their behavior, were
temporarily less catchable than the untagged ones. The latter effect was indicated
by disproportionately few recaptures made in the first few days after tagging. Both
effects tend to make for too large an-estimate {of the population present at time of
tagging), but the first increases in importance with time, whereas the second decreases.
Consequently, from a computation of population at two-day intervals (Table 3.3),

TasLE 3.3, Petersen estimates of a lemon sole population, from recaptures made al 2-day intervals.

Tags Total “Effective” Population
recap- fish no. of tags estimale

Interval tured caught at large (from expression 3.7}

R C M N

Dleces pieces pieces miiliions

I 19 81,000 2255 9.1

2 13 46,400 2236 5.2

3 27 67,9200 2217 5.4

4 41 132, 100 2190 6.9

5 74 173,600 2149 5.0

6 45 102, 500 2075 4.6

7 50 118,800 2030 4.7

8 60 146,300 1980 4.7

9 47 127,600 1920 5.1
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it is possible to select the low point as the best available estimate of the stock on
the grounds when tagged. This can be taken as 4.7 million fish of commercial size
{(average, 0.937 1b), or 4.4 million pounds— an estimate which is still probably
somewhat high. For a different estimate of this population, sce Example 6.3,

3.8. INcomPLETE CHECKING OF MARKS

It need hardly be added that incomplete discovery or return of tags or marks
can lead to serious error. When fish are examined by observers employed especially
for the purpose, or by efficient mechanical devices for detecting metal tags, this
danger is minimized. Often, however, reliance must be placed on commercial or sport
fishermen to turn in records. Experience shows that this is almost certain to give
incomplete returns — varying a great deal, of course, with local interest, publicity
given to the experiment, the amount of handling the fish get, the type of tag or mark
used, and the size of the reward offered if any. Cash rewards are undoubtedly
a great help, but they tend to be expensive and have been utilized chiefly in commercial
fisheries. The same principle has been applied to sport fisheries by using returned
tags as tickets in a sweepstakes, with the prizes donated by local merchants or sports-
men’s organizaiions, Whatever type of inducement is used to encourage non-profes-
sional reporting, it will always be desirable to have a substantial part of the catch
examined by trained observers, if this is at all possible.

3.9, MuLrtipLE CENSUSES

3.9.1. GENERAL CONSIDERATIONS. During the mid-1930’s David H. Thompson
in lllinois and Chancey Juday in Wisconsin began making population estimates from
experiments in which marking and recapture were done concurrently. Neither pub-
lished his results, but Dr Juday interested Zoe Schnabel (1938} in a study of the theory
of the method.

Strictly speaking, the method requires that population be constant, with no
recruitment and no mortality during the experiment; but it is often useful even if
these conditions are only approximately satisfied, The following information is
available:

M, total marked fish at large at the start of the sth day (or other interval),
i.e. the number previously marked less any accidentally killed at previous
recaplures.

M  ZM,, total number marked.

C, total sample taken on day 1.

R, number of recaptures in the sample C,.

R ZR,, total recaptures during the experiment.

The theory of this situation has been discussed by Schumacher and Eschmeyer,
De Lury, Chapman, and others. We_wish 1o estimate N, the population present
throughout the experiment.
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3.9.2, MEAN oF PETERSEN TSTIMATES. The simplest approach is to use the results
for each day {or other short interval) for a Petersen estimate. (The minimum number
of recaptures should preferably be 3 or 4, so as to avoid the statistical bias described
in Section 3.2.3.). The mean of these Petersen estimates is taken as the estimate of N,
and the differences between each day’s estimate and the mean will provide an estimate
of the standard deviation and standard error of the mean. The principal disadvantage
of this procedure is that a series of estimates of generally increasing reliability is
treated as though they were uniformly reliable, The advantage lies partly in the fact
that the method provides an estimate of error based on observed variability (rather
than a theoretical figure based on the assumption of random mixing); Underhill (1940}
used it for this purpose, even though he rightly feli that expression (3.15) below
provided a better estimate of the population. Another possible advantage of this
approach is that the series of estimates can reveal trends lhal might indicate departure
from the basic postulates above.

3.9.3. ScHUMACHER AND EsCHMEYER’S ESTIMATE. Consider a line fitted to values
of R,/C; plotted against M, with the restriction that it go through the origin; the
slope of this line is an estimate of 1/N. The best estimate of 1/N is obtained if each
point is weighted as C,, and this leads to the estimate;

1 Z(M,R (MR

N~ Z(CMD) (3.12)

The reciprocal of (3.12) is an estimate of N. For the variance of (3.12), the basic
datum is the mean of the squares of deviations from the line of R, /Ct against M,,
given by Schumacher and Eschmeyer as:

o _ ZRI/CY- (ZRMY![Z(C MY
m-1

(3.13)

where m is the number of catches examined. However, instead of computing confidence
limits directly for N, as Schumacher and Eschmeyer do, it is better to compute them
for the more symmetrically distributed 1/N (DeLury 1958), The variance of 1/N,
which is a regression coefficient, is:

. 3.14
SO (3.14)
For computing limits of confidence for 1/N from (3.14), t~values are used correspond-
ing to m— 1 degrees of freedom. Limits of confidence for N are found by inverting
those obtained for 1 /N,

3.9.4. SCHNABEL'S METHOD. An approximation to the maximum likelihood
estimate of N from multiple censuses is given by Schnabel’s (1938) short formula:

T(CM,)  TCM,)

= 3.15
IR, R 319

N:
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This estimate, like (3.5), is asymmetrically distributed. Limits of confidence {based
on the assumption of random mixing) can be computed by treating R as a Poisson
variable and using the table in Appendix 11, particularly when R is small. For medium
to large R, advantage can be taken of the fact that 1/N is distributed nearly normally
with variance: :

V{I/N) = (3.16)

(ECM))?

From the estimated standard error (the square root of 3,16) limits of confidence can
be calculated for [/N using f-values for the normal curve. These limits are then
inverted to give a confidence range for N.

Chapman (1952, 1954) points out that inverting an estimate of 1/N does not
give quite the best estimate of N itself. For (3.15) a simple adjustment is available
that gives a better result:

Z(CM,)
N=—— .
R4l (3.17)
Approximate limits of confidence for (3,17) can be obtained by considering R as a
Poisson variable (Appendix 11).
DeLury (1951) described an iteralive method of obtaining the true maximum likelihood estimate

of N, but later (1958} he abandoned it in favor of (3.12) above, on the grounds that the iterative pro-
cedure depended too heavily on the postulate of randem mixing,

3.9.5. STATISTICAL Bias, Like Petersen estimates, estimates from multiple censuses
are subject to negative bias when the combination of number of fish marked and
number examined falls too Jow. 1 have not found this discussed specifically but it
seems likely that, as in Section 3.2.3, this bias can be ignored whenever the number
of recaptures is 4 or more.

ExAMPLE 3.6, SCHMABEL AND SCHUMACHER ESTIMATES OF REDEAR SUNFISH
IN GORDY LAKE, INDIANA. (From Ricker 1958a, after Gerking 1953a.)

Gerking (1953a) compared different estimates of populations of various sun-
fishes in a small lake. Our Table 3.4 reproduces part of his table 3 for part of the
stock of redear sunfish (Lepomis mierolophus). As often happens, a few marked fish died
from effects of frapping or from other causes; these are deducted from the number
marked on the day in question, and therefore from the number at large next day
{M,). .

Columns 2 and 5 of Table 3.4 provide the Schuabel-type estimates. The short
Schnabel formula (3.15) gives N = 10740/24 = 3\48.; the modified Schnabel (3.17)
is N = 10740/25 = 430.
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Tasre 3.4, Computations for Schnabel and Schumacher estimates for age 3 redear sunfish in
Gordy Lake, Indiana, from trap recaptures. (Data from Gerking 1953a, table 3, using only the June
2-15 data.)

1 2 3 4 5 6 7 8
Number Marked
Number Recap- marked fish at

caught tures (less large

C, R, removals) M, C,M, MR, C,M? RIC,
10 0 10 0 0 0 0 0
27 0 27 10 270 0 2,700 0
17 0 17 37 629 Q 23,273 ¢
7 0 7 54 378 0 20,412 0
1 0 61 61 0 3,721 0
3 0 62 310 0 19,220 0
2 67 402 134 26,934 0.6677
15 1 14 71 1,065 71 75,615 0.0667
9 5 4 85 765 425 65,025 2.7778
18 5 13 89 1,602 445 142,578 1.3889
16 4 10 102 1,632 408 166,464 1.0000
2 112 560 224 62,720 0. 8000
2 4 115 8035 230 92,575 0.5714
19 3 116 2,261 357 269,059 0.4737
162 24 119 984 10,740 2,294 970,296 7.7452

Columns 6-8 contain the produects needed for the Schumacher estimate and
its standard error. The estimate of T /IN is 2294 /970296 = 0.0023642; hence N = 423,
Variance from the regression line is, from (3.13):
_71.7452 - (2294)* /970296
B 14 - 1

= 0.17851

s = 0.42250
From (3.14):

SN = \/0‘17851 — 0.00042892
970296

Since t = 2,160 for 13 degrees of freedom (Snedecor 1946, table 3.8), the 959, con-
fidence range for 1/N is 2.16 times the above, or +0.0009265. Confidence limits
for 1/N are 0.0023642 4-0.0009265 or 0.0014377 and 0.0032507, and the reciprocals
give limits for N,
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These estimates and their estimated confidence ranges are summarized below:

Kind of estimate N 959, range
Original Schnabel (from 3.15) 448 320-746 (from 3.16)
Modified Schnabel (3.17) 430 302-697 (Poisson)
Schumacher (from 3.12) 423 304-696 (from 3.14)
DelLury’s weighting formula 440

Gerking (1953a) computed an estimate using DeLury’s weighting formula;
using only the data of Table 3.4, it is shown as the last item above. In this and similar
comparisons, differences among estimates are small compared to the range of the
confidence limits.

3.10. Sy¥sTEMATIC ERRORS IN MULTIPLE CENSUSES

In population estimates from multiple censuses, systematic errors can assume
complex forms, and to examine their effects theoretically would be a protracted task.
In general, all the sources of error discussed earlier in the chapter must be considered
here too. Three which are of greater importance in this method are:

1. Error due to recruitment, This can sometimes be avoided by the method
discussed earlier, of making ailowance for fish growth and confining the marking
(or the calculation} to a single age-class or some otherwise-restricted segment of
the population, For examples see Wohlschiag and Woodhull (1953). Anocther method
is to plot the trend of successive population estimates, and extrapolate back to time
zero (Example 3.7).

2. EBrror due to natural moriality. In the absence of recruitment, the effect of
natural mortality, affecting marked and unmarked fish equally, is to make a Schnabel
estimate less than the initial population size, though preater than the final popula-
{ion size. If natural mortality is exactly balanced by recruitment, the Schnabe] estimate
becomes greater than the population size since the replacements will not have marked
fish among them.

3. Error due fto fishing mortality, This differs from the last in that it is usually
possible to obtain a record or estimate of marked fish removed in this way, and if
so this number can be subtracted from the number of marked fish at large in the
lake. Fishermen’s records are also an additional source of data for the population
estimate. However, unless recruitment exactly balances the loss to fishermen, the
population estimate will not be equal to the initial population present, nor even exactly
equal to the average population present,

The probable effects of these and other errors shoutd be examined in each experi-
ment separately. Other things being equal, the shorter the time in which recoveries
are made, the betier the estimates obtained by Schnabel’s method; and this provides
an incentive to more indensive work. {([f the experiment extends over a long period,
it can be broken up for analysis by the “point-census’” method if numbered tags are
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used, or if the marks used are changed at intervals.) However, foe short a period
makes it diflicult to aitain a random distribution of the marked fish.

3.11. ESTIMATION OF NATURAL LOSSES AND ADDITIONS TO THE STOCK

If natural mortality or emigration from a stock occurs during a multiple census
experiment, but additions are excluded, a Schnabel estimate tends to be less than a
Petersen estimate, the former being affected by the losses whereas the latfer is not.
DeLury (1951} points out that the difference between these two estimates can be
used 1o estimate the magnitude of the rate of loss during the course of the experiment.
Expression 1.19 on page 292 of his paper can be used for an approximate direct
estimate.

Alternatively, trial values of the rate of loss could be introduced into the Schnabel
computation until one is obtained which makes the final estimate equal to a previously-
obtained Petersen (or other unbiased) estimate of initial population.

Schnabel estimates of 1 /N made on successive days during an experiment tend
to increase with time when there are losses from the population but no additions
to it. Thus another possible criterion for the best trial estimate of natural mortality
rate would be that which climinates this trend from successive daily estimates of
1 /N (nof the cumulative estimates).

If both mortality and recruitment (or emigration and immigration) can occur,
DeLury (1958) shows that estimates of rates of mortality and recruitment can be
obtained by a multiple regression procedure.

Unfortunately, the sampling errors of all these estimates tend to be large, and
DeLury’s bead-drawing trials suggest that it would rarely be possible to obtain useful
values for rate of accession or loss from the Schnabel situation.

ExampLE 3.7. SCHNABEL AND TIMC-ADIUSTEDR ESTIMATES OF CRAPPIES OF FOOTS
PoND. (Modified from Ricker 1948.)

Lagler and Ricker (1942) give estimates of the numbers of various species of fishes
of Foots Pond, Indiana, using Schnabel’s method of estimation. Fish were caught
in traps near shore, but were released in open water in an attempt to get them mixed
into the unmarked population. Recoveries extended over a period of 7 weeks during
the summer, All recoveries were from the same traps as used to catch fish, for marking,
since line fishing during this time was negligible. Table 3.5 gives the data for white
crappies (Pomoxis annularis) of the northern part of the pond, accumulated by [0-day
periods so as to have at least 3 recaptures per period and so minjmize statistical bias
of the type described in Section 3.2.3. The first 5 days are omitted because of probable
incomplete mixing or aberrant behavior of recently-marked fish.

The direct unweighted Schnabel estimate, using (3.17), is 65,050 /22 = 2960 fish.
The estimates tend to increase throughout the experiment. This may be merely
sampling variability, but it could result either from recruitment to the population or
from different mortality or behavior of marked fish. There is no good way of deciding
between the alternatives, which of course do not exclude each other. An adjustment
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TaBLE 3.5 Estimation of the number of crappies in the north haif of Foot’s Pond, Indiana. (Data
from Lagler and Ricker 1942.)

Individual
Recaptures estimate 6

Mid-period R x10%
time (days) CM, R, CM,/R A1} CM,

10.5 5,560 3 1390 540

20.5 13,250 5 2210 373

28.0 14,880 6 2130 403

40.5 24,520 4 4900 163

48.0 6,840 3 1710 439

‘Total 65,050 21 2960 -

for them can be made similar to Parker’s correction for recruitment in Petersen
experiments (Section 3.3). Although these data are perhaps too scanty to make it
worthwhile, the method is illustrated below.

Successive Petersen estimates of 1 /N are shown in the last column of Table 3.5.
These are regressed against the mid-times of successive 10-day periods of the experi-
ment (in the 3rd and last periods trapping was done only during the first 5 days).
The regression coefficient is -0.0475 and the intercept for time 0 is 523.6 X 106,
Inverting the latter gives 1910 as an estimate of the initial population. This is 1050
less than the Schnabel estimate, suggesting that the time effect is important in this
situation,

3,12, SCHAEFER METHOD FOR STRATIFIED POPULATIONS

In work with migratory or diadromous fishes, it often happens that the fish can be
sampled and marked at one point along their migration route, and recovered later
at a different place. In effect, the population is divided into a series of units, each
partially distinct from adjacent units. This is an example of stra#ification, which has
been considered at length by Chapman and Junge (1954). Stratification may also
exist in respect to space, for non-migratory fishes.

We noticed earlier that if either the marking sample or the recovery sample
is random, an unbiased {consistent} cstimate of the total population can be obtained
by the Petersen method. But if both the original marking and the sampling for recov-
eries are selective, the Petersen estimate may be biased. If both marking and recovery
favor the same portion of the population, the Petersen estimate tends to be too small.
For the estimate proposed by Schaefer (1951a,b), time of marking is divided into
periods here designated by i, and time of recovery into periods designated by j.
We have:

M; number of fish marked in the ith period of marking (T of Schaefer)

M IM,, total number marked
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C; number of fish caught and examined in the jth period of recovery (C; or
¢; of Schaefer) _
C ZC, total number examined

R;; number of fish marked in the ith marking period which are recaptured in
the jth recovery period {mg; of Schaefer)

R; total recaptures of fish tagged in the ith period (mg. of Schaefer)
R; total recaptures during the jth period (m;. of Schaefer)

These data are arranged in a table of double entry, as shown in Table 3.6 of cxample
3.8. For each cell of the table, an estimate is made of the portion of the population
available for marking in period i and available for recovery in period j; and the sum
of these for all cells is the total population:

M, G
N=ZIN, ==X (R,-,-- —L. —i) (3.18)

This is expression (32) of Schaefer (1951a, b).

Chapman and Junge’s analysis indicates that (3.18) gives a maximum likelihood
estimate only under the same conditions that the Petersen estimate does: that is,
when either tagging or subsequent sampling for recoveries is done without bias,
However, (3.18) will frequently give a better estimate than (3.5). This is because (3.18)
is consistent, and (3.5) is not, in the limiting situation where the successive “‘strata”
tagged maintain their separate identity and cdn be treated as separate populations,
In that event only the diagonal cells of a table like Table 3.6 would be occupied, and
the formula (3.18) becomes the sum of a number of independent Petersen estimates
(since Ry == R; = R; in that event),

In many practical situations there will be a considerable degree of distinctness -

maintained among successive groups of fish tagged, along with some intermingling
between groups (for examples see Killick 1955). This intermediate situation is less
favorable for estimation of population than is either complete separation or completely
random mixing at tagging or recovery; nevertheless (3.18) performs rather well in
such circumstances. Another advantage of the Schaefer treatment is that it can provide
estimates of the population present in successive time intervals, both at point of
tagging and at point of recovery.

Chapman and Junge (1954) proposed another possible estimate of N for stratified populations
(their estimate N3), bul it is rather cumbersome and, to be consistent, it neels the same assumpftions

as (3.18). In fact, Chapman and Junge demonstrate that no consisient estimate of N is possible if
neither tagging nor subsequent sampling takes a constant fraction of the successive strata.

ExaMpPLE 3.8. ESTIMATION OF A RUN OF SOCKEYE SALMON, USING STRATIFIED
TAGGING AND RECOVERY, {From Ricker 1958a, after Schaefer 1951a.)

The Birkenhead run of sockeye salmon (Qncorfiynchus nerka) was tagged near
Harrison Mills, British Columbia, and recoveries of tags were made on the spawning
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grounds, about 200 miles upriver. The distribution of tagging and recoveries is shown
in Table 3.6, Stock estimates from formula (3.18) are given in Table 3.7, In the Iatter,
the lasl row shows the approximate abundance of fish going past the tagging peint in
successive weeks, while the last column shows the approximate number reaching the

spawning stream in successive weeks.

TaBLE 3.6, Recoveries from sockeye salmon tagged in successive weeks at Harrison Mills, divided
according to week of recovery upstream; together with the total number tagged each week (M,),
and the number recovered and examined for tags (C,). (Data from Schaefer 1951a, table 3.)

Week of tagging (i)

Tagged Total

fish re- fish re-
1 2 3 4 5 6 7 8 covered covered C,/Ry
Week of
recovery {(j): R; C;
1 1 1 1 ... . Ve 3 19 6.33
2 3 1 5 ... e . 19 132 6.95
3 2 T 033 20 11 .. . Ve 82 800 9.76
4 24 79 67 14 ... . 184 2,848 15.48
3 5 5 77 25 ... Ve 159 3,476 21.86
6 1 3 2 U 9 644  71.56
7 2 16 10 1 1 30 1,247 41.57
8 1 7 7 6 5 ... 26 930  35.77
9 .. 3 3 2 .. 8 376 47.00
Tagged fish recovered (R) 3 11 76 180 183 60 6 1 520
Tatal fish tagged (M) 15 359 410 695 773 335 59 5

ML/Ry

5.00 5.36 5,39 3.86 4.22 5.58 9.83 5.00

TFapLr 3,7, Computed estimates of sockeye salmon passing Harrison Mills, using Schaefer’s method.
(From Schaefer 1951a, table 4.)

Wecek of tagging (/)

1 2 3 4 5 6 7 8 Total
Week of
recovery (f):
1 2 34 ML 100
2 112 412 i34 658
3 98 366 1,736 1,093 453 ces 3,746
4 .. ce. 2,002 4,720 4,377 1,209 12,308
3 589 4,388 7,103 3,049 15,129
6 386 829 604 1,198 3,017
7 . 321 2,807 2,320 409 208 6,065
8 192 967 1,057 1,198 1,758 5,173
9 544 593 525 e 1,664
Total 130 512 5,352 12,996 16,996 9,499 2,167 208 47,860
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Schaefer notes that since the values of M, /R, in the last row of Table 3.6 do
not vary greatly, a simple Petersen estimate should be fairly close to the result in
Table 3.7. The sum of the C; column is ZC; = 10,472, and the sum of the M; row
is ZM; = 2351. The Petersen estimate is therefore (from expression 3.5):

N = 10,472 < 2351 /520 = 47,340
as compared with 47,860 from Table 3.7, Such close agreement would be infrequent.

3.13. CONTRIBUTIONS OF SEPARATE STOCKS TO A COMMON FISHERY

The marking technique can be used, if various conditions are satisfied, to estimate
the contribution of cach of a number of river races of salmon to a common oceanic
fishery. Marking is done on young fish before they leave the river, Subsequently
the ratio of marked to unmarked is observed (a) in the fishery concerned, and (b)
in the various rivers where the migrants were tagped. Junge and Bayliff (1955) have
outlined the conditions necessary for an unbiased estimate, and these are sufficiently
formidable that the authors have no example of an experiment satisfactory from
this point of view.
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CHAPTER 4. — POPULATION STATISTICS FROM MARKING
EXPERIMENTS EXTENDING THROUGH TWO OR MORE
TIME INTERVALS, WITH CONSTANT SURVIVAL RATE

4.1. MARKING DoNE PRIOR TO THE FIRST FISHING SEASON

4.1.1. Two YEARS OF RECAPTURES. When marking experiments are done in
two or more successive years, or when a single year’s experiment is divided into two
_or more parts, it becomes possible to estimate rate of survival in the population, in
addition to population size and rate of exploitation. This is easiest if the survival rate
does not vary between the periods being examined (though it may exhibit parallel
seasonal fluctuations within each period). This chapter describes procedures used when
survival rate is constant, while the next deals with estimates when survival rate changes.

Suppose that fish are marked during a short period of time at the start of a year.
During that year and later years they are susceptible to the same fishing and natural
mortality rate as are unmarked fish, which rates do not vary appreciably over a
period of years. We are given:

M number of fish marked
R; recaptures in year of marking
Ry, Ra, ete. recaptures in later years

We want to know:

S survival rate between years
N; population at the start of yeur |
1 rate of exploitation

Table 4.1 shows the expected values of fishing mortality, natural mortality, and
tolal mortality. The situation is similar o that for estimating survival from age com-
position, and the various formulae of Chapter 2 can be used, substituting the series of
recaplures R, Ry, etc, for the series of ages Ny, Ns, etc. However, the potential sources
of systemalic error are rather differenl. Here there is no need to worry about between-
years differences in recruitment, because the recaplures of successive years all stem
from a single known marking. On the other hand, there can be problems of loss of
marks, of incomplete reporting of marks, and ol dilterences in behavior between
marked and unmarked fish, as discussed in Sections 4.3 and 4.4

By unalogy with expressions (2.1 and (2.2), we may state, [or any two successive
vears ol recaptures:

R,
= 4.1
], D
Zo= e logeRa - logeR ) .0
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TapLE 4.1, Expected mortality and survival in a stock of M fish marked at the beginning of year 1,
in which rate of exploitation (i), expectation of natural death (), and consequently total mortality
rate (A) and survival rate {8) are all constant over a period of 5 yr. The successive entries in the
“Recoveries™ row are the expecied values of the recaptures R, Ry, etc.

Year 1 2 3 4 5

Initial stock of

marked fish M MS MS? M§S? MS#*
Recoveries M MuS MuS2 Mus? MuS#
Natural deaths My MyS MyS2 MyS? Mys#
Total mortality MA MAS MAS? MAS? MAS4

Here S is approximatcly the geometric mean of the survival rates of years 1 and 2, and
Z is approximately the arithmetic mean of the two insiantaneous mortality rates,
When mortality rates are the same in the two years, then Z is an unbiased estimate of
both.

4.1.2. RECAPTURES FROM A SERIES OF YEARS. When more than two years of
recaptures are available, a first step is to plot a graph of logarithms of recaptures
against time. 1f the points fall in a straight line, it suggests that survival rate has been
uniform over the period in question. In that event 8 and Z can be estimated from the
slope of the line. The points can be weighted as the number of recaptures each repre-

" sents, but if some variation in F (hence also Z) between years is possible, it may be
belter to give all points the same weight.

Given such an estimate of S, the stock of marked fish at the beginning of successive
years is estimated as:

M, MS, MS?, etc. (4.3)

These can be summed over the whole of the experiment and divided into the total
recoveries, yielding a weighted estimate of mean rate of exploitation:

— Ri+Ry+...+R,
M(l +S+82+... 48N

u (4.4)

If data concerning recoveries in the year of marking are lacking or imperfect,

it is still possible to estimate S and u by extrapolating back. Then (4.4) becomes:
” R+ R;+...+R,

SM(I + S+ 8 +... 48

(4.5)

In using (4.5), it is important to make sure that whatever influences have made the
first year's daia unusable have not aflected total mortality rate of marked fish in that
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year. Such effects, however, would not affect the estimate of S, except to increase
its sampling error by decreasing the number of recaptures on which it is based.

Because it is difficult to mark large numbers of fish in a short time, the device
has sometimes been used of computing, for each recaptured fish, its exact *‘time out”
in days, and dividing up recaptures by weeks, months, or years on that basis (e.g.
Hickling 1938). This works especially well with fisheries that are prosecuted on a
year-round basis, so that there is no serious seasonal variation in expectation of
recovery of tags. It also works better if the spread of tagging dates is not too protracted.
With a seasonal fishery, however, expectation of recapture of a tagged fish varies with
the time of year it is released, and any broad mixture of tagging dates introeduces an
additional effect into the interpretation of recoveries.

ExamprLe 4.1. SURvVIVAL ESTIMATE WHEN FisH ARE MARKED PRIOR TO THE
FISHING SEASON TN SUCCESSIVE YEARS. (From Ricker 1948.)

Data for a hypothetical marking experiment are as follows. Five thousand fish
were marked just before the first fishing season, well distributed over the fishing area.
Recoveries were: 1st year, 2583; 2nd year, 594; 3rd year, 175; 4th year, 40; 5th year,
7, 6th year, 0; these representing a complete canvas of the fishery,

The most obvious piece of information from these duata is that the estimate of
rate of exploitation, from data of the first vear, is u = 2583 /5000 = 0.517. To obtain
survival rate, logarithms of recoveries are plotted and a predictive regression line
is fitted (Fig. 4.1). The line has a slope of -0.608 log-units per year, corresponding
to a survival rate of antilog 1.392 = 2479, per year (expression (2.5) also gives
24.79%,).

Having obtained S, a schedule can be constructed (Table 4.2), similar to Table
4.1, on the basis of 5000 fish marked. The mean rate of exploitation, from (4.4), is

TapLr 4.2. Mortality and survival in a population, based on the indicated recoveries from an
initial stock of 5000 fish, and the assumption of a constanl rate of exploitation and total mortality
rate.

Year 1 2 3 4 5 Total
Initial stock of marked fish 5000 1235 305 76 18 6634
Recoveries 2583 594 175 40 7 3399
Natural deaths 1182 336 54 18 6 1596

u = 339976634 = 0.312. Since total mortality is A = 1 -0.247 = 0.753, it follows
that annual expectation of natural death is v = 0.753-0.512 = 0.241. From Ap-
pendix [, Z = 1398 F = vZ /A = 095, and M = Z - F = 0.45.

107



Tn\- -
~
c' -
o
m Bk -
a
£ ef -4
+ Lk
\-‘- -
ﬁ. -
2 | 1 E
o

s} J2%

_ 25
s} |
a | |
£
3 L g
=z

i 10
0} .

L i ] ! ] 1

Fig. 4.1, Number of rccoveries (curved line} and their
logarithms (straight line) in successive years of the experi-
ment of Example 4.1,

ExamprLE 4.2. Survival, OF NORTH Spa PLAICE ESTIMATED FROM TAGGING
ExperIMENTS. (From Ricker 1958a.)

Hickling (1938) reviewed the extensive English plaice-tagging experiment of 1929~
32. Individual experiments were done over periods usually no longer than a month,
and in any event returns are tabulated according to actual number of days elapsed
from the day of tagging, grouped in sequences of 365 days. In the published data,
recaptures are separated into two groups: those of the first year and those of all
subsequent years.

Data for plaice marked off Heligoland in May, 1951, are shown in Table 4.3.
The rate of first-year recovery increases with increase in fish size, from 49} to 45-50%,.
According to Hickling’s figure 27, showing recaptures for all experiments, the first-
year rate of recapture of plaice commonly reaches a plateau at 25-26 cm. Plaice of
this size and larger can reasonably be considered fully recruited to the fishery, even
though it may be possible that a part of the poorer returns from smaller fish is a
result of greater tagging mortality or loss of tags among them. The figures 45-50%,
are, however, cailed here the “apparent” rate of exploitation of the fully-vuinerable
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TaBLE 4,3, Plaice marked off Heligoland in May, 1931, and recaptures made, arranged by 5-cm
- llength-classes. (Data from Hickling 1938, table 16.)

1 2 3 4 5 G 7 8 9
Apparent
survival Apparent Apparent
Apparent Apparent rate total expectation
Length-  No. Ist-yr rate of ex-  Later survival (inter-  mortality of natural
class  marked recaplures ploitation recaptures rate polated) rale death
o M Ry i Raz4.. g 5 A’ ¥
15-19 249 9 ¢.036 10
0.527
20-24 300 66 0.220 21
0.241
25-29 342 154 0.450 43 0.230 0.770 0.320
0,218
30-39 112 56 0.500 i1 0.189 0.811 0.311
0.164

fish, because it would be desirable to examine possible systematic errors before
accepting them wholeheartedly (see below).

On the assumption that the survival rate of fillv-vulnerable tagged fish! is constant
from one year to the next, its numerical value is estimated in column 6, using expression
(2.4). Survival figures are estimated principally from the ratio of first-year to second-
year recoveries: thus they pertain to a period of time when the fish are, on the average,
at least half a year older than when the corresponding rate of exploitation was esti-
mated {(from recoveries in the 12 months immediately after marking). This is indicated
in Table 4.3 by setting the primary survival estimates in the spaces between the
exploitation estimates (column 6). The ratio of later recaptures to first-year recaptures
of course decreases with size at marking; however, it should be completely stabilized
for the marking size which is less than 25 cm by half a year’s growth {about 2 ¢m),
and it should be near/y stable for sizes 2 or 3 cm less. Consequently, the estimated
apparent survival rate of 0.241 from the 20-24 cm tagging class is probably very
little biased, while estimates from the two larger classes should not be biased at all
(by incomplete vulnerability). The 15-1% cm group, however, yields an erroneous
(too high) estimate of survival — although, since exploitation is less, we could reason-
ably expect the survival rate for the small fish to be appreciably greater than for
larger fish. I'n the [ast two columns of Table 4.3 values of v (apparent expectation of
natural death) are obtained by subtraction (= A’ —#’). The corresponding apparent
instantaneous rates of natural mortality, M’, are, from (1.4} and (1.13), 0.61 and 0.64,

1 Hickling, following Thompsoen and Herrington (1930), eslimaled survival {rom the returns of all
tagged fish regardless of size, and consequently obtained a composile figure which does not apply to
any particular part of the stock, nor yet to the stock as a whole.
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These estimates are considerably higher than natural mortality figures obtained
by .other methods, and suggest that in these experiments there may be systematic
error of one or more of the types described in Sections 4.3 and 4.4 below. Some of
the possibilities could be examined using month-by-month and year-by-year recoveries
{(cf. Example 4.3), but the plaice data have not been published in sufficient detail
for this.

4.2, MARKING DONE THROUGHOUT THE FIRST FISHING SEASON, WITH RECOVERIES
IN AT LEAST TwWO SEASONS

With large-scale Type 2 fisheries in big bodies of water it is difficult or impossible
to capture and mark a large number of fish in a short time, distributing them more
or less evenly over the population under review, and the seasonal character of the
fishing may make it undesirable to divide up recaptures according to the number of
“days out.” It is necessary thercfore to see whether estimates of survival, efc., can -
be made when, for practical reasons, marking is carried on during instead of before
a fishing season.

If the experiment is to estimate rate of fishing, it is important that marking be
done in some rather definite manner, in relation to incidence of mortality in the popu-
lation, Ideally, the natural and fishing mortality rates in the population would both
be distributed evenly over the whole year, in which case it is best that marking be done
at a uniform absolute rate throughout the year. Such a group of marked fish would be
analogous to a year-class of recruits entering a fishery at a uniform absolute rate over
a year’s time. If the fishery is more scasonal it will be best, and often easiest, to mark
fish at a rate more or less propertional to the industry’s weekly landings, which would
correspond exactly to the sitnation above if natural mortality were negligible, or were
similarly distributed. Generally little or nothing will be known of the seasonal distribu-
tion of natural mortality, so that our ideal sitvation will often be as good an assump-
tion as any. However, if the fishery is sharply limited seasonaily, corrections could be
introduced on the basis of natural mortality occurring throughout the year or through-
out the growing season.

4.2.1. SEVERAL YEARS' RECAPTURES. The discussion here will concern only the
simpler situation postulated above. In Section 1.5.6 it was shown that if Z and A
represent, respectively, instantaneous and yearly rates of total mortality in a Type 2
fishery, the mortality among fish recruited or marked at a uniform absolute rate would
be (Z -~ A)/Z. Of these the fraction F/Z or u/A would be killed by capture, and
M/Z or v/A would die from natural causes. From this a schedule can be constructed
(Table 4.4) showing catch and total mortality in all years.

An interesting and somewhat unexpected feature of this tabulation concerns the
recoveries, In order to plot a catch curve involving the year of marking, to show
survival rate directly, it will be necessary to adjust the number of first-year recoveries.
A first impulse would be to double their number, since if the fish are marked at a
uniform rate through a season, it might seem that on the average they would be
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TaBLE4.4. Mortality and survival in a stock of fish marked throughout year 1. In ail vears, the annual
mortality rate = A; survival rate = S. In year 1, the actual mortality is (Z - A)/Z, and survival is
A [Z (see the text). All entries are fractions of the number of fish marked during vear 1.

Year 1 2 3 4 5
Marked fish at large at start of A SA SZA SIA
year zZ z A zZ
wZ - A) uA uSA uS2A uSPA
Recover AZ p7 Z Z Z
ecoveries
F(Z- A) FA? FAZS FA252 FAZS3
7z z2 Vi Zz z2
Natural death WZ— A) YA ¥SA ¥S2ZA vSRA
atural deaths AZ Z A 7 Z
2 2 242 IAZ
Total deaths Z-A A 3al S A%
Z Z Z z z

subject to only half the mortality of those present from the start of the season. How-
ever, for the number of recoveries in the first year (Ry} to be a member of the geometric
series of later years (Ry, R, ete.), it should equal M'uA /SZ (M’ is the number marked).
As R actually equals Mu(Z — A) fAZ, the factor by which Ry must be multiplied to get
a value that fits into the series is:

AZ _ MuA _ A
MuZ-A) " SZ  S(Z - A)

(4.6)

Accordingly, before plotting the catch curve, recoveries of the first year must be
multiplied by A2 /S(Z - A).

We are then comparing the two quantities:

R;A?
SZ-A) (4.7
Ry, + Ry +....
S+8*+.... (48)

Both of these represent the number of first-year recoveries that would be expected if
tagging had been done at the start of the first year instead of throughout it. Expression
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{4.7) is computed from the actual number of first-year recoveries, whereas {4.8) is
computed from recoveries of later years — using a uniform instantaneous mortality
rate in both cases.

If this comparison shows that first-year recoveries do not agree with those for
later years, it suggests the presence of error of Type C, described in Section 4.4 below.
If, however, the adjusted point for year 1 lies close to the line established by later years,
we are faced with the problem of getting the best combined estimate of rate of ex-
ploitation. The simplest procedure is to combine {wo separate estimates, From Table
4.4, we have for year 1;

RAZ
= 4.9
And thus:
RyZ?
= 4,10

For recaptures of later years, we can use a modification of formula (4.5), which can
readily be deduced by comparing Table 4.4 with Table 4.1:

— Z(R2 + R3 + _l" Rn)
AM(1 +8 +8 4+ ... +8%

u @.11)

wZ 7Ry +Ry+ .. +R,)
A AMO+S+S8E4 .. +8F

F— (4.12)

The two estimates of F, (4.10) and (4.12), can be averaged arithmetically, weighting
each as the total number of recaptures involved: viz., Ry and (R, + R3 + ... 4-R,),
respectively.

4.2.2. Two YEARS' RECAPTURES. When marking is done throughout a year, and
recaptures for only 2 years ate obtained (the year of marking and the following one),
computation of a survival rate becomes hazardous, because there is no check on its
constancy. However, if the latter be assumed, letting M’ be the number of fish marked
in year 1, and R; and R, be the number of these recaptured during year 1 and year
2, respectively, the data available are, from Table 4.4:

R, uZ-A) FZ-A)

M’ AZ 72

(4.13)

R2 _ uh _ FA2

= - 4.14
M Z 72 4.14)

112



Dividing (4.13) into (4.14):
A?.
Z-A

R,
R, (4.15)
The right-hand member of this equation is a simple function of S or Z, which can
be taken directly from Appendix I.

Because of the uncertainty of this method, it is desirable to do a marking experi-
ment in 2 successive years, whenever only 1 year following the year of marking can
be expected to yield a substantial number of recoveries.

4.3, SysTEMATIC ERRORS: TYPES A AND B

The general discussion of various kinds of systematic errors in Chapter 3 is
applicable also to experiments in which survival rate is being estimated. Some types
of error are of special interest and importance when recoveries extend over a long
period. They can be classified according to their effects on the various statistics being
estimated:

4.3.1. TypE A ERRORS, There are sources of error which affect the estimate of
rate of fishing, but not the estimate of total mortality and survival. In this category
can be placed (1) the death of any considerable number of fish, or the loss of their
tags shortly after marking or tagging; and {2) incomplete reporting of marks or tags
taken by fishermen (assuming the reporting to be equally efficient or inefficient during
all the years of the experiment). Errors of this sort scarcely require further comment.
If fish die just after tagging, the apparent rate of exploitation obtained will be less
than the true rate; the true rate is equal to the apparent rate divided by the ratio
of the number of fish which survive the effects of tagging to the total number put out.
Or if reporting is incomplete, the true rate of exploitation will be equal to the apparent
rate divided by the fraction reported. That the estimaies of total mortality and survival
will remain unaffected by either of these is obvious from the fact that in formulae
(4.1) and (4.2) the number of fish marked does not appear. Special efforts must be
made to discover possible errors of these two kinds, since the data of the experiment
give no clue to them. For example, to check on marking mortality or immediate loss
of tags, fish of different degrees of apparent vigor, or fish tagged in different ways,
can be used; or the fish can be held under observation. To check on efficiency of
reporting of tags by fishermen, or of their recovery by mechanical devices, part of
the catch can be examined by special observers; this is always a desirable procedure
anyway. An elaborate series of corrections of this kind has been made for sardine
tagging experiments (see Clark and Janssen 1945a, b; Janssen and Aplin 1945).

4,32, Type B errORS., A second group of errors includes those which affect
the estimate of total mortality, but not the estimate of rate of fishing. Here belong
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(1) any loss of tags from fish which occurs at a steady instantaneous rate throughout
the whole period of the experiment; (2) extra mortality among tagged or marked fish,
similarly distributed in time; and (3) emigration of fish from the fishing area, similarly
distributed in time. The effects of any of these three are in most ways comparable to
ordinary natural mortality. Suppose the loss takes place at instantaneous rate U,
making the total instantaneous rate of disappearance F 4+ M ++ U = Z', compared
with the true mortality rate F -+ M = Z, The annual disappearance rate correspond-
ing to Z' will be A’, a larger quantity than the mortality rate A, The apparent rate
of exploitation (i.e. rate of recovery of tagged fish with tags still attached) is, say,
¥ = FA’/Z’. Obviously the rate of fishing F is equal to #'Z'/A’, just as much as
uZ /A ; and since w', Z', and A" are all available from the data of the experiment, an
unbiased estimate of F can be had.

Often an independent estimate of Z and A for the population will be available,
made from an analysis of ages of fish in the catch. Given a satisfactory estimate of
Z from this source, and of I from a marking experiment, a complete and unbiased
description of mortality in the population becomes possible.

Another variant of Type B error occurs when tags or marks are continuously
lost or disappear but the rate of loss is variable. For example, the rate of loss of
tags might accelerate with time as tags worked loose from fish, so that very few fish
with tags would remain after 2 or 3 years, even though many actually lived (without
their tags) much longer. Such a situation would be reflected in a nonlinear recapture
curve; that is, the graph of the logarithm of recaptures against time would be convex
upward. Alternatively, the more loosely applied tags might come off rapidly at first,
so that there would be a deceleration of the rate of loss of tags in general, resulting
in an upwardly concave recapture curve. If in such cases the rate of acceleration or
deceleration is constant, the differences between successive logarithms of recaptures
should be in a linear sequence when plotted against time, and this second derivative
line could be used as a basis for an unbiased estimate of rate of fishing. The laiter
could be computed along lines analogous to those just described, or, more simply
but less accurately, by using one of the graphical methods described in Section 4.5.
Similarly, any empirical relationship derived from the observed trend of the recaptures
might be used, though perhaps with less assurance than when the formula describes
an easily-grasped theoretical position, For example, Graham (1938a) fitted a straight
line to the logarithms of the logarithms of number of recaptures, and extrapolated
back along it.

A comparison of the apparent total mortality rate obtained from a fin-clipping -

or tagging experiment with the value obtained from a catch curve is probably the
best method of discovering any variety of Type B error. If this is impossible, it wiil
be useful to compare survival rates estimated from different types of marks or tags,
to see if any differences appear. It may also be helpful to examine a large number
of fish to see if holes Jeft by lost tags can be found, though since such scars often heal
up quickly, no quantitative estimate of the loss will usually be obfained in this way.
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ExampLE 4.3, F1sg MARKED PRIOR TO THE FISHING SEASON, WITH INCOMPLETE
TaG Recovery. (From Ricker 1948.)

The tag recovery data of Example 4.1 can also be used to illustrate a situation
where the search for tags among the fish caught is incomplete. Suppose, for example,
that the tags in question are internal iron tags, and are recovered with something
less than complete efficiency by magnets installed in processing plants. Trial runs
with these magnets showed fheir efficiency to have been, in successive years, 0.88,
0.70, 0,92, 0.90, and 0.82. A similar sitvation would arise if the recoveries were made
not from the commercial catch, but from experimental catches in which the fish
were not killed ; the series of figures just given would then represent the relative sizes
of these catches in successive years, In either event a correction must be made for
variations in the size of the catch effectively examined; that is, each year’s recoveries
must be reduced to the basis of 1009 efficiency, or to the basis of some standard
size of catch (cf. Jackson 1939).

In the present example, the adjusted number of recoveries for the first year is
2583 /0.88 = 2930; later years yield, in the same manner, 848, 190, 44, and 8, respect-
ively. These adjusted figures can now be applied in expression (2.5}, giving:

_ 1332

4020 + 1332-1
A somewhat better estimate would be obtained by fitting a straight line to the loga-
rithms of the adjusted values, weighting each point as the wunadjusted number of

recaptures on which it is based. The rate of exploitation is found as in Example 4.1,
but using the adjusted figures.

S = 0.249

ExampLE 4.4, TypE B ErrOR IN HALIBUT TAGGING ExpERIMENTS. (Modified
from Ricker 1948.)

Thompson and Herrington’s (1930) tagging experiments are used in Examples
5.4 and 5.5 of the next chapter to estimate total rate of disappearance of tags from,
and rate of fishing for, fully-vulnerable halibut on grounds south of Cape Spencer.
In Example 2.8 survival rate was cstimated from the catch curve of the halibut
taken for tagging. These ¢stinates are compared below:

Instantaneous rate of

Natural
Apparent mortality
survival Total and other
Year Method rate loss Fishing losses
o 7 F M+ U
1926 Tagging 0.331 1,11 0.57 0.54
1927 Tagging 0.320 1,14 0.51 0.63
Survival Mortality
rate, S rate, Z
Cat-ch curve 0.47 0.76
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The survival figure 479, was obtained from size distribution of fish used for tagging
in 1925 and 1926, and almost the same value can be computed from relative numbers
of halibut used by Dunlop for age determination {Thompson and Bell 1934, p, 25).
As shown in Example 2.8, total fishing effort was remarkably steady during the period
1921-27, so the 479 survival obtained from age distribution should be entirely
comparable to the 329, or 339, obiained from tag recoveries.

Even without this cross-check, the values for M + U shown above, which are
impossibly high for the true natural mortality rate of a long-lived fish, would indicate
that something besides natural mortality contributes to the disappearance of the
tagged fish. The only obvious possibility is that there has been Type B error throughout
the time of the experiment, resulting from a continuous loss of tags from fish or from
a movement of tagged fish out of the fishery. On the assumption that the 0.76 mortality
rate from age-frequencies is the‘true one, the necessary instantaneous rates of loss
can be computed by difference: they are 1.11 -~ 0.76 = 0.35 for 1926, and 1.14 - 0.76 =
0.38 for 1927, Shedding of tags is believed to be infrequent in these experimnents, so
that movement of tagged fish away from the fishing grounds probably accounts for
most of this, The latter is a likely-enough possibility, because halibut move a lot and
are found, sparsely, over a much greater area of the sea bottom than the grounds
customarily fished. In nature, wandering away from the fishing grounds is presumably
balanced by return movements back onto the grounds, but in the first year or two
after tagping, the outward movement of tagged fish would exceed their return, and
it is these years which mainly determine the survival rates of Examples 5.4 and 5.5,

4.4, SyYsTEMATIC ErRrORS: Typ: C

A third group of errors includes those which make the first year’s recoveries
not directly usable in estimating either total mortality or rate of fishing, but which
do not prejudice the estimation of either of these from the data of later years. Here
may be mentioned (1) abnormal behavior of marked or tagged fish during the season
of their marking, and (2) non-random distribution of marked fish in the general
population during the year of marking, combined with (possibly only temporary)
pon-random distribution of fishing effort. In either event the marked fish may be
either more or less vulnerable to capture during the year of marking than during later
years; but they are asswmed to have regained their usual behavior by the beginning
of the year following marking, and in the latter year either fishing effort or the fish
marked must be randomly distributed.

Type C errors can be serious when few recoveries are made beyond the year of
marking. If, however, fair numbers of marked fish are obtained for at least two years
after the year of marking, Type C etror is mercly troublesome: that is, it complicates
estimation of rate of fishing but does not distort the result,

44,1, FISH MARKED JUST BEFORE THE START OF A FISHING SEASON, A model is
shown in Table 4.5, The first year’s rate of fishing for marked fish (I} is either greater
or less than that for later years (F,). Consequently, rate of exploitation (1)), expectation
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TaBLE 4.5, Mortality and survival in a population of marked fish where rate of exploitation (1),
natursl deaths (v), and total mortality (Ay) are different in the first year from later years (uz, v,
Ajp), but are identical among those later years, A unit nomber of fish was marked just prior to year 1.

Year 1 2 3 4
Initial population 1 51 5182 5153
' u 181 #5158 uz8:8%
Recoveries 1 FiAL FoAsS) FaAz$18: FoAsS15%
71 Z Zz Zz
Natural deaths ¥ 7| 25152 28182
Total deaths Ay AsS) AoSiS, As5;52

of natural death (v}, and total mortality rate (A;} for the first year all differ
from corresponding statistics for later years. The estimate of mortality rate (A,)
made from recaptures of marked fish after the first year should reflect the real mortality
rate of the population, To calculate rate of fishing we proceed from the asswmption
that instantaneous rate of natural mortality (M) is the same in the first year as in
later years. However, no direct equation can be set up because of the exponential
relation between A and 7, and it is necessary to proceed by successive trials.

In Table 4.5, the fraction of recoveries in vear 2, which is represented by 1,84,
is available in the data of the experiment as Ry /M’ where M’ is the number marked;
thus:

Ry

= 5w

If all the later years’ data are used, this expression becomes, by analogy with (4.5):

Rz 4+ Rz + Ryt ...+ R,
SM'(1 48, +SE4... + 559

1y = (4.16)

In these expressions everything is known except Sy.

Another estimate can be made somewhat less directly. The necessary data are

available to evaluate:
R,
= M’

From (1.13):




Now the natural mortality rate M is equal to Z; — F, and M being the same in the
second as in the first year, we have also F; = Z; — M. From (1,13), and substituting:

Ay RiZ,
=l Zy-7Zy + A
Z, 1 @.17)

In'this expression A, and Z,, Ry and M, are all available directly from the experiment,
while Z; and A; are directly related to the unknown S, of equation (4.16). Thus for
any trial value of Z; (or A; or S;), u; can be calculated from both (4,16} and (4.17),
and successive trials will yield a best value which makes the two estimates equal.

4.4.2. FI1SH MARKED THROUGHOUT THE FISHING SEASON. When marking is done
throughout the first year, as in Table 4.4, some modification of the above procedure
will be necessary. Here F; will be the first year’s instantaneous rate of fishing mortality,
but it will be directly applicable only to fish marked at the very beginning of the
seasorl. The total instantaneous mortality rate, applicable to such fish, is F; + M =
Zy. From Table 4.4, the total first-year mortality among the marked group as a
whole is {Z; — A1) /Z;, and the survivors are Ay /Z;. A possible estimate of u3 is there-
fore:

_ Rz
27 Wa,
or, if all recoveries beyond year 1 be used, then by analegy with (4.11):

oo R PR3 Ry A+ AR (4.18)
T AMU +S, + S+, + 82 '

The first-year recoveries, as a fraction of the total fish marked, will be:

Ry _ E(Z__fi)

YA

Evaluating F; from this, and proceeding as in the development of (4.17):

A, R,Z?
A 7 o 4,19
Zz( 22y + M’(Zl—Al)) (4.19)

Uy =
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The rate of exploitation u; can now be evaluated as before, (It saves time to know
that if (4.18) turns out greater than (4.19), the trial value of Z is too grear.)

4.4.3, DerecTioN oF TypE C ERRORS. Type C errors are easy to detect. If marking
is done just before the fishing season, it will show up once on a graph of logarithms
of recoveries in successive years, as a displacement of the point for the first year
above or below the straight line drawn through the points for later years. If marking
is done during the fishing season, recaptures of year 1 should first be multiplied by
A2 82(Z5 - Aj) before taking the logarithm and plotting (Section 4.2.1).

If Type B error {(continuous loss of tags, etc.) is present as well as Type C, then
it is the apparent survival and mortality rates which should be used throughout the
calculations above, rather than the true rates, to obtain an unbiased estimate of F,.

ExampLE 4.5, F1sH MARKED THROUGHOUT THE FISHING SEASON, WiTH UJNREPRE-
SENTATIVE FIRST-SEASON MORTALITY. (From Ricker 1948.)

In an hypothetical population, 1500 fish were marked throughout a fishing
season. Recoveries were: same year, 450; 2nd year, 312; 3rd year, 125; 4th year, 50;
5th year, 20. Presumably if later years’ data were available they would produce addi-
tional recoveries; therefore expression (2.5) cannot be used to estimate survival
rate, but (2.7) or a regression line may be used instead, The survival rate after the
first year is S, = 195/487 = 0,400, A; = 0.600, and Z, = 0.916, Fish were tagged
from and returned to schools which were being actively fished, so there is reason
to suspect the first year’s mortality may be foo great to be representative of the
population as a whole. To test this, we evaluate 450A3 [S:(Zo — Ay) = 1282, and
finding it greater than 312/S; = 780, conclude that our suspicions are justified
(cf. Fig, 4.2). Consequentily, it is necessary to depend on recaptures in the second
and later years {o obtain an estimate of rate of fishing.

Using equations (4.18) and (4.19), we select trial values of Z,, and obtain the
following:

Trial value of Zq.viiinniiene 1.00 1.20 1.22 1.24
g, Trom (4.18).....ccccooiiien, 0.329 0.357 0.360 0.363
tz, from (4,190 0.479 0,379 0,369 0.358

Graphical interpolation between the last two gives 1,233 as the best estimate of Z,
and 0.362 as the best estimate of 1. From the latter, the rate of fishingis I, = 0.362 X
0.916 /0.600 = 0.553; and M, = 0.916 - 0.553 = 0.363.

It is possible to check the value of #y obtained above by an approximate calculation, If there wer®
no natural mortality at all in the first year, the survivors at the start of the second year would numbe’
1500 - 450 = 1050; hence a minimal estimate of u; is 312/1050 = 0.297, and a maximal value of 12
is (4,600 - 0,297 = 0.303. But the fraction of fish marked in the first year which die naturally in the
same year should be about half this, since they enter the population in uniform numbers threughout
the secason, Thus a fairly good estimate of the first year's expectation of natural death among all fish
marked will be 0,303/2 = (.152, and the actual deaths will be 0.152 x 1500 = 228, A belier estimate
of up will therefore be 312 /(1500-450--228) = 0.38, which is close to the 0,362 obtained in the last para-
graph. This approximate computation should be fairly goed as long as y; is, say, less than 0.4,
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Logarithm of Recoveries

! [= 3 4 5

Fic. 4.2. Logarithms of recoveries of marked fish in succes-
sive years of the experiment of Example 4.5. The lower point
for year 1 represents the actual logarithm of the number of
recoveries; the higher point is the logarithm of A2 [S(Z-A)
times the recoveries. The latter should lie on the line estab-
lished by recoveries in later years, if there were no type C
£Fror-

If desired, a schedule similar to Table 4.5 can now be constructed, showing
population and natural mortality among the 1500 fish tagged in successive years:

Year.. . 1 2 3 4 5
Initial population............c....coo...... . 862 345 138 55
Catch....ooooooiiniiii 450 312 125 50 20
Natural mortality........................... 188 205 82 33 13
Total mortality..............ccccoooeeneene. 638 517 207 83 33

Another cause of increased {or decreased) returns in the first year would be a
failure to get the fish marked at a rate proportional to that at which the fishery is
making landings. For example, if relatively more marking were done near the be-
ginning of the fishing season, then the rate of exploitation of the marked fish during
the year of marking would be greater than F(Z — A)/Z? In its effect upon recoveries,
this state of affairs would resembie the situation just considered, and could be treated
in the same fashion, except that the first year’s natural mortality could be increased
somewhat to compensate for the longer average time the marked fish are at large.
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4.5, GRAPHICAL METHODS OF ESTIMATING EFFECTIVENESS OF FISHING

Various graphical methods of estimating the effectiveness of fishing have been
proposed, for example by Thompson and Herrington (1930), Graham (1938a), and
Clark and Janssen (1945a), of which a comparison and critique were given by Ricker
(1948, Section 26). Here we illustrate the principles and limitations of graphical
extrapolation for two typical situations.

4,5,1. MARKING DONE AT THE START OF A YEAR. Figure 4.1 illustrates a possible
procedure. The straight line fitted to logarithms of successive catches can be produced
back to the beginning of year 1, the time of marking. It could be argued that this
intercept represents the logarithm of the number of fish which would be retaken if
recaptures were to be continuously made at the rate established immediately after
tagging (before natural mortality had a chance to reduce their number), and that
hence the antilogarithm of the intercept, divided by N, should be the rate of fishing, F,

Closer consideration shows that such an estimate of F will be approximate
only. Turning to Table 4.1, if the “recoveries™ of each year be considered as pertaining
to the middle point of the year,2 we have the series:

My, M'uS, MuS?, M'us?, etc.

separated by unit time intervals. These constitute a geometric series with common
ratio 8. The point we are interested in (the beginning of the first year) lies one-half
of a unit time interval to the left of My, and must therefore be M'uS™* or M'u/+/S.
‘Dividing by the number of fish marked, M’, gives the expression:

U
— 4.20
V'S (4.20)
which we originally proposed to identify as rate of fishing, F. Comparing with the
true formula F = »Z jA, we find that (4.20) differs in so far as 1 /+/S differs from
Z /A, From Appendix I it is evident that as Z—0, these two expressions become the
same; for larger values of Z we have:

Z ZIA 1/+/%
0.5 1.27 1.28
1.0 1.58 1.65-
1.5 1.93 2.12
2.0 2.31 2.72

21t is obvious that it is (his assumption which is incorrect, in both this argument{ and that of
method 2 below. The mean date of recapture of lags is in advance of the middle of the fishing of each
year, and when mortality ratc is moderafe-to-large the difference is important,
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Thus over a considerable part of the range of Z values likely to be encountered,
(4.20) could be used for F without serious error; but when Z exceeds 1.0 the error
becomes considerable (i.e. #/+'S is greater than F), In that event it will be worth-
while to calculate I from the u obtained by expression (4.5} or, what amounts to
the same thing, to interpret the intercept obtained by graphical extrapolation in
terms of (4.20).

4.5.2. MARKING DONE THROUGHOUT A YEAR. When marking is done throughout
the first year a similar possibility of extrapolating exists, which can be illustraied
from Fig. 4.2. We might argue that the marking, which actually was spread evenly
through the first year, could be considered as having been concentrated at its middle.
Similarly the recaptures, which are spread through the succeeding years, could be
considered as concentrated at the middle of each. Then, in Fig. 4.2, the intercept of
the straight line (logarithms of recoveries) with the ordinate for the middle of year 1
should represent the logarithm of the number of fish which would be recaptured in
year 1 if the fishery were compressed into a short space of time immediately following
the marking at the middle of the year, without allowing time for natural mortality
to take effect. Such an intercept, divided by the number of fish marked, would seem to
be an estimate of the rate of fishing, F.

Considering the “Recoveries’” row of Table 4.4, from year 2 onward, it is evident
that it constitutes a geometric series with comumon ratio S, and that the point at
year 1 which fits into the series will be uA [ZS. Substituting Ry /M’ = wA [Z, the
true year | intercept becomes Ry /M’S; or, if all data for later years be included, this
intercept is:

Ry +R3+... +R,
SM(l +S +8*+... 45

@.21y

Comparing this with the true F which can be estimated from recoveries afier the
first year, shown in (4.12), it is evident that they differ in that (4.12) has Z?/A% where
{4.21) has 1/S. As may be seen by comparing A%/Z* and S in Appendix I, the two
latter expressions do nof differ greatly over a part of the range of Z values likely to
be encountered in work of this sort; but when Z becomes larger than, say, 0.8, the
error is considerable, making (4.21) greater than F.
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CHAPTER 5. — POPULATION STATISTICS FROM MARKING
EXPERIMENTS EXTENDING THROUGH TWO OR MORE TIME
INTERVALS, WITH VARIABLE SURVIVAL RATE

5.1. POPULATION AND SURVIVAL RATE WHEN MARKING IS IDONE AT THE START OF
FisgING 1N Two CONSECUTIVE YEARS — RICKER’S METHOD

5.1.1. NATURAL MORTALITY THE SAME AT ALL AGES. The most direct approach
to an estimate of survival by marking is to run similar marking experiments in two
successive vears (or other interval), using different marks for each. When marking
is all done right at the start of the fishing season, we have the following:

M; number of fish marked at the start of the first year
M, number of fish marked at the start of the second year
Ry recaptures of first-year marks in the first year

Rya recaptures of first-year marks in the second year

Ros recaptures of second-year marks in the second year

We wish to know:

51 survival rate during year 1 (from time of marking in year | to time of marking
in year 2)

We may reason as follows: the number of fish, M,, marked at the start of the
second vear, yields Ry, recaptures that vear; thus the rate of exploitation in year 2
is tty = Ryo /My, Of the M, fish marked in year 1, Ry, are caught in year 2. The number
of first-year marked fish stili at large at the start of year 2 should be Ryyftn, or
Riz:M;3 /Ry, The laiter number must be compared with the number of marked fish
at large at the start of year 1, My, to obtain the survival rate over that period:

- RpMp

S —
"7 MRy,

(5.1)

This is the! large-sample formula of Ricker {1945a, 1948). Notice that it is not
essential that ail the marked fish recaptured be reporied. It is only necessary that,
during year 2, the marks put on at the start of year 1 be reported as completely as those
put on at the start of vear 2.

The large-sample variance of (5.1) can be obtained by substituting the estimates
in Seber’s (1972) more general expression (see Section 5.1.3), as follows:

1 11 1
=8 — 4 — 5.2
VG SI(R12 + Ryy My Mg) 52
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Expression (5.1) can be modified for small numbers of recaptures by analogy with
expressions (3.7) and (5.12):

MRy + 1)

1 (5.3)

Expression (5.2) can be used for the variance of this estimate also,

The estimate of Sy from (5.1}, rather than (5.3), has the advantage that it can be
transformed directly to Ay and Zy; hence F; and M can be computed using (5.28)
provided the recaptured marks are reported completely. The value of F, is also
available, if acceptable data of the type shown by equation (5.27) are at hand.

5.1.2, NATURAL MORTALITY VARIES WITH AGE. The method above can also be
made to take care of any changes in natural mortality rate associated with age which
may occer among the fish. If such are important, the fish marked in the second year,
My, should have a minimum size greater than that of the fish marked in the first year,
M, by one year’s growth (Ricker 1945a). Still better, the computation can be made
to apply to one or more definite year-classes or length-groups of fish in two successive
years of their existence by using different marks, or merely by advancing the boundary
between the groups as the fish increase in size, as in Example 3.2 above.

ExampLE 5.1. SURVIVAL RATE OF BLUBGILLS IN MUSKELLUNGE LAKE, FROM
MARKINGS DONE AT THE START OF Tw0 CONSECUTIVE YEARS. (From Ricker 1948.)

The procedure of Section 5.1 was the principal one used during the 1940°s to
estimate vital statistics of fish populations in small Indiana lakes. An example con-
cerning bluegills (Lepomis macrochirus) of Muskellunge Lake will be described;
the data are from Ricker (1945a, p. 383-384).

Of My = 230 bluegills marked before the start of the 1942 fishing season, Ry = 13
were captured in 1943, Of M5 = 93 marked before the start of the 1943 fishing season,
Rop = 13 were recaptured in 1943, The survival rate in the first year is therefore,
from (5.3):

1393

= = 0L,37546
230x14

1

From (5.2), the variance of Sy is:

11 11
V(Sy) = 0375467 — 4 —— —— - —
(o) =037 (13+13 230 93)

= 0.14097 < 0.13874 = 0.01956
The standard error is the square root of this, or 0.1398.
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The attractive simplicity of this procedure is unfortunately often marred by
doubts occasioned by a possible lack of homogeneity among the fish being handled,
or by within-season variations in mortality rate which are not the same for all age-
groups. A discussion of some of these considerations can be found in the paper cited
above, particularly the section on pumpkinseeds (Lepomis gibbosus) (p. 385-386),

5.1.3. ESTIMATION OF SURVIVAL RATE FROM A SERIES OF MARKINGS — ROBSON—
Seper METHOD. If markings are continued for more than two years, the best procedure
will usually be to make a series of estimates of survival rate from expression (5.1) or
(5.3). This is because survival rate may change as fish get older, and hence the inclusion
of recaptures of third and later years may distort the estimate obtained; also, if tags
are used, there is danger they may become increasingly lost in later years. However, if
survival rates are assumed not to vary with age, and tags are permanent, it is possible
to use all available recaptures to estimate each year’s survival rate, The necessary
computations were developed by Robson (1963), and in a more general form by
Seber (1972).

Suppose My, My, My, etc. fish are marked at the start of three successive years,
and recoveries are made over four years. The schedule below gives the categories of
marks and recoveries, either or both of which could continue for an indefinjte number
of years:

No. of Recaptures made and reporied in year
fish —
Year marked 1 2 3 4 Totals
1 M; Ry Ryz Ry R4 Ry
2 My Roz Rs Ry Rs
3 M; Rj3 R34 Rj3
Totals " my mz 13 my

A second schedule is made by adding the above primary recapture entries cumula-
tively from the right, For example, 14 = Ryy; b1z = Ryg + Rys; 12 = Ry + Ry
+ Ry2; and so on;

Cumulative recaptures

Year of —- -
marking 1 2 3 4
1 b1 bya b1 big
2 by ha3 b4
3 bas b4
Totals Ty T, Ts Ta

Totals of the columns of the second schedule, and totals of both rows and col-
umns of the first, are used to obtain the estimates below. For any year 7 of the expoeri-
ment:

Survival rate in year {:
_ RiMyy{Tiag = Ryg)

5.3a
R M/ T; (5-32)

S

125




Rate of exploitation in year i:
mR;

-V (5.3b)

U;
From the above the values of Z, ¥, and M can be calculated in the usual manner
(Chapter 1), Seber (1972, p. 315) gives an expression for the large-sample variance
of an estimate of §; (our symbols S; and M, are his ¢; and a;, respectively).

FFor (5.3b) to be valid it is necessary that all marked fish be reported when caught;
otherwise # and F will be too small, and M too great. However, the estimale ol survival
rate of expression (3.3a), like (5.1), is valid if reporting is incomplete and even if the
percentage of recaptures reported varies from year to year. '

5.2, SurvivAL RATE WHEN MARKING Is DONE THROUGHOUT THE YEAR

Suppose M, fish are marked during year I, of which Ry, are retaken that year
and Ry, in year 2; also M, fish are marked during year 2, of which Ry, are retaken
the same year. From Table 4.4, suitably modified, three equations can be taken:

Ry Fu(Z, - Ay

54
M, z 54
R FoALA
2 _ 2 (5.5)
M; VEYA
R Fa(Zs - A
Rz _ 2. 22 2) 5.6)
M, 7
Dividing (5.6) into (5.5) gives:
R ;M A ALZ, Al AZ
My 122:F2 Xlz 67
RooM|  Z{(Zy—Ap)  (Za—-Ay)  AsZy
The simplest situation is where Z; = Z, so that:
Rio;M A3
M2 Aj 5.8)

RypaM;  Zp— Ay
Then 8 or Z can be obtained directly from the corresponding entry in Appendix L.

Generally Z, is not the same as Z;. In that event a more accurate estimate can
be made if the natural mortality rate, M, can be considered the same in both years.
The correction term A;Z,/A,Z; in (5.7) can be evaluated by two-stage iteration:
(1) Take the approximate values of Z,, F;, and Z, - F, = M obtained above as first
estimates. (2) Select a reasonable trial value of F), add M to get a trial of Z;, and
calculate the right-hand side (RHS) of (5.4); repeat until the Z, is obtained which
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makes the RHS equal the LHS. (3) Using this Z;, calculate the correction term
AZo /AsZ1 in (5.7) and compute A3 /(Z; - Ag); the latter will correspond to a new
estimate of Z» which can conveniently be obtained from Appendix I. (4) Using this
new Z,, calculate F, from (5.6) and get M by subtraction. These improved estimates
of Z, ¥y, and M are used to start again at stage (2) above, and the process continues
until there is no further improvement.

ExaMpLE 5.2. SURVIVAL RATE OF MUSKELLUNGE LAKE BLUEGILLS, FROM MARK-
ING DoNE THROUGHOUT Two CONSECUTIVE YEARS. (Modified from Ricker 1948.)

The marking of bluegills during the 1942 fishing season included 100 fully-
vulnerable age 3 individuals, of which 7 were recaptured that year, so that Ry /M; =
0.07. The total number of legal fish marked that year was 400, of which 41 were
retaken by fishermen in 1943, so that Ry, /M = 0.1023. Finally, 131 age 3 individuals
were marked during the 1943 fishing season, with 14 recaptures the same year, giving
Ry /M, = 0.1068 (Ricker 19435a).

From the approximate relationship (5.8):

A RipM,  0.1025
Zo—Az MRy 0.1068

From Appendix I, Z, = 1.23; and from (5.6), F; = 0.1068 X 1.5129/0.5223 = 0.309,
and M = 1.23 -0.31 = (.92,

This is as good a result as these data are apt to provide, considering the small
number of recaptures in categories Ryy and Ry;. However, in order to illustrate the
complete method we will proceed. Take a trial Z; = Z, = 1.23; ¥, = F, = 0.31.
Using the tabulated values of Z2/(Z - A) in Appendix I, the RHS of (5.4) becomes
0.31/2,897 = 0.1068, as compared with the actual 0.07, Varying Fq, with M constant
at 0.92, gives the additional values below:

Fy M Zy ZINZi—A)) RIS of (5.4)
0.31 0.92 1.23 2.897 0.1068
0.25 0.92 1.17 2.850 0.0877
0.20 0.92 1.12 2.811 0.0715
0.19 0.92 1.11 2.803 0.0677

Interpolation between the last two gives Fy = 0.194 as the best value; thus Z; = 0.194
+ 0.92 = 1.114. Again using Appendix 1, the correction term in (5.7} is evaluated as:

A7y [AZy = 0.6031 /0.5754 = 1.048
and the adjusted A3 /(Z, — Ay) will be R ;M, /RoM; divided by this, that is, 0.958 /1,048
= ().914, This corresponds to Z; = 1.32; hence from (5.6), I¥; = 0.1068 »x 1.742 /0,587

= 0.314. Thus the estimate of F, is not much changed, but M = 1.32 - 0.31 = 1.01,
which is appreciably greater than 0.92.
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Again solving (5.4) by iteration, with trial Fy values:

F M Zs Z3/Z(—A))  RHS of (54
0.19 {.01 1.20 2.873 0.0662
0.20 1.0l 1.21 2,881 0.0692
0.21 1.01 .22 2,889 0.0726

The interpolated value of Fy is now 0.202, and Z; = 1.0l + 0.20 = 1.21. A second
estimate of the correction term in (5.7) is:

ArZs [AsZy = 0.5800/0.5552 = 1.045

This is practically the same as the 1.048 obtained on the previous trial, so the definitive
estimates can be taken to be 7, = 1.32, 7, = 1.21, M = 1.01, F; = 0.31, F; = 0.20.

Corresponding to Z; = 1.21 is S; = 0.30, and this may be compared with the
estimate 8) = (.375 obtained for the same population in Example 5.1. The difference
is less than the standard error of the latter (0.140).

5.3. PoPULATION, SURVIVAL, AND RECRUITMENT FROM A TRIPLE-CATCH EXPERIMENT —
Barey’s METHOD

5.3.1. GENERAL, Estimation of insect populations by marking, begun by Jackson
in 1933, has led to an extensive literature of statistical estimation based con a series
of three or more “point” samples, usually separated by a rather short period of time
{a week, for example). Different methods of grouping the recaptures have been
examined, and both deterministic and stochastic models have been used to develop
appropriate estimators (Dowdeswell et al. 1940; Bailey 1951; Leslie 1952; Moran
1952; Craig 1953; Goodman 1953; Hamersley 1953; Darroch 1958, 1959, 1961;
Seber 1962, 1965; and Jolly 1963, 1965).

These methods can be applied to fish, and the interval between markings can
be as long as a year. Because two or more estimates of the percentage of marks in
the population are obtained, it is possible to estimate additions to the population
as well as losses, Of the various models proposed, we will consider only two that
have explicit rather than iterative solutions,

Those who work with insect populations rarely deal with & population that 1s
definitely bounded in space, so that immigration is often as important or more im-
portant than recruitment from the local stock, while emigration may be more signifi-
cant than mortality, Thus they usually refer merely to gains and losses. The same can
apply to some fish populations, but in what follows it is convenient to speak simply
of recruitment and mortality.

5.3.2. BAILEY’S DETERMINISTIC MODEL. Three catches or samples are taken. On
the first occasion (Time 1) the fish are marked; at Time 2 the recaptures are noted
and returned to the water, and uamarked fish are given a different mark; at Time 3
the previous marks of both categories are listed (as well as the unmarked individuals).
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Loss of some fish by accidental death due to the fishing procedure affects the result
only by reducing the population to that extent. However, if a previously-marked
fish is accidentally killed at the second sampling, it should be replaced by a new one
similarly marked. Indeed it may be an advantage to kill all the recaptures and replace
them by fresh fish of the same size given the same mark, as this tends to reduce bias
from capture-proneness.

The categories of individuals in the 3 samplings are as shown in Table 5.1. We
wish to know:

Nj, Nj, N3 the population present at each sampling (N, = Bailey's x)

Si2, 873 survival raies between Times 1 and 2, and 2 and 3, respectively
{S<1). (S;; = Bailey’s 1)

Flz, '3 rates of accession of new recruits between the same times: these
rates are strictly analogous to survival rates; they represent initial stock
plus aif new recruits during the period, divided by the initial abundance &t
the start of the period (r=1). (ro3 = Bailey’s W)

TasLE 5.1, Categories of fish newly marked, examined, and recaptured, in Bailey's triple-catch
method. Shown in brackets below our symbols are those used by Bailey 1951 (at left}, and by Wohl-
schlag 1954 (at right).

Fish Fish Recaptures Recaplures
newly examined from lst from 2nd
Time marked for marks marking marking
1 M
(1,0 (51,R0)
2 M2 Cs Ryz
(2,13 {s2,R4) (#12,FF1) (#121,01)
3 Cs Riz Ras
(3,2 e (113, F2) (r31,m02) {(m3z2.m12)

Values of S and r can be used to calculate instantancous rates of mortality (Z) and
recruitment (z), respectively, each in terms of its own time period:

73 = —logeSy; (5.9)
z23 = +logersy (5.10)
(Z /t1 = Bailey’s v; z/f; = Bailey’s §)
Bailey’s small-sample formulae for direct estimates of Ny, Sy,, and r,q, are:

M(C + D(Ris)

= - 5.11

? Rz + D(Ra3 4 1) G4D
M2R ;3

S - 5.12

1 M (Ry; -+ 1) &1
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B ;1_112((33 - 1)_

= 5.13
Co(Ry3 + 1) &19)

r23

With large numbers of recaptures the -1 can be omitted in each case, if desired.
Approximate variances for these expressions are also given by Bailey:

MHC, + IXC2 + DR13(Ry3 - 1)

V(N) = N3 (5.14)
(Riz + D(Ryz + 2)(Ry3 + D(R23 + 2)
) MzR3(Ry3 - 1)
Y5, = 85 — . - 5.15
G) = 50" R + DRy 1 2) &1
Ria{R1s - NCAC 2
V(ras) = ris— 1aRiz - DG, +2) (5.16)

CoCa— DRy3 -+ D(Ry3 + 2)

Assuming that mortality rate is the same in interval #53 as in interval {5, the value
of N3 can be calculated, as well as the actual number of recruits in fp3. For this the
instantaneous rate of mortality in (5.9) must be adjusted to the same time interval
as the instantaneous rate of recruitment in (5.10), i.e. to Za¢23/f12. Then the instan-
taneous rate of increase in N from Time 2 to Time 3 becomes 233 — Z{3f33 /13, and the
actual increase or decrease is the exponential of this quantity (found in column 2
or 12 of Appendix I).

A similar computation can be made for Nj, but the assumption required —
that rate of recruitment is the same in the two time intervals — will nearly always
be unrealistic,

5.3.3. Accuracy, The accuracy of a population estimate from (5.11) depends
principally upon the magnitudes of the three R-items, of which Ry, in the numerator,
will normally tend to be the smallest. Good design in such an experiment should
aim at having Ry, Ry;, and R,y all about the same size, and this is likely to be ac-
complished if M; is made larger than My, and Cj larger than C,. But if Ry4 is in fact
small, it is advisable to explore the applicability of (3.7} for estimates of N; and Ny,
using one of the devices discussed in Section 3.3 to remove the effects of recruitment,
In the notation used here, the accuracy of an estimate of Ny from (3.7) would depend
mainly on the magnitude of R, while the accuracy of an estimate of N, would depend
on Ras,

5.3.4. CONTINUOUS MARKING AND RECOVERY. Although ideally the three samples
above should be taken at “points” or very short intervals of time, Wohlschlag (1954)
used the method in a continuous experiment, by dividing the experiment into 3
equal periods and considering all sampling and marking as though it had been con-
cenirated at the middle of each period. This seems accurate enough for any experiment
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on the usual scale, but with very large numbers of recaptures, and a high rate of recap-
ture, a correction for the non-central expectation of average time of recapture might
be introduced.

5.3.5. REPEATED EXPERIMENTS. If there are three markings and four “Times”
available in an experiment of this type, Bailey’s 3-point analysis can be used twice,
simply by moving the whole procedure one interval ahead; and similarly for any
additional markings. Bajley gives expressions whereby common estimates of § and r
can be obtained from an indefinite number of markings. However, the tabulations
are complex and the solutions are iterative, while the assumption that » will remain
constant throughout an experiment of this type will usually be unrealistic.

5.3.6. Comrarisons. The survival formula (5.12) is identical with (5.3) of Section 5.1, though the
symbols are different; Cz, Ryz, and Raz of Section (5.1) are equivalenf to Cs, Ria, and Raa here. The
identity of (5.3} and (5.12) is a consequence of the fact that, in making Petersen estimates, expectation
of the recovery ratioc R/C is unchanged by any natural mortality affecting marked and unimarked
equally; thus recoveries can be made over a protracted period. Similarly expression (5.15) is equiva-
lent to (5.2), in a different form.

The instantaneous rate of recruitment, z, has not usually been computed for fish populations
because it does not have the same direct biological meaning that a moertality rate does. However, there
is no objection to computing it for descriptive purposes.

5.3.7. TLLUSTRATION OF BAILEY's PROCEDURE. Table 5.2 shows a hypothetical
experiment in which the initial population is 2000 and the survival rate is S = 0.6
during both intervals, while a quarter of the stock is caught and examined at Time 2
and half of it at Time 3. The recaptures have been given their expected values (to
the nearest integer), so the large-sample form of formulae (5.11)-(5.13) should give
exact estimates:

250 X450 X 56
L = 20X450X56 1o
60 % 58
25056
1= 2220 600
400 % 58
601050
3 T 450%56

TaBLE 5.2, Marks put out and recapiures made in the triple-catch experiment of Section 5.3.7.

Fish Fish Recaptures Recaptures
newly examined marked at marked at
Time Population marked for marks Time 1 Time 2
1 ™ = 2000 Mi = 400
2 Nz = 1800 Mg == 250 Cy = 450 Rj2 =60 —_—
3 N3 = 2100 e C3 = 1050 Ry = 356 Rz3 = 38
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Suppose that the first interval, ¢, was 20 days long, while ¢33 was 30 days, The
instantaneous rate of mortality for #1, is Z1; = —loge0.6 = 0.5108, or 0.025540 /day.
The instantaneous rate of recruitment for ty3 is 223 = loge2.50 = 0.9163, or 0.030543/
day. Thus if the mortality rate during #;2 applies also to f,3, the population was in-
creasing at an instantancous rate of 0,030543 —0,025540 = 0.005003 /day during
a3,

From the above and the previously-obtained estimate of Nj, an estimate of Ny
can be computed. The 30-day net instantaneous rate of increase during #3 is 30 X
0.005003 = 0.1501 and e01501 = 1,163, Hence N; = 1.163 X 1800 = 2093, which
agrees with the tabulated value 2100 within the limits of accuracy of the calculation,

54. POPULATION, SURVIVAL, AND RECRUITMENT ¥ROM A 4-CATCH OR LONGER
EXPERIMENT — SEBER—JOLLY METHOD

5.4.1, STOCHASTIC MODEL OF JoLLY (1965) AND SeBER (1965). Four or more
catches or samples are taken. On the first occasion (Time 1) the fish are marked. At
Time 2 the total sample and the marked fish recaptured in it are envmerated. Part
or all of the sample, including all the recaptures, are given a new mark and are re-
leased; but the double-marked fish are preferably to be considered as unmarked at
any foture recapturel. At Time 3 and subsequently, the same procedure is followed,
the recaptures from each marking being tabulated separately. On the last occasion,
of course, no fish need be marked. Table 5.3 shows the categories involved.

TABLE 5.3. Categories of marked and recaptured fish in a Seber—Jolly experiment with five opera-
tion times. Where Jolly’s (1965) notation is different from ours, his is shown in brackets. Values of
K are the sum of all recaptures made later than Time J of fish marked before Time .

Fish

ex-
Fish ~ amined Recaptures of fish marked at
newly for
Time marked marks Timel Time2 Time3 Timed4 Total K(Z)
I Mi(s1) Ve ceen
2 My(s2) Gl Ry ceen vees Cees ms Ky =Ryz-F Rus + Rys
3 Mals) Gilma)  Rys Rzs ... ceen my  Kiy=Rys+ Ris+ Rzq+ Ras
4 Mylss) Cylm) Ry Ry Rys ... my K4 =Ris 4 Ras + Rss
5 caea Cs(ﬂs) R15 Rgs R35 R45 ms PR
Total ... e Ry Ry Rs R4

IIf recaptures are only a small fraction of the total population it is simpler just to kill them. Some
recommend that the remarked fish be included in the count of those marked and released at Time
2, any subsequent recovery being counted as belonging to the Time 2 marking. The major disadvan-
tage of this is that it magnifics the bias arising from any capture-proneness of some members of the
vopulation; also, carrying more than one mark may stress the fish unduly,

132




Two sets of ratios are computed from the quantities in Table 5.3. The first is
simply m; /C; {Jolly’s @), being an estimate of the fraction of marked fish in the popu-
lation at the time of capturing the ith sample. The second ratio comes less directly.
Let the quantity p; (Jolly’s M) represent the number of marked fish in the population
just prior to capturing the ith sample. Then, paraphrasing Jolly, immediately affer
Time { there are two groups of marked animals in the population, the p;—m;, old
marks that were not captured at Time 7, and the M; new marks that have just been
released, Of the former, K; are subsequently caught {see Table 5.3 for the definition
of K,); and of the lafter, R, are subsequently caught. Since the chances of recapture
are assumed to be the same for both groups, one would expect the ratios K, /(B;—m))
and R;/M; to be approximately equal, and this equality can be rearranged as an esti-
mate of f;:

B = —— 4+ m (5.17)

From the above, estimates of the three parameters of interest are as follows.
{1) The total number of fish in the population (marked and unmarked) just before the
ith sample was taken is obtained from the Petersen formula:

PiCi
N, = =2 (5.18)
my
(2) The survival rate of fish from Time 7 to Time i + 1 (Jolly’s ¢} is:
P
S;=——7— 5.1
YT B+ M G

This docs not include the effect of any accidental or purposeful mortality during sam-
pling.

(3) The number of fish that joined the population between Times i and i + 1 and
survived to Time { + 1 is:

By = Niwi = SAN; - C; + M) (5.20)

Inspection of Table 5.3 shows that this method provides direct estimates of N for
all sampling times except the first and last, while S and B are estimated for all time
intervals except the first and las{, Thus a minimum of four operation times is required,
of which the first involves marking only, the last recovery only, and the others both.

5.4.2. MODIFIED SEBER—JOLLY ESTIMATES. Expressions (5.18) —(5.20) are consistent
estimates, suitable for large numbers of recaptures. For smaller nambers of recaptures
modified expressions are proposed by Scber (1965), analogous to the modified Petersen
estimate of expression (3.7). In our notation these are:

(M, + DK,

fi R, 11

+m; + 1 (5.2
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pHG -+ 1)

L P —
N, M, (5.22)
Bivi
S * N S— 5.23
f Bi—my M, =
B = N#pq - SHNF-C; + M) (5'24)

5.4.3. STATISTICAL BIAS AND SAMPLING ERROR. As usual, the above estimates are
subject to bias when expectation of recaptures is small, in either of the categories
R;, Ry, etc. or niy, m, ete. of Table 5.3, Gilbert (1973} illustrates this bias graphicalily
for the situation in which the population is constant and equal to 50. Based on ob-
served tecaptures, the rule that each R or m should be larger than 3 or 4 seems good
enough.

Jolly (1965) was unable to develop any general formula for the variance of Seber—
Jolly estimates. With moderate-to-large numbers of recaptures in categoties R, Ry,
etc. and m,, my, ete, of Table 5.3, a useful approximation is to assign each R; and my
a variance equal to itself, Then the variance of the estimates of N, §, and B can be
calculated using the law of propagation of error for the normal distribution {see Section
5.4.6).

5.4.4. ESTIMATION OF FIRST-YEAR SURVIVAL., The Seber-Jolly method does not
provide an estimate of survival rate during the first year. However such an estimate
can be obtained from data of a Seber—Jolly experiment by the method of Section 5.1,
In Table 5.3, the M;, fish marked at Time 1 become M,S; by Time 2. At that time they
are reduced by the Ry, recaptures, and the remainder suffer the mortality rate 8, so
that (M;S; - Ry2)S; survive at Time 3. At Time 3 the fraction of the population sam-
pled is estimated by Ros/MaS;. This fraction should apply approximately to the M,
series also, that is:

R R
13 ~ B (5.25)
(M1S; ~Rp2)S; M8,
Thus the estimate of S, becomes:
24 R R.
s, = Rz 1+ RiaMz/Ray (5.26)

M,

5.4.5. [LLUSTRATION OF THE SEBER-JOLLY METHOD, Table 5.4 shows values of
B, N, C, M, R, and K for a constructed population in which 8 = 0.5 in all intervals,
and the fraction of the population sampled is 0.2 at Time 2, 0.3 at Time 3, and 0.25
at Time 4. The initial value of N is 100,000, and the values of C;, B, and M, are as

134




Stl

TabLE 5.4 Constructed population, markings, and recaptures for Seber—Joily ¢stimates.

Recaptures from markings at

Mewly
Time Recruits Population Sample marked Time 1 Time 2 Time 3 Total K

1 N: = 100,000 M; = 10,000
B: = 40,000

2 Nz = 60,000 C;=18,000 M;=16,000 Rj; = 1000 mz = 1000 K =775
Bz = 65,000

3 N3 = 109,000 C3;=32,700 M;=20,000 Ry; =600 Roz = 2400 PR iz = 3000 K3 =875
B; = 55,000

4 N4y = 103,150 C4 = 25,788 Ris =175 R34 =700 - Rjq= 2500 mq = 3375

Total Ry = 1775 Ry = 3100 R; = 2500




shown. Numbers of recaptures have their exact expected values. Ttems which would
not be known in an experiment are in italics. The estimates of marked fish in the
population are, from (5.17);

16,000 X 775
= 1000 = 5000
Br 3100 T
20,0
B3 = 0,000875 + 3000 = 10,000

2500

The primary population statistics are, from (5.18)-(5.20):
Ny = 5000 x 18,000/1000 = 90,000
N3 = 10,000 X 32,700 /3000 = 109,000

10,000 B
5000 — (000 + 16,000

By = 109,000 — 0.5(90,000 — 18,000 + 16,000) = 65,000

Sz 0.5

The value of 5| by the Ricker method is, from (5.26):

100 4 600<16,000/2400
B 10,000 B

0.5

1

Thus all the “estimates™ agree with the values postulated. In this illustration no
additional values of N can be computed because the number of recruits varies un-
predictably between intervals,

5.4.6. ESTIMATION OF APPROXIMATE SAMPLING ERRORS. The “‘estimates” above
have no sampling error because the recaptures were all given their expected values.
However, for the population parameters shown we will illustrate the method of
calcuiating approximate variances by postulating that the recaptures are in fact
Poisson variables, each with a variance equal to itself, and by using the large-sample
method of estimating errors of sums and products. Let m; and s; stand for the means
and standard deviations of the primary estimates, and let M and S be the mean and
standard deviation of the combination. Then:

IfEM=m +tm+..., L= 154,
IfM = Kmflpd2 . . ., 8% = MY phs? m? + pisajm? .. )

K is a quantity known without error, and py, py, etc. can have any value — positive
or negative, integral or fractional (Tuttle and Satterly 1925, p. 219).

The Poisson assumption is correct for samples in which N is much larger than C (100 times or
more), which is the usual situation in fishery work. In the illustration, C1/N; was made equal to 0.2,
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0.3, and 0.25. respectively, Thus the use of the Poisson variances would be conservative: they are 1,25
to 1.43 times the lrue binomial variances, Using the computed population estimates Ny, the binomial
variances could be estimaled as (N; - C;)/N; times the actual numbers of recaptures in each category,
for all samples but the last,

The first requirement is the variance of 3, and S,. In expression {5.17) M, is
without error, and the variances of K;, R; and m; are the respective sums of the
variances of their component R-values. For 3 this means V(K3) = 775, V(R,) = 3100,
and V(m,;) = 1000. The first term of the expression for 3, is 4000, and its variance is:

775 | 3100
40007 =5 + -5 ) = 25,808
(7752 T 31002>

The variance of #z5 is 1000; thus the total variance of the estimate 35 = 5000 is 25,808
+ 1000 = 26,808, Similarly the variance of the estimate 83 = 10,000 is 78,600.

For the variance of Np, in expression (5.18) C; is without error, 8; has the variance
estimated above, and m; has a variance equal to itself, The combined variance of an
estimated N, = 90,000 is:

26,808 1000
90,0007 —— ) = 16,786,00
? ( 5000° T 10002> 7 0

The standard error of N, is therefore approximately 4100. Similarly the variance
of N3 = 109,000 is 13,298,800,

In the denominator of (5.19) M; is without error, so its variance is the sum of
those of the first two terms; for/ = 2 this is 25,808 4 1000 = 26,808, The approximate
variance of' S, = 0.5 is therefore:

78,600 26,808
0.5 (

s | = 0.00036405
10,0002 20,000~)

and its standard deviation is about 0.0191,

In expression (5.20), C; and M; are without errot. For i = 2 the part of the expres-
sion in brackets is equal to 88,000 and its variance is 16,786,000, as found above.
The variance of S; times 88,000 = 44,000 is:

0.00036405 16 786,000

= 7,038,
44000( o & 88000) 7,038,100

The varignee of B, = 65,000 is therefore 13,298,800 + 7,038,100 = 20,336,900, and
its standurd error is 4510,

The varinnce of the estimate of S in (5.26) can be obtained using the same
procedure, The variance of the right hand term of the numerator is:

Lf 600 2400
4000- = . =133,333
((700' i 2400')
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Thus the whole numerator {5000) has a variance of 34,333, The survival rate §; = 0.5
therefore has an approximate variance of 34,333/10,0002 = 0.00034333, and its
standard deviation is 0.0185, The [atfer is much the same as the 0.0191 found for
Sy, though this is accidental. Notice that Sy also could be estimated by the procedure
of (5.26), and the sampling error of this estimate is somewhat less — 0.0153 — because
larger numbers of recaptures are used.

5.5, SURVIVAL ESTIMATED FROM MARKING IN ONE SEASON, IN CONJUNCTION WITH
F1sHING EFFORT DATA

Consider a change in rate of fishing that results from a change in fishing effort
from one year to the next. Suppose that Iy, M, Z;, Ay, etc. are statistics describing the
first year of an experiment, while Fy, M, Zj, A,, ete. describe the second year, only M
being common to both, Of M fully-vulnerable fish marked at the start of the first
year, Ry, are recaptured that year, and Rj; the next year. To estimate survival rate
(84), another piece of information is necessary. In default of a second year’s marking,
this may be provided by data on fishing effort (7) in the two years; which data, if they
really represent eflective effort as the fish encounter it, will be proportional to rate of
fishing, F. We have:

i Fi
L 527
57 E (5.27)
Also:
Ry FiA;
il 1 S S 5.28
Ml 23] ZI ( )
R S
Riz _ s, = 2025 (5.29)
M; Zy
Dividing (5.28) into {5.29) gives:
R F Z
S =-xt AiZy (5.30)

Ry 7 Az

Inthis expression Ryy /Ry and Fy /F, are known. The correction term A7 /A,7,; is the
same one already encountered in (5.7) above, and it can be handled in the same man-
ner. A first estimmate of S, is obtained by putting A7, /A7, equal to unity, and Z, is
calculated. This makes it possible to estimate Fy from (5.28) whence M = Z; —~ Fy;
then F, is calculated from (5.27) and Z, = F, -+ M. We are now in a position to
evaluate A7, /AsZ,4, and get an improved estimate of S| from (5.30). Further iteration
is usually not necessary.
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EXAMPLE 5.3. SURVIVAL RATE OF BLUEGILLS AT SHOE LAKE, INDIaNA, COMPUTED
WITH THE ATD OF INFORMATION ON FISHING EFFORT. (From Ricker 1948,)

Information on the cane-pole fishing effort and tagging experiments on Shoe Lake
were reported by Ricker (1945a, p. 393, 413, 419). Because of the war, effort decreased
from 163 pole-tours peracre in 1941 to 106in 1942;i.e. F; /F, = 1.43, A representative
value for rate of exploitation of bluegills in 1941 was 0.32, while in 1942 there were
retaken by fishermen 0.049 of the bluegills which had been marked prior to the fishing
season in 1941, Disregarding the A and Z terms in (5.30), a first estimate of Sy is 1.54 X
0.049/0.32 = 0.236; which gives A} = 0.764, Z; = 1.444, F, = 0.32 X 1.444/0.764
=0.605, M = 1.444 — 0,605 = 0.839, F, = 0.605/1.54 = 0.393, Z, = 0.393 +
0.839 = 1.232, A, = 0.708. Using the whole of formula (5.30) we get:

0.764 X 1.232
= 0236 ————""} =02
3= 0236 (1.444 X 0.708) 0217

This value of S| can now be used to obtain betier estimates of Ay, Zy, Ay, and Z,, but
when these are used in (5.30) the same value for $; is obtained. Consequently, 0.22 is
the best estimate of survival rafe in the first year. For comparison, the value computed
by the method of Section 5.1 was 0.24,

ExamprE 5.4, SURVIVAL RATE AND RATE OF FISHING FOR HaLIBUT, COMPUTED
WITH THE AID OF FisHinG ErrorT, (Modified from Ricker 1948.)

Thompson and Herrington (1930) reported in detail the results of widespread
halibut tagging in the area south of Cape Spencer, Alaska. Tagging was done during
1925 and 1926, though not on exactly the same grounds in the two years. Data for
the 1923 season are described in Example 5.5 below, Of 762 fish of approximatety
age 8 or older tagged throughout 1926, reported recaptures were: 106 in 1926, 147 in
1927, and 52 in 1928.

Neglecting for the moment any difference in fishing effort between 1927 and 1928,
a first estimate of apparent survival rate (the complement of the annuval rate of dis-
appearance, A’, of tagged fish from the fishing grounds) is:

. 52
Sy = a7 0.354
However, from data on gear used south of Cape Spencer, cited in Example 2.8, we
know there was an increase in fishing from 494,100 “skates” of lin¢ set in 1926 and
498,600 in 1927, to 569,200 skates in 1928, This gives some indication of the relative
magnitude of the rates of fishing in these vears, so we may estimate the 1927:1928
ratio as Fy/I; = 0,876, Using (5.30) without the A and Z terms:

S, = 0.354 X 0.876 = 0.310

which will be a second estimate of apparent survival rate. The corresponding in-
stantaneous rate of disappearance is Z' = —log.0.310 = 1.17.
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A slight improvement can be made by using the whole of (5.30). A trial value of
F, is required, but it need be only approximate; we will take trial Fy = 0.72%. Hence
the trial value of Fp = 0.72/0.876 = 0.82, or 0.10 more than Fy. Considering natural
mortality rate constant, a trial Z'; is therefore equal to Zi 4010 = 1.17 +0.10 =
1.27. Consequently, using all of (5.30), and taking A /Z values from Appendix I:

S’y = 0.310 x 0.5894 {0.5663 = 0.323

Turning now to a serious estimate of rate of fishing, we notice first that tagging
was done throughout the fishing seasen, which is the situation discussed in Section
4,2. The possible existence of Type C error is tested by the method of expressions
(4.7) and (4.8); fortunately the test is not complicated by any significant difference
in fishing effort between 1926 and 1927, As we have already called 1928 year 2 and
1927 year 1 when applying (5.30), for consistency the years 1 and 2 of the formulae
of Chapter 4 must here be designated 0 and 1, respectively. The two quantities to
be compared are: '

Ro(AN2/S1(Z; — A} = 106 % 1.012/0.323 = 332
Ry/S; = 147/0.323 = 455

Since 332 is considerably less than 455, there is a deficiency of recaptures in the first
year compared with the two later years, which means Type C error is present. This
means using repeated trials with (4.18) and (4.19). Because of the change in rate of
fishing after 1927, only the first term of numerator and denominator should be used
in (4.18). It is convenient to rewrite these expressions with this modification, and with
the subscripts reduced by 1 to conform to the present numerical designation:

’ Z:]RI
= —— 5.31
T AM (531
’ Ai ] : RO(Zé)z
=— Z,-Z —_— 5.32
u Z1< 1 - Zo + M(Z,— ALy (5.32)

In selecting a trial Z%, notice that recaptures in 1926, when adjusted to a full year
basis above, are 123 less than expected; thus the full-year u; would be approximately
332/762 = 0.436 instead of approximately 455 /762 = 0.597. The difference between
these, 0.16, will be a useful trial difference between Z, and Zg to use the exptressions

2 This was obtained by averaging two extreme limits for Fy. Rate of exploitation in 1927 obviously
cannot be less than uy = 147 {(762 - 106) = 0.24, so a minimum Fy is 0.27; a maximum value for Fj
is the instantaneous rate of disappearance, 1.17. The average of 0.27 and 1.17 is 0.72, the figure
chosen; actually their geometric mean, 0.56, would be a better choice.
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above. Given §; = 0.323 and Z, = 1.13, a trial Z; = 1.13-0.16 = 0.97. Applica-
tion of this and two other trial values is shown below:

Trial First Second

) i) value w] value Difference
0.97 0.302 0.321 ~0.019
1.00 0.305 0.304 —+0.001
1.01 0,307 0.299 —+0.008

The best Z; is evidently close to 1.00. From it is calculated u; = 147 /762 X 0.632 =
0.305. Using (1.13), F; = 0.305/0.599 = 0.5, which is the instantaneous rate of
fishing for 1927. It is a rather smaller figure than the F = 0.57 for 1926, computed
by the same method from the 1925 tagging experiment (Example 5.6), though the
quantity of fishing gear used was practically the same in 1926 and 1927. However,
tagging was not done on exactly the same grounds, and the agreement of the two
experiments can be considered very satisfactory.

Although the estimate S} = 0.323 above involved using a trial F; that proves
to be considerably too large, S; is changed very little by using the more accurate
figure 0.51: it is reduced to S| = 0.320, which means Z; would go up to 1.14. This
change, however, makes no difference to the estimate of F; which follows.

5.6, MARKING DONE THROUGHOUT THE YEAR, NATURAL MORTALITY VARIES WITH
AGE

If the instantaneous natural mortality rate, M, of the fish changes with age, with
or without change in F, the computation becomes even more complicated, and I
have not succeeded in setiing up equations in which all the unknowns would be
determinable — by successive approximations cor otherwise. Even so, some progress
might be made using an estimate of one of the unknowns derived by analogy with
another species of fish, or with the same species in another body of water. If M
varies with age, it is essential to divide the marked fish into two or more groups. If
age-groups are easily recognizable, we could, for example, mark ages 3 and 4 differ-
ently in year 1 of the experiment. In year 2, the same thing would be done, but of
course the fish that were age 3 in year 1 are now age 4, (If age-groups are not con-
venient units, any other moveable dividing lines can be used provided that they are
made to move at the rate at which fish of corresponding size are growing.)

Using the same symbols as formerly, the recaptures during year 1, of a unit
number of age 3 fish marked during year [, are;

Fy(Zs — Ay

(5.33
7z )

Recaptures during year 2 (i.e. at age 4) of the unit number of fish-marked at age 3
during year | are:
Fahats

5.
72 (5.34)
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Recaptures during year 2 of a unit number of age 4 fish marked during year 2 are:

Fo(Zy- Ay)

7 (5.35)
Without introducing a complicated set of symbols for the number marked and
number recaptured in each category, it is obvious that the expressions above can all
be evaluated from the data, The rates of fishing F3 and Fy (which might be equal)
can be evaluated, as described in Section 5.2, from (5.33) and (5.35). However, it
seems essential to put in trial values of both My and My simultaneocusly, to check
survival rate against expression (5.34), This means that no definite decision can be
reached concerning the size of either, though a series of corresponding values can
be set up; i.e., if M3 is so and so, M, must be such and such. This might have value,
as showing, for example, whether or not M increases with age.

3.7, RATE oF F1suiNG DURING YEARS OF RECRUITMENT

5.7.1. GENERAL. Most fisheries include in their catch representatives of one or
more voung age-groups which are not yet fuily vulnerable to fishing, That is, even
when rate of fishing and natural mortality are unchanging among several older ages,
the youngest fish cannot be expected to fit into the same picture. The fact they are
mcompletely recruited is another way of saying that their fishing mortality rate is
less than the maximum or definitive rate, because some of their members are too
small to be consistently taken by the kind of fishing gear in use. This being true,
their total mortality should also be less than the definitive rate, other things being
equal,

When recruitment occurs abruptly, there is little need to worry about the in-
completely-recruited groups, because they form only a small part of the catch. In
that event, marking or tagging experiments should avoid such fish, or mark them dis-
tinctively so that they will not be confounded with fully-vulnerable fish in the analysis,
or make an adjustment for their smaller size such as was used, for instance, in Example
3.5, However, if recruitment extends over a period of several years, it may happen
that the incompletely-recruited groups are not merely important, but actually com-
prise the greater part of the catch. In that event, it seems essential {o mark these
young fish and try to obtain some kind of information concerning then.

Fish incompletely recruited are subjected to a smaller total mortality rate than
are older fish, if natural mortality does not vary with age. However, because rate of
fishing is increasing with age, the ratic of one year’s recaptures to the previous year’s
does not represent the survival rate which actually exists between the {wo years,
but will be somewhat too great. No complete evaluation of fishing and natural
mortality is possible under these circumstances, but an analysis can be made on the
assumption that the natural mortality rate of fish of the incompletely-recruited age-
groups is the same as that of those completely vulnerable. This is done by evaluating
survival rate and rate of fishing first from the wholly-recruited age-groups, then
working back, year by year, into those incompletely recruited.
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5.7.2. SURVIVAL RATE DURING RECRUITMENT COMPUTED FROM TAG RECAPTURES,
When tagging has been done on fish smaller than those fully vulnerable, it may be
possible to calculate their survival rates from subsequent recaptures, provided lengths
and ages can be associated, at least approximately. The method is described in Ex-
ample 5.5.

ExAMPLE 5.5. SURVIVAL RATE AND RATE OF FISHING FOR INCOMPLETELY-
RECRUITED AGE-GROUPS OF HALIBUT, FROM RECOVERIES OF TAGS, (From Ricker 1948.)

Data pertaining to the 1925 halibut tagging experiment off northern British
Columbia and southern Alaska are shown in Table 3.5, taken from table 12 and the
appendices of Thompson and Herrington (1930). The approximate age distribution
indicated is from Dunlop’s data in Thompson and Befl (1934}, It is obvious, from
the age distribution of the fish tagged (cf. Fig. 2.12), that recruitment to the fishery
is not complete until about age 9. This is reflected also in the distribution of recaptured
fish, for there is a relative scarcity of recaptures among the smalier fish during the
year of tagging, also during the first year after tagging, and to some extent even during
the second year after tagging,

TanLE 5.5 Number of halibut tagged in 1925 (excluding Cape Chacon), and the number recaptured,
arranged by 5-cm length intervals. (Data from Thompson and Herrington 1930.)

Approximate Number of recaplures
age when Size No.
marked group® tagged 1925 1926 1927 1928 Total
375 1 0
425 6 0
475 28 3 3
4 525 66 e 7 5 1 13
5 575 188 2 17 11 10 40
6 625 293 8 35 26 10 99
7 675 330 30 61 27 4 122
8 725 212 18 55 25 3 101
g 775 142 10 as 5 2 52
10 825 G3 9 11 8 1 29
11 875 37 5 13 1 1 20
12 925 25 1 4 2 3 10
13 975 21 1 7 1 1 10
14 1,025 15 1 3 0 1 5
13 1,075 12 1 1 1 1 4
16 1,125 9 1 1 0 1 3
Older 1,175 up 14 0 1 1 0 2
Total 1,462 87 271 113 42 313
816 - 725-1,125 536 47 131 44 14 236

&The 375-millimeter group includes fish from 350 {o 399 millimeters, ete. The “1175-up”™ group
includes fish fron: the 1175 group through the 1625 group.
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Recaptures of all sizes of fish in 1925 are scarce, indicating “Type C” error. A
first step is to estimate the apparent survival rate for completely vulnerable fish.
Fish tagged at age 8 will be age 9 in 1926, so we can use recaplures from them and
from all older fish to estimate apparent survival rate, 5.

1926 1927 1928

Recaptures....oocoevcive e, 131 44 14
Ratio (8. 0.336 0.318

There is good agreement between the two ratios. Taking 58 /175 = 0.331 as the best
representative value, the total rate of disappearance of tagged fish is A’ = 0.669, and
the instantaneous rate of disappearance is Z' = 1.106. Whether or not this represents
the true mortality rate of the population (that is, whether or not Type B error is
present), these figures must be used to obtain the estimate of rate of fishing.

Because the fish were marked throughout the 1925 fishing season, the 47 recaptures
in that year would not be expected to be a member of the geometric series of later years;
instead (A")2/S'(Z' - A") times 47, or 145, should be. However, this is much less
than the 131/0.331 = 396 which would be expected on the basis of later recoveries,
so that “Type C” error is even more important than in the 1926 experiment discussed
in Example 5.4.3

Using formulae (5.31) and (5.32) to obtain apparent rate of exploitation in 1926,
the value &' = 0.345 is obtained, from which F = «'Z' /A" = 0,345 X 1.106/0.669 =
0.570 — an estimate of the frue rate of fishing,

Estimates of rate of fishing for the incompletely-recruited fish can now be found,
approximately, by assuming that the instantaneous rate of disappearance of tagged
fish from causes other than fishing (the other-loss rate, M -} U} is the same prior
to age ¢ as it is at older ages. This valueis M + U = 1,106 - 0,570 = 0,536, or about
0.54. The ratics of 1927 to 1926 recoveries, for successive age-intervals during the
recruitment period, are as follows:

Approximate Recaptures in
age during -—
survival period 1926 1927 Ratio
-6 7 5 0.71
67 17 11 0.65
1-8 55 26 0.47
8-9 61 27 0.44

3 Part of the apparent “Type C” error results from more tagging having been done in the second
half of the fishing season than in the first half. The mean date of tagging in 1925 was July 14,
whereas the middle point of the fishery appears to have been about June 15 (Thompson and Herring-
ton, p. 62). Another part of the “Type C” error might result from non-random local intraseasonal
distribution of fishing effort, as described by the authors on pages 64-635 of their paper. Possibly the
halibut are ““off their feed” and incapable of taking baited hooks at a ncrmal rate for a time after
tagging because of harmful effects of catching and tagging. The only bias which these effects will
infroduce into the rate of fishing, as estimated by the procedure below, will result from the mean date
of tagging being different from the mean date of apparent natural mertality; a rough computation
shows that the estimated rate of fishing, 0.57, would be reduced by no more than 0.01.

144




If Fs, Fg, ete. represent the rate of fishing in successive years and Ns, Ng, etc. the aver-
age populations, then;
NeFs N-F,

= = 0.71; =— = (.65, etc.
NsFs NsFs

The use of this information to estimate successive values of F is shown in Table 5.6,
which can readily be understood if the following things are kept in mind: (1) N fish
at the start of any year decrease to NS’ at its close, and their average abundance during
the year is NA'/Z' (expression 1.15); and (2) N fish at the close of a year represent
survivors of N/S’ fish at its start; during that year their average abundance was
NA'/Z'S', and the catch was FINA'/Z'S’. We start with the arbitrary number of 100
fish at the end of the year in which they are age 9. During that year they are subject
to the definitive disappearance rate 0.67; hence at its start they numbered Ny = 100/
0.33 = 303. Their average abundance was Ng = 100 X 0.67/1.11 X 0.33 = 183;
the rate of fishing was the definitive rate 0.57, and the other-loss rate was 0.54. During
the preceding vear, the instantancous rate of disappearance was Fz + 0.54. Putting
Fg=0.4 as a trial value, Zz =094, Ag=0.609, 85 =0.391,and hence Ng =303 % 0.609/
0.94 % 0.391 = 502, From this NgFy/NgFg = 183 % 0.57/502 X 0.4 = 0.519. But
the observed value of this ratio is 0.44 (last column of Table 5.6) and thus the trial
value Fy = 0.4 is too small, One or two additional trials pives Fg = 0.46 as the correct
answer. This determines Zg = 0.46 - 0.54 = 1.00, hence Ay = 0.632 and S; =
0.368; and the population at the start of age 8§ is 303/0,368 = 823, All necessary data
are now available to repeat the computation for age 7, and so on as far as desired,
Calculations are made easier by using Appendix I, where all products involving Z, A,
and S can be found. Of the series of calculated F values shown in Table 5.6, those
closest to nge 9 naturally have the greatest reliability. Three or four years away from
age 9, both systematic and sampling error might well be excessive.

TABLE 5.6. Approximate computation of rate of fishing for vears of recruitment, on the assumption
that the instantaneous other-loss rate (natural mortality plus emigration plus loss of tags) remains
constant at 0.54,

Apparent Rate NPy
survival Mean of
Age rate, 8’ Population population fishing Ne-1 Fra
5 0.492 Ns = 6640 Fs=0.17
4560 0.71
6 0.454 Ng = 3150 Fg= 0,25
2070 0.65
7 0,398 N7 = 1351 Fq;=0.38
823 0.47
8 0.368 Nz = 520 Fg = 0.46
303 0.44
9 0.330 Mg — 183 Fo =0.57
100
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5.7.3. SURVIVAL RATE DURING RECRUITMENT, COMPUTED FROM AGE COMPOSITION,
A method of more general applicability is to calculate survival rates during recruit-
ment years [Tom a representalive sample of ages in the commercial catch. For this the
true natural mortality rate is required, or some assumption concerning it. It is also
necessary to use age composition of the catch brought on board ship, rather than
merely those landed, on the assumption that fish discarded at sea are mostly dead or
will quickly succumb from injuries.

Baranov’s catch equation (expression §.17) is C = NFA/Z. Assume that F,
A, and Z have been estimated for the youngest fully recruited age, ¢, so that:

N, = CZ,/FA, (5.36)
Now the population at the beginning of age ¢ (N} is equal to S,_; times that at age
t-1; thus Nyp = N,/8;;. Inserting this in the catch equation we have:
N,  FraA
Cog=5— X — (5.37)
! S:—l Zz—{

This can be solved for F,; by successive trials, knowing C, |, N, and M. A trial
value of F yields trial F - M = Z, trial 8 = ¢% and trial A = 1—8. Thus the right
side of (5.37) is evaluated and matched with the left, until agreement is obtained.
Then N, | can be caleulated from N,/S,_;, and the whole routine repeated for the next
younger age. :

In applying this procedure to an age distribution obtained in a single year, the
implied assumptions are that year-class strength and rate of fishing have both been
more or less constant over the period of years during which these fish were recruited.

ExaMPLE 5.6. SURVIVAL RATE anND RATE OF FISHING FOR INCOMPLETELY-
RECRUITED AGE-GROUPS OF HALBUT, FROM THE AGE COMPOSITION OF THE CATCH.
(Modified from Ricker 1948.)

The length frequency and approximate age frequency of halibut caught for
tagging in 1925 and 1926 were plotted in Fig. 2.12; of these, fish less than approxima-
tely age 10 are shown in Table 5.7. For the purpose of this illustration, these fish are
considered representative of the ordinary commercial catch of that time (including
those caught but not marketed, since the latter are said to probably die). Using the
estimate of Z from age distribution (Example 2.8) and the estimate of I from the
1925 tagging (Example 5.5), the true instantaneous rate of naturai mortality is esti-
mated as M = Z~F = 0,76 0.57 = 0,19. This value of M is assumed to apply
also to the ages of recruitment.

In Table 5.7 the number and approximate age of fish caught are shown in column
3. Taking the ages as accurate, the definitive rate of fishing, F = 0.57, and the definitive
rate of survival, $ = 0.47, are entered opposite age 9. From (5.36), the initial popula-
tion at age 9 is Ny = 359 X 0.76 /0.57 X 0.532 = 900. Consider a ttia} value Fg = 0.5
so that trial Zg = 0.5 + 0.19 = 0.69; from Appendix I trial Ay = 0.498 and trial
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TaBLe 5.7. Computation of rate of fishing for halibut during the years of recruitment, from the
approximate distribution of ages in the catch taken for tagging in 1925 and 1926, on the assumption
that instantaneous natural mortality rate (M) remains constant at 0.19, (Data from Thompson and
Herrington 1930.)

1 2 3 4 5 6
Approx. Length- Observed Rate of Survival Initial
age groups catch fishing rate population
C F s N
11,433
k) 425--475 96 0.009 0.8195
9,369
4 525 270 0.032 0.8009
7,504
b 575 740 0.115 0.7371
' 5,531
6 ' 625 1201 0.270 0.6313
3,492
7 675 1175 0.456 0.5241
1,831
8 725 681 0.520 0.4916
900
9 775 359 0.57 0.47

Sg = 0.502. Thus the RHS of (5.37) is 900 X 0.5 X 0.498/0.502 X 0.69 = 647,
whereas the actual Cg is 681, Further trials show that 0.520 is the value of Fg which
makes the RHS of (5.37) equal to 681, and the corresponding Sy = 0.4916. Ny is
now calculated as 900/0.4916 = 1831, and the computation is repeated for age 7.
Table 5.7 shows the complete series.

The above is an example of a sequential computation by age; such computations
are considered further in Section 8.6.

5.8. ESTIMATION OF PERCENTAGE OF THE YOUNGER AGE-GROUPS PRESENT ON THE
FISHING GROUNDS

Comparisons of rates of fishing calculated by the methods of Examples 5.5 and
5.6 might be used to decide to what extent the reduced vulnerability cof the various
younger age-groups is due to their reaction to the fishing gear, and to what extent
it results from their absence from the fishing grounds. If the two estimates of I agree
at a given age during the recruitment period, it indicates that the fish are present on
the grounds but are less vulnerable to the gear than the fully-recruited stock. If the
estimate of F from tagging is greater than that from age composition, it indicates
that the age-group in question was not yet completely present on the fishing grounds
at the time tagging was done, The limiting situation, where all of the reduced vulnera-
bility of recroitment years is due to absence from the fishing grounds, would be
indicated by F-values from tagging which are the same for recruitment ages as for
fully-vulnerable ages. For such comparisons it would of course be necessary to be
sure that there was no extra tagging mortality among the younger fish.
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In the actual example of Tables 5.6 and 5.7, since the F-values from tag recoveries
tend to be even somewhat /ess than those from age composition for ages 6 to 8, it
would be concluded that a lesser susceptibility to capture by longlining, rather than
absence from the fishing grounds, accounts for the incomplete recruitment of those
ages. Very young halibut are of course likely to be at least partly absent from grounds
frequented by old fish, and the age 5 comparison is in that direction,
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CHAPTER 6. —ESTIMATION OF SURVIVAL AND RATE OF FISHING
FROM THE RELATION OF FISHING SUCCESS TO CATCH OR EFFORT

6.1, PRINCIPLES OF FISHING-SUCCESS METHODS

6.1.1. GENERAL AND HISTORICAL. The methods of this chapter are applicable
when a population is fished until enough fish are removed to reduce significantly
the catch per unit effort, the latter being considered proportional to stock present.
For example, if removal of 10 tons of fish reduces C /f by a quarter, the original stock
is estimated as 10/0.25 or 40 tons. Instead of estimating C/f only at the start and
finish of the experiment, a series of estimates is usually made. That is, a number of
points are used to determine the rate of decrease of C/f, and hence of the stock. The
reason is that variables such as weather, which affect vulnerability, tend to make
single estimates of C/f unreliable for this purpose.

The origin of such methods can be traced to Helland (1913-14}. From hunting statistics he made
estimates of the population of Nerwegian bears, assuming that the number killed per year was pro-
portional to the number in the population, and that births were balanced by natural mortality. Hjort
et al, (1933) applied a similar principle, using annual catch per unit of effort, fo whale stocks off Tce-
land and elsewhere; but they made adjustments for recruilment based on known fecundities and
various estimates of pre-adult mortality. In either case the instantanecus rate of kill (FF) was equal to
the catch divided by the mean population. Both the bears and the whales were decreasing fairly
rapidly, which made the assumptions used reasonably realistic.

Applications of a similar principle to smaller animals apparently began with Leslie and Davis’s
(1939) computations for a rat population and Smith’s (1940) paper based on a starfish reduction pro-
gram. Fish populations were apparently treated in this manner by Shibata in 1941 (Kawasaki and
Hatanaka 1951), but the first fishery applications to attract wide attention in the west were Delury’s
two comprehensive papers (1947, 1951) ard a shorter study by Mottley (1949).

6.1.2, TYPES OF COMPUTATION AND sYMBOLS. The procedures and computations
in common use are of two main types. The first, introduced by Leslie and Davis
(1939, involves plotting catch per unit effort against cumulative catch over a period
of time; from the resulting straight line, initial population and catchability can be
estimated. In the second method, first described by DelLury in 1947, the logarithm
of catch per unit effort is plotted against cumulative effort, and the fitted straight
line yields the same statistics. Both methods can be improved by a minor change
suggested by Braaten (1969), and arc described here in that form.

The concepts and symbols to be employed are as follows:

Ny original population size

N, mean population surviving during time interval f

C, catch taken during time interval ¢

K, cumnulative catch to the start of interval ¢ plus half of that taken during the
interval
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C total catch (£C))
g  catchability -— the fraction of the population taken by 1 unit of fishing effort

(/ of DeLury)
P 1 -g; the complement of catchability
Ji  fishing effort during time interval ¢
E, cumulative fishing effort up to the start of interval ¢, plus half of that during

the interval
J total fishing effort for the whole period of the experiment (E of DeLury)

C,/f; catch per unit effort during the interval ¢ (C, of DeLury)

6.2. POPULATION ESTIMATES FROM THE RELATION OF FISHING Success To CATCH
ALREADY TAKEN — LESLIE'S METHOD!

6.2.1. GuNERAL CASE. By definition, catch per unit of effort during time interval
t is equal to catchability multiplied by mean population present during the interval?;
that is:

c,
—! = gN (6.1
5o ,

The population at the time K, fish have been caught is equal to the original population
less K,:

N, =Ng- K, (6.2)
From (6.1) and (6.2):
C
— = gNp - gK, (6.3)
S

Equation (6.3) indicates that catch per unit effort during interval #, plotted aginst the
cumulative catch X,, should give a straight line whose slope is the catchability, g. Also,
the X-axis intercept is an estimate of the original population, Ny, since it represents
the cumulative catch if C,/f;, and thus the population also, were to be reduced to zero
by fishing, The Y-axis intercept is the product of the original population, Ny, and the
catchability, g. :

Confidence limits for the estimate of Ny can be calculated using formulae 2.6
and 2.7 of DeLury (1951). Upper and lower limits of confidence for any level of prob-
ability (P) are the roots of the equation:

N¥(g® - s piem) — 2(g°Ng — s e)N + (¢*NG - s iens) = 0 (6.4)

! Leslie and Davis alse had to deal with a complication not considered here: their unit of effort,
a break-back trap, could catch only one rat at a time, For any given pumber of traps in use, this
means that C/f increases less rapidly than population, because at higher densities encounters of rats
with sprung traps are relatively more frequent than at lower densities.

2 This is Braaten’s (1969) modification of Ieslie’s method. Leslie and DeLury both put Ny and
K. equal to pepulation and catch at the beginning of each time interval. This approximation is close
to Braaten’s procedure when time intervals are short and ¢ is small,
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where:
01y = ZX2/nZx?
C1p = EX/nEx2
€0 = 1/Zx2
tp = the ¢ value corresponding to a given probability P for n - 2 degrees of
freedom, found from a ¢-table such as Snedecor’s table 3.8
n = the number of days of fishing

6.2.2, SPECIAL CASE. A special case of the Leslie method occurs when equal units
of effort are used to make the successive catches, so the latter can be plotted directly
against cumulative catch:

Cr = gNo - gK, {6.5)
This situation has been studied by Hayne (1949), Moran (1931), and Zippin (1956).

In fitting & line to (6.5), Zippin shows that the statistical weighting for catches should be:

1
6.6
No -, {6.6)
where Ny is a preliminary estimate obtained by eye.
A comparable weighting formula for the general situation (6.3) would be:

f1
I 6.7
NolK, (8.7

However, factors other than size of sample and number of marked fish at large usually play a big part
in determining the scatter of the points about the regression line — for example, day to day variation
in vulnerability of the fish, Thus it may often be more accurate, and it is always less trouble, to fit a
line without weighting, The same considerations apply to Moran’s (1951) maximum likelihocd esti-
mate of Ny, for which Zippin (1956, p. 168-169) prepared charts (o simplily the calculation when
the number of successive catches is from 3 to 7.

6.2.3. EFFECT OF VARIABILITY. From the discussion in Appendix IV it appears
that an ordinary predictive regression line fitted to expression (6.3) or (6.5) will pro-
vide unbiased estimates of ¢ and Ny only if there is no error in X, That is, the catch
statistics must be completely reliable, for practical purposes. When this is so, all the
variability lies in C,/f, and the predictive regression is also the functional one. In
many situations this is the actual state of affairs. If not, however, an estimate of
catchability will tend to be too small and the initial population too large.

ExaMPLE 6.1. SMALLMOUTH BASS POPULATION OF LITTLE SILVER. LAKE ESTIMATED
BY THE LESLIE MEeTHOD. {Modified from Ricker 1958a, after Omand 1951.)

Little Silver Lake in Lanark County, Ontario is of 100-125 acres exient. It was
trapped intensively for 10 days in September, 1949, and Leslie estimates of the fish
populations were made. Since the same number of traps (7) were used on all 10 days
of fishing, they can be considered collectively as a single unit of effort, so that the
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daily catch is also the catch per unit of effort — thus avoiding division of each calch
by 7. The data for smallmouth bass (Microplerus dolomieuni) are shown in Table 6.1.

TABLE 6.1.

the text. (From data of Omand 1951.)

Catches and fishing efforts for the experiment of Examples 6.1 and 6.2; explanation in

1 2 3 4 5 6 7 8
Day Ce Cef2 K. fi E; Ci/fe loge(Cif f?)
1 131 65.5 63.5 7 3.5 18.71 2.929
2 69 34.5 165.5 7 10.5 9.86 2.288
3 99 49.5 249.5 7 17.5 14,14 2.649
4 78 38.0 338.0 i 24.5 11.14 2.410
5 56 28.0 405.0 7 - 31,5 8.00 2.07
6 76 38.0 471.0 7 8.5 10.86 2.385
7 49 24.5 533.5 7 45.5 7.00 1.946
8 42 21.0 579.0 7 52.5 6.00 1.792
9 63 31.5 631.5 7 59.5 9.00 2,197
10 47 23.5 686.5 7 66.5 6.71 1.904
Totals 710 355.0 4,125.0 70

Representing the K, values of expression (6.5) by X, and C, values by Y, and
representing the same quantities measured from their means by x and y, formulae for
the squares, products, and primary regression statistics are as below, using the symbols
of Snedecor (1946, Sections 6.5-6.9; n = number of observations):

Zxy = EXY) - (EX}ZY)/n
23?2 = E(¥2) - (ZY)/n
Ex? = (XY - EX)2/n
z
Slope = b = "i%
Y - X
il

Y-axis intercept = a =

Variance of the points from the regression line = sy

Variance of the regression coefficient b = 52 =
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(6.8)

(6.9)

(6.10)

Il 22637 BN
n-2

(6.12)




A desk-size computer will print cut all this information in one operation. From the
data of columns 2 and 4 of Table 6.1 we obtain*

Zx2 = 382416
Zy2 = 6652
Zxy = —40825
b = -0.10676
a = 115.04

Spe = 28671 5, = 16.93
52 = 0.0007497 s, = 0.02738

The regression equation, in the original symbois, becomes:

C, = 115.04 - 0.10676K,

Comparing with (6.5), ¢ = 0.10676 and Ny = 115.04/0.10676 = 1078, which is the
estimated initial population. The instantaneous rate of removal of the bass is estimated
as 0.10676 per day’s fishing, corresponding to an actual removal of 10.13%, of the
population (from columns 1 and 3 of Appendix D). _

The standard error of 4, and thus of g, is 0.02738. To obtain 95%, confidence
limits for the estimate of N, the ¢ value is looked up for P = 0.05 and 8 degrees of
freedom: rp = 2.306. The multipliers for expression (6.4) are:

cq1 = 2083978710 X 382416 = 0.54495
cra = 4125/10 X 382416 = 1.0787 X 10-3
Can = 1/382416 = 2.6150 X 10-6

Inserting these values in expression (6.4} and solving for N, the confidence limits
for the estimate Ny = 1078 are 814 and 2507. These are not at all symmetrical with
respect to the best estimate.

6.3. POPULATION ESTIMATES FROM THE RELATION OF FISHING SUCCESS TO CUMULA-
TIVE FisaiNG Errort — DELURY’s METHOD

6.3.1. GENERAL CASE. Equation (6.1) can be written in the form;

S N—I\l‘ 6.14
f;_qGNQ ()

or, loge(C,/f7) = loge(gNo) + log(N;/No) (6.13)

When the fraction of the stock taken by a unit of effort is small — for example, 0.02
or less— it can be used as an exponential index to show the fraction of stock remaining
after E, units have been expended:

Nt gaE (6.16)



Substituting (6.16) in (6.15):
loge(C/f;) = loge(gNo) - ¢E, (6.17)

In terms of base-10 logarithms (6.17) is:
log10o(C./fr) = log1o{@Np) — 0.4343¢4E, (6.18)

Thus a plot of the {base-10} logarithm of catch per unit effort during each interval,
against cumulative effort up to the middle of the interval, yields a line whose slope
is 0.4343g and whose Y-axis intercept is the logarithm of gNp. From these two both
g and Ny can be estimated.

6.3.2. SPECIAL CASE. When effori is measured in larger units, so that each unit
takes some appreciable fraction of the stock, ¢ cannot be used in the exponential
formula (6.16). In that event the slope of the regression line of log(C,/f)) against E,
can be antilogged to give the fractional survival of the stock, S, after the action of
one unit of effort. Since / units of effort are used altogether, the estimate of survival
to the end of the experiment is $%, and the fraction of the stock removed is | - &/,
This can be divided into the total removals, C, to give an estimate of initial population:

C

- — 6.19
1-5 (19)

No
Expression (6.19) is applicable with all values of S and ¢, but if ¢ is really small the
procedure of Section 6.3.1 is more convenient, An example has been given by Ricker
(19494, 1958a),

6.3.3. EFFECTS OF VARIABILITY. In the above expressions the regression is of
fishing success on fishing effort, so that the latter is on the right-hand side of the equa-
tion. Measures of effective fishing effort tend to be less accurate than catch statistics,
s0 in most cases there will be error in B, and a predictive regression line will under-
estimate ¢ and overestimate N {(Appendix IV). Nor is it easy to obtain an unbiased
estimate of the functional regression, since the relative errors of log{C,/f;) and E,
will usually be unknown. For this reason the Leslie procedure of Section 6.2 is usually
the preferable one. In the example below the physical effort applied is known precisely,
but variations in its effectiveness due to changes in weather or other factors are
of course unknown.

ExamMPLE 6.2. SMALLMOUTH BASs POPULATION OF LITTLE SILVER LAKE ESTIMATED
BY THE DELURY METHOD.

Table 6.1 shows fishing effort in trap-days (), cumulative effort to the half-way
point of each day (E,), catch per unit effort each day (C,/f,), and the patural logarithm
of the latter. Referring to expression (6.17), loge(C,/f,) is regressed against E, to
obtain the following equation:

loge(C,/f)) = 2.7195 — 0.013189E,
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Thus the calchability of the fish is estimated as 1,329 per trap-day, and the initial
population is Ny = (antiloge2.7195)/0.013189 = 15.173/0.013189 = 1150.

The ordinary regression used above tends to underestimate g and overestimate
Ng, and the two estimates above differ from those of Example 6.1 in the expected
direction. The comparison is as follows:

PeLury method Leslie method
(Example 6.2) (Example 6.1)
Catchabilify, @...ccocooiiviviiin e 0.0132 0.10676/7 = 0.0133
Initial population, No...ooveovev, 1150 1078

6.4, SYSTEMATIC ERRORS IN FISHING-SUCCESS METHCDS

Inconstant catchability is perhaps the greatest potential source of error in applying
methods of estimation based on secular change in catch per unit of effort. Many
populations have been found not to be amenable to this treatment, either because
catchability variés with seasonal changes in environmental conditions or the fish’s
reactions, or because individual fish differ in vulnerability and those more vulnerable
are more quickly removed. Either effect may produce changes in catch per unit effort
which cannot be distinguished from those produced by changed abundance.

Less serious, but of widespread occurrence, is day-to-day or other short-term
variation in catchability, Usually this merely increases the scatter of points along
the line of graphs such as those in Fig. 6.2, below. Occasionally it may be possible
to relate it to other measurable factors and make appropriate adjustments. For
example, in a sport fishery catchability may decrease on holidays when total effort
is high, because of interference between fishermen or temperary fishing-out of the
more accessible pools. On the other hand, effort may become greater whenever, and
because, success is good. To adjust for the latter effect Mottley (1949) in one example
used the square root of the catch, divided by effort, as the variable in the lefi-hand
side of expression (6.3); however, an adjustment of fishing effort to some standard
base would be more consistent with the theory of the method.

Obviously recruitment and natural mortality, or immigration and emigration,
can intreduce serious error into Leslie or Delury calculations, unless opposed
tendencies happen to be in balance. It is of course unlikely that the incidence of either
recruitment or mortality would exactly coincide in time with the application of fishing
effort; hence we should usually expect them to make lines such as those of Figure 6.2
curved or irreguiar in shape. Experience shows, however, that points used to determine
such lines seldom lie close to them, so that it is usually impossible to detect recruitment
or natural mortality by any curvature which they may introduce. Evidently it is advan-
tageous to concentrate the fishing effort into a rather short period of time, so that
these disturbing effects will be minimized.

6.5. Usk or FISHING-3UCCESS METHODS WITH MARKED POPULATIONS

Usually there is sufficient likelihood of significant departure from the conditions
required for fishing-success estimates that it is essential to check them. DeLury (1951)
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points out that such a check is provided by a concurrent analysis of a group of marked
fish similar in other respecis to the population being estimated. The estimated popula-
tion of marked fish is then compared with the actual number marked. Quite a variety of
causes may produce a discrepancy between the actual and the estimated number.
Among these are:

1., Change in calchability, g, during the experiment, either (a) among the popula-
tion as a whole because of seasonal change in habits or habitat; or (b) because of
selective removal of the temperamentally more vulnerable individuals; or {(c) because
catchability is itself a function of stock density, and decreases as the stock is thinned
out.

2. Natural mortality during the experiment.

3. Mortality caused by fishing gear during the experiment (e.g. fish held in a
net may be removed by predators).

4, Mortality caused by the marking procedure or the tag or mark itself.
3. Emigration of fish from the population in the area of study.

All these causes tend to produce a deviation in the sanie direction — toward too small
an estimate of population and too large an estimate of catchability — except that
1(a) may operate in the reverse manner, Therefore, unless there is reason to suspect
a progressive increase in vulnerability, agreement of estimated and actual numbers
of fish marked can be taken as fairly convincing evidence that errors (1b)-(5) above
are inconsequential. On the other hand, if the estimated figure is too low, there are
a number of possible reasons for it. However, usually one or more may be eliminated
as improbable, and quite often a single one stands out as the only likely cause of the
observed discrepancy. In that event the difference between calculated and observed
population provides a means of obtaining a numerical estimate of the effect in question.

Computations applicable to situations of this sort were developed by Ketchen
(1953) for a population in which both immigration and emigration were possible.
For a simple treatment it is necessary to postulate that immigration and emigration
occur at constant instantaneous rates, proportional to the number of fish present
in the fishing area. Let F, y, and z be the instantaneous rates of fishing, emigration,
and immigration, respectively, based on the whole fishing season as a unit of time.
{Note that immigration adds to the population and is given the opposite sign to F
and y). Based on a unit of fishing effort, these instantaneous rates become F/f, »//,
and z/f; F/f is the catchability, g, of the fish, while the other two are analogous
quantities not easy to name.

In Fig, 6.1, the marked population, originally M; in number, is affected by
emigration and fishing; thus the slope of the line BC? is equal to:

Fif +y/f = F+nif (6.20)
3 Ketchen uses symbols for the slopes of the two observed regressions, as follows: for untagged

fish (line AE), slope=f=our (F4p-2)}/f; for tagged fish (line BC), slope=k'=our (F+p)/f; while k&
is used for catchability (our F /f).
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END OF FISHING

PG, 6.1, Diagram showing relationship between Leslie estimates of the wlhole
population (above) and the marked population (below), Ordinate — catch per
unit of effort; abscissa — cumulative catch. (Modified from Ketchen 1953.)

from which F + » can be calculated. The estimate of the apparent original number,
Mia, is the X-axis intercept, OC. Had there been no emigration, C/f for the marked
population would have decrcased along line BD, having slope F/f, and the intercept
OD would have been an unbiased estimate of the number marked, M;. We note that:

F/f slope of BD  0OB/OD 0OC My,

(F + »)/f slope of BC  OB/OC OD M,

(6.21)

Thus F can be estimated from;

M
F = —F | y) . (6.22)
M;

The untagged population can now be treated in a similar manner. It is affected
by fishing, emigration, and immigration, so that the slope of the line AE is equal to:

Eif +»if-z/f (6.23)

from which z can be calculated since fis known and F and y were found above. If there
had been no immigration or emigration, fishing success should have decreased along
line AF, which is parallel to BD, The estimated apparent initial population, N,
{= OE)}, is to the true initial population, N{= OF}, as the slope of AF is to the slope
of AE, or as F/fis to (F 4 y — 2)/f; thus an estimate of N is:

N = Ni(F + y-2)/F (6.24)
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Using N for the actual average population and B for its average biomass, we may write,
as in expressions (1.17) and (1.40) of Chapter 1:

FN = C = catch; FB = Y = weight of catch (yield) (6.25)
yN = number of emigrants; yB = weight of emigrants (6.26)
#N = number of immigrants; zB = weight of immigrants (6.27)

From (6.25) N or B can be evaluated, and the number or biomass of emigrants and
tmmigrants is then obtained from (6.26) and (6.27).

Exampiiz 6.3, RATE oF FISHING, IMMIGRATION, AND EMIGRATION IN A MIGRATORY
PorurLaTion or LiMoN Soces. (From Ricker 1958a, alter Ketchen 1953.)

Ketchen worked with a population of lemon soles (Parophyrs vetulus) which was
in process of migration, so that individuals were entering and leaving the fishing
area during the course of the fishery. Described in a somewhat simplified form, the
experiment consisted of marking 2190 fish { = M,) immediately prior to April 29,
near the beginning of the fishery. Daily record was kept of fishing effort, number of
fish caught, and number of tags caught. The plot of catch per unit effort against cumu-
lative catch is shown for the whole stock in the top panel of Fig. 6.2, while that for the
tagged fish is in the lower panel, and ordinary least-squares lines give the statistics
below:

Slope of BC = (F 4 1)/f = 0.000695
M, = 958 pieces
Slope of AE = (F -+ 3~ z)/f = 0.000246
Na = 5.83 million Ib

We know also:

J = 2285 boat-hours
M; = 2190 pieces
Y = 2.54 miilion b

The first entry above gives:
F + y = 0.000695 < 2285 = 1.588
By (6,22}, F =958 x 1.588/2190 = 0.695

Hence, y = 13588-0.695 = 0.893
From (6.23), F 4 y—z = 2285 x 0.000246 = 0.562
and z = 1,588 -0.562 = 1.026

From (6.24), B = 5.83 X 0.562/0.695 = 4.72 millicn lb

From (6.25), B = 2.54/0.695 = 3.65 million Ib

From (6.26), quantity of emigrants = (.,893 x 3.65 = 3,26 million Ib
From (6.27), quantity of immigrants = 1.026 X 3.65 = 3.74 million Ib
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CATCH PER UNIT QOF EFFORT

1 1 1 L i 1 1
200 400 600 jlele] 1000 1200 1400
CUMULATIVE CATCH

Fia, 6.2, Leslic graphs of catches of unmarked lemon soles, in 10,000°s
of pounds (above) and of .tapged soles, in 10,000's of fish {below) in
Hecate Strait, B.C. (After Ketchen 1953.)

The total quantity of fish involved during the experimental period is the initial number
plus the immigrants, or 4.72 - 3,74 = 8.46 million b,

Dir Ketchen’s original account should be consulted for estimates of the fotal
stock for the season, and for some of the consequences of possible variation in rate
of immigration or emigration. In Example 3.5 an estimate of B was obtained from

tag recaptures, as 4.4 million 1b; this is an independent estimate of the same quantity
as the 4.72 million 1b obtained above.

0.6. FisHinG-sUuccess METHODS WHEN MoORE THAN ONE KiND OF FISHING EFFORT
Is Usep, OR WHEN THERE ARE DATA FOR ONLY A PART OF THE EFFORT

It ofien happens that catch feffort statistics are available for only part of the
fishing effort used on a population, or two different kinds of effort may be used which
cannot be summed directly. The general formula for handling such data is given by
DeLury (1951}, and it was applied to this situation by Dickie (1955). Suppose:

fo £ f; ete. — quantities of different kinds of effort applied each day (or

other short interval)

¢, 4, q", etc. — catchabilities of the stock by the above kinds of effort
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Then for any selecied kind of effort, /£, the catch per unit effort, C,/f,, declines as:

af:  af:
Clfy = qNo—-| g +Tﬁ“ + 7

+....]K, (6.28)

= gNg~4K, (6.29)
where 7 is the slope of the Leslie graph ( = k& of Dickie).
Usualiy we will be most interested in one particular type of gear, or will have

catch per effort data concerning only one: let it be £, and let all others be £'. From
the definition of ¢ in (6.28) and (6.29) we have:

_9
q'f'r (6.30)

|4

+ aft

q:

Further, as C,/f, = gN,, then gf, = C,/N,; similarly, g/f; = C;/N,. Thus the
denominator term ¢/ /gf; is equal simply to C;/C,, the ratio of the catches taken
by the two kinds of effort in successive fishing intervals. It follows that (6.30) becomes:

g— —1 (6.31)
1+ C,/C,
If the ratio C,/C, remains reasonably constant throughout the fishing season, it
is also true that:

q
- 6.32
7= + C'jC (6.32)

Thus from the total catch of the two kinds of gear, plus the slope of the Leslie graph,
the true catchability, ¢, can be obtained.

The condition that the two kinds of gear operate in at least approximately
proportional quantities throughout the season can be checked by examining the
seasonal distribution of the catch of each. In addition, if there is any serious deviation
from this requirement, the Leslie line will not be straight, especialty if C is large
relative 1o C,

If there is natural mortality in the population during the time of the experiment,
it too will contribute to the value of ¢. An adjustment is possible if this can be estimated
independently. Still following Dickie, let the instantaneous rate of natural mortality
for the duration of the experiment be M so that, in terms of a unit of effective fishing
effort, it is M /. Then:

q-M[f

- 6.33
q 1 a/C (6.33)
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ExAMPLE 6.4, ABUNDANCE AND MORTALITY oF BAY OF FUNDY SCALLOPS
{Placopecten magellanicus) BY THE LESLIE METHOD, USING CATCH AND EFFORT DATA
ror PART OF THE FLEET. (From Ricker 1958a, after Dickie 1935.)

To reduce variability in catch per effort data, Dickie used the catch and fishing
statistics of a part of the scallop dragger fleet which kept good records, and used
only those pertaining to calm days whenr dragging could be done with something
approaching a standard or maximum efficiency. Of his eleven years’ data (Dickie’s
figure 6 and tables III and 1V), we will illustrate those for 1944-45. Since catches are
in weight units, Y and Y’ are substituted for C and €’ in the formulae above.

Catch of sampled fleet Y =130,4471b

Catch of remainder of fleet Y' = 563,783 b
Fishing effort of sampled fleet f = 320 boat-days
Slope of Leslie graph g = 0.001399

Y-axis intercept (initial fishing success) gBy = 589.6 1b /boat-day

Instantaneous rate of natural mortality for the season M = 0.06
Instantaneous natural mortality per unit of sampled
fishing effort M/f =.0.0001875
From (6.33):

0.001399 — 0,0001875
1 4 563783/130447

q:

= 0.0002276

The initial population is estimated as:

589.6

= ———— = 2.501,000 |b
0.0002276

0
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CHAPTER 7. — ESTIMATION OF SURVIVAL AND RATE OF
FISHING FROM CATCH AND FISHING
EFFORT IN SUCCESSIVE YEARS

7.1. DIrECT COMPARISON OF CATCH AND FISHING EFFORT

If fishing effort is sufficiently great to remove at least a moderately large fraction
of a stock in a year, and if it varies considerably between years, accompanying changes
in mortality and survival of the stock can provide a basis for estimating rate of fishing,

In almost any situation a first step will be to plot catch, C, against effort, f, for
successive years, and see what indication there is of regression or correlation between
the two. Catch can increase with increasing effort only as long as there are reserves of
stock to draw from. Therefore if a fairly large significant correlation is found between
C and f, it suggests thal rate of exploitation has not been really severe — has been less
than 70-75%, over most or all of the range of efforts represented.

If a correlation is indicated, favorable circumstances may permit an estimate
of rate of fishing from the curvature of the line relating catch to effort (Ricker 1940),
This method is applicable primarily to Type 1 fisheries — those in which the combined
action of recruitment and natural mortality has a negligible effect on the stock while
fishing is in progress, so that the whole population change is due to fishing. It can be
used in two somewhat different situations:

1. Catch, C, and effort, f, for the whole fishing season of at least two years are
available; as well as an index of relative initial abundance of the stock, N, in the same
years, such as might sometimes be available from a measurement of C/f made early
in each fishing season.

2. Caich, C, and cffort, £, are available for a moderately long series of years
during which there have been no trends in abundance having a duration comparable
to the length of the available series.

In either situation the effort data are assumed to measurc effective effort: that is,
instantaneous rate of fishing mortality, F, is taken as proportional to fishing effort, #.

Since all mortality is from fishing while fishing is in progress, catch is equal to
population times the rate of exploitation (C = Nu}. In any two years, not necessarily
consecutive, we have:

“w_CPN_ON -
up C/Ni CN; .
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Since F varies as /, and F = —loge(1-%) in the absence of patural mortality:

Tog(1-u) 3 f_“_z _ b)) (12)

tog(l-uy) Fi  fi

In situation A above, the ratio of Nj to Nj is known, as is Cy, Cy, f, and f5;
thus the right hand sides of (7.1) and (7.2) are both known, and the two equations
can be solved simultancously for 11 and uy, by trial. A graph from which a two-place
solution can usually be obtained is given in Fig. 7.1.
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RATIO of FISHING EFFORTS (f,/f))

Fia. 7.1. Relation between the ratio of fishing efforts (f2/f1) and the ratio of rates of ex-
ploitation (e frmy), for Type I populations (in which m = »). Curved lines indicale even
values of my, the rate of exploitation in the year having the smaller effort, (From Ricker
1940.)

in situation B, the best procedure is to fit a line to a graph of catch against
effort. The fact thal the line must pass through the origin serves as a guide to the
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amount of curvature to be expected (Fig. 7.2 below). Using the adjusted catches, C,
corresponding to the maximum and minimum efforts, £, in the series, values are ob-
tained appropriate to equations (7.1) and (7.2):

The equations can then be solved by trial, or by using Fig. 7.1.

ExaMpLeE 7.1 RATE oF ExprortaTioN UsiNG Frgurg 7.1. (From Ricker 1958a,
after Ricker 1940, p. 56.}

Figure 7.2 shows catches and efforts modelled after data for a chinook salmon
{(Oncorhynchus tshawyischa) troll fishery, described to the writer by Dr A, L, Tester.
Catch tends to increase with gear, but not proportionally: that is, catch per unit
effort is less at greater efforts. Comparison of years in which effort was approximately
the same provides no indication of progressive change in C/f with time; thus the
stock too cannot have had any sustained trend in abundance, though there is evi-
dently year-to-year variation. A line was fitted freehand to the points on Fig. 7.2
and mean catches for the maximum and minimum effort were read as 4000 and 2830
fish, respectively.. Their ratio is 1.41, compared with an effort ratio of 660 to 300, or
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F1i, 7.2, Graph of catch (in 1000%s of fish) against fishing effort {(in 100°s of lincs) for the
salmon fishery of Example 7.1.
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2.20. From Fig. 7.1 a preliminary value of #; = 0.6 can be read, and this can be im-
proved to 0.63 by successive approximations in expressions (7.1) and (7.2). The other
u-values are then calculated from (7.2), as shown in column 4 of Table 7.1.

TasrLe 7.1 Effort and catch in a troli fishery, and computed rates of exploitation
and initial populations (Example 7.1).

Year Effort Catch Exploitation Population
(Jines) (pieces) () (pieces)
1 636 4080 0.83 4600
2 465 3430 0.79 4300
3 390 3390 0.72 4700
4 300 2830 0.63 4500
5 342 3000 0.68 4400
6 402 3240 0.74 4400
7 474 3780 0.79 4800
8 501 3370 0.81 4200
9 570 4000 0.85 4700
10 600 3919 0.89 4400
11 579 3780 0.85 4400
12 345 3190 0.68 4700

7.2 RATE OF EXPLOITATION ESTIMATED BY EQUALIZATION OF FISHING EFFORT —
SeTTE'S METHOD

Still considering Type ! fisheries (Section 1.5), when a breakdown of catch and
fishing by days or weeks is available, it is possible to total up, for each of two or more
years, the catches taken during the time that some standard amount of effort was used
(0. E. Sette, in Ricker 1940, p. £3). The most efficient amount to use is that which was
actuaily expended in the year of least fishing, Assuming this constant effort is propor-
tional to rate of fishing while it operates, the rates of fishing for the indicated periods of
time must be the same. In the absence of natural mortality, equal rates of fishing mean
equal rates of exploitation; and since C = uN, the catches of those periods are pro-
portional to the initial populations, This gives the ratio Nj:N; needed in (7.1), and
the actual population size can be obtained as in Section 7.1,

ExampPLE 7.2, RATE oF FISHING AND S1ZE oF STtock COMPUTED BY SETTE'S
METHOD. (From Ricker 1958a.)

In three years, overall statistics of a fishery aftacking a circumscribed population
{recruitment being absent during the fishing season) were as follows:

Catch Reduced
Year Effort (tons) catch
1923 2268 248 186
1924 1549 200 200
1925 1684 283 265
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The column “reduced catch” is the catch taken up to the time that 1549 units of
effort were expended in each year, some minor interpolation being made within a
statistical catch period in order to obtain a catch corresponding to exdctly 1549 effort
units. The initjal populations in the three years were in the ratio of the reduced catches,
186:200:265.

Applying (7.1} to the first two years above, with 1923 = year 2 because it had
the greater fishing effort:

wy 248 200
2 =T X - =1.333
w200 186

2268
Lo 2208 44
A 154

Entering tihe upper half of Fig. 7.1 with 1.464 on the abscissa and 1.333 on the ordinate,
the value my = w; = 0.36 is obtained; from which F; = 0.446 {(Appendix 1), Fy =
1.464. % 0.446 = 0.653, and u,; = (.48, Also the 1924 original population is estimated
as 200/0.36 = 560 tons, and that for 1923 as 248 /0.48 = 520 tons.

The years 1924 and 1925 differ so little in effort that a similar calculation is not
likely to be useful; however 1925 can be compared with 1923, Better, all three years
could be included in one analysis, as described for “situation B” in Section 7.1.

7.3, RATE oOF FISHING AND NATURAL MORTALITY FROM COMPARISON OF SURVIVAL
RaATES AT Two LEVELS OF FISHING EFFORT -~ SILLIMAN’S METHOD

7.3.1. BASIC FORMULAE. A method proposed by Silliman (1943) is applicable
to fisheries of either Type 1 or Type 2 — that is, natural mortality and recruitment
may occur either during or outside of the fishing season. What is needed is that in
the history of the fishery there shall have been two different levels of fairly uniform
fishing effort, each persisting long enough to give a reliable estimate of the prevailing
survival rate, 8. The assumptions required are that instantaneous rate of natural
mortality, M, be the same under both regimes; and, as usual, that rate of fishing,
F, be proportional to the available physical measure of fishing effort, /. The computa-
tions can be simplified (Ricker 1945¢) by using instantaneous rales, as follows;

Fi M = Z; = logeS, (7.3)
Fy 4+ M = Z, = —logeS, (7.4)
Fi/F = flf2 (7.5)

The right-hand sides are known, so the equations can be solved directly for Iy, F,,
and M; also g = Fi/f1 = Fa/fa.
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7.3.2. COMPARISON OF ADJACENT YEARS. In Silliman’s use of this method, fishing
effort had been stabilized for long enough. at each of two levels that the survival
rate for each could be read from a catch curve. However, the method can also be
applied under less restrictive conditions, If there are two adjacent years at each of
two stable levels of effort, the catches of the same year-class or group of year-classes
can be compared in consecutive years, using oniy ages that are Fuily recruited in
both years, This can be represented by the expression:

o G rCot ... +Cp
(Ca+cb+----+ci)l

(7.6)

The subscripts «, b, etc., refer to age, while 1 and 2 refer to the two successive years
being compared,

Conceivably, more than two pairs (or short sequences) of years might be available
for estimates of survival rate — each pair being characterized by constant fishing
effort. The best procedure then is to estimate S from each pair of adjacent years,
convert each S to the corresponding instantancous mortality rate Z, and compute
Fi, Fo, M and g for each combination of two pairs of years by the method of Section
7.3.1. The values of M and of g can then be averaged to obtain a common value, if
this seems justified, Widrig (1954b, p. 143} suggested obiaining a single estimate by
regressing Z on f for all pairs of years available, but as there is sure to be sampling
error in f, an ordinary regression will give too small an estimate of ¢ and too large
an estimate of M (compare Section 7.4.2).

ExampLE 7.3. RATE OF FISHING AND NATURAL MORTALITY RATE FOR PACIFIC
SARDINES (Sardinops sagax), FROM COMPARISON OF Two LEVELS OF FISHING EFFORT
AND THE CORRESPONDING SURVIVAL RATES., (From Ricker 1958a, modified from
Silliman 1943.) ‘

Survival rates were calculated from catch curves for two periods of the sardine
fishery, as follows:

Relative Instantaneous
fishing Survival mortality rate
Period effort rate (= HogeS)
1927-33 =1 Sy = 0.90 Zi =0.51
1937-42 =4 S, =0.20 Zo = 1,609

The equations (7.3)-(7.5) are:

F, + M = 0.511
Fp +M = 1.609
F/F, = 1/4

Solving these, | = 0.366, Fy = 1.464, and M = 0.145.
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Later work suggested that these preliminary results gave figures too low for
natural mortality and too high for fishing mortality (Clark and Marr 1956), There
are various possible reasons for the discrepancy, among them (1) a temporary pro-
gressive increase in recruitment among the year-classes from which the 1937-42
survival rate was estimated, making S, too low; and (2) the possibility that the unit
of gear used became more eflicient over the time compared — perhaps because of
better cooperation in locating the sardine schools.

7.4. RATE OF FISHING AND NATURAL MORTALITY FROM CATCH AND EFFORT STATISTICS,
WHEN EFFORT VARIES CONTINUQUSLY — BEVERTON AND HoLT'S METHOD

7.4.1. ProcenURE, Beverton and Holt (1956, 1957) proposed a method that
can be regarded as an extension of Silliman’s (Section 7.3) to the situation where
fishing effort varies from year to year. Necessary conditions are: (1) that catch per
unit effort (C/f) is proportional to mean population present (N} during the fishing
season; {2) that neither natural mortality rate (M) nor catchability (g) vary with age
after the age of full recruitment (complete vulnerability) is reached; and (3) that
natural mortality rate does not change from year to year. A less rigid alternative to
(3) is that M should not have unidirectional trends lasting for a length of time greater
than about one-third of the number of years’ data available,

The basic information required is fishing effort /), catch (C), and age composition
of the catch, for a series of at least 3 years. Age composition is required in sufficient
detail to: (1) identify and separate off all incompletely-recruited ages, and (2} identify
the number of fish of a given year’s youngest completely-recruited year-class in the
following year. It is not necessary that older ages be distinguished from each other.
A Type 2 fishery is postulated; that is, fishing and natural mortality are assumed to
act concurrently throughout the yearl.

For successive pairs of years a series of expressions are computed as foliows:

©y 4 Cort o + Chlfy _ CIfY
(CaF Cy o KT (Clf)

(7.7
(G +CoA . +Chifs _(Clfh
(Co+C 4 + Qi (Clfh

ete,

The subscripts «, b, etc., refer to age, while 1, 2, etc., refer to successive years of the
fishery. Age « is the first fully-recruited age present in the first year of each pair, age
b is the next oider age, and so on, Age 7 is the oldest age present in the first year of
each pair, and age 7 is the next older age in the following year, for which the catch will

LTF fishing mortality precedes natural mortality (Type 1 fishery) the procedure is the same, bul
m = 1 -eF is substituled for A, and F for Z, in expressions 7.8-7.10 below.
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usually be zero. Thus the expressions in (7.7) represent the ratio of catch per unit
effort of the same year-classes in twe successive years.

Each line of expression (7.7) would be an estimate of survival rate, S, if fishing
effort were the same in the two years involved; but since effort changes, (7.7) is not
any simple function of survival in either the earlier or the later year. Since the average
population of any fully-recruited age-group in a season is equal to initial population
multiplied by A/Z (expression 1.15), we can write:

€ _ E _ NoAy/Zy
€ N NiA/Z,

TN (©ify T Az

No  (Clf) | A2y (7.8)

The “correction term’” A Z,/A,Z, is the same as appeared in exactly comparable
situations invelving tag recaptures (expressions 3.7, 5.30). Taking logarithms:

logeS; = logd[(C [/ /{C /1] + loge(A1Z2 /AzZy} (7.9)
Since —logeS; = Z; = F| 4+ M, and F; = gf,, this becomes, with some transposition:
2y = ~logel(C [/} [(C[fh] - loge(A1Z, [A2Zy) = M + gf

Similar equations can be developed for each pair of years represented in the data,
resulting in the series:

~1ogal\C [f)2 J(C 1)1] - logelA1Z, [AsZy) = M + gfy )
(7.10)

—oge[(C[f)3 [(C[f)al ~loge(AsZs [AzZs) = M + gfs ;
etc.

Thus we obtain a series of linear equations in f, whose slopes are an estimate of
catchability, ¢, and whose Y-intercepts estimate rate of natural mortality, M.

To estimate both ¢ and M, a minimum of 3 years’ data, that is, two equations, are
required. For a first estimate the correction terms in (7.10) are ignored, that is,
—1oge[{C /) (C [f 1] is taken as a trial estimate of Zin year 1, —loge[(C /N1 (C/f)e] in
year 2, and so on. These 7 values are plotied against /1, /3, etc., and a regression line
is fitted. The slope of this line is used as a first estimate of ¢, and its Y-axis intercept
as a first estimate of M. From these a value of Z for each year is estimaved from Z =
M - gf, and from this series trial values for the log correction terms are compuied,
hence adjusted values for the left hand sides of (7.10). The latter are plotted against

170




successive f7s, a new line is fitted, and from the adjusted values of M and g a still better
relationship can be obtained. The third or fourth fitting is likely to be the last ihat
will be at all rewarding.23

7.4.2. SELECTION OF A REGRESSION LINg, A difficulty with this methed lies in
deciding what regression line to use. To date the predictive regression of Z on f has
always been employed, which is correct if fis measured without error. By contrast,
if fwere subject to error and Z were not, the regression of fon Z would be appropriate.
Although the physical measurement of fishing effort may be quite accurate, its effec-
tiveness can vary greatly due to variable weather or changes in distribution patterns
of the fish; thus it must usually be regarded as subject to considerable random varia-
tion from year to year, Estimates of Z, also, are apt to be quite uncertain, Thus with
most actual data both Z and £ will be subject to error but the relative magnitude of
these errors will be unknown, One of the “AM regressions™ (Appendix V) is theoreti-
cally correct in this situation, if calculated symmetrically, but their confidence limits
tend to be wide.

7.4.3. ExampLES. Applications of the Beverton-Holt procedure (using the
ordinary regression of Z on f) can be found in their papers, or in Example 7D of
Ricker (1958a). Insofar as the fishing effort exerted may be subject to error, these
estimates of ¢ will be less than the best estimate, while the estimates of M will be too
large.

7.5. RATES OF FISHING AND NATURAL MORTALITY FROM CATCH AND EFFORT DATA —
ParongiMo’s METHOD.

Pualoheimo (1961) showed that the procedure of Scction 7.4 can be simplified
by referring the computation to time intervals that include half of one year and half
of the next. He used:

Z = ~loge[C £, (C Jf}] (7.11)

2 Expressions describing the further complication of a rate of fishing that varies with size of the
fish have been developed by Beverton and Holt (19586, p. 72).

3 Schuck (1949) made an interesting analysis that superficially rcsembles the Beverten-Holt
procedure and is also related to the fishing-success methads of Chapier 6. He plotted the absolute
decrease in catch per unit of effort from the beginning (o the end ol a year (of year-classes that were
fully vulnerable throughout the vear) against the absolute catch, over a series of 15 years of the New
England haddock fishery. When a straight line was fitted it ran almost exactly through the origin,
whereas Schuck evidently expecied it to have a positive intercept that would reflect the existence of
natural mortality ; however, the randem error in the data would have accommodated a small natural
mortality rate. The defect of this method is that both size of initial population and intensily of fishing
contribute to the absolute decrease in C/f in any year. In the haddock fishery, initial populations
varied by a factor of 3 or 4, whereas variation in percentage decrease in C/f (due to different rates of
fishing) was only 2:1; thus most of the slope of the line reflected different population sizes and the
effects of fishing were swamped. The same data can readily be treated by the methods of Scctions
7.4 01 7.5,
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where (C /), is the catch per unit effort for year 1 of each pair, and (C/f), is the catch
per unit eflort of the same year-classes in year 2. Z thus approximates the mean of
the instantaneous mortality rates of years 1 and 2, He also defined:

F= f%“ﬁ (7.12)

Then the predictive regression of Z on fwas computed (Paloheimo’s expression 16),
to give estimates of ¢ and M without iteration. In trials with numerical models this
procedure gave estimates having much less variance from the true value than did the
Beverton-Holt procedure. However, the problem remains of choosing the best
regression, as discussed in Section 7.4.2 (see also Example 7.4).

7.6. RATE or FisHING FROM CATCH AND EFrORT DATA WHEN NATURAL MORTALITY
RATE Is KNOWN OR POSTULATED

7.6.1. PROCEDURE. Experience with the methods of Sections 7.4 and 7.5 shows
that frequently the natural mortality estimate obtained (M) lies outside the bounds
of reasonable expectation; sometimes it is negative, Even when it appears reasonable,
its limits of error may be so broad that it adds nothing to available information on
natural mortality rate in the population. In either of these situations it is better to
use the best available estimate of M to help in obtaining the best possible value for g.
Such an estimate of M might come, for example, from the age structure of the popula-
tion at an early stage of exploitation, or we might use the value of M oblained from
a stock of the same species in a different (but similar) region. If there is no such
guidance, several M values that span the likely range can be tried. With M given,
only two years’ data are needed, but ordinarily a series of years is available, Using
Paloheimo’s method (Section 7.5), Z is plotted against f and a line fitted that will
pass through the point (j"= 0, Z = M). The functional estimate of the slope of this
line is an estimate of catchability:

NZ - M)

= 5
7.6.2. ILLUSTRATION. Table 7.3 below gives data for three years of a constructed
fishery in which M = 0.3, ¢ = 0.04, and the fishing efforts are 10, 20, and 30, respec-
tively. [n the first year 4372 fish are caught, and 0.497 X 7304 = 3630 of the first
year’s fully-recruited ages and “platoons™ were taken in the second year. Similarly

the 7304 fish caught in year 2 are represented by 0,397 x 7750 = 3077 in year 3.
Using expression (7.11) we may write:

3630 /4372
Zy = -log e /2| = 0.8
-2 Og‘*[ 20 / 00 ] »

3077 /7304
Zo s =-1 — | =1.2
-3 08c|: 0 / 20 :l 1.270
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The mean efforts are /i, = 15 and f3 = 25, From (7.13):

_ (0.879-0.3) 4 (1.270-0.3)
7= 15 + 25

This estimate of ¢ is close to the true value 0.04. Estimated values of F are 0.387,
0,774, and 1.16] respectively. Since it is a Type 1 fishery, rates of exploitation are
equal to 1 —e7F, i.e. 0.321, 0.539, and 0.687. Dividing these into the catches (Table
7.3), the initial fully-vulnerable populations were 13,620, 13,550 and 11,280, respec-
tively.

= 0.0387

" ExaMPLE 7.4, CATCHABILITY COEFFICIENT AND INATURAL MORTALITY RATE OF
ArcTic Cob.,

Garrod (1967) computed fishing efforts and total mortality rates for Arcto-
Norwegian cod by age, using an ingenious combination of data of three different
fisheries. The effort was totalled from mid-year to mid-year, so that it corresponds
closely to the Paloheimo situation of Section 7.5. Mean values for ages 6-7 to 9-10
are shown in Table 7.2 and Fig. 7.3.

TasLe 7.2, Mean values of fishing effort ¢f, in. 108
vessel ton-hours) and total mortality rate (Z) for ages

67 through 9-10, for the Arcto-Norwegian cod fishery.
(Data from Garrod 1967, table 3.)

Year F Z
1950-51 2,959 0.734
1951--52 3,551 0.773
1652-53 3.226 0.735
1853--54 3.327 0.759
1954-55 4,127 0.583
1955-56 5.306 1.125
1956-57 5.347 0.745
1957-58 4.577 0.839
1958-59 4.461 0.942
1959-60 4.939 1,028
1960-61 6.348 0.635
1961-62 5.843 1.114
1962-63 6.489 1.492
Totals 60.500 11.524
Means 4.6538 0.8865

Garrod computed the predictive regression of Z on f and obtained the equation:
Z =034 +0.11727

Although most of the variability in position of points in Fig. 7.3 may stem from error
in Z, there is certain to be some error in 7 as well (either actual mistakes in reported
amount of fishing, or variations in ellectiveness of gear from year to year). Thus
the estimate M = 0.341 will tend to be too large, and it is in fact unreasonably large
for long-lived fish like northern cod,
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Frc. 7.3. Total mortality estimates (Z) plotted against fishing efforis for Arcto-
Norwegian cod, and a regression ling fitted to pass through M = 0.1.

A GM functional regression {(Appendix IV) would be expected to give too small
a value for M {if Z is more variable than /), and in fact it produces a negative estimate
(g = 0.2110, M = -0.083). The Wald estimate is also impossible (g == 0.2106, M =
—0.094), but the Nair-Bartlett estimate is ¢ = 0.1811, M = J-0.044, This value of M
is probably reasonable, but only accidentally so, since its limits of sampling error
are very wide.

Evidently we will do better to adopt the procedure of Section 7.6. The value of
M for a northern cod population should be between about 0.05 and 0.15, because
any larger value would not permit the accumulation of large old fish (age 20 and up)
that originally existed in considerable numbers. Using M = 0.1, a value of g can be
estimated from (7.13) using the totals in Table 7.2:

_11.524-13X0.1

= 0.169
60.5
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From this and the efforts of Table 7.2 a smoothed rate of fishing can be estimated
for each year. These exhibit a fairly steady increase from 0.50 in 1950-51 to 1.10 in
1962-63,

7.7. ESTIMATES OF CATCHABILITY MADE WITH INCOMPLETE INFORMATION ON CATCH
AND EFFORT

0y

Frequently there are situations in which part of the effort used in capturing a
stock, and the corresponding catch, cannot be measured. For example, a stock may
be attacked by both commercial and sport fisheries, but catch and effort are known
in detail only for the former, A Beverton-Holt or Paloheimo analysis of commercial
data will reflect the activity of both fisheries, even if they are separated in time; that
is, the decrease in C/f observed in a year-class from one year to the next reflects the
losses by all kinds of mortality. Thus there is a need for careful interpretation.

Consider a stock attacked by two kinds of fishing effort, X and Y; there are
catch data and effort data only for X, and an attempt is made to estimate Z each
year by the meihod of Section 7.4, 7.5, or 7.6. Figure 7.4 shows some of the results
possible when there is no natural mortality (M = 0). Let the slope of the line in
each case be &, and the Y-axis intercept = a; also let Fx and Fy be the rates of fishing
generated by the two gears, and F = Fx 4 Fy.

1. If Y = 0 we get line A, through the origin; its slope measures the true catch-
ability gx of fish by gear X (6 = g¢x).

. 2. If Y is appreciable and there is perfect correlation {r = 1) between the efforts
X and Y from year to year, we get line B which runs through the origin and has a
steeper slope than A; the angle between lines A and B depends on the relative size
of efforts X and Y, In this case the catchability coefficient estimated from & includes
effects of both X and Y, and it is tco large if it is referred to the X effort data alone
(b = gy + gy if X and Y are measured in the same units).

3. If there is no correlation between efforts X and Y (r = 0) we get line C,
parallel to A. The slope b estimates g, without systematic bias, while the intercept
@ is an estimate of the average instantancous mortality rate generated by effort Y
over the peried concerned, i.e. Fy.

4. If v is positive and less than 1, we get a line such as [3, where the effect of
effort Y appears partly in the slope and partly in the intercept; thus the slope is too
large to be an estimate of gx.

5. If # is negative and larger than -1, we get a line such as E, with a slope less
than A or C, which is too small for an estimate of gx. The position of the intercept
depends on the value of » and the relative size of X and Y, but it cgn be above that
for line C (as shown).

6. In an extreme case, with Y > X and r negative, there might even be a reversed
slope and negative value of & (line F).

175




Zl

w

R F

o

z E

5

£ ¢ B~
o A
S

}_

=

d

o

&

[V

<L

FISHING EFFORT"X"

Fia. 7.4. Types of regression lines obtained when two kinds of fishing
effort, X and Y, attack a stock, of which Y is unknown. Natural
mortality = 0 (see the text).

In practice there will be natural mortality (M) in addition to fishing mortality.
If M is invariable from year to year, or if it varies but is not correlated with either X
or Y, all the lines in Fig. 7.4 will be shifted upward by the average magnitude of M,
but will have the same slopes and relative positions.

Usually the eflect of fishing effort Y appears in varying proportion in the slope 4
and in the intercept @. For all such lines we can write:

F=Fy+Fy=a-M+ bfx (7.14)

Obviously no analysis can be made if there is a body of catch and effort whose magni-
tude is completely unknown but may be significant, and whose effort may be correlated
(positively or negatively) with the known effort X. However, if the catch taken by
Y is known but the effort is not, an analysis can be made on the basis that rates of
fishing generated by the X and Y efforts in each year are proportional to their respect-
ive total catches (Section 6.6). This will be true only if the seasonal distribution of
the two kinds of effort is similar.

7.8, RATE OF FISHING FROM CATCH AND EFFORT DATA, RECRUITMENT, AND NATURAL
MORTALITY RATE — ALLEN'S METHOD

Allen’s (1966b, p. 1562) method of analysis, like that of Section 7.6, requires an
independent estimate of natural mortality rate, which is assumed constant for all
vulnerable fish in all years. His model implies a Type 1 population, in which three
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events of the biological year occur separately and in the following order: recruitment
of fish previously not vulnerable, fishing mortality, and natural mortality. In such
circumstances 1 — e = m = u, and the mean population present during the fishing
season is equal to #/F times the initial population; in the model this is approximated
by the initial population less half the catch.

7.8.1. TwO YEARS’ DATA AVAILABLE. Natural mortality rate (M) and catchability
(g) of the fish are assumed to be the same in both years. Symbols are as follows:

Year 1 Year 2
Fraction of new e Wy
recruits in catch
- -M
Initial population Ny Ny = —(N—l—c—l)e—-—
1-W,
Population after fishing Ny - G Na-C;
Mean population Ni-Cp/2 No—Cp/2
during fishing .
Catch Cy = giN1-C/2) Cz = gh{N2 - C2(2)
Final population Ny - Cpe™ (N, — Crye™

Of the above, data are available concerning catches C; and C,, and efforis f;
and fp. The fraction of new recruits, Wy, is estimated by any available method, for
example that of Section 11.3. For the natural mortality rate, M, an estimate or trial
value is used as described in Section 7.6, This leaves Ny, Na, and ¢ to be obtained by
solving the expressions for Cy, C,, and N, above.

7.8.2. SEVERAL YEARS’ DATA AVAILABLE. For this situation Allen (1966b, p. 1564)
shows how to obtain an overall best estimate of ¢, using normal equations, The cri-
terion used for the best estimate is that which minimizes the sum of squares of dif-
ferences between actual and expected catches, From this g other population statistics
can be calculated for each year. The computations are lfairly arduous and are best
carricd out by computer. An appropriate program is THPOP by Allen, available in
Fortran IV at the Pacific Biological Station of the Fisheries Research Board of Canada,
Nanaimo, B.C,, or from CSIRO at Cronulla, Australia,

If compuler assistance is nol available, it is always possible to solve the data for
successive years by pairs as in Section 7.8.1, thus obtaining a series of ¢ values. This
has the advantage that it will show up any trend in g that might result from subtle
improvements in fishing technique or in the skill of the fishermen-—these being difficult
to quantify in estimating effective fishing effort, If no trend appears, the g values ob-
tained can be averaged, This average should be close to that obtained using Allen’s
normal equations and computer program, although usually not exactly the same.

7.8.3. ILLUSTRATION OF ALLEN'S METHOD, Table 7.3 shows three successive years
of the constructed population of Tables 11.1 and 11.2. Using computer program
THPOP, the estimates are Ny = 12,987, Ny = 12,841, N3 = 10,332, and ¢ = 0.0400.
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TapLe 7.3, Data lor estimating populations by Allen’s method, [rem Tables 11.1 and 11.2. Catch-
ability = g = 0.04 in all years.

Fishery year

1 2 3
Fishing effort 10 20 30
Catch, C 4,372 7,304 7,750
Fraction of new recruits, W e 0.503 0.603
Natural mortality, M 0.3 0.3 0.3
oM 0.7408 0.7408 0.7408
c/2 2,186 3,652 1,875
N 13,259 13,259 11,090

Compared with the true figures in the last line of Table 7.3 these population estimates
are 2 — 79, low, presumably because N — C /2 is used for the average population during
fishing instead of Nu /F which was used in calculating them. However, the estimate of
catchability is exact, and this provides & means of obtaining correct population
estimates. In a Type 1 fishery the rate of exploitation u is equal to 1 —e~%, and catch
divided by w is the initial population, as shown below:

Year F =qf i C N
0.4 0.3287 4372 13,260
2 0.8 0.5507 7304 13,260
3 1.2 0.6988 7750 11,090

In any real example there would of course be sampling error. This can be estimated
approximately from the nuinber of fish available in the age samples used to estimate W,

The value of ¢ cbtained from the same data by Paloheime’s method was 0.0\387
(Section 7.6.2.)

7.8.4. ILLUSTRATION OF YEAR-BY-YEAR COMPUTATION, If no comptter is available,
population parameters can be estimated from Table 7.3 by the method of Section
7.8.1. For years 1 and 2 the three necessary equations are;

4372 = 10g(N; - 2186)
7304 = 20g(N, — 3652)
_ 0.7408(N; - 4372)
27T 10,503
Solving these gives Ny = 12,720, Ny = 12,460, ¢ = 0.0414.
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For years 2 and 3 the equations are:
7304 = 20g(N; - 3652)
7750 = 30g( N5 — 3875)

N, o 07408, - 7304)
T 10603

Solving these, N; = 12,880, N3 = 10,400, g = 0.0396,

The computed estimates, averaged where possible, are Ny = 12,720, N, = 12,670,
N = 10,400, and ¢ = 0.405. All these estimates except N3 are not as good as those
obtained from the computer program: the negative error in N is never less than 497,
However, the error in ¢ is only a 1.29; overestimate, so again improved estimates of
N can be had by calculating rates of exploitation and dividing them into the catches,
as described in the previous section. The values obtained are Ny = 12,130, N, =
12,160, and Ny = 11,020,
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CHAPTER 8. — ESTIMATION OF STOCK AND MORTALITY FROM
STATISTICS OF THE CATCH AND ITS QUALITATIVE COMPOSITION

8.1. DERZHAVIN’S BIOSTATISTICAL METHOD OF POPULATION ANALYSIS

If fishing is the major cause of mortality, much information about the dynamics
of a population can be obtained by making an age census of the catch and dividing
the fish among their appropriate year-classes. The sum of catches from a particular
year-class, during the years it contributes to the fishery, is a minimum estimate of its
abundance at the time it was just entering the catchable size range. Similarly, partial
sums will give the minimum number of fish in existence, of each year-class, in any
given calendar year, The total of these sums in a particular year represents the mini-
mum number of catchable fish present in that vear. This figure has been called the
utilized stock (izpolzuemyi zapas) by Voevodin {1938) and the virtual population by
Fry (1949): it represents the population present at a given time, with the exception
of all fish that will subsequently die of natural causes.

The above procedure is often called the biestatistical method of population analysis, and is
associated particularly with A. N, Derzhavin, A precursor was described in a paper by Tereshchenko
(1917} concerning the Volga bream (Abramis brama), is which Baranov’s assistance is acknowledged.
The assumptions used there include; (1) representative sampling of bream stock during the autumn-
to-spring fishery; (2) complete recruitment of all bream of age 2+ and older (i.e. those which had
completed 3 growing seasons); {3) the same rate of exploitation for all ages; (4) negligible natural
mortality at all ages greater than 1; and {5) constant recruitment at age 2, from year to year. Under
these conditions the calch in a year must equal the number of age 2 recruits: consequently the total
commetcial stock is equal to catch divided by the ratio of age 2-I- individuals to the total sample. In
Tereshchenko’s cxample, catch was taken as 20 million pieces, of which 66%, werc age 2. Thus the
total stock was calculated as 20/0.66 = 30 million pieces. (See also Baranov 1918, p. 100, for this
computation),

Derzhavin (1922) freed this procedure of some of the resiricting conditions above and in effect
developed a new approach, He did this by: (1) using an age composition based on age and length data
calcutaied over a pericd of years, so that possible short-term variability in year-class strength was
smoothed out; (2) using catch data for many years and calculating absclute abundance by ages for
each year separately; and (3) computing a separate rate of exploitation for each age-class, calenlated
from the mean age composition. He perforce retained the assumption of no long-term trends in per-
cenlage age composition, while pointing out that this was not strictly in accord with the observed
fact of moderate trends in the catch, Again, fish dying from natural mortality were not considered, but
natural deaihs are likely t& have been relatively fewer, among his potentially long-lived sturgeen, than
among Tereshchenko’s short-lived bream. Quitside of the USSR Derzhavin’s method was apparently
first used by Bajkov (1933) in an application to whitefish of Lake Winnipegosis, but the results were
misleading because that population was far from having a steady age composition (see Example 2.9).

The total population considered by Derzhavin comprised all fish in the popula-
tjon at the start of a calendar vear, inciuding those of the previous year’s hatch,
since for these “the large ‘infant’ mortzality among the newly-hatched young no
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longer plays a role, and the surviving fingerlings have grown . . .enough that they
can become the prey of large fishes only,” Let us designate fish as “age 1” from January
1 of their first year of life, etc., and define:

Ci, Gy, ete.  catches in years 1, 2, etc.

X1, Xz, ete.  fractional representation of each age, £, in the catch of a given year
(xg=10)

r greatest age involved

Ignoring fish which die naturally from age 1 onward, the total stock at the start
of a year will be the sum of’: that year’s catch, the next year’s catch diminished by the
number of age | fish in it (because these were not vet hatched at the beginning of the
base year}), the next year’s cawch not jncluding {he age | and age 2 fish, and so on,

Using average age composition for estimating the fraction of 1's, 2's, etc., the
expression for population at the start of age | becomes {cf. Derzhavin, p. 15):

N = Cl + Cz([ —Xl) + Cs([ —.JC}—XQ)

o P C(l=x Xz~ Xpe)
t=r
= Z Cll-xi—xp—...=X—) (8.1)
=1

If fish do not begin to appear in the fishery until after some years have elapsed — for
example, af age 5 — then xy, x;, x1, and x,; are equal to zero, and all of the first four
years’ catch is included in the total stock, However, if only stock of commercial age
were needed, the first four terms of (8.1) would then be omitted from the total.

The ratio of the caich in a given year to the utilized stock present at the start of
that year can be called the biostatistical rate of exploitarion {Ricker 1970, 1971b). It is
always greater than the true rate of exploitation,

ExampLE 8.1, UTiLIZED SToCK AND ExPLOITATION OF KURA STURGEON, (From
Ricker 1958a, after Derzhavin 1922,)

From data on length composition and age determinations made in 1912-19,
described in Example 2.9, Derzhavin (p. 229} constructed a table of the probable
absolute age structure of sevryuga (Acipenser steflatus) catches taken in the Kura
River from 1881 to 1915. The year-classes 1854-1906 were represented, at ages 9-27.
Too extensive to be reproduced here, the columns of this table, when totalled vertically,
provide estimates of the complete contribution of the year-classes 1872 through 1888
to the catch; and also the contributions of substantial portions of several adjacent
broods.

Derzhavin, however, was most interested in estimating total stock present in
the sea in successive years. The percentage age composition was summed cumulatively
from the oldest back to the youngest, a few rare age-groups being ignored at either end
{Table 8.1, column 3). These sums comprise the terms (1 — xy), ([ — ¥y - x3), etc., of
expression (8.1). Each is then multiplied by the catch of the corresponding year. As an
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example, the stock for 1881 is computied in Table 8.1, column 3. The total is 9,383,000
sturgeon, 5,024,000 being age 9 and older. The 1881 catch of 427,000 is 8.5%, of ihe
latter, which is the overall biostatistical rate of exploitation. The biostatistical rate of
exploitation of fully-vulnerable fish is of course greater than this: it can be computed
for individual ages using Derzhavin’s complete table, For example, 22,200 fish of age 20
were taken in 1881, and 50,400 of this year-class were captured in laler years, The
biostatistical rate of exploitation of age-20 fish in 1881 was therefore C/V = 22,200/
{22,200 4+ 50,400) = 31%,.

TasLE 8.1. Computation of the 1881 stock of Kura River stellate siurgeon, after Derzhavin (1922);
catches are in thousands,

1 2 3 4 5
Contribution
Mean age Cumulative to population
composition age Catches at the beginning
Age of the catch composition 1881-1907 of 1881
1 0 1,000 4277(1881) 427
2 0 1.000 405 405
3 0 1.000 437 437
4 0 1.00¢ 539 539
5 0 1,000 591 591
6 0 1,000 589 589
7 0 1.000 720 720
8 0 1.000 651 651
0 0.006 1.000 699 699
10 0.027 0,994 738 734
11 0,061 0.967 814 787
12 0.107 0.906 694 629
13 0.118 0.799 544 435
14 0.110 0,681 540 368
15 0.093 0.571 . 451 258
16 0.080 0.478 573 274
17 0.076 0.398 702 279
18 0.090 (.322 621 200
19 0.076 0.232 504 131
20 0.052 0.156 583 a1
21 0.042 0. 104 745 77
22 0.030 0.062 548 34
23 0,018 0.032 517 17
24 0,007 0.014 503 7
25 0.004 0.007 490 3
26 0.002 0.003 403 1
27 0.001 0,001 292(1907) 0
Total 9383
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In Section 8.2 it is shown that, under the equilibrium conditions that Derzhavin
postulated, this 3197 is really an esuimate of fofaf annual mortality rate, A. The overall
biostatistical rate of exploitation, 8.59%, is a more complex statistic that has no easy
interpretation, because many incompietely-recruited ages are included in it.

8.2. Urmizep Stock anND Brostamistical RATe or Expromration WHEN AGE
COMPOSITION VARIES — BOIKO’S METHOD

A considerable refinement of the Derzhavin method was made by Boiko (1934,
1964), Monastyrsky (1935), Chugunov {1935), and Fry (1949), all working independ-
ently. They took representative age samples of the catch each vear, and thus were
able to total up a more accurate series of utilized populations.

Analyses of this sort provide a minimum estimate of population size, V, and
an estimate of the biosiadstical rate of expleitation, C/V or u(max), which is greater
than the true rate of exploitation, C/V can be calculated for the whole stock or for
individual ages separately. The catch of fish of a given age, ¢, in a given year, dividad
by the utilized stock of that age at the start of the vear, is:

u(max), = % (8.2)

From this a biostatistical rate of fishing can be estimated as:

F(max), = —loge[l — u(max),] (8.3)
An estimate of biostaristical catchability of fish of age ¢ is:

F(max),

8.4
7 (8.4)

g(max), =

Models can be used to compare the magnitude of the biostatistical with the true
rate of exploitation, and with other population statistics. Three are shown in Tables
8.2-8.4, and others have been published by Ricker (1970, 1971b), From these and
other models the conclusions below were obtained. They apply only to situations
where neither F nor M for a given age change with time (though they may be different
at different ages):

1. The biostatistical rate of exploitation, C/V, for the oldest age represented
will always be 1009, by definition; thus it will be larger than the actual rate of ex-
ploitation, #. The next younger age will also have a considerable bias from the same
source.

2. When neither natural nor fishing mortality rates vary with age, C/V exceeds
# by a constant factor, apart from sampling fluctuation. The ratio of C/V to u is
equal to Z.:F or A:u; in other words, biostatistical rate of expleitation is equal to the
true total annual mortality rate, A (Table 8.2, ages 8-13).
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TasLE 8.2. Comparison of the biostatistical and true rates of exploitation (C/V and C/N) in a population in which rate of fishing (F) increases from age 3 to
age 8 and remains constant thereafter; while the instantaneous rate of natural mortality, M, remains constant throughout. {The population, column 7, is rounded
to the nearest integer, but fractions were retained in calenlating it back from one fish surviving at age 16).

Utilized
Population Total Catch stock Civ
Age F M z A S N deaths C v = i {max) C/N=u
4210 1723
3 005 .2 .205 185 815 780 19 .011 L0045
3430 1704
4 .03 .2 .23 206 .794 707 93 055 .027
2720 1611
5 .1 .2 .3 .259 741 706 235 146 -086
2020 1376
6 .3 2 .5 .394 606 794 478 .35 236
1223 398
7 .5 .2 i .503 497 ’ 615 440 .49 359
608 458
8 .6 .2 .8 L5851 .449 335 252 .55 -413
273 206
9 .6 .2 .8 551 .449 151 113 .55 413
123 93
10 .6 .2 .8 .551 449 68 51 .35 -413
55 42
11 .6 .2 .8 551 449 30 23 .55 413
25 19
12 .6 2 .8 551 449 14 10 .53 .413
11 9
13 .6 2 .8 551 449 6 5 .56 413
5 4
14 .6 .2 .8 .351 .449 3 2 .50 413
2z 2
15 .6 2 .8 .351 .449 1 1 .50 .413
16 .6 2 .8 .551 .449 1 1 1.00 413




981

Tabre 8.3. Comparison of the biostatistical and true rates of exploitation (C/¥ and C/N) in a population in which rate of fishing decreases after age 7.
(The population is calculated back from 20 fish at age 18, to reduce error in rounding to the nearest integers.)

Utilized
Population Total Catch stock civ
Age F M Z A S N deaths C Vv = u {max)} C/N=1u

42100 31360

5 .6 2 .8 551 .449 23200 17360 .55 413
' 18860 14000

6 .6 - 2 .8 .551 . 449 10400 7800 .56 413
8470 6200

7 .6 2 8 .551 .449 4670 3500 .56 .413
3810 2700

8 .55 .2 .75 .528 472 2010 1473 .54 . 387
1796 1227

9 .56 .2 .70 .503 497 905 645 .53 .359
894 582

10 .45 .2 .65 478 .522 427 296 31 331
467 286

11 .40 2 .60 .451 .549 210 141 .49 .30
257 145

12 .35 .2 .55 .423 577 108 69 .48 .269
148 76

13 .30 2 .50 .3%4 .606 58 33 ) .236
0 41

14 .25 .2 .45 362 .638 32 18 .44 : .201
57 23

15 .20 2 .40 330 .670 19 9 .39 .165
38 14

16 .15 2 .35 .295 L7035 11 5 .36 L1268
27 9

17 .10 .2 .30 259 LT 7 2 .22 .086
20 7

18- .10 2 .30 .259 L7141 13 7
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TaBLe 8.4. Comparison of the biostatistical and true rates of exploitation (C/V and C/N) in a population in which natural mortality rate increases after age 7.
(The population is calculated back from 10 fish at age 16, to reduce error in rounding off).

Utilized
Population Total Catch stock C/v
Age F M z A S N deaths C v = u (max) CN=u
68380 31623
3 .03 .2 .23 .206 .794 14090 1838 .06 .027
54290 20785
4 .1 2 .3 .259 741 14058 4686 -16 .086
40232 25099
5 3 .2 .5 354 606 15852 9511 .38 .236
24380 15588
6 .4 2 .6 451 549 10995 7330 .47 .301
13385 8258
7 4 .2 .6 451 .549 6037 4025 .49 .301
7348 4233
8 .4 .25 .63 .478 522 3512 2162 .51 254
3836 207§
9 4 .3 T .503 497 1930 1103 .53 287
1906 968
10 .4 .35 .75 .528 472 1006 537 .55 282
900 431
11 .4 4 .8 . 551 .449 496 248 .58 .276
404 183
12 .4 .45 .85 L573 .427 232 109 .59 270
172 74
13 4 .5 .9 593 .407 102 45 .61 .264
70 29
14 4 .55 .95 .613 387 43 18 .62 258
27 11 '
135 4 .6 1.0 .632 .368 17 7 .64 .253
10 4
1o+ 4 .63 1.05 650 350 10 4




3. When naiural mortality, M, increases with ape, and rate of fishing is constant,
C/V tends to increase with age whereas u decreases with age (Table 8.4). The net
result is an increasing discrepancy between C/V and u, so that the former can become
2 or 3 times the latter, However, C/V is close to A in such circumstances, being
slightly greater than A.

4. Within age-groups in which recruitment occurs, i.e. when F is increasing
with age, C/V exceeds ¢ by a much greater fraction of the latter than during a series
of years when F does not vary with age. However, during such years C/V is less than
A (Table 8.2, ages 3-7).

3. If rate of fishing (F) and thus rate of exploitation () decrease with age after
reaching some maximum, while M is constant, C/V decreases with age but not as
rapidly as u does; thus C/V considerably exceeds the total mortality rate, A, over the
years concerned (Table 8.3, ages 8-17).

6. If the age sample taken from the catch (and which is applied proportionally
to the whole catch to represent the age composition of the latter) is biased so that
older fish tend to appear more frequently than their true abundance warrants, C/V
is somewhat less than it would otherwise be, but is not very seriously changed., How-
ever, if older fish appear disproportionately only in occasional years, important
bias is introduced (Example 8.2).

7. Ttis possible to use C/V for a whole stock (including recruits) as an “arbitrary”’
index that reflects the direction and magnitude of changes in fishing intensity over a
period of years. However, it is important that the same minimum age be used in all
years.,

8. Considering the utilized population for two successive ages, Vi and V,, the
relationship in paragraph 2 above can be written:

C ViV \Z
— = =A; =1-~8;; thus §; = —
Vi \it Vi

This estimate of S, like A, is consistent only when M and F do not vary with age or,
more exactly, when F/Z does not change during the remaining life of the year-class.
When this is not so, bias in S will be opposite to that indicated for A in paragraphs
3-5.

9. Space does not permit an evaluation of effects of secular trends in F or M
upon statistics computed (rom utilized stocks (as was done for catch curves in Chapter
2) but these effects should be examined in experiments where they might be significant.
Table 2 of Ricker (1971b) is of this sort. It indicates that moderately large changes in
F from year to year have little effect on C/V, provided only fully-recruited ages are
included in V.
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ExampLe 8.2, UTILIZED STOCKS (VIRTUAL POPULATIONS) AND BIOSTATISTICAT
RATE OF EXPLOITATION 0F OPEONGO TROUT. (From Ricker 1938a, after Fry 1949.)

The estimated age composition of the catch of Opeonge lake trout (Salvelinus
namayeysh) for 1936-47 was tabulated in Table 2.8 of Example 2.7. The minimum
number of survivors of each brood at each ape is obtained by summing the table
diagonally from upper left to lower right; results are shown in Table 8.5, (The figures
in parentheses in the lower right corner are the average of previous entries, since
catches for years later than 1947 would be needed to supply actual data.)

Contributions of all ages to the fishery are available for the year-classes 1934-37;
these comprise the utilized population at age 3, for those broods. (Fry points out that
the average contribution of a year-class is less than 1 fish per 4 hectares of lake —
indicating the sparseness of this population.)

Total utilized stock of all ages is found by summing entries of Table 8.5 diagonally
from lower left to upper right; this gives a result corresponding to the summing of
column 5 of Table 8.1 above (in the sturgeon example). Thus, at the start of the 1936
fishing season there were at legst 10,129 fish of age 3 and older in the lake; there were
at least 8640 in 1937, 7210 in 1938, 6959 in 1939, and 6599 in 1940,

The biostatistical rate of exploitation at each age and in each year is now estimated
as the ratio of catch to utilized population. A random example; 104 age-9 trout
were caught in 1941 out of at least 205 present; hence C/V = 5197,

Average values of C/V are plotted in Fry’s figure 2. These suggest that after the
increase in vuolnerability during the recruitment phase there is a decrease in C/V
at older apes, from 0.53 at age 8 to 0.26 at age 13, According to Table 8.3 above,
in an equilibrium fishery this would reflect an even greater decrease in frue rate of
exploitation, #, with age. However, the apparent decrease should be at least partly
discounted. [t depends very heavily on an cxceptionally large estimated catch of
fish older than age 13 in one year, 1945, which in turn seems to be based on only 7
actual specimens. Considering only the first four years of the fishery, the series of
biostatistical rates of exploitation is as follows:

Age. Cly Age C/v Age C/v
7 0.37 10 0.68 13 0.52
3 0.60 11 0.52 14 0.60
9 0.66 12 0.55 15 0.61

Here the apparent maximum vulnerability is at age 10 rather than age 8. The small
decrease in C/V beyond age 10 indicated by this series may well reflect a real decrease
in the true rate of exploitation, though for a complete analysis the possible effects
of the secular changes in F should be examined.

8.3, ESTIMATION OF ACTUAL POPULATION EFROM UTILIZED POPULATION AND Ri-
COVERY OF MARKED FISH — FRASIR’S METHOD

Fraser (1955, p. 172) showed how a utilized (virtual) population estimate can

be converted to an estimate of actual population when combined with results of a
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TapLE 8.5,

Utitized stocks of Opeongo lake trout, arranged by age and brood. {Adapted from Fry 1949.)

Age Total
Year- utilized
class 3 4 5 6 7 8 9 10 I1 12 13 14 15 16 17 stock Year
1919 11 10129 (1936)
1920 13 0 8640 (1937)
1921 10 0 0 7210 (1938)
1922 29 4 4 4 6959 (1939
1923 34 15 7 4 0 6599 (1940)
1924 69 12 4 4 0 0
1925 140 22 18 15 0 0 0
1926 326 66 28 19 6 0 0 0
1927 685 207 31 28 4 4 4 4 4
1928 1396 731 175 86 39 33 22 20 20 16
1929 1861 1387 362 167 77 63 52 50 50 41 4
1930 1665 1432 782 343 120 74 63 54 43 26 10 3
1931 1371 1243 1045 625 232 112 90 82 58 49 6 6 (3)
1932 1294 1199 1165 890 369 205 101 73 73 42 21 14 (8) (3)
1933 1223 1193 1189 1062 841 407 207 154 112 68 31 20 (11) (8) (3
1934 1129 1122 1059 939 715 480 359 226 133 49 23 20y (n &) 3
1935 1277 1265 1229 1147 872 655 444 246 87 40 (28) 20 (10 ® 3
1936 1388 1349 1265 1121 1004 732 530 157 64 “6) (28) (20) (11 (8) 3)
1937 1194 1174 1095 1049 928 731 379 le2 (86)  (46) 28 (20 (1) (8) (3)




marking experiment. The utilized population, V, at the start of a given year, (call it
year 1}, is the part of the then number of recruited fish which will subsequently be
caught in all future years. The total recoveries from M fish marked at the start of
year 1, in successive years of their appearance in the fishery, is Ry + Ry + R5 +
... = R. The ratio R/M is an estimate of the exploitation ratio, E = F/Z, provided
no tags are lost from the fish and all are reported when.caught. But the exploitation
ratio is the ratio of fish caught from a year-class (V) to its total abundance at recruit-
ment (N}; thus V/N = E = R/M, and the estimate of N becomes:

VM

= —; (8.5)

This estimate is analogous to a Petersen estimate (expression 3.5), but it has
some advantages, One is that it is free from the bias which can occur in Petersen
estimates because of differences in vulnerability of different sizes of fish (Section 3.7).
In addition, the Fraser estimate is less affected by systematic error arising from
aberrant behaviour or aberrant vulnerability of fish immediately after marking, If
marking makes a fish relatively invulnerable for some weeks or months, the reduced
recoveries during that season will largely be compensated by increased recaptures
the following season (unless natural mortality is large). Equally, if marking increases
vulnerability temporarily, the excess recaptures in the first year are mostly com-
pensated by fewer recaptures later, For a similar reason, with Fraser’s method it is
not so important to do the marking exactly at the start of year 1: the period of marking
may be extended some days or weeks into the fishing season of year 1 without much
effect upon the estimate of N.

On the debit side, a population estimate from (8.5) involves the delay and (usually)
the sampling error inherent in any computation ofutilized population. It also implies
the use of a tag or mark which will not become progressively lost or indistinguishable
over the whole vulnerable life-span of the fish, rather than for one or two years only.

8.4, CoOMBINATION OF UTILIZED STOCK ESTIMATES WITH THE BEVERTON-HOLT ITERA-
TIVE PROCEDURE

At the 1957 Lisbon conference on fishing, several contributors apparently
suggested using virtual populations to obtain separate estimates of rate of fishing
and natural mortality rate, by methods similar to the Beverton-Holt procedure of
Section 7.4 above. Most of these confributions seem never to have been published;
but shortly afterward Paloheimo (1958) and Bishop (1959) described the method,
and Bishop made an extensive analysis of the magnitudes of errors of the statistics
estimated under different conditions. She found that estimates of natural mortality
{M) would be too small and those of catchability (¢) too large when fishing effort
tended to increase over a period of years or when it fluctuated without any trend;
the opposite biases occurred when there was a trend of decreasing effort,

The method appears to be of limited usefulness so is not described here. Both
Paloheimo and Bishop used ordinary predictive regression lines for their estimates,
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so these have an additional and usually unknown bias (M too large, ¢ too small)
insofar as there is uncertainty in the measurement of effective fishing effort.

8.5. RaTES oF NATURAL AND FISHING MORTALITY, G1vEN CONSTANT RECRUITMENT
AND NATURAL MORTALITY AND Two orR MoORE LEVELS OF STABLE CATCH —
TESTER-GULLAND METHOD

When the history of a fishery shows two or more periods of (different) stable
catch, C, which have the same natural mortality rate, M, and the same absolute level
of recruitment, R, Tester {1955) showed that an estimate of M and R can be made.
The type of calculation depends on the relative timing of patural and fishing mortality
and recruitment (Section 1.5). The most manageable situations are:

1. Type 1A populations, with recruitment immediately before the fishing season.

2. Type 2A populations, with “instantanecus™ recruitment at the start of the
year.

3. Type 2B populations, with recruitment occurring throughout the year along
with fishing and natural mortality.

The information needed is statistics of catch (C) in numbers and an estimate of
instantaneous mortality rate (Z) for each period, based on age structure (Chapter 2).

8.5.1. Tyre 2A PcrurLaTions. With arguments similar to those which lead to
expressions {1.13) and (1.18) of Chapter |, Tester developed the relationship:

, M—I—ZC
B R

Gulland (1957) showed that for the purpose of estimating M and R it would be better
to have Z appear only once. For an equilibrium situation we can write:

NAF _RF _R@Z-M) MR

Transposing and dividing by MR:

1 1 C

. (8.6)

Z M MR
Thus the regression of 1/7 against Cis an estimate of -1/MR, and its Y-axis intercept
is an estimate of 1/M (Gulland inadvertently quoted the reciprocals of these quan-
tities), from which both M and R can be obtained. Since catch data are usually much
more accurate than estimates of mortality rate, the ordinary predictive regression is
the best one to use for this estimate.
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If only two periods of stable catch are available, (8.6) can be developed into an
expression explicit for R:

C1Zy - CZ
L B

8.7
7.7, @7
Indeed it is probably better to solve the data by pairs of periods, even if more than
two are available,

8.5.2. Tyee 2B popruLATIONS. When recruitment is continuous and is balanced
by mortality, we have, from (1.17) and (1.25):

C = FN = NAF/Z = RF/Z

so that the expressions (8.6) and (8.7) and the procedure developed for Type 2A
are applicable.

8.5.3. Type 1A poruLaTiONs. Of N fish present at the start of the year, Nu are
caught; also # = m, since no natural mortality occurs during the time of fishing,
The recruitment, R, is however still equal to NA: initial population times total annual
mortality rate. Thus:

C = Nu = Nm = Rm/A; orm = CA/R
Combining (I.6) and (1.3) with the above, and taking logarithms:
Z =M - loge(t - CA/R) (8.8)

To fit the best straight line to (8.8), it is necessary to use trial values of R, and to
continue fitting until the best fit is obtained. However, the specification of what
constitutes the best fit presents difficulty, so it is better to compare situations by pairs,
using a rearrangement of (8.8), as follows:

ClAlezl"Zz— CzAz

R = ezluZz -1 (8.9)

In applications of the Tester—-Gulland method the principal point will be whether
or not average level of recruitment can be considered constant over the times involved.
Tester’s (1955) account should be consulted for this, and also for his method of com-
puting catch-curve mortality rates so they refer to catches for the appropriate series of
years,

8.0. SrquenTIAL COMPUTATION OF RATE oF FISHING AND STock SiZE (COHORT
ANALYSIS)

8.6.1. GENERAL AND HISTORICAL. If the natural mortality rate or rates in a stock

be known or assumed, computations can be made of the fishing mortality rate experi-
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enced by a year-class at successive ages, using its catch at each age as obtained from
catch statistics and yearly age-composition data. If is also necessary to know or to
assume 2 value for rate of fishing F (or v or Z or 8) for one age as a starting point
for the computation. The age chosen should be the oldest, or one of the oldest, to
which the computation is applied, because estimates of F computed for younger
ages will converge asymptotically to their true values for the given M, whereas esti-
mates for older ages will diverge progressively (unless the initial trial value of F
happens to be correct).

The mechanics of a sequential computation based on Baranov's catch equation were described
by Ricker (1948) in an application to the incompletely-vulnerable ages of a halibut stock (Example
5.6 above). Jones (1961) constructed an artificial example of a sequential computation for successive
ages of a year-class, starting with the oldest, and he was the first to demonstrate the convergence and
divergence mentioned above. Jones used Paloheimo’s (1958) approximate formula for estimating
fishing effort, but this seems to have no advantage over the original Baranov relationship in this con-
text. Murphy (1965) proposed computations similar to Ricker’s, i.e. using the Baranov equation, and
developed a computer program for the calculations. He and Tomlinson (1970) have compared **for-
ward” with “backward” calculations and confirmed the superiority of the latter. Gulland (1965} also
employed the Baranov equation, but used as control data the utilized or virtual populations found by
summing catches (Section 8.1), The theory of this procedure requires that V = ¥FN/Z or C/V = A
at each age, which is true only if F/Z remains constant throughout the remaining life of the year-
class (see Section 8.2 for the effect of variation in F on the ratio C/V). Thus using virtual populations
seems merely to make the calculation less exact and a little more complicated. Jones {1968) returned
to the method of Ricker and Murphy, putting the computations into a slightly different form
{described below), Schumacher (1970) was the first to publish a “work table” of SZ/FA = S/u against
F (for M = 0.2). Pope (1972) suggested an approximation which is easier to use; he called it “cohort
analysis,” but this term had earlier been applied to sequential computations in general, and is so used
here.

8.6.2. RELATIONsHIPS. Considering a Type 2A fishery (Section [.5.1), Baranov’s
equation for catch in numbers (expression 1.17) can be written as:

C = %Ii] = uN (8.10)

where N is the population at the heginning of a year. Consider any two successive
ages in a cohort, called 1 and 2 for convenience. From (8.10):

C
N = iy (8.11)
By definition:
Ny = Ni§ (8.12)

From (8.10) and (8.12):

(8.13)

Expression (8.13) is the same as (5.37). It can be solved by trial as described in
Section 3.7.3, though for a long series of ages this becomes tedious, Cemputer pro-
grams have been written for it several times; two such are MURPHY by P. K.
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Tomlinson {(Abramson 1971}, and COHORT by K. R. Allen (Fisheries Research
Board of Canada, Nanaimo, B.C.}. The Jatter permits use of different values of M at
different ages.

Selection of the initial trial value of I should be considered carefully, Farlier
we noted that computed values of F converge toward the correct value as a se-
quential computation moves to progressively younger ages, whereas they diverge
when moving toward older ages. Nevertheless, it is sometimes undesirable to use the
oldest age as a starting point, either because the estimate of its catch is subject (o
large sampling error, or because it is possible that natural mortality rate may in-
crease rapidly among the oldest fish, so that the usual assumption of constant M is
invalid. When there is semiquantitative information about fishing effort, an excellent
starting point, if it can be found, is two successive (older) ages for which fishing effort
is the same or nearly the same. Then C,/C; will be an estimate of both S; and S,,
from which (plus M) F; can readily be calculated and used to start sequential com-
putation. If the efforts of the two years are close but not exactly the same, a good
approximate estimate of S; can be obtained from:

Cai

1~
Cifa

(8.14)

When the T; used to start the sequential series refers to some age other than the
oldest catch available, the computation can also be continued forward to the last
age represented.

8.6.3. Popr’s METHOD. Still considering Type 2A fisheries, Pope (1972) developed
an approXximate expression for N that can be used for a more direct analysis. For
any two successive ages, 1 and 2, he writes:

Ny v NpeM 4 Cpe/? (8.15)

The rationale of this expression is obvious. Approximation is involved only in the
second term, which would be exact if all of the catch Cy were taken at the mid-point of
the time period under consideration (usually a year). If the fishing mortality rate F is
distributed uniformly throughout the year, more fish of any fully-recruited age are
caught during the first half of the year than during the second half; thus (8.15) tends
to overestimate Ny somewhat, but by only a few percent for ordinary values of F and
M. In any event most fisheries are concentrated seasonally, so using (8.15) may be no
more approximate than using (8.13) — often less so. Also, during years of recruit-
ment (8,15} is likely to be superior to (8.13), if fish are growing and becoming more
vulnerable throughout the fishing season.

The great advantage of (8.15) is that it makes the computations easy without a
computer. Ny is calculated without iteration; S; = Ny /N;, and thus Z; and F; are
calculable. Expression (8.13) also makes it easier to determine effects of systematic
and random errors in a sequential computation; Pope (1972) has examined these in
detail.
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ExaMPLE 8.3. SEQUENTIAL COMPUTATIONS OF RATES OF FISHING FOR PERUVIAN
Ancaovies. (Data from Burd and Valdivia 1970.)

Burd and Valdivia did a sequential analysis, at monthly intervals, of a series of
cohorts of Peruvian anchovies {Engraulis ringens), based on the catch equation and
using & computer program, Table 8,6 here shows their catch data for cohort 1965-1
in the central region (i.e. the fish that first became vulnerable in important quantities
in the early months of 1969}, grouped by 2-month intervals. Analysis of Table 8.6 is
done using Pope’s method (expression 8.15), with M = 0.2 per 2-month period.
Column 2 is the catch in individuals /107. Column 3 is the catch times 1.1052 (==e™/2),
Column 5 shows initial populations for the period indicated ; thus the quotient of any
two successive entries (older /fyounger) is the survival rate for the interval in which
the denominator stands. These are shown in column 6, Figures in column 4 are 1.2214
(= eM) times the figure in column 4 for the next older interval.

To get the computation started a figure for rate of fishing has to be assumed for
the last catch interval — in this case F = 0.1. Adding M = 0.2 gives Z = 0.3, and
the corresponding S = 0.741 is found from Appendix 1 and entered in column 6.
By trial we find the number of survivors in period 3 of 1972 which, when multiptied
by ™ and added to the catch of period 2, provides an estimate of $ as close as possible
to 0,741, In this case 94 is correct: 94 X 1.2214 = 115, 115 4- 12 = 127, and 94/127
= (.740, the closest available value to 0.741. For the next step 127 is multiplied by
1.2214 to get 157, which is entered in column 4 of the next youngest interval, and as
there is no catch, 157 is entered in column 5 also. Then 157 is multiplied by 1.2214
to get 192, and 128 is added from column 3 to give 320, which is an estimate of initial
population in period 1971(6). For the same period the quotient 157 /320 = 0.491 =
S; Z = —logeS =071, and F = 0.71 - 0.2 = 0.51. The same procedure is repeated
for each pair of intervals back to the first.

In column 9, rates of fishing are added by years; the grand total is 3.38. To this
can be added a total natural mortality rate of M =21 X 0.2 = 4.20, so that total
mortality is Z == 7.58. This can be checked by calculating the overall figure Z = —loge
(94 /189244) = 7.61, which agrees within the limits of rounding error used.

F values found in Table 8.6 arc influenced by the natural mortality rate used,
and by the initial value of F. Table 8.7 compares estimates obtained using several
different values of these parameters. (1) For any given M, the larger the value of
initial F, the greater the total F. However, most of the difference occurs in the later
part of life when fish are scarce; the discrepancy is not great during the main period
of the catch. (2) At any given initial F, the natural mortality rate used makes a major
difference to the absolute level of fishing effort computed. The larger M is, the smaller
is the computed F at all intervals, and increasingly so (relatively) among younger
fish, However, the larger M is, the larger is the estimated total mortality throughout
life, In actual fact, it is likely that M would vary with age. Natural mortality may
increase as fish become senile, and at the other end of the size range small fish may
be more vulnerable to predators. In addition, the smallest fish probably suffer im-
portant agtrition from caiching operations, which appears as “natural’* mortality:
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TabLE 8.6. Sequential computation of rate of fishing by Pope's method, for a cohort of Peruvian
anchovies. Natural mortality is held constant at M = 0.2/2 months, and initial F = 0.1, C — catch
(% 10~7); N — initial populatien; S — survival rale; Z — total mortality rate; F — rate of fishing.
Column 1 indicates the six 2-month periods into which each year is divided.

1 2 3 4 5 [ 7 8 9
C CeM/2 NeM N S Z F F

1968 Totals

6 823 910 188,334 189,244 (815 0.20 0.00 0.00
1969

1 12,006 13,269 140,926 154,195 L7148 0.29 0.09

2 16,858 18,631 96,750 115,381 687 0.38 0.18

3 2,138 2,363 76,850 79,213 794 0.23 0.03

4 0 0 62,919 62,919 819 0.20 0.00

5 2,186 2,416 49,098 51,514 180 0.25 0.05

6 741 819 39,379 40,198 .802 0.22 0.02 0.37
1970

1 739 817 31,424 32,241 .798 0.23 0.03

2 1,556 1,720 24,008 25,728 764 0.27 0.07

3 642 710 18,946 19,656 789 0.24 0.04

4 0 o 15,512 15,512 819 0.20 0.00

5 4,331 4,787 7,913 12,700 .510 0.67 0.47

6 2,722 3,008 3,471 6,479 .439 0.82 0.62 1,23
1971

1 4] 0 2,842 2,842 819 0.20 0.00

2 1,116 1,233 1,004 2,327 .385 0.95 0.75

3 129 143 753 896 .688 Q,37 0,17

4 0 0 616 616 318 0,20 0,00

5 102 113 k55| 504 635 (.45 0.25

6 116 128 192, 320 491 0.71 0.51 1.68
1972

I 0 0 157 157 .809 0.20 (.00

2 11 12 115 127 .T41 0.30 0.10 0.10

3 0 0 94
Totals 46,216 7.58 3.38 3.38

many escape the net in damaged condition, and others simply disintegrate in the
course of the iwo pumping operations that intervene between the closed seine and
the arrival of the anchovies at the plant.

Burd and Valdivia (1970) did their sequential analysis over a period of years,
Comparing successive estimates of I with the fishing effort, they found that computed
catchability tended to increase by about 159, per year. This implied a rather rapid
increase in efficiency of fishing operations that was not reflected in the unit of fishing
effort used (based on vessel tonnage and time fished).
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TarpLk 8.7. Resulls of sequential computations of the data of Table 8.6 using different values of
M and of initial F.

M 0.1 0.1 0.2 0.2 0.2
Inijtial F 0.1 0.2 0.1 0.2 i.0
F-values
1968-9 0.79 0.82 0.37 0.37 0.37
1970 1.49 1.64 1.23 1.30 1.36
1971 2,15 2.69 1.68 2.25 3.45
1972 0.10 0.20 0.10 0.20 1.00
Total F 4,53 5.35 3.38 4.12 6.18
Total M 2.10 2.10 4.20 4.20 4,20
Total Z 6.63 7.45 7.58 §.32 10.38
Computed Z 6.73 7.46 7.6l 8.33 10,33
Initial stock { % 10-%) 82.5 83.8 1892 1859 - 1832

8.6.4, NATURAL MORTALITY. Unless the natural mortality rate used in a sequential
computation is based on objective information, it is desirable to try several values
{or sets of values) of M to assess effects of differences in this parameter.

Lassen (1972) proposed using the catch data themselves to obtain an estimate of
M (the same for all ages) by successive trials, choosing the one which minimizes the
sum of squares of the differences between calculated and observed catches, The
nécessary computer program is FMESTIM of Danmarks Fiskeri- og Havunderstigel-
ser, Charlottenlund. However this minimum sum of squares is not very sensitive to
changes in M, and it is easy to obtain “best” esiimates of M that are at variance with
other known characteristics of a stock,

8.7. SEQUENTIAL COMPUTATIONS WHEN FISHING PRECEDES NATURAL MORTALITY
In Type | fisheries fishing precedes natural mortality and it is evident that:
N, = (N - Cpe™ (8.16)
This can be rearranged in a form similar to Pope’s basic expression (8.15 above):
N; = Npe¥ -+ (8.17)

Thus a cohort analysis can be made for Type 1 fisheries using the same sequence of
operations as in Pope’s method, the only difference being that no approximation is
involved,

198




8.8. PoruraTiION EsTIMATES BY ‘‘CHANGE OF COMPOSITION” OR ‘‘Dicuoromy’’
METHODS

If a population is classifiable in two or more ways, and harvesting from it is
selective with respect to this classification, it is possible to make a population estimate
from knowledge of original composition, final composition, and composition of
the harvested catch. Classification might be by age, size, colour, sex, ete. To date the
procedure has been used mostly with game birds or mammals, for which classification
by sex is often easy and the kill is frequently very selective — whether because of
legal restrictions or the habits of the animals. Chapman (1955) found it difficult to
focate the origin of this method in space or time, but he has himself given it the most
complete {reatment to date.

Designating two classifications of individuals by X and Y, the information
available is: '
ny, np  size of samples taken at the beginning and end of the “harvest” period
(times 1 and 2)
x1, Xp number of X-items in samples ny, 1y
¥1,» ¥, number of Y-items in samples ny, rg
P = X1/ pe = X/
C, number of X-individuvals caught during the harvest period {(the period
between times 1 and 2)
C, number of Y-individuals caught
C=C.+C, totalcatch

We wish to know:

N, number of X-items at time 1
N, number of Y-items at time 1
N = N,+ N,

The maximum likelihood estimates of N, and N are, after Chapman:

Ce—pC
P1—m
C,.—pC
p—p2

N, is obtained by difference. These formulae assume there is no natural mortality,
nor any other unaccounted mortality, during the time of the kill or harvest, During
the harvest the two kinds of individuals in the population must be urzequally vulner-
able; however, during the sampling done at time 1 in order to determine gy, the X-type
and Y-type individuals should in general have the same vulnerability to the sampling
apparatus; and similarly for the sampling at time 2.
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An exception to this latier condition occurs when the Y-type (say) is not caught
at all during the harvest period (C, = 0). If so, it is only necessary that the X-type and
Y-type have the same relative vulnerability at times 1 and 2, in order to obtain from
expression (8.18) an estimate of N, (i.e. the ratio of the vulnerabijlity of X to the
vulnerability of Y at time [ should be the same as this ratio at time 2). However (8.19)
is not applicable in that event, so that no estimate of the Y-type population is then
possible. In this situation it would be possible, as Chapman peints out, to use a sport
fish as the X-type and a trash fish as the Y-type, though if times | and 2 are far apart
the postulate of unchanged relative vulnerability of the two species may become risky.

Chapman’s account can be consulted for estimates of asymptotic variances of
these estimates under different conditions and for other pertinent information. In
practice, the size of C, may have to be estimated by sampling the catch, thus increasing
the variability, but this is not serious as long as a fair-sized and representative sample
is taken,

Since a pre-harvest sample has to be taken for the dichotomy method, it will
often be easy to mark the fish involved and fry to obtain, concurrently with the
dichotomy estimate, Petersen or Schnabel estimates {of the X- and Y-types of fish
separately). This would provide the check which is always so desirable in pepulation
estimation.

An advantage of the dichotomy method over marked-fish methods is that it
avoids potential mortality or distortion of vulnerability which are apt to be inherent
in handling and marking fish. However, conditions appropriate for using the method
do not seem to occur very frequently.

8.9. ESTIMATE OF SURVIVAL FROM DIFFERENCES BETWEEN THE SEXES IN AGE AT
MATURITY — MURPHY'S METHOD

8.9.1. RELATIONSHIPS, Murphy (1952) used the age composition of individual
year-classes of coho salmon (Oncorhiynchus kisuteh) returning to a fishway for an
estimate of survival during the last year of sea life. In the southern part of their range
cohoes mature at age 2 and age 3; among mature age-2 fish males are in excess,
whereas females are usually in excess at age 3. Let there be M’ males and F’ females
appreaching the end of their second year of life. Let x be the fraction of age 2 males
which matures, y the fraction of age 2 females which matures, and S the survival rate
of non-maturing 2’s of both sexes up to the time they approach maturity as 3’s.
Then the expected numbers in each category are as below, and can be equated to
observed numbers A, B, C, and D:

Age 2 Age 3
Total Maturing Not mafuring Maturing
Males M’ M'x = A M'(i - x) M8l -x)=C
Females F’ F'y = B F(l - FS(l-») =D

For age-2 matures, males exceed females and the difference is A-B = M'x-F'y.
Yor age-3 matures, females usually exceed males and the differenceisD - C = S(M’'x -
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F'y + F' — M'). If we know the ratio of the two sexes just before any mature at age 2,
M’ /F’ = a say, these expressions can be developed algebraically into estimates of S
and I’ {thus also M'):

g€ 8.20

h A-aB (8.20)
AD - BC

F=— 8.21)
aD-C

If a fishery attacks age-3 individuals near the end of their life span, the method
can still be used if the two sexes are equally vulnerable or if the catch of each sex
can be added in te C and D. In that event fishing mortality is included in the estimate
of total mortality rate (1 —S). If a significant number of age-2 fish are caught in salt
water, as is true today in sport fishing areas, the method will fail unless estimates
of number and sex of these removals are obtained and brought into the equations.

Murphy’s formulaec were simpler than the above becavse he assumed that
F'/M’' =1, and he could put B = 0 because mature age-2 females are almost un-
known among cohoes (and he observed none). However, the method is sensitive to
quite small deviations from a 50:50 sex ratio among age-2 stock, and the assumption
of equality may not be valid. Some data are available on sex ratios of salmon smolts
ai the time they go to sea, though apparently not for cohoes. Jensen and Hyde (1971)
found 490 males and 480 females among hatchery chinook fingerlings in 1968 — a
difference which can be of interest only by comparison with other data. Suggestive
and in one case significant deviations from 50:50 were found amoeng sockeye smolts
at Cultus Lake in some years {Foerster 1954b), indicating a small excess of males
among the yearlings which predominated in the runs, Foerster also showed that females
tend to predominate during the early part of the run and males in the later part, so
that single samples, such as some of those listed by Clutter and Whitesel (1956,
table 63) are not necessarily representative of a complete run, However, the largest
samples of sockeye yearlings in Clutter and Whitesel’s table all show an appreciable
excess of males (Rivers Inlet 1915 and 1916, Chilko 1954). Also, in the one year (1953)
in which Dombroski (1964) sampled Babine sockeye smolts proportionally throughout
the season there was an excess of males, as there was among total smolts taken in
all 4 years. Thus there are indications that among Pacific salmon, as among most
other vertebrates where the subject has been studied, there is a small excess of males
early in life. Possibly this excess would be somewhat reduced after the first growing
season In the sea, but absence of direct information on the sex ratio at that time is
evidently a deficiency of the estimates obtained by Murphy's method.

Even apart from uncertainty about sex ratios, any attempt to apply the Murphy
method to species having more varied life-histories seems cut of the question at the
present time. For example, in British Columbia the sockeye have ages 3, 4, and 5 all
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represented by both sexes (although age 3 females are uncommon); also, a selective
fishery seriously distorts the sex composition of maturing 4’s and 5’s, so that accurate
information about the number and sex of fish captured at each age would be needed,
as well as of the escapement,

$.9.2. TLLUSTRATION. A Murphy-type experiment provides the following numbers
of mature fish (including those caught near the end of life):

Number of age 2 males A =100
» » » 2 females B =10
" »w = 3 males C =50
» » = 3 females D=75

Ratio of males to females before any mature at age 2 a=1.08

From (8.20) and (8.21) we compute:

Survival rate = S = (81 — 50)/(100 — 11} = 0.348
Number of females at age 2 = (7500 — 500)/(81 — 50) = 226
Number of males at age 2 = 226 X 1.08 = 244

If the ratio g were taken as 1, the estimates are § = 0.278, F = M = 280.
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CHAPTER 9, — GROWTH IN LENGTH AND IN WEIGHT

9.1, ESTIMATION OF AGE AND RATE OF GROWTH

9.1.1. GENERAL AND HISTORICAL. Techniques for determining the age of fish are
diverse and have been amply reported. Few kinds of fish in temperate waters can hope
to conceal their age from a persistent investigator: length frequency distributions,
tagging experiments, scales, otoliths, opercular bones, vertebrae, fin rays, etc., can all
be called on.

The first known account of reliable age determinations of fishes is by the Swedish clergyman
Hans Hederstrdm (1959, original version 1759). By counting rings on the vertebrae he obtained the
age of pike (Fsox lucius) and other species, and his growth rates are similar to modern estimates,
However, the art of age determination had to be rediscovered toward the end of the 19th century,
and the history of this period has been reviewed by Maier (1906), Damas (1909), and others. This
time the first method to be applied was that of length frequencies, by C. G. J. Petersen {(1892) —
Fig. 9.1 here. Scales were first used for age reading by Hofibauer (1898), otoliths by Reibisch (1899),
and various other bones by Heincke (1905). Much early work by D’Arcy Thompson and others,
using Petersen’s method, was later shown to be inaccurate because a succession of modes had
been treated as belonging to successive year-classes, whereas they actually represented only dominant
year-classes, separated by one or more scarce broods. More recently length-frequency analysis has been
made easier and more reliable by several statistical and mechanical aides: Harding {1949), Cassie
(1954), and others used probability paper; Tanaka (1956) devised the method of fitting parabolas to
the logarithms of frequencies; and Hasselblad (1966) fitted successive approximations to normal
curves using a computer, Direct determination of rate of growth from successive measurements of
tagged fish has sometimes been possible, but frequently the capture or tagging operation affects
growth rate, There can also be an appreciable difference between the length of a fish when alive and
some hours after it has died, which may partly cxplain why a net decrease in size of tagged individuals,
even alter many months at large, has been observed both in freshwater and marine fishes (cf, Hofland,
1957),

The various techniques of age determination have been reviewed by Rounsefell -

and Everhart (1953) and Tesch (1971), and a number of comprehensive works justify
their applicability in general or their application to particular species {e.g. Creaser
1926; Graham 1929a,b; Le Cren 1947; Van QOosten 1929; Chugunova 1939). However,
no one claims that &/ his age determinations are infallibly accurate, and older fish
often present considerable difficulty.

As well as telling the current age of the fish, markings on the hard parts (usually
scales) are regularly used to compute fish length at the end of previous growing seasons,
as indicated by the spacing of the “annuli”, Again an extensive literature exists
concerning methods of making this computation, the most suitable method being
different for differeni fishes. In anadromous fishes the scales also reveal the length
of time spent in fresh water and in the ocean, respectively. Finally, in some species
the scale, otolith, or fin ray indicates at what age the fish first spawned (Rollefsen
1935; Monastyrsky 1940) and, in sturgeons, the sequence of years between spawnings
(Derzhavin 1922, Roussow 1957).
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Fic. 9.1. Reproduction of the first length-frequency table
used to indicate age in a fish population (Petersen 1892,
p. 124). Measurements are of Zoarces viviparus, in Danish
inches (= 26,15 mm).

Suppose a sample of a fish population has been taken and the age of each fish
in it has been determined, The average size of fish at each age is then computed. A
plot of these average sizes can be used directly to estimate rate of increase in size
from year to year, provided (a) that there is no difference between year-classes in
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respect to rate of growth at any given age; and (b) that the fish taken constitute a
random sample of each of the age-classes involved (not necessarily a random sample
of several age-classes simultanecusly, as was desirable in estimating mortality rate).

As far as they have been intensively studied, fishes apparently all exhibit an initial
period of increasingly rapid absclute increase in length, followed by a decrease. The
initial increasing phase is usually completed within the first two years of life, and if so,
it may not appear at all in a graph of yearly increments. However, it is frequently
exhibited in centrarchids (Fig. 9.3A).

The changeover from increasing to decreasing length increments may be so
slow and protracted as to make the age-length relationship effectively linear for almost
the whole of the fisk’s life, or for the part covered by the available data. This ap-
proximation has been used successfully in some production computations (Example
10.4). More commonly, a decrease in yearly increment of length is quite evident as
the fish grow older.

9.1.2. DIFFERENCES BETWEEN YEAR-CLASSES. Differences between successive
broods in rate of growth can be tested easily by taking samples in two or more suc-
cessive vears and comparing fish of the same age. If only one year’s data are available,
such differences will show up as irregularities in the line of plot of length against age,
which can be adjusted to some extent by smoothing. Although differences in the rate
of growth of successive broods in a population are fairly commeon, particularly when
broods vary greatly in abundance, they are not oficn a serious obstacle to obtaining
a picture of the average growth pattern by this method.

9.1.3. LIMITED REPRESENTATIVENESS OF SAMPLING. If only one sampling method
is used, it is unlikely to be representative for all ages included. If it is most efficient
for fish of intermediate size, it tends to select more of the larger members of the
younger age‘—groups, and more of the smaller members of the older age groups (Fig,
9.2, Curve A). If this is not considered, and the sample is treated as representative,
the growth rate obtained will always be smaller than the actual. The same i3 true
whether the gear’s maximum efficiency is for the smallest fish, or for the largest (Fig.
9.2, Curve B). The most direct way to avoid this trouble is to use several different kinds
of sampling apparatus, all of which will probably be selective for size to some degree,
but which will select different size ranges. In sampling some lake fish, for example,
shore seining might take age 0 and even age [ representatively; minnow traps might
cover ages 1 and 2; fykenets, ages 4-7; and angling, ages 5-10. This would leave age 3
in doubt, but from specimens taken in traps and nets a fairly accurate average value
might be obtained; or, that point could be interpolated. For further discussion of
gear selectivity see Section 2.11.

9.1.4, AGE-LENGTH KEYS. Sometimes the length composition of catches taken from
a stock is available from many localities, whereas age determinations are available
from only part of them, or from another source. It is desired to estimate the age
distribution in the total length sample. Subject to the conditions below, this can be
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‘LENGTH (N CENTIMETERS

Fic. 9.2, Tllustration of the effect of selectivity of gear. Three age-frequency polygons (adapled from
those for Clear Lake ciscoes, Hile 1936, table 24) are fished by two hypothetical gears whose relative
powers for taking different sizes of fish are as shown by curves A and B.

done by constructing an age-length key from a representative sample of fish from the
population. This is a double frequency table, usually with age in the columns and
lengths in the rows. A similar table is then constructed giving the percentage of each
age among fish of a given length, and this is used to convert any observed length
distribution to agel.

In using an age-length key, one must remember that the fish used for age determina-
tion must be taken from the same stock, during the same season, and using gear having
the same selective properties as that used to take the length-frequency samples. Above
all, an age-length key cannot be applied to length samples of any year except the
one from which it was derived, unless the year-classes represented always have the
same initial abundance and are subjected to the same fishing experience — a condition
seldom encountered.

1 Allen (1966a) developed a computer program to perform these computations and print the
resulting age distribution in numbers and percentages; it can be obtained from the Fisheries Research
Board of Canada at Nanaimo, B.C., or St. Andrews, N,B.
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As a rule the above restrictions mean that the increase in accuracy achieved
by combining a length sample with a smaller age sample is not very great. Usually
it is more profitable to put all available resources into increasing the size of the age
sample, rather than mounting a massive length-sampling program, unless the latter
also serves some other purpose.

9.1.5. GROWTH STANZAS. In their early development, fish typically pass through
several distinct stages or stanzas of growth (Vasnetsov 1953), between which there
occurs a rather abrupt change in structure or physiology. In extreme cases, such as
eels, this may involve a metamorphosis comparable to what occurs in the higher
insects; more commonly the stanzas are separated merely by a change in body form
which shows up in the weight: length relationship, or sometimes simply by a sudden
change in rate of growth. Usually the final growth stanza begins sometime during the
first year of life; for example, Tesch (1971, p. 117) illustrates an abrupt change in the
weight:length relationship of brown trout at 42 mm and about 1.1 g. Among salmon
and other anadromous species there is typically a sudden change in rate of growth
when the fish go to sea, which may occur at ages from 0+ to 44 or more.

9.2, Types OF GROWTH RATES

Growth may be described in terms of length (/) or weight (w), and for each we
may distinguish:
(1) absolite increase (increment) in a given year: I — 1 or wy — wy}
1 -
(2) relative rate of increase: 1214 or 127 M1 {usually expressed as a percentage);
1 w1
(3) instantaneous rate of increase: logel; —logel; or logews — logews.
Figure 9.3 presents a typical population growth curve in several forms.

Relative and instantaeous rates are used mostly in connection with weight. In-
stantaneous rate of length increase and instantaneous rate of weight (G) increase are
similar statistics, differing only by a constant. Anticipating expression (9.3) of the
next section, this is evident from the following:

G = logeW2 — lOgeW]_
= logea + b(logely) — logea — b(logel})
= b{logel; - logely) 9.1

This provides a convenient method of estimating G from length data, provided & is
known.

9.3. WEIGHT-LENGTH RELATIONSHIPS

9.3.1. Basic reLATIONSIIP. It has been found that, within any stanza of a fish’s
life, weight varies as some power of length:
w = al’ (©.2)

log w = log a - b{logl) 9.3
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Fra. 9.3, Example of different measures of growth (for Lepomis macrochirus in Spear Lake, Ind.).

(A) Fork length (cm); (B) Weight (g); (C) Instantancous rate of increase in weight; (D) Natural
logarithm of weight,

These expressions would apply best to an individual fish that was measured and
weighed in successive years of its life. This of course is rarely possible. The value of
b is usually determined by plotting the logarithm of weight against the logarithm of
length for a large number of fish of various sizes, the slope of the fitted line being an
estimate of b, The GM functional regression should be used, rather than the predictive
regression which has commonly been employed in the past (Appendix TV).

9.3.2. GROUPING AND SELECTION OF DATA. Extensive data have sometimes been
grouped into short length-classes, and the mean length and weight of each class have
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been used as the primary data in computing the regression line. The motive was to
speed up computations, but with modern equipment this is no longer necessary, and
when using means it is impossible to compute a representative standard error, nor
can the functional regression be obtained.

A more legitimate reason for grouping data is to distribute observations more
evenly among the range of sizes present, and so get a more representative relationship.
This is best done by measuring some fixed number within each of a series of short
length intervals and weight intervals. The intervals should preferably be in logarithms.
Also, to obtain a representative functional regression one must select half the total
sample on the basis of length and half on the basis of weight — otherwise there will
be bias {Ricker 1973a).

When a general weight-length relationship for a population is desired, every
effort should be made to obtain fish of a wide range of sizes, down to and including
age O (unless of course the younger fish belong in a different growth stanza — see
Section 9.1.5). When only the older, commercial-sized, {ish are available, the para-
meters estimated can deviate importantly from their true values simply from sampling
variability, and partial representation of younger ages frequently creates bias (Exam-
ple 9.1).

9.3.3. TSOMETRIC AND ALLOMETRIC GROWTH AND CONDITION FACTORS, The func-
tional regression value & = 3 describes isometric growth, such as would characterize
a fish having an unchanging body form and unchanging specific gravity, Many
species seem to approach this “ideal,” though weight is affected by time of year;
stomach contents, spawning condition, etc. On the other hand, some species have
b-values characteristicaily greater or less than 3, a condition described as gliometric
growih. There are sometimes marked differences between different populations of
the same species, or between the same population in different years, presumably
associated with their nutritional condition. (The term allometry applies alse to changes
in the ratios of linear measurements of the fish).

To compare weight and length in a particular sample or individual, condition
factors are employed. The commonest is Fulton’s condition factor, equal to w /B,
often considered to be the condition factor (Fulton 1911). It is the parameter g in
expression {9.2) when & = 3. The heavier a fish is at a given length, the larger the
factor, and (by implication) the better “condition” it is in. Fulton’s condition factor
is suitable for comparing different individual fish of the same species; it will also indi-
cate differences related to sex, season, or place of capture. It is most useful if, under
average or standard conditions, the exponent b in (9.2) is actually equal to 3 for the
species in question. Fulton’s factor can also be used to compare fish of approximately
the same length no matter what the value of b,

The allometric condition factor is equal to w /I, where b is given a value deter-
mined for the species under standard conditions. As it is usually difficult to decide
what conditions are standard, and as there is usually considerable error in estimates
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of b, this factor has been much less used than Fulton’s. Often Fulton’s factor is
used as an approximation even when the ailometric factor is theoretically more

appropriate.

9.3.4. MEASUREMENTS OF LENGTH AND WEIGHT, AND CONVERSION FACTORS.
Condition factors have been computed using different kinds of lengths and weights.
Among other ways, fish length may be measured, at the head end, either from the tip of
the snout, from the end of the lower jaw (if it protrudes past the snout), from the middle
of the orbit of the eye, or from the hind margin of the orbit. At the tail end, the
measurement may be made to the end of the vertebral column, to the margin of the
median rays of the tail fin, to the end of the longest caudal rays when held in a natural
position, to the end of the longest rays when squeezed to an extreme position, to
the longest ray of the upper lobe of the tail when held at its position of maximum
extension, or in several other ways. In addition, it makes a difference whether length
is measured on live fish, freshiy killed fish, fish held in cool storage, or fish preserved
in formalin or alcohol. Any length may be measured either “on the contour,” by
hoiding a. flexible tape from snout to tail, or by laying the fish on a flat ruled measuring
board. Weight may be of the whole fish, or of the fish less stomach contents, less
gonads, less all entrails, or less entrails and gills.

Whatever length and weight are used, they should be specified in detail. The
combination most frequently used in fishery work is fresh whole weight and length
measured on a board from the most anterior point (tip of the snout or of the more
protruding jaw when the mouth is closed) to the end of the median rays of the tail
(= “fork”, Smitt or median length), whenever these two points can be ascertained
readily. These are the standard measurements for computing Fulton’s condition
factor. But when tails or snouts are frequently damaged, other reference points
must be used. The combination of weight less entrails divided by fork length cubed
is known as Clark’s condition factor.

The variety of lengths and weights in use makes it necessary to obtain conversion
factors by measuring the same fish in two or more different ways. If one length is
plotted against another, a fitted straight line determines the conversion equation.
This should be the GM functional regression line (Ricker 1973a). For many purposes
a line through the origin is more convenient and sufficiently accurate; indeed it is
not often that the best fitted line differs significantly from one through the origin.
A line through the origin should also be fitted functionally (Appendix TV}

9.3.5. WEIGHT-LENGTH RELATIONSHIP WITHIN AGE-GROUPS. It is sometimes
interesting to examine the nature of the relation of weight to length within individual
age-groups. This is a very different concept from the weight:length relationship
associated with growth. For example, within an age-group the functional exponent &
could conceivably be less than 3 at the same time as the same exponent for each
individual fish, measured throughout its life, was greater than 3. An overall weight—
length relationship computed from fish of several age-groups reflects mainly the change
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in form as the fish grow, rather than the intra-age-group relationship. However,
it is essential that the functional rather than the ordinary regression be used to compare
an intra-age-group with an overall exponent.

9.3.6, WEIGHT-LENGTH RELATIONSHIPS BETWEEN AGE-GROUPS. The functional
a and b coefficients calculated from expression (9.3) may be called “individual-a’
and “individual-b”. It is sometimes useful to calculate analogous functional coeffi-
cients, call them &’ and &', from the relation of the logarithm of average weight (%)
of a random sample of the fish of & given age to the logarithm of their average length
(#); that is:

log% = d + b'(log ) 9.4

Trial calculations will show that the average weight of all fish of a given age (W)
is greater than the average weight of a group of individual fish whose lengths are each
exactly equal to the average length of the age-group. The difference is commonly
of the order of 5%,. For example, Graham (1938b, p. 62) obtained 531 grams and 506
grams, respectively, for gutted age-2 North Sea cod. Pienaar and Ricker (1968) give a
formula by which W can be computed for an age-group when its variability in length
and the relationship (9.2) are known.

Because W exceeds w at any given length, one or both of the between-age-group
parameters o and & must exceed the corresponding “individual” values g and &.
The actual sitvation depends on amount of variability in fish size in a year-class at
successive ages, and on how this variability changes with age. Trials show that if the
standard deviation in length of a year-class increases exactly proportionally to mean
length, & is the same as b, bui &' is greater than a. If standard deviation in length
remains constant as length increases, and expression (9.2) applies, the relation be-
tween log W and log / is not strictly linear; but the best line will have a slope (b")
fess than the individual b, and &' becomes even greater, In practice, standard deviation
in length of a year-class often tends to increase, during early years of life, ap-
proximately proportionally to mean length. Later, however, it increases less rapidly,
becomes statjc, or even decreases at older ages.

The coefficients @’ and &' and expression (9.4) are useful mainly for converting,
to terms of weight, average lengths that have been calculated from scale annuli.
This circumvents, with little loss of accuracy, the tedious calculation of weights at
successive ages from each fish individually, using @ and b,

ExampLE 9.1, WEIGHT-LENGTH RELATIONSHIPS IN A SAMPLE OF BRITISH COLUMBIA
HERRING.

I. Figure 9.4 is a plot of logarithm of weight (log w) against logarithm of length
(log /) for herring taken from a pre-spawning school, about 4 months prior to spawn-
ing. These fish were mostly in stage 3 of maturation. Data are shown in Table 9.1,
The schedule below shows the calculation procedure using an ordinary calculator,
but with modern equipment the statistics can be obtained quickly from a desk-size
electronic computer,
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Sums and means:

logl: 63.896 Mean: 1.2779
fog w: 100.712 Mean: 2.0142

Sums of squares and cross-products:

log { 81.72599
log w 203.80998
flog Nilog w) 128.95911

Sums of squares and cross-products (measured from means):
Length  ( = 81.72569 — 63.986%/50) 0.07201
Weight (= 203.80998 - 100.712%/50) 0.95184
Products (= 128.95911 — 63.896 X 100,712/50) 0.25723
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TaBLE 9.1,

Top: Standard lengths (tip of lower jaw to end of scale covering) in centimeters, and

whole weight in grams, for a sample of British Columbia herring taken frem a purse seine catch at
Porlier Pass, November 22, 1960. Botrom: Base-10 logarithms of the above lengths and weights.
(from dala supplied by Dr F. H. C. Taylor.)

Age 14 Age 2-- Ape 3+ Age 4+ Age 54
I W ! w ! w ! W { W |
17.2 74 19.7 119 19.3 115 20.8 159 22.0 177
16.8 62 19.0 106 19.7 125 20.1 120 22,0 164
16.2 64 18.8 101 19.2 118 19,5 115 20.7 146
16.3 52 i8.2 92 9.7 118 21,0 145
16.1 58 18.1 92 19.8 124 21.0 141
15.4 48 18.8 91 1.3 115 21.5 156
16.1 57 9.6 117 20,6 142 21.7 146
16.4 55 18.7 100 9.7 119
17.3 73 19.3 106 20.2 136
18.1 82 19.8 111
19.1 100 19.1 110
17.0 75 20.2 143
18.0 96 19.3 110
19.3 110 17.7 91
17.9 85 20,1 134
19.7 120
Means 16.422 60,33 18,640 98,13 19,631 120,69  20.800 140.29 21,567 162.33
Logmeans 1.215 1.781 1.270  1.992 1.293 2,082 1.318 2,147 1.334 2.210
logl logw logi logw log! logw log! logw log! logw
1.236 1,869 1.294 2.076 1.286 2,061 1.318  2.201 1.342  2.248
1,225 1.792  1.27% 2,025 1.2%4 2,097 1.303 2,079 1.342 2.215
1.210 1.806 1.274 2,004 1.283 2.072 1.291 2.061 1.316 2.164 ;
1,212 1.7116  1.260 1.964 1.294 2.072 1,322 2.161
1.207  1.763  1.258 1.964 1.297 2.093 1.322 2.149
1.188 1.681 1.274 1.959 1.286 2,061 1.332 2.193
1.207  1.756 1,292 2,068 1.314 2.152 £.336 2.164
[.215  1.740 1.272  2.000 1.294 2.076
1,238 1.863 1.286 2.025 1.305 2.134
1,258 1,914 1,297 2,045
1,281 2,000 1.281 2.041
1.230 1.875 1,320 2.155
1.255  1.982 1.286 2,041
1.286  2.041 1.248  1.959
1.253  1.929 [.303 2.127
1.294  2.079
Means 1.2153 1.7762 1.2701 1.9884 1.2926 12,0791 1.3177 2.[440 1.3333 2.2090
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Regressions and correlation:

Ordinary regression of log w on log / 3.5721
{ = 0.25723/0.07201)

Standard deviation from the regression Iine* 0.025690

203.810 - (128.959)*/81.72599
B 50-2

Standard error of ordinary regression 0.09573
( = 0.025690/[0.07201])

Intercept on the log w axis ~-2.3506
{ =2.0142 - 3.5721 X 1.2779)

Correlation coefficient 0.9825
( == 0,25723/[0.07201 X 0.95184})

GM regression of log w on log ! 3.636
(= 3.5721/0.9825)

Standard error of functional regression 0.09573
(same as that of the ordinary regression)

Intercept on the log w axis -2.634

(= 2.0142-3,636 X 1.2779)

The functional relation between log w and log /, as estimated by the geometric
mean regression, is;
logw = —2.634 4 3.636(log D)
w = 0,002323/>%¢

This functional line is drawn on Fig, 9.4.

The ordinary regression of log w on log / is estimated above as 3.572, differing
from the functional regression 3.636 by only 0.064, less than the standard error of
either. Obviously there is little difference between the two regressions in this case;
however, a rather small change in the exponent makes a fairly large difference in a
computed weight. [n any event it is wise to avoid any kind of consistent bias, however
small. Notice that the functional regressions in this situation should be used for
prediction of w from J, or of / from w (Ricker 1973a).

2. Between-age-group regressions are computed similarly from the “log means”
line of Table 9.1. They can be computed either directly from the five means, or by
weighting each mean as the number of fish involved. The equations involving the
functional regression (4’ in 9.4) are:

Unweighted:  log W = -2.573 - 3.585(log })
Weighted: log W = —2.647 - 3.651(log 1)

The weighted value for 5’ is very close to &: the line lies almost paralle]l to the line
computed from the individual fish, but of course a little above it. The unweighted
value of b’ is smaller, because the means of fish weights for the two oldest, poorly-
represented, ages happen to lie below the line for the individual fish, and they tilt
the line down at the right end.
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3. Regressions for individual age-groups are shown in Table 9.2. Values of
predictive regressions in column 5 are all smaller than the predictive regression com-
puted from fish of all ages combined, usually by a substantial amount. However,
part of this difference is an artifact resulting from the shorter range of lengths avail-
able at any one age \Ricker 1973a); thus it does not necessarily indicate that the within-
age-group weight:length relationship differs from the overall relationship. Functional
regressions int column 6 do not have this bias; most are smaller than the overall value
3.636, but one is larger. Their weighted average is 3.310, so it is possible that the within-
age relationship is different from the overall 3.636, but a much larger sample would be
required to confirm this.

TaABtE 9.2, Weight: length regressions (1) for individual age-groups, (2) for all ages combined, |
and (3) between age-group means, for the herring of Table 9.1, Column 7 is the standard deviation i
from the predictive regression line of log w on log /. Column 8 is the intercept of the functional i
relationship on the log w axis.

| 2 3 4 5 6 7 8
No. of Means Regression Functional
fish log | Iog w Ordinary Functional intercept
b K loga
1+ 9 1,2153 1.7762 3.557 4,037 0.02802 -3.130
2+ 15 1.2701 1.9884 2.963 3.1%94 0.02021  -2.068 ]
3+ 16 1.2926 2.0791 2.872 3.059 0.0163¢  -1.875 .
4- 7 1.3177 2.1440 2,890 3.407 0.02649 2,345 :
5+ 3 1.3333 2.2090 2,596 2.819 0.01442 1,530 :
: |
Means !
{unweighted) ‘e - e 2.976 3.303 i
All ages 50 1.2779 2.0142 3.572 1.636 0.02569 2,634
By age-group No. of Means Regression
ages log i log w Ordinary Functional
b 5 log &
Unweighted 5 1.2860  2.0424 3.578 3.585  0.00925 2,573
Weighted 5 1.2780 2,0176 3.647 3.651 0.03478  -2.647

9.4. EFFECTS OF SIZE-SELECTIVE MORTALITY

9.4.1. LEE’s PHENOMENON, Frequently the larger fish in a year-class have a different
mortality rate than the smaller ones: either greater or less, but usually greater. This
can be detected when back-calculations of length at earlier ages are made from scales
or oteliths, using samples that are representative of the whole of each age-group involved.
When a larger fraction of the larger fish die, the result is “Rosa Lee’s phenomenon”
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(Sund 1911; Lee 1912)—a smaller estimated size for fish of younger ages, when cal-
culated from scales of older fish, than the true average size at the age in question (see
Table 9.3, below), A review and bibliography of this subject is given by Ricker (1969a),

1. Natural selection for size can bear more heavily on either larger or smaller
fish. Faster-growing fish frequently tend to mature earlier and also become senile
and die earlier than slower-growing fish of the same brood (Gerking 1957). This is the
principal or perhaps the only cause of natural Lee’s phenomenon in unfished popula-
tions. However, there are at least two possible situations that act in the opposite
direction: (a} There is considerable evidence that during the first year of life slower-
growing individuals are more susceptible to predation, for example among walleyes
(Chevalier 1973). Such selective mortality during the first year cannot affect calculated
growths differentially, because only after the first annulus is laid down can there be
any back-calculation, However, if the same situation persists into the second or later
years of life it means that, for example, the size at annulus | computed from fish of
age 2 will tend to be grearer than the same computed from fish of age 3. (b) The other
situation occurs when fish of both sexes are sampled and analyzed together, but there
are in fact sex differences in both growth rate and natural mortality rate. Among
most flatfishes, for example, females grow faster and live longer than males; this makes
calculated early growth increments larger, the older the fish from which they are
computed, in samples where the sexes are not distinguished. The antagonistic action
between situations such as these two and the earlier senility of fast-growing fish may
result in the absence of detectable Lee’s phenomenon, or even “‘reversed” Lee’s
phenomenon, in natural populations (Deason and Hile 1947).

2. Size-selection by a fishery is primarily the process of recruitment. The larger
members of a year-class become vulnerable first, and it may be several years before
the smallest ones are fully vulnerable. Obviously this can be a major cause of Lee’s
phenomenon. Also, the largest fish in a population may sometimes be less vulnerable
than those of intermediate size, but in practice this is far less important.

9.4.2, SHAPE AND VARIABILITY OF LENGTH DISTRIBUTIONS, Size-selective mortality
does not necessarily change the shape of the length distribution of a year-class. Yones
(1958) showed that when the gradient of instantaneous mortality rates within a year-
class is linear with respect to length, an originally normal length frequency distribution
will remain normal no matter how severe the mortality gradient, In nature, of course,
the length-mortality relation need not bé exactly linear, but trials show that it requires
a marked deviation from linearity to produce appreciable skewness in the derived
length distribution. Jones (1958) also showed that with a linear size-mortality relation
the variability of the frequency distribution is conserved, and trials show that even
quite severe non-linear selection changes the variance too little to be detectable in
practice (Ricker 1969a).

9.4.3. EFFECTS OF SELECTIVE SAMPLING, All methods of detecting selective mortality
of fish of different growth rales presuppose that representative samples are taken.
This is a vital condition, because non-representative sampling can produce Lee’s
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phenomenon to a marked degree, whether the maximum catching power of the nets
is for the largest fish, the smallest fish, or some intermediate size (Section 9.1.3; also
(Ricker 1969a, p. 509). Nor does it matter whether the selection results from physical
characteristics of the net, or from differing habits of fish of different sizes.

In addition, incorrect techniques of back calculation of size from annulus mea-
surements can introduce an “‘artificial” Lee’s phenomenon. For example, if scale
annuli are taken as directly proportional to body length in a population where they
are actually proportional to length less a constant quantity, the calculated first-year
growth is always too small, and it becomes smaller, the greater the age of the fish
from which it is calculated. :

9.5. COMPUTATION OF MEaN GROWTH RATES

9.5.1. POPULATION GROWTH RATE AND TRUE GROWTH RATE. When there is size-
selective mortality within a year-class, the true mean growth rate of the fish differs from
the apparent or population growih rate, and it becomes necessary to distinguish
between them. The population growth rate (Gx) is obtained simply by comparing
the mean size of the surviving fish at successive ages. But if the larger fish of a year-class
die more frequently than the smaller, this affects the mean size of the survivors,
making it less than it would otherwise be. Accordingly it becomes necessary to estimate
trwe growth rate from that of individual fish during the period involved. Usually
the best available estimate of the growth rate of individual fish (G) comes from
back-calculation of their lengih at the last two annuli on the scales;? the difference of
the natural logarithms of these lengths, multiplied by the weight:length exponent,
is the instantaneous rate of increase in weight for the year (expression 9.1). Figure 9.5
illustrates the difference between population growth rate (fine dotted line) and mean
individual growth rate of the survivors at successive ages. The final, broken, segment of
each sample line is the best available representation of the true mean growth rate (G)
of the fish present in the year indicated.

9,5.2, ESTIMATION OF TRUE GROWTH RATES. To estimate true mean growth rates
the usual sequence of operations is as follows:
1. Determine age from scales, and make measurements to successive annuli.

2. Establish the relation of scale size to fish size.

3. For each fish, back-calculate the length at the start and close of the last
complete vear represented on the scale at each age.

4, Compute the mean intital and final Jength during this year for fish of each age
separately.

2 As there may be differential moriality within this interval and right up to time of sampling, the
mean growth rate estimated from survivors at the time of sampling will be slightly less than a weighted
mean value for all fish that were alive during the previous complele year. But this second-order effect
can usually be disregarded.
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Frg. 9.5, Growth in an artificial cisco stock. (A) Standard length; (B) “Weight”
(cube of length, which is approximately proportional to weight); (C) Natural
logarithm of “weight”, The broken segment of each sample line represents ap-
proximately the true mean growth rate of fish in the stock at successive ages.
Dotled lines represent the population growth rates. (After Ricker 1969, fig. I,
slightly modified from the Silver Lake data of Hile 1936.)

5. Calculate the between-ages functional slope, &', from representatively-sampied
ages (expression 9.4; see also part 2 of Example 9.1).

6. Take the natural logarithms of mean lengths in 4 above, and subtract the
initial from the final for each age-group; this gives the instantaneous rate of increase
in mean length at each age.

7. Multiply the above rates by &'; this gives G for each age.
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An alternative and somewhat better procedure, following item 3 above, is as
follows:

4, Calculate the functional slope 5 for individual fish (expression 9.3).

5. Take the natural logarithms of initial and final length for the last complete
year of growth of each fish, and subiract; this gives the instantaneous rate of increase
in length for each fish.

6. Average the instantaneous rates of increase in length for each age-group,
and multiply by b; this gives the mean instantaneous rate of increase in weight, G,
at each age.

9.5.3. PONDERAL MORTALITY RATE. Size-selective mortality also complicates
the concept of mortality rate when the latter is applied to weight. Ricker (1969a)
defined an instantaneous ponderal mortality rate (Zx). When mortality is not selective
by size this is the same as the numerical mortality rate, Z. But if the larger fish of a
year-class die more readily than the smaller, the rate of weight loss is greater than the
corresponding decline in numbers, i.e. Zyw >Z; and vice versa. Ricker (p. 495) showed
that:

Zyw—-Z = G- Gy (9.5)

This provides a method of estimating Zy when Z, G, and Gy are known,

ExampLE 9.2, COMPUTATION OF GROWTH RATES FOR SILVER LAKE CISCOES.
{(Modified from Ricker 1958a.)

Table 9.3 shows the back-calculated lengths of a population of ciscoes. We
assume, for purpose of illustration, that age-group-b is equal to 3 exactly, and that
sampling is non-selective except at age 1 (which is therefore disregarded). Age 7 is
also disregarded because only one fish is available.

Columns 2-4 of Table 9.4 show the computation of population growth rates.
The length differences in column 2 are from the lowermost diagonal of Table 9.3,
Differences between the natural logarithms of length are shown in column 3, and
these are muliiplied by & = 3 to give the instantaneous rate of growth in weight,
in column 4,

Columns 5-7 show the similar computation of true mean growth rates. In this
case the lengths used are the last pair of each line of Table 9.3.

The true growth rates are all considerably greater than the population growth
rates, reflecting the rather severe selective mortality among these fish.

9.6, MATHEMATICAL DESCRIPTION OF INCREASE IN LIENGTH — THE BRODY-BERTA-
LANFFY PROCEDURE

9.6.1. BRODY’S EQUATIONS. Brody (1927, 1945) observed that in domestic animals
a plot of length against time usually gives an S-shaped growth curve. To treat this
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Tapre 9.3. Caloulated standard lengths in millimeters of ciscoes from Silver Lake, Wisconsin, taken
during the summer of 1931. The fish of age 1, only, are believed affecied by net selectivity, (Data
from Hile 1936, tables 5 and 9.)

No. of Length at Calculated lengths at successive annuli

Age fish capture 1 2 3 4 5 6 7

i 1 201 77 111 135 158 172 186 196

) 21 194 78 119 142 158 177 189

5 108 188 80 126 150 168 182

4 102 183 80 132 159 176

3 61 177 - 83 137 166

2 19 171 104 151

1 66 141 105

Tasie 9.4. Compuiation of growth rates for the ciscoes of Table 9.3,
1 2 3 4 5 6 : 7
Population growth Mean individual growth
Length Difference Instantancous Length Difference Instantancous

Age interval of natural growth rate interval of natural growth rate
interval mm logarithms Gy Him logarithms G

2-3 151166 0,094 0.282 137-166 0.192 0.576

34 166-176 0.059 0.177 159-176 0.102 0,306

4-5 176-182 0.033 0.099 168-182 0.080 0.240

5-6 182-189 0.038 0.114 177189 0.065 0.195

mathematically he divided it at the inflexion peoint and fitted the two halves with
separate curves. For the parts having increasing and decreasing slope, respectively, he

used:
l’( = aer! (9 ‘ 6)

I = b ce™® 9.7

Here /is length and ¢ is age; 4, b, and ¢ are constants (parameters) having the dimen-
sions of length; while K’ and K are constants determining the rate of increase or
decrease in length increments,

Expression (9.6) may apply to the earlier growth stanzas in a fish’s life; other
expressions have been proposed by Hayes (1949), Allen (1950, 1951), and others.
However, fish population studies have been concentrated mainly on the final stanza
of growth, to which expression (9.7) has been found to be applicable in many, but
not all, populations. Sometimes it describes growth from age 1 onward, but more
commonly a geod fit is obtained only from a somewhat greater age.
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Fabens (1965) has an excellent exposition of the significance of the terms of (9.7).
As ¢ increases indefinitely, /,— b; thus & is the mean asymptotic length, usually rep-
resented by L. This is the length that an average fish would achieve if it continued
to live and grow indefinitely according to the pattern of expression (9.7). When ¢ = 0,
I, = b—c¢ = Ls — ¢, which represents the (hypothetical) size that the fish would
have been aft ¢ = 0, if it had always grown according to (9.7); frequently Lo — ¢ is
negative. A rearrangement of (9.7):

Lo 1 = ce™ 9.8)

illustrates that the difference between the asymptotic size and the actual size of a fish
decreases exponentially at rate K. This difference decreases to half in time (loge2)/K =
0.693/K years, to a quarter in 1.386/K years, and so on. Obviously the larger K is,
the more rapid is the decrease, Or, for any given initial fish size (at the time decreasing
exponential growth starts), a larger K means a smaller L, and thus slower growth
from that time onward. Thus it is misleading to refer to K as a growth rate; a better
name is the Brody growth coefficient,

9.6.2. VON BERTALANFFY’S EQUATION. Suppose the cuorve of expression (9.7) is
extrapolated down to the time axis, and call this time #. Then expression (9.7) can be
rearranged algebraically into the form used by von Bertalanffy (1934, 1938):

I, = Lo (1 — e (9.9)
The parameter ¢ is replaced by the new parameter {;, the relation between them being:

0= 1—%”3@; ¢ = beth 9.10)
K

In (9.9), instead of using age as measured in years from a conventional time zero

(usually the beginning of the year in which the fish hatch), we in effect start from the

hypothetical age, 1y, at which the fish would have been zero length if it had always

grown in the manner described by the equation. Thus #y can be either positive or

negative.

9.6.3. KniGHT'S EQuaTION. Knight (1969) has criticized the form of equation
{9.9) on several grounds, but particularly because “although this is called a prowth

curve, no symbol in it has the dimensions of growth, length per unit time.” He pro-
poses an alternative equivalent form:

- B - -
I =A+Bir-1 - < [1-K(-7)-e™) (©.11)

7 an arbitrary reference time, which can most usefully be either the middle
of the range of ages represented, or the mean age
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K the Brody growth ceefficient
A a parameter representing the length of the fish at time 7
B a parameter representing the rate of growth of the fish at time ¢

Transformations to the symbols of expression (9.9) are:

B
Lo = A 4 — 9.12
+x (9.12)

. loge(l + KA/B
o — 7o el -+ KA/E) (9.13)

K
Conversely: )

A = L, (1 - e &) (9.14)
B = K[ e XF0 (9.15)

9.6.4. ForD’s EQUATION. Another form of (9.7) can be obtained by duplicating
(9.9) using ¢t + 1 for ¢ and subtracting the resulting equation from (9.9). Using
Ford’s growth coefficient k (= ¢™), this relationship is:

lipt = La(1=K) + ki, (9.16)

This expression was developed empirically by Ford (1933) and later by Walford
(1946}; it has also been treated by Lindner (1953) and Rounsefell and Everhart (1953).
It describes growth in which each year’s increment is less than the previous year’s by
the fraction (1 - &) of the latter, starting from a hypothetical initial length L.(1 — k)
at “‘age 0" (the latter being 1 year prior to the time the age-1 sample was taken, rather
than the mean time of egg deposition or of hatching). The relation between increments
in successive years is clearer in the derived expression:

hya—tipy = k- 1) ©.17

Thus the larger the value of Ford’s ceeflicient, the more slowly the increments de-
crease, thus the greater the rate of growth from any fixed starting point.

9.6.5. THE WALFORD LINE. Walford’s (1946) graphical presentation of (9.16),
with [;.1 plotted against /, is rather convenient (Fig. 9.7A), The slope of this line is
equal to k, and the Y-axis intercept is L.(1 — k), from which L. can be calculated.
The asymptotic length, L, is also the length (measured on the abscissa) at which the
line (9.16) cuts the 45° diagonal from the origin.

A modification of {9.16) suggested by Gulland (1964a) is obtained by subtracting
I; from both sides and rearranging:

liss~ b = La(l—&) + 0= 1) (9.18)

222




Thus a regression of (/i —{) on I, has a slope (k- 1); its ordinate intercept is
1o (1 =), and its abscissal intercept is therefore:

M= Lo (9.193
k-1

An example is given by Dickie (1968, p. 122).

9.6.6. Tyres OF FORD-WALFORD RELATIONSHIP. The principal types of Walford
graphs are shown int Fig. 9.6. The Siglunaes herring (Curve A) are fitted with the line
which Ford (1933) computed, with a Y-axis intercept of 9.57 cm and an asymptotic
size (L) of 37.1 cm.

SIGLUNAES VERMILION LAKE o
HERRING WALLEYE
30F 4 60k

20} 4 40} -
10 1 20 .
A

1 [ 1 0 1 1 1
© 10 20 30 20 40 &0

T L T 1 LI I
30} NORTH SHIELDS -4 30} SPEAR LAKE .

HERRING BLUEGILLS
)
0
Q
20} o 1 20} -
[s]

L ] 1 1

1 1
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Fie. 9.6. Walford graphs, of length (cim) at age ¢ -+ 1 against length at age ¢, for four fish populations.
A and B, from Ford (1933) aflter data of Hjort; C, from Carlander and Hiner (1943); D, from Ricker
(1955). In every instance the first point represents age 2 plotted against age I, and later points proceed
in sequence,

0
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The North Shields herring {(Curve B} are a population for which Ford found
that & changed considerably, increasing from 0,56 to 0.77 among the older fish. A
similar trend can perhaps be observed even in Curve A, and it appears in certain other
well-studied populations such as Hile’s (1941} rock bass (Ambloplites rupesiris) of
Nebish Lake or the Clear Lake walleyes (Stizostedion vitreum) of Carlander and
Whitney (1961). Taylor (1962) points ouf that when Walford graphs are plotted
for individual ages they commonly exhibit an increasing slope and increasing L.
with age, and that this eflect can account for concavity of the overall line at the widely-
spaced younger ages. However, this docs not simplify the problem of using such lines,
as Carlander and Whitney’s paper illustrates. -

In another walleye population {Curve C) a line practically parallel to the diagonal
was obtained. This form describes uniform absolute increase in length with age, and
it is approximated, up to a great age, by a number of long-lived freshwater and
marine fishes inhabiting cool waters, Finally, a graph which increases in slope, then
later decreases, has been found among centrarchids in the warmer parts of eastern

North America; Curve I is an example. The same has been observed in several -

bivalve mollusc populations: see Weymouth and McMillin’s data for razor clams as
plotted by Rounsefell and Everhart (1953}, or Stevenson and Dickie’s (1954} data on
growth of scallops.

9.6.7. SouRCEs OF Error. [t is most important, of course, to use truly representa-
tive measurements for Walford graphs. One common danger is selection for larger
size among younger fish, and this leads to depression of the left end of the line. Age-
groups so affected should not be included in the computation. A lesser danger is
reading scales of old fish consistently toc low. This causes some depression of the
right end of the line, but the error has to be gross to produce any considerable effect.

In most or all fishery applications the Brody-Bertalanfly formulae have been
fitted to the observed mean size at successive ages in the stock; thus they do not deal
with the possibility that mean individual growth rates may be different (Section 9.5).
That is, if there is differential mortality by size within year-classes, the true mean
growth rate of the fish is greater than what is indicated by the Brody-Bertalanffy
curve.

9.6.8, THEORETICAL CONSIDERATIONS, Yon Bertalanffy (1934, 1938) tried to provide the relation-
ship {9.9) with a theoretical physiological basis, and he and others have apparenily considered it a
generally-applicable growth law. However, one of the fundamental assumptions used is that ana-
bolic processes in metabolism are proportional to the area of an organism’s effeclive absorptive
surfaces. This could seem reasonable if food were always available in excess, so that absorptive surface
could actually be a factor limiting growth; and in the guppy experiments which are quoted in support
of this relationship, food was actually provided in excess. In nature, fish arc usually less fortunate;
this is shown by the small average velume of food commonly found in their stomachs, and also by
the great variabilify of their observed growth rates, both when we compaie individual fish in the
same environment and fish of the same stock living in different (but physically-similar) waters, Thus
it seems unlikely that available absorptive surface is commonly a factor limiting growth of wild fish.
Ancther complication is that some fish increase the relative suiface area of their digestive tract
more or less throughout growth, by increasing the convolutions of its inner surface.
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Modifications of the Brody-Bertalanffy relationship can be obtained by using an additional
parameter, Richards {1959) and Chapman (1961) describe such a curve, containing a parameter
that conirols the position of the point of inflexion. Taylor {1962) applied a 4-parameter curve to
several sels of data, using more or less arbitrary values for one of the parameters; to obtain efficient
estimates, lengthy iterations by computer are necessary (Paulik and Gales 1964 Picraar and Thomson
1973 — Program WVONDB). Paulik and Gales also say that the Chapman-Richards curve can be
introduced into the Beverton-Holt model and evaluated by integrating the incomplete Bela funciion,
but no examples have come to my attention. At the other extreme, many are opposed 1o using para-
meters that have ne clear relation to reality, while Knight (1968} and others have questioned the reality
of asymptotic growth in general.

Leaving theoretical considerations aside, observed growth curves are usually close enough to
the Brody-BertalanfTy relationship to make the latter a useful empirical descriptive expression. This
of course is the basis on which it was introduced by Brody. In fitting the curve, the main thing is to
avoid including younger ages that do not conform to it; it is wise to be critical and reject any age
that lies even slightly below the Walford line established by the older fish.

5.6.9. FITTING A vON BERTALANFFY CURVE -— BEVERTON'S METHOD, To fit expres-
sion {9.9) to a body of data it is necessary to evalnate three parameters: L., K,
and t5. The first two can be obtained from the GM functional regression line of
{1 on 7l (Appendix TV). According to (9.16), its slope is equal to k, hence K = ~logek;
also, the Y-axis intercept is equal to L (1 — &), from which L. can be calculated.
The disadvantage in this procedure is that the first and last ages appear only once
in the computations and all others twice. In any event further computation is needed
to estimate #.

Beverton's (1954, p. 57) approach to estimating the parameters is to take a irial
value of L., {the one obtained from the regression of /i, on / is convenient) and use
it in an expression derived from (9.9) by taking logarithms:

loge(La — #) = logeLe + Ko Kt (9.20)

Thus a graph of loge(L. — ) against ¢ should be straight, and this straightness is
sensitive to changes in L. A {ew trial plots will quickly yield the 1., which gives the
best (straightest) line — which can usually be sclected sufficiently well by eye, Finding
the best L., and corresponding line immediately determines K, which is the slope of
the line; it also provides the value of #), since the Y-axis intercept of (9.20) can be
equated to logel, + Kip.

A somewhat better result can be obtained by weighting each age by the number
of fish available at each, in fitting the line. The ordinary “predictive” regression is
used in fitting (9.20), because the abscissal values {f) are known exactly.

9.6.10. FITTING A PARABOLIC APPROXIMATION TO THE BRODY-BIRTALANFFY
RELATIONSHIP — KNIGHT'S METHOD. Knight (1969} suggested fitting a predictive
quadratic regression line, using standard statistical methods, as an approximation
to the Brody relationship. Using the symbeols of Section 9.6.3 the approximation is:

BK(1 - 7Y’

[rzA“rB(f#;)_ 3

(9.21)
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Knight also described a modification of (9.21) that gives a slightly betier result.
From (9.21) the statistics of Knight’s expression (9.11) are available almost directly.
Corresponding values for the BertalanfTy or Brody form of the equation can be found
using expressions (9.12), (9.13), and (9.10).

9.6.11. FITTING BY COMPUTER. Several computer programs are available for
fitting expression (9.11). Program BGC2 handles equally-spaced age intervals and
BGC3, unequally-spaced ones (Abramson 1971), Program YONB of Allen (1966a,
1967) handles any age interval,

ExaMpLE 9.3, FITTING A FORD EQUATION AND BERTALANFFY CURVE TO LENGTH
Darta ror CisCoes OF VERMILION Lake, MINNEsoTa, (Modified from Ricker 1958a.)

The length column of Table 9.5 shows the mean length of ciscoes (Coregonus
artediiy of ages 2 to 11 in a sample of 533 fish; they can be used to plot a growth
curve of the “A” type of Fig. 9.3. Plotted on a Walford graph (Fig. 9.7A), the age 2
fish evidently do not conform to the linear series, possibly because of selection, so they
have been omitted. Freehand fitting of a line to the Walford graph (discounting the
last two points because based on so few fish) gave a Ford coefficient of & = 0.70 and
an jntercept on the diagonal of L., = 315 mm, A first estimate of the Ford equation
is therefore (from 9.16):

Ly = 93 + 0.70/

TABLE 9.5. Average weight and average standard length of ciscoes from Vermilion Lake, Minnesota,
and data for fitting a Walford line to length, (Data from Carlander 1950.)

No. of Using trial Leo = 315 Using final L = 309 Adjusted

Age  fish Weight Length  Leo-i loge(Lo-/) Lo-fi  loge(Lo—ts) age
® @  m um) (mm) (+10)
2 101 99 172 1.76
3 14 193 210 105 4.66 99 4.60 2.76

4 136 208 241 74 4.30 68 4.22 3.76

5 52 383 265 50 3.91 44 3.78 4.76

6 67 462 280 35 3.56 29 3.37 5.76

7 81 477 289 26 3.26 20 3.00 6.76

8 54 505 294 21 3.04 15 2.71 7.76

9 20 525 302 13 2.56 7 1.95 8.76
10 6 539 299 16 10 9.76
11 2 539 306 9 3 10.76
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FiG. 9.7. (A) Walford graph for length of ciscoes of Yermilion Lake, Minn. The
first point on the left is age 3 plotted against age 2, (B) Loge(Lw — £;) plotted
against age for trial values of Lo = 309 (open circles) and Lo = 315 (dots).

To obtain the Bertalanfly equation we use 315 mm as a trial value of L. and
~toge0.70 = 0.37 as a trial value of the Brody coeflicient K. Trial values of 315 -/,
are coteputed (Table 9.5) and their natural logarithms are plotted against age for
ages 3-9 (Fig. 9.78, open circles). This line is somewhat curved: additional trials
show that L, = 309 mm gives the straightest plot (Fig. 9.7B, solid dots). For this
value of L. the slope of the natural log line is K = 0.41 {thus k = ¢~ 04l = (.66),
and the Y-axis intercept is 5.84. Equating the latter to log.L. -}- Ky in (9.20), with
logeLo = loge309 = 5.74:

 5.84-5.74
0.41

o = 0.24
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The Bertalanffy equation (expression 9.9) becomes:

I, = 309(1 — e0-41G-0-24)

The corresponding improved Ford equation (expression 9.16) is:
Ly = 105+ 0.66 /,
The same series was fitted by means of Allen’s computer program, VONB, using

both the unweighted data and weighting each age by number of individuals present.
Also, the two oldest ages were used, as well as ages 3-9. The results are:

Fitting Ages Weighting K | to
1. Bycye 3-9 No 0.41 309 0.24
2, Computer 3-9 No 0.389 310 0.105
3. Computer 3-9 Yes 0.407 309 0.252
4, Computer 3-11 No 0.407 308 0.201
5. Computer 3-11 Yes 0.414 308 0.292

The preferred estimate here will be either no. 2 or no. 3, depending on whether differ-
ences belween year-classes or random variability is the more important source of
error. However, all the differences are small, and the eye-fitting by Beverton’s method
is completely acceptable; it has been used in Table 9.5 and Fig. 9.7.

9.7. USE OF A WALFORD LINE FOR ESTIMATING GrOwTH OF OLDER FISH,

In general, the accuracy of age determinations tends to decrease among fish of
larger sizes, and for really old fish they may be practically useless. Attempts to fill the
gap by direct extrapolation along the curved line of an age-length or age-weight graph
are usually unsatisfactory, A better result can usually be obtained by plotting the
Walford line, provided available data extend into the region of decreasing increments.
Proceeding from the oldest reliable age available, lengths at older ages can be read
off the Walford line as far as desired; or expression (9.16) can be used.

9.8, WaLrorp LINES AND BRODY-BERTALANFFY EQUATIONS FROM THE GROWTH
OF MARKED FISH — MANZER AND TAYLOR’S METHOD

A Walford graph can also be drawn by plotting length at recapture against
length at marking of marked or tagged animals (Manzer and Taylor 1947; Hancock
1965), though applicability to the wild population depends on the condition that the
mark or tag does not retard growth, For fishes, the method will be useful chiefly
when there are a number of recaptures made close to a year after marking, since use
of intervals much shorfer than a year would usually cause problems because of
seasonal variations in growth rate. However, Lindner {1953) has applied the method
to recaptures of marked shrimps made during successive 10-day intervals of the
tagging season.
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A computer program for fitting data of this type was proposed by Fabens (19653),
who used the original Brody form of the equation {(expression 9.7). The program
has been modified as FABVB of Allen (1967) and BGC4 of P, K. Tomlinson (Abram-
son 1971).

Lines and curves ebtained in this manner represent the growth of the surviving
fish, hence can always be used to compute true growth rate, G, in the stock (subject to
the caution about retardation of growth by the tag or mark used). Also, provided there
is no selective mortality by size within year-classes, they can be used to reconstruct the
length-age structure of the population, given the mean length at one age from another
source, When selective mortality exists, however, such a reconstruction becomes
impossible: the growth curve obtained by Manzer and Taylor’s procedure then
corresponds to the sum of the broken terminal segments of the ascending lines in
Fig. 9.5, rather than the change in length with age in the population which is indicated
by the dotted line of Fig. 9.5, Consequently, if a Walford line from tag recaptures is
superimposed on one- obtained from age-length data, it should lie above the latter
if there is size-selective mortality within vear-classes.

in an actual example for petrale sole by Ketchen and Forrester (1966, p. 87-88)
the two lines cross: tag data indicate faster growth among young fish and slower
growth among older fish than do the observed lengths at successive ages, The former
difference might result from mortality selective by size. For the latter, Ketchen and
Forrester postulate either an effect of the tag on rate of growth, or actual shrinkage:
the fish are alive when measured at tagging, and dead when measured at recapture,
and post-mortem shrinkage of about > mm has been observed in similar species. Both
these effects could become important among older fish, whose normal length incre-
ments are small,

ExamriE 9.4, GROWTH OF ENGLISH SOLES FROM TAG RECAPTURES, USING A WAL-
FOrRD Line. (Modified from Ricker 1958a.)

Manzer and Taylor (1947) plotted length at recapture against length at tagging
for female “English” or lemon soles (Parophrys vetulus) which had been at large
approximately a vear. (Tagging and recaptures were both done during the winter
gpawning season, when no growth was in progress, so the exqgct time interval was not
important.) For the stock off Boat Harbour, Yancouver Island, the points determine
a Walford line whose intercepl with the diagonal indicates a mean asymptotic size
of about 52 cm (Fig. 9.8). The GM functional regression is used to locate this line
because the variability is mainly natural (Ricker 1973a).

The expected yearly increment of these soles for any initial length can easily
be read from the trend line of Fig. 9.8, Their mean length at age 3 is known to be
29 cm. If we could assume no sefective mortality within year-classes, lengths at suc-

cessive older apes could be calculated from the line, as shown by the open circles in
Fig. 9.8,
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FiG. 9.8. Length at tagging plotted against length at recaplure approximately a
year later, for English soles. Open circles — computed lengths for ages indicated.

9.9. INCREASE IN WEIGHT WITH AGE

9.9.1. GeNeraL. Graphs of weight against age resemble those of length in being
usually S-shaped. The point of inflexion is at an older age than on the corresponding
length graph (Fig. 9.3B). As with length, the two curves of Brody (9.6 and 9.7 above)
can be used for the age-weight relationship, but soth may be needed to describe the
range of weights that are of interest in production calculations. Partial fits have been
used, however: Thompson and Bell (1934) fitted an expression like (9.6) to part of
a halibut age-weight graph, and Allen (1950) and Dickie and McCracken (1955)
used the decreasing exponential for trout and flounders, respectively.

In terms of weight, (9.9) can be written:
W = Wa(l - e Ki-ra)) (9.22)
Wo is the mean asympfotic weight, corresponding to the asymptotic length L.,;
K is the Brody growth coeflicient; and #; is the hypothetical age at which weight

{(w;) would have been zero if growth had always conformed to this relationship.
That the Brody coefficient ideally has the same value when calculated from weight
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as from length data was shown by Dickie and Paloheimo (in Ricker 1958a). However,
for any given body of data, (9.22) will apply to a range of ages that starts at an older
age than what can be used for (9.9). Also, the parameter t; of (9.22) will always
be larger than the 7o of (9.9).

9.9.2. FITTING A BERTALANFFY-TYPE RELATIONSHIP TO WEIGHT. Expression (9.22)
can be fitted to weight data in the same way as the corresponding length equation
(Section 9.6.9). A Walford-type graph is plotted, of w4 against w,, and the value of
W., is obtained from the intersection with the 45-degree diagonal, or is calculated
from the Y-intercept. As with length, the value of fg can then be obtained from trial
graphs of logs(W. - w,) against ¢, as indicated by the equation:

loge(We, — wy) = logeWe + Kig - Kt (9.23)

If a computer is available, the same programs as for length can be used, but
deleting the younger ages to which (9.22) does not apply.

Allen (1967) also suggests fitting weight data by first converting each weight
to a multiple of length. Taking the bth root of cach side of (9.2) gives:

w't = '/ (9.24)

50 that w!/" is proportional to L. For b = 3 this transformation is an option in Allen’s
(1967) computer program FABVB,

ExaMpLE 9.5. FrrmiNnGg A GrowTH CURVE TO WEIGHT DaTA ror THE CISCO
"POPULATION OF VERMILION LAKE, MINNESOTA. (Modified from Ricker 1958a.)

For most of the 533 ciscoes enumerated in Table 9.2, weight as well as length
was recorded. Plotting these in a Walford graph (not shown here), neither age 2 nor
age 3 falls on the trend established by the points for older years. Excluding these and
the two oldest ages, free-hand fitting of a Walford line gave the trial values below:

k=069 K=037, W,=507g
Adjusting these in the same manner as for the length plot, the best fit is close to W,

= 561 gand K = 0.40 (compare K = 0.41 from Example 9.3.) For this line the natural
log intercept is 3.80. Thus:

3.80 - 2.99
o I AT g,
2% 040 02

The weight equation, applicable to fish age 4 and over, is:

W, = 561(1 _ e—0.40(f—2.02))

A computer fitting of the same data (unweighted and without transformation to
length), using program VONB gives:

W, = 565(1 _ ek0.376{f—1.92))
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9.10. GoMmpPeERTZ GROWTH CURVE

Another curve that can be used to describe fish growth is the Goimpertz curve.
This can be written in various ways (Fletcher [973); Silliman (1967) uses:

W, = WUGG(I—B‘SL) (9‘ 25)

where w, is weight at time £, measured from the conventional time ¢; when the fish
would have had weight wy; G is the instantaneous growth rate at time fq; and g
describes the rate of decrease of G. Expression (9.25) is S-shaped, with both a lower
and an upper asymptote; the inflexion point is 1 /2.718 = 0.368 of the vertical distance
from the lower to the upper asymptote. However, the lower asymptote is meaningiess
in describing growth, so only part of the curve is used.

The Gompertz curve will usually describe data on weight at age quite well, often
including the early years of increasing increments. It can also be fitted to length data,
in which case usually only the portion of the curve beyond the inflexion point is in-
volved. Like the Brody--Bertalanffy curve, (9.25) has three parameters that must be
estimated: wy, G, and g. The easiest method of fitting is that developed by Ricklefs
{1967).

The Gompertz curve has not been used much in fishery work because yield
computations have usually employed the Brody-Bertalanfly. It is, however, more
suitable than the latter for use with an analog computer, and Silliman used it in his
analyses (Section 12.4.3).

9.11. GrowTH COMPENSATION

A by-product of the general type of growth in length and weight discussed above
is the effect which has been called growth compensation. Although not necessary to
our main theme, a brief description of its place in the growth picture seems desirable.

As it concerns length, growth compensation has been treated by a succession of authors, starting
with Sund (1911) and Gilbert (1914). Some of the more comprehensive papers are by Watkin (1927),
Hodgson (1929), Van Qosten (1929), Ford (1933), Hubbs and Cooper (1935), and Hile (1941). Growth
in weight was brought into the picture by Scott (1949) and Ricker (1969a). The phenomenon these
authors discuss is a correlation between increments in size in successive years of life among fish of a
given year-class. Negative correlations indicate growth compensation, because they show that smaller
fish tend to catch up with larger. Positive correlations have been called “reverse growth compensa-
tion,” but a shorter term is “growth depensation’ — adopting a word proposed in a different con-
text by Neave (1954).

In a typical brood the fish vary considerably in size at the end of the first growing season, pattly
because of differences in time of hatching, partly from congenital physiclogical differences, and partly
from differences in environment. Hodgson (1929) showed that growth compensation must occur
among fish of any brood whose members increase in length by the same absolute amount at any
given size, provided this increment decreases with size and provided the fish differ in size to begin
with. Scott (1949) pointed out that growth compensation is associated with a decrease in the (absolute}
yearly average increment of a year-class, whereas depensation is associated with an increase in yearly
increment in the unit chosen (length or weight). As long as increases predominate in a year-class
there is depensation; when decreases become more common, it shifts to compensation,
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Considering weight first, the initially heavier fish of a brood usually tend to increase their ad-
vantage during the second year of life, and often continue to de so for one or more additional years.
Eventually, however, the inflexion point of the weight-age curve is reached: the smaller fish start to
catch up with the larger ones, and the correlation between increments in adjacent years shifts from
positive to negative,

The course of length change is similar, but the shift from growth depensation to growth compen-
sation occurs earlier in life; often compensation begins as early as the second growing season, so
that the phase of positive correlation is omitted. This difference, between length and weight, in time
of appearance of compensation and inflexion of the growth curve, is a necessary censequence of the
fact that weight increases as a power of length. For example, if all fish of a brood were to increase
in weight by the same absolute amount in & year, the smaller cnes would be increasing more, in
length, than the larger ones; thus growth in length would be compensatory.

These changes produce, or reflect, changes in variability in size of fish in a brood. Typically,
standard deviation in weight or length of a brood increases early in life and decreases later, but the
increasing phase lasts longer for weight than for length.

9.12. ESTIMATION OF SURVIVAL RATE FROM THE AVERAGE SIZE OF FisH CAUGHT

The average size of fish in a catch (above some minimum) is obviously related
to annual mortality rate: the greater the mortality, the smaller the average size,
provided recruitment is reasonably stable from year to year. Given some kind of
expression for rate of increase in length or weight, a rough calculation of survival
rate can be made from average size under these conditions. Appropriate formulae
have been described by Baranov {1918, p. 94), Silliman (19453), and Beverton and
Holt (1936, Appendix B), However, they have been little used, and it seems unnecessary
to repeat the synopsis given by Ricker (1958a, Section 9H).
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CHAPTER 10. — COMPUTATION OF YIELD
FROM A GIVEN RECRUITMENT

10.1. GENERAL CONDITIONS

The goal of most work on growth and mortality in fish populations has been
assessment of the yield of a stock at different levels of fishing effort, or with different
size limits for recruitment, In the computations of this chapter the yield calculated is
that which will be obtained from whatever number of recruits are coming into the
fishery. Regulation of recruitment is considered in Chapter 11; the calculations in
this chapter are usually made in terms of yield per recruit, or per unit weight of
recruits. Except in Section 10.9, equilibrium sitvations are postulated: that is, the
situation which exists after the specified conditions have been in effect long encugh
to affect all ages for the whole of their exploited life.

An important prerequisite for these calculations is that instantaneous rates of
natural mortality and of growth, at any given age, be constant over the range of
conditions examined. The limited information available concerning mortality suggests
“that this may often be close to the truth over a fairly wide range of population densities,
but the question needs constant re-examination. But growth has sometimes been
found to vary markedly with change in population density — so much so that Nikolsky
(1953) has suggested that rate of growth could be used, by itself, as an index of the
degree to which a stock approaches its maximum productivity. Whether or not this
is ever practical, variation in growth rate, when it occurs, sets strict limits to the range
of stock densities over which useful predictions of yield can be made using the methods
of this chapter, as Miller (1952} has emphasized. Fortunately, not all stocks react
to exploitation by increasing growth rate: those which do seem usually to be the
dominant species in the habitat from which they obtain the bulk of their food (cf.
Ricker 1958c).

When the effect of a change in selectivity of gear or in minimum size limit along
with a change in rate of fishing is being examined, the accompanying shifts in overall
stock biomass need not be especially great, though age distribution will change
dramatically. In such circomstances the methods of this chapier perform fairly well,
provided the recruitment effect can be properly taken into consideration.

Subject to these conditions, computations of equilibrium yield per unit recruit-
ment have been atfempted by a number of authors. Generally the rate of growth in
weight varies with age, and rate of fishing may also be different at different ages or
sizes, particufarly during the recruitment phase. The most direct approach breaks
the population up into age-, size- or time-intervals sufficiently small that rates of
growth and mortality can be considered constant within each, without important
error; and yield statistics for whole populations are obtained by summing the results
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for all the intervals represented. Alternatively, we may attempt to obtain a single
expression for yield by fitting mathematical expressions to growth and mortality, and
combining the two.

We will confine the discussion here mainly to vield in weight of fish taken,
with some reference to yield per unit of effort and the market value of the yield per
kilogram. Particularly in sport fisheries, other characteristics of the take may some-
times be more important — size of fish caught, for example. Allen (1954, 1955) has
dealt extensively with effects of size limits and bag limits upon various characteristics
of catch and yield in sport fisheries.

Computations of the kinds described in the sections to follow can be quite time-
consuming, particularly if charts are being prepared to show a number of complete
surfaces of possible conditions — each of one of the general types presented by
Baranov (1918, fig. 10), Thompson and Bell (1934, fig. 9), or Beverton (1953, fig. 2).
For a large-scale operation a computer is almost indispensable. However, values in
regions of special interest can be obtained quite rapidly with a desk caleulator, and
frequently nothing more is needed.

10.2., EstTiMATION OF EQUILIBRIUM YIELD — METHOD OF THOMPSON AND BELL

In Section 1.6.1 the technique was described of computing weight of a population
by combining an age frequency distribution with the empirically determined average
weight of fish of successive age-groups. Mean abundance (N) at successive ages can
be computed from appropriate series, for example those of expressions (1.18), (1.32),
or (1.33); and each N is multiplied by the average weight (W) of the fish at that age,
which gives the corresponding mean biomass (B). The biomass of fish caught at each
age is then FB, while the biomass which dies naturally is MB (expressions 1.40 and
1.41).

This is essentially the procedure adepted by Thompson and Bell {1934, p. 29)
to compute the yield of halibut (Hippoglossus stenolepis) under equilibrium conditions
for different combinations of fishing and natural mortalityl. It can be used to compute,
by successive trials, either or both of two pieces of information: (I) the value of F
which produces maximum yield (in weight) for a given value of M, and (2) the value
of F which produces maximum vield for a given value of Z.

This procedure ignores a direct effect of fishing upon the average weight of the
fish taken at each age. Regardless of when recruitment occurs, if growth and fishing
are concurrent, then the greater the rate of fishing, the smaller is the average size
(during the fishing season) of a fish of a given age, because more are taken early in
the season before much growth is made. However, the method is useful for orientation.

The earliest complete computations of this type are by Nesbit (1943), who
portrayed the catch and population structure for striped bass (Morone saxarilis),
halibut, and lake whitefish (Coregonus clupeaformis) for all combinations of a series

IHowever, Thempson and Bell divide the total mortality in the ratio of the conditional mortality
rates m and n, instead of F and M, when computing separate shares for catch and natural mortality.
In situations where F and M are nearly equal or where neither F nor M is really large, m:n is a fair
approximation to FiM, but it is just as easy to use the correct ratio.
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of values of natural mortality, fishing mortality, and age of recruitment. Tester’s
(1953) curves are also of considerable interest: they show the variation in equilibrium
yield per unit weight of recruits that occurs with change in rate of fishing and change
in natural mortality rate, for three different types of weight-age relationships. Also,
Clayden (1972) recently used this yield model and incorporated it into a computer
program to simulate changes in yields of Atlantic cod {Gadus moriua) in the North
Atlantic.

ExampLE 10.1. CoMPUTATION OF EQUILIBRIUM YIELDS AT DIFFERENT LEVELS
oF FisHING EFFoRT BY THOMPSON AND BELL’S METHOD. (From Ricker 1958a.)

A population is characterized by an instantaneous ratural mortality rate of
M = 0.35, and by the distribution of average individual weights at successive ages
shown in column 2 of Table 10,1, If fishing occurs concurrently with natural mortality,
what rate of fishing gives maximum yield?

The computation for a rate of fishing F = 0.5 is shown in columns 3-6 of Table
10.1. The sum of instantaneous natural mortality rate and rate of fishing is 0.35 -+
0.50 = 0.85 (= 2Z), and this determines a survival rate of S = 0.427 {Appendix I).
A stock of 1000 fish on hand at the start of age 3 is reduced to 427 in one year, to
182 the next year, etc. Total deaths each year are found by subtraction, and the fishery
takes 0.5/0.85 or 58.89 of these (column 5). These numbers, multiplied by the average
weight at each age, give the removals shown in column 6. The total is 2508 kg per 1000
recruits to age 3 — a result which is correct within about 25 kg.

TarLe 10.1. Computation of survivors and annual yield from an annual recruitment of 1000 fish
at the start of age 3, under equilibrium conditions. The instantaneous rate of natural mortality is
0.35; of fishing, 0.50, Individual weights at each age are as shown in column 2.

1 2 3 4 5 6
Average Initial
Age weight population Deaths Catch Yield
(kg) (pieces) {pieces) (pieces) (ke)
1000
3 1.86 573 337 626
427
4 5.53 245 144 198
182
5 §.80 104 61 535
78
6 10.96 45 26 286
33
7 12,28 19 1 136
14
8 13.60 8 5 68
6
9 (14.5) 6 4 59
Totals 1745 1000 588 2508
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Similar calculations for other rates of fishing give the results shown in Table
10.2. Maximum yield is apparenily obtained with a rate of fishing slightly greater
than 0.5. However, the important conclusion would be that there is a broad range of
F-values over which yield varies little: from 0.35 to 0.8, no really significant change
oCCurs,

Although the total weight taken does not change much, the biomass of the stock,
and thus the catch per unit of effort and the average size of the fish caught, are very
different at the different levels of IF shown in Table 10.2 (see also Section 10.8). Either
one of these might largely determine the most suitable type of regulation, depending
on the kind of fishery involved and the commercial or esthetic value of fish of different

sizes.

Tasek 10.2. Catch and yield per 1000 recruits for different rates of fishing of the population of
Table 10.1. Also the average weight of a fish caught (in kilograms) and the yield (in weight) per unit
of fishing effort, expressed on an arbitrary scale (effort is considered proportional {o rate of fishing),

1 2 3 4 5
Rate of Avg weight Yield per
fishing Catch Yield of a fish unit effort

(F) (pieces) (kg) {kg)

0.2 363 2090 5.76 100
0.35 500 2440 4,85 67
0.5 588 2510 4,27 48
0.65 650 2450 3.77 36
0.8 695 2390 3.45 29

10.3.  EsTiMATION OF EQUILIBRIUM YIELD — RICKER’S METHOD

10.3.1. CompuTATIONS. Mechanics of a direct balancing of growth rate against
death rate, to compute net change in bulk of a year-class, were presented in Section
1.6.3. In applying the method to a whole population, the life of the fish must be broken
down into periods such that neither growth rate nor mortality rate is changing very
rapidly within any one of them.

The combined estimaie of equilibrium vield (Yg) under given conditions can be
represented by the expression below, derived from (I.40):

. r:f?\ _ .
Ys= 3 EB, (10.1)

I-_—-fR
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where  represents successive intervals or periods in the life of the fish (these not
necessarily of equal length), ¢ is the first period under consideration, and #, is the
last pericd under consideration (usually the last period in which an appreciable catch
is made). Other symbols are as in Section 1.3.

The easiest and most useful estimate of average weight of stock, B, is the arith-
metic mean of the initial and final value of B for each interval. Designating stock
weight at the start and finish of interval # as B, and B,,:, this average is:

= Bit+Ba Bl 49

B = 10.2
f ’ 2 (10.2)
Thus the yield is equal to:
[:l‘;\ G2,
FBJ[l 4 e ™
Yi = Z JJ_T"__] (10.3)
{=igp

If a stock were to increase or decrease strictly exponentially, its average size
during any interval ¢ would not be the arithmetic mean (10.2), but rather expression
(1.38), which may be wrilten here as;

- B(*?* -1
B, — B -1 (10.4)
G,-7,

* Values of this expression can be obtained readily enough, because the factor (e% -
D/(G, - Z,) is available in Appendix I: column 5 shows its value for positive values
of G,—Z,, and column 4 for negative values, G, — Z, being equated to the Z in column 1.
However, mainly because growth rate decreases throughout the life of a fish, a
graph of year-class bulk against time tends to be convex {dome-shaped) with a “tail”
to the right; whereas the exponential segments used to approximate it are all concave
upward, Even the tail, which is concave upward, is less concave than the individual
exponential segments (Fig. 10.1). The result is that the arithmetic mean of the initial
and final values of each of these segments is a somewhat better average to use than
is expression (10.4). In practice, when the fish’s life is divided into intervals of suitable
length, there is little difference between (10.4) and the arithmetic mean for each inter-
val.

The formulae above rather disguise the simplicity of the procedure, which is
illustrated in Example 10.2. Computations are carried out in tabular form, and are
extremely flexible, Age differences in growth rate, in rate of fishing, and in natural
mortality rate, different minimum size limits, and different seasonal distributions of
growth, fishing, and natural mortality — all these can be examined easily and directly.
Moreover, there is no need to worry about whether growth conforms to some special
law, nor is there any restriction on the value of 4 in the weight-length relationship.

If computations are being done by hand, the number of steps can be reduced by
dividing the fish’s life into intervals (¢) that are of different lengths. At ages where F
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FiG. 10.1, Course of change in weight of a year-class in the populations of Table 10.3 (solid circles)
and Table 10.4 (open circles). The dotted line comprises successive segments of exponential curves
obtained by computation from the net instantancous rate of increase or decrease for each full year,

or G is changing rapidly, it may be desirable to make it as short as a month or two?,
but if these parameters are relatively steady, a year or even several years may be a
sufficiently fine division.

10.3.2. COMPUTER PROCEDURE. IFor machine computation there are Fortran
programs by Paulik and Bayliff (1967} for both the arithmetic-mean procedure (using
expression 10.2) or the exponential mean (expression 10.4). The best plan is to use a
single standard short time interval, for example 1 month, + month, or 1/10 of a year,
which eliminates any appreciable difference between the sample mean and either of

2Tn an analogous computation of the production (sense of Ivlev) of fingerling salmon, Ricker

and Foerster (1948) used half-month intervals while the young fish were very small and both the
growth rate and the natural mortality rate were changing rapidly.
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the above means at all stages of life. These programs are available at the Nanaimo
Station of the Fisheries Research Board of Canada; see also 1. E. Gales program
FRG-708 in Abramson (1971).

10.3.3, COMPUTATION OF BEST MINIMUM SI1ZE. One important function of com-
putations of this sort is to discover the minimum size limit which gives maximum
yield from a given weight of recruits, We have defined the eritical size as the size
at which the instantaneous rates of growth and of natural mortality are equal (Section
1.6.4). At that time and size the year-class has its maximum bulk. If the brood could
all be cropped at once, that would be the best time to do it. However, instantaneous
cropping is possible only in piscicultural establishments, where a pond can be drawn
down and all the fish removed. If cropping must be spread over a period of time,
some loss in efficiency of cropping oceurs. The aim should be to keep such losses to a
minimum; this is done by taking some of the fish when they are less than the critical
size, and some when they are greater. The smaller the fishing rate, the broader the
range of sizes that should be taken (Ricker 1945¢) — that is, the smaller should be
the minimum size limit.

10.3.4. SEASONAL INCIDENCE OF NATURAL MORTALITY, In yield computations of
all types a persistent minor worry is our (usual) lack of information concerning
wher natural mortality takes place. Often it is advisable to examine two or more
possibilities and see what difference there is in the results obtained. If a fishery is
restricted to a short season one might, for example, postulate that for practical pur-
poses there was no natural mortality during the fishing season. With a longer season,
the instantaneous rate of natural mortality might be divided in proportion to the
length of time involved — part being combined with the rate of fishing, and the
remainder acting by itself,

Exampri 10.2. EQUILIBRIUM YIELD OF BLUEGILLS, PER UNIT RECRUITMENT, FOR
MUSKELLUNGE LAKE, INmaNA. (From Ricker 1958a.)

Data concerning the stock of Lepomis macrochirus in Muskellunge Lake arc shown
in Table 10.3. (Growth and natural mortality were determined from samples taken
and experiments made in 1941-42; however, the level of fishing shown is that believed
characteristic of 193940, before the war decline in fishing,} Fish growth was read from
scales. Computed mean lengths were interpolated on a smooth curve at quarter-year
intervals, and were converted to weight using the “‘year-class-h” (5" of expression 9.4).
The “year™ in this case is the growth year, which is considered to last 6 months, from
about May |, when new circuli begin to appear on the scales, to the end of November
when the lake is well cooled. Thus the quarter-years of the growth curve are really
1/8 year long on the calendar. Lengths and weights are indicated in columns 3 and 4
of Table 10.3, on this basis, May 1 being considered as the start of the vear, Column
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TasLe 10.3. Instantaneous rates of growth (G), natural mortality (M), and fishing mortality (F) for bluegills of Muskel}unge Lake, distributed

according to their observed of (for M) hypothetical seasonal incidence; and the computation of equilibrium yield, in successive ﬁshmg seasons, from
1000 kg of recruits at age 2.

1 2 3 4 5 6 7 8 9 10 11 12 i3
Wt
Fork Wit of Avg
Age length Wt change stock wit
Date (pr) (mm) (g) loge(wt} G M F G-F-M factor (kg) (kg) Yield
May 1 2 95 13 2.36 1000
0.81 0.073 0 —+0.735 2.086
June 16 2% 109 29 3.37 2086
0.41 0.075 0.04 +0.285 1.343 2444 98
Aug. 1 2% 122 44 3.78 2801
0.28 0.075 0.14 +0.065 1.067 2894 405
Sept. 15 23 135 58 4.06 2988
0.17 0.075 0 —+0.095 1.100
Nov. 1 21 145 69 4.23 3287
0 0.300 0 ~-0.300 0.741
May 1 3 145 69 4.23 2435
0.15 0.075 0 +0.075 1.078
June 16 3% 153 80 4.38 2625
0.13 0.075 0.33 -0.275 0.760 2310 762
Aug. 1 31 160 2 4,51 1995
0.11 0.075 0.17 -0.135 0.874 1870 318
Sept. 16 33 165 101 4.62 1744
0.08 0.075 0 —+0.005 1.005-
Nov. 1 3% 170 110 4.70 1752
0 0.300 0 —0.300 0.741
May 1 4 170 110 4.70 1297
0.07 0.075 0 -0.005 0.995
June 16 4% 175 118 4.77 1291
0.07 0.075 0.33 -{.335 0.715 1107 365
Avg. 1 43 178 125 4.84 923

0.05 0.075 0.17 —0.195 0.823 841 143




€V

Sept. 16
Nov. 1
May 1
June 16
Aug.
Sept. 16
Nov. I

May 1

Totals

191
193
195

185

131
137
137
143
143
133
158

158

4.89
4.93
4.93
4.97
5.00
5.04
5.07

5.07

0.04

0.04
0.03
Q.04

0.03

2,51

0.075
0.300
0.075
0.103
0.140
0.200
1.200

3.52

1.68

~0.035
—-0.300
-0.033
-0.405
-0.270
—0.170

-1.200

-2.690

0.966
0.741
0.966
0.667
0.763
0.844

0.301

759
734
544
525
350
267
226

68

438

308

144

32

2287




5 is the natural logarithm of weight, and the difference between the natural logarithms
of two adjacent values is the instantaneous growth rate for the interval concerned
{column 6). .

Fishing in Muskellunge Lake occurred almost wholly during the pericd June
16-September 15; records kept in 1941 showed that 6697 of the total pole-hours
were in June 16-July 31, and 3497 were later, (May 1 to June 15 was closed to fishing
at that time.) Accordingly, of a total fishing rate of 0.5, 0.33 is assigned to the second
eighth of the year, and 0.17 to the third {column 8). In the year of recruitment not
many age 2 individuals would be large enough to be caught during the second eighth,
but nearly all would be vulnerable by the end of the third eighth, and the F-values are
adjusted accordingly.

Natural mortality is estimated as equal to about 0.6, from tagging and age-
composition studies (Ricker 1945a). There is some evidence that it is at least fairly
well distributed throughout the year; and here it is divided up equally: 0.075 is as-
signed to each of the four summer eighths, and 0.3 to the winter half (column 7).
At age 5 the natural mortality is made to increase progressively, because older fish
are relatively scarcer,

Column 9 is the resultant of growth and all mortality; i.e. (G-M-F) or (G-Z).
From this a “change factor” is obtained, equal to ¢, and obtainable from any
exponential table or from Appendix I (column 12 when G-Z is positive; column 3
when it is negative). In column 11 of Table 10.3 successive population weights are
computed, starting with an arbitrary 1000 kg (Fig. 10.1). Column 12 is the arithmetic
average of adjacent stock sizes, and in column 13 these are multiplied by F to give
the yield obtained during each interval. Columns 12 and 13 need be computed only
for the intervals when there was a fishery.

A convenient check is provided by summing the instantaneous rates for each
year, or for the whole series, and comparing with the appropriate figure in column 11.
For example, the grand total of G-Z is —2.690, and 1000e% = 68, as in column 11.

The sum of column 13 indicates that 2.29 kg of bluegills are caught from the
lake for every kilogram of age 2 recruits, (Fish age 6 and older would not add to
this appreciably.)

Of the numerous variations of the Table 10.3 conditions that can be examined,
we will mention here only the possibility of opening the period May 1 to June 15
to fishing. What would its effect be on yield? In the absence of any increase in total
amount of fishing, a likely distribution of fishing rates under the new conditions
would be 0.15, 0.20 and 0.15, respectively, in the first three eighths of the biological
year for fully-recruited fish. (The actual distribution of course would depend on the
fishermen themselves,) Used in a table like 10.3, these rates indicate practically no
change in yield per unit recruitment, In practice, however, opening the spring season
would likely increase overall fishing effort for the year, and this results in some
increase in computed equilibrivm yield (cf. Example 10.3).
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ExampLe 10.3. EguiLiBRIUM YIELD WHEN FisHING Is CONSIDERED To ACT
THROUGHOUT THE YEAR. EFFECTS OF VARYING MINIMUM SiZE AND OVERALL RATE
oF FisamNg. (From Ricker 1958a.)

In an earlier treatment of the data of Example 10.2, fishing and natural mortality
were considered as acting at a uniform instantanecus rate throughout the year (Ricker
1945c); growth was not considered uniform, but the decreasing instantaneous rate
was divided among the four guarters of the statistical year (instead of the first four
eighths). Table 10.4 is a computation made on this basis.? The same total instantaneous
rates of growth, fishing, and natural mortality are used in each year, but the computed
yield is less; 1.98 kg per kilogram of recruits, instead of 2,29 kg, Figure 10.1 shows
the reason for this difference: Table 10.3 permits the large excess of growth over
mortality which exists in spring (May 1-June 15) to increase the stock to a high level,
and the fishery acts on it at that high level; also, § of the natural mortality occurs
after the fishing is over for the year, In Table 10.4, by contrast, fishing and natural
mortality are brought into play with full force from the beginning of the vear (for
fully-recruited ages).

For some purposes, however, failure to use a true seasonal distribution of these
various factors is not important, The absoclute level of yield obtained, per unit recruit-
ment, may then be somewhat fictitious; but changes in that level will be accurate
enough, relatively, and can provide most of the information sought. In particular, a
computation like Table 10.4 is completely suitable for examining effects of an overall
increase or decrease in rate of [ishing, and reasonably suitable for examining changes in
minimum size — theugh the more realistic Table 10.3 is jusi as easy to construct.

To determine yields from a variety of size limits, it is not necessary to repeat
the whole computation in Table 10.3 or 10.4 each time.# Suppose, for example, we
were examining in Table 10.3 the effect of a limit which would protect all age-2 fish.
Then the F entries between age 2¢ and 2% become zero, and there are corresponding
changes in columns 9-11. The yield at that age is of course zero. The new regime
permits the survival to age 28 of 3574 weight units of stock (= 1000e*"%), instead
of the 2988 shown in the table. FHlowever, from that age onward these fish are subject
to the same conditions as before; so the new yield will be 3574/2988 or 1.196 times
the old yield of fish age 3 and older, namely 1.196 X 1784 = 2134 weight units,
Thus the proposed change would decrease by 79 (from 2287 to 2134) the yield per
unit weight of recruits.

Changes in rate of fishing and in minimum size for Muskellunge bluegills were
examined (Ricker 1945c) in a computation similar to Table 10.4. In addition to
F = 509, (applicable to 1939-40), there was used F = 309, which was close to the

3 There are minor differences in the earlier computation, notably that growth was estimated by
taking (angents at the even years, halves and quarters. Consequently, Table 10.4 here is not directly
comparable with table 1 of Ricker {19435¢),

4 For a worked-out example of this type of computation, see columns 9-11 of table 8 of Chatwin
(1939,
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TanLE 10.4. Instantaneous rates of growth {(G), natural mortality (M), and fishing mertality (7,
for bluegills of Muskellunge Lake. In contrast to Table 10.3, fishing as well as natural mortality is
divided evenly through the year, while growth is distributed through the whole year but a separate
rate is used for each quarter; however, the sums of G, M, and F are the same in boih lables, Recruit-
ment occurs mainly during the age 2.5-2.75 interval, to which a reduced value of F is assigned.
(122 mm fork length was the legal limit of size, but the fish did not at once become Tully acceplable to

fishermen.)
i 2 3 4 5 6 7 8 9 10 11
Wit Wit
Mean Mean change of Avg

Age  length wt G M F G-BE-M  factor  stock wt Yield
(me) (&) (kg (k) (k)

2 95 13 1000

0.81 15 0 --.660 1.935
2% 109 29 1935
- 0.41 .15 0 +.260 1,297

24 122 44 2510
0.28 15 055 4,075 1.078 2608 143

23 135 58 2705
0.17 .15 125 -.105  0.901 25712 321

3 145 69 2438
0.15 A5 125 —-.125  0.883 2294 287

34 153 80 2152
0.13 15 125 -.145 0.865 2007 251

3% 160 91 1862
0.11 15 125 —.165 (0,848 1720 215

33 165 101 1579
0.68 .15 125 ~.195  0.823 1439 180

4 170 110 1299
0.07 .15 125 -.205 Q.815 1179 147

41 175 118 1059
0.07 15 .125 —-.205 0.815 961 120

43 178 125 863
0.05 .15 125 —.225  0.798 716 97

43 182 131 689
0.04 W15 125 ~.235  0.79%0 616 77

5 185 137 544
0.04 .18 125 -.265  0.767 480 60

51 188 143 417
0.03 .34 125 ~.435  0.647 344 43

5% 191 148 270
0.04 .50 125 -.585 0.557 210 26

53 193 153 150
0.03 70 125 -.795  0.452 109 14

6 195 158 68
Total 2,51 3.52 1.68 -2, 690 1981
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1942 rate of fishing in this lake, and also the rather large value of F = 1009, This
last figure constitutes a rather extreme extrapolation from the observed data, but was
included for purpose of illustration. The relative yields for these three different rates
of fishing, and for six different minimum sizes, were as follows:

Minimum Rate of fishing
fork length
mm 0.3 0.5 1.0
102 76 96 110
116 71 99 120
122 76 100 125
128 75 99 128
140 71 95 125
149 65 38 119

The yields shown are relative to 1939-40 conditions (F = 0.5}, these being taken as
100. As it turned out, the optimum or “eumetric’ size limit for getting greatest yield
from recruits at the 193940 rate of fishing was approximately the legal minimum
actually in use. For the reduced fishing of the war years (F = 0.3) the best limit
would have been somewhat less, and for any rate of fishing substantially greater
than 0.5 the best minimum would be somewhat greater than 122 mm (5 inches total
length).

However, what is of most interest is the rather close agreement among calculated
yields at each rate of fishing. For example, with minima anywhere from 102 to 140 mm,
for F = (.5, yield is never less than 95% of *he maximum. This same stability has
appeared in parallel compuiations {by this or other methods), for most other fisheries
examined to date, and it has a number of implications. First, there is considerable
leeway allowed for errors in the data from which the computation of minimum size
is made. Secondly, it is evidently not important to determine the exact optimum
minimum size for maximum yield. Third, if it were known that a certain minimum size
is best from the point of view of regulating the size of the stock so as to obtain optimum
recruitment, then a considerable adjustment of the minimum could be made to meet
this requirement without sacrificing any significant part of the vield from whatever
recruits actually appear. Fourih, il either the individual size of the fish caught, or the
catch per unit of effort, arc important considerations in respect to the fishery, either
of these can be favored by the regulations to a considerable degree without significant
loss of yield. Fifth, if the minimum size has to be specificd as what a given mesh of net
will catch rather than as a fixed limit based on measurement of individual fish, this will
usually be almost as effective as a sharp cut-off size (though the fate of the rejected
fish needs to be considered: whether they survive or die). Finally, if it is desirable to
have a uniform minimum standard apply to a number of bodies of water, or even to
different kinds of fish, for which the optimum minima are different, this will be pos-
sible without any great sacrifice of yield, provided the optima are not foo diverse.
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10.4. EsTiMATION OF EQUILIBRIUM YIELD — BARANOV’S METHOD

10.4,1. THEORY AND COMPUTATIONS. Baranov (1918, p. 92) developed expressions
for yield that are applicable to stocks of fish in which average increase in length is the
same in successive years among commercial-sized fish, and weight is proportional to
the cube of length, To facilitate the combination of growth and mortality into one ex-
pression, the instantaneous total mortality rale is expressed in terms of the unit of
time in which the fish grows a unit of length; so that, in effect, length can be used as
a measure of time. The following symbols will be used:

! fish length, in centimeters for example
d annual increase in length of a fish, in the same unit as /

7./d instantansous rate of decrease in numbers of a year-class, referred to the
interval of time in which it grows one unit of length (Z /d = Baranov’s K}

E length of a fish at recruitment

a constant such that the mean weight (w) of fish, of a given length /, is equal
to ai* (¢ = Baranov’s w)

R number of fish recruited annually at length 1., recruitment being at a constant
absolute rate throughout the year

N’y a constant; described by Baranov as the hypothetical number of fish that
would have existed at the time when { = 0 if the mortality rate Z were con-
stant back to that time. (Nj is not used in actual calculations)

From the definitions above, the number of recruits of length L in each interval
1/d of a year long is:

R
g = Nee™ (10.5)

Baranov shows, by an argument similar to those of Section 1.5.6, that the number
of fish of commercial size in a steady-stale population is:

Izll]

_ N’ -LZ/d R

N = [ Nie 2] = M(;:T: 3 (10.6)
121,

This is the same as expresston (1.32).

The weight of the commercial population is:

I=m>

L]
B = | Noal’e'1di
{=L
aL*Nge -/ 3 6 6
= 10.7
Z/d Tz id + (LZ jdy + (LZ jd)* (10.7)
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The integration factor which appears in brackets can be designated by the letter
Q for convenience (Baranov’s ¢):

3 6 6

=1 .
Q Tz Jd + (LZ /d)* + (LZ /d)* (10.8)
By comparing with (10.6), another form of (10.7} is:
B= aL’NQ (10.9)
Rearranging (10.9), (10.8) may be written in the form:
B/N
Q= oLt {10.10)

The numerator of the RHS of (10.10) is the average weight of a fish in the population,
while the denominator is the weight of a recruit. Thus Q is a factor that reflects the
gain in weight made by an average fish from time of recruitment to time of death.

The mean weight of the commercial stock, (10.7), may also be written in terms of
recruitment, R:
= Ral’Q
=—— 10.11
B Z ( )
Having found the mean population on hand in numbers and in weight {expres-
sions 10.6 and 10.11) a year’s catch is obtained by multiplying these by the rate of
fishing, F:

— FR
Catch in numbers = C = FN = 7 (10.12)

FRaL*Q

Yield in weight = ¥ = FB = = Cal’Q (10.13)

Expression (10.13) is well adapted to examining the effects of a change in fishing
rate (F) or in size at recruitment (L). Baranov illustrates the former in his figure 10,
and the latter in figure 11.

10.4.2, FAILURE OF conDITIONS. The assumptions underlying Baranov’s method
are rather restricting, compared with those of Section 10.3. Some of the difficulties
which arise are as follows:

[. In some populations length increments do not remain even approximately
constant over the main range of commercial sizes,

2. With some fishes the exponent in the length-weight relationship deviates
‘considerably from 3.
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3. There is no flexibility in respect to mortality: all recruited broods must be
considered subject to equally severe attack, whether by man or by natural woes.

4. Usually fish do not suddenly become caichable at some specific size; rather,
their vulnerability increases over a range of sizes and ages, which in some instances
occupies a number of years. This difficulty is minimized by making 1. the middle of the
range of increasing vulnerability; but often this middle value is not easy to decide,
and in any event there may be a need to estimate rate of fishing for each year of recruit-
ment individually.

In spite of these drawbacks, the Baranoy method is easy and quick, and it can be
of real value, particularly when effects of only small deviations from existing condi-
tions are being examined. For that matter, calculations involving large deviations
will usnally be of doubtful applicability, no matter what method is used.

ExamrLe 10.4. POPULATION AND CATCH OF NORTH SEA PLAICE AT VARIOUS
RATES OF FISHING AND NATURAL MORTALITY, BY BARANOV's METHOD, {Modified
from Ricker 1958a.)

Baranov’s application of his method was to North Sea plaice (Pleuronectes
platessa) about 1906, but here the data are for more recent conditions, given by
Beverton (1954, pp. 97, 158a—c). Growth in length of plaice is not in fact linear, but
it is not far from it at ages 5 to 10, which make up the bulk of the catch: the increase
averages 3.0 cm per year over that range. Let us examine first the actual situation
where natural mortality, M, is 0.163, and fishing mortality, F, is 0.665 (Beverton’s
estimates), thus Z = 0.828. We have:

d=3.0cm/fyr
Zjd=0,828/3.0=10.276
L = 25.2 cm (mean length at recruitment)

LZ}d = 6.95
al® = 143.4 g (mean weight at recruitment)
a = 0,00892
From expression (10.8) we calculate:
3 6 6
=1 = 1,574
Q=14505 T6.95 505 7

Thus an average fish has a chance to increase in weight by 57%, after recruitment,
before it is caught or dies. If R is the annual number of recruits, the mean weight of
stock on hand is, from (10.11):

B=RX 143.4 1.574 = 273R
=R X geg X grams

or 273 times the yearly number of recruits of 25.2 em. The yield is, from (10.13):
Y = 0.665 X 273R = 182R grams

that is, 182 times the yearly number of recruits.
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To examine the effect upon yield of having other average recruitment sizes
(obtained by using other sizes of mesh in the trawls), appropriate changes are made
inL, al3, and LZ /d. Still using F = 0.665 and Z = 0.828, a schedule can be calculated
as follows:

1. Mean length at recruitment,

in cm (L) 15 20 25.2 30 40
2. Mean weight at recruitment,

in grams {«L3) 30.1 71.4 143 .4 241 571
3, LZ/d 4.14 5.52 6.95 8.28 11.04
4, Yield per recruit of length

L, in grams 53 103 182 283 605
5. Survival from !/ = 15 cm to

the recruitment length 1.0 0.762 0.575 0.443 0.250
6. Yield per fish reaching 15

cm, in grams 53 78 105 125 151

Lines 5 and 6 above are necessary to put the yields on a comparable basis, because
in the pre-recruitment phase the fish are decreasing from natural mortality. The
latter is M = 0.163, or 0.0543 on a centimeter-of-growth basis. The factors in row 5
are therefore calculated from e %®#T19 where L is the recruitment size under
consideration.

It appears that increasing the mesh size would tend to increase vield under these
circumstances; the same conclusion comes from Beverton and Holt’s method, de-
scribed below. Quantitatively, by using Baranov’s method the estimated yields for
small L are somewhat too small, and those for large I too great, because this com-
putation does not take into account that absolute yearly increase in length actually
decreases as age increases,

10.5. ESTIMATION OF FQUILIBRIUM YTELD — METHOD OF BEVERTON AND HOLT

This methed is available in publications of Graham (1952), Beverton (1953),
Parrish and Jones (1953), Beverton and Holt (1936, 1957), and the lecture notes of
Beverton (1954). It resembles Baranov’s, but uses the more widely applicable Brody-
Bertalanfly age-length relationship described in Section 9.6. Applicability of this
relationship to any population can be tested by plotting a Walford graph. In cases
where it adequately describes the growth in length of commercial-sized stock, this
procedure removes the first difficulty mentioned in Section 10.4.2, though the others
remain.

The following symbols are used:
f age in vears; it can be measured from any convenient origin: oviposition,
hatching, or the start of the calendar year in which these cccur

ip  the {hypothetical) age at which the fish would have been zero length if it had
always grown according to the Brody-Bertalanffy relationship

fg  age of recruitment to the fishery (average age at which fish become vulnerable
to the gear under consideration) (7, of Beverton and Holt)
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¥F=1Igp—1
Ny hypothetical number of individuals that reach the hypothetical age # annually
R yearly number of recruits which enter the fishery af age tx (= R’ of Beverton

and Holt)

n,  “the end of the life-span”, or maximum age attained

y NS N

F instantaneous rate of fishing — considered constant over the life-span after
recruitment

M instantaneous rate of natural mortality — considered constant after age
instantaneous total mortality rate — considered constant after age fy;
Z=F+M

C  catch, or yield in numbers (Y of Beverton and Holt)

Y yield in weight units (Y of Beverton and Holt)

L. average asymplotic length of a fish, as determined by fitting expression
{9.9) — see Sections 9.6.9 and 9.6.11.

W, the average asymptotic weight of a fish (i.e. the weight corresponding to
the average asymptotic length L,). This is estimated from expression (9.4),
or from (9.3) using Pienaar and Ricker’s (1968) adjustment.

K Brody growth coefficient (Section 9.6.1), determined by fitting expression
(9.9) — see Sections 9.6.9 and 9.6.11.

N

Over the period of time before recruitment, the initial number Ny of fish decreases
by natural mortality only, so that the number at recruitment is:

R = Nge™ (10.14)

After recruitment, catch in numbers is equal to the rate of fishing times the average
population:

=1t
C=F f Re™01%) gy (10.15)
1=ty
and yield in weight is therefore:
=8,
Y =F f Rw,e 2010t (10.16)
1=t

R

Omitting F, the integral (10,16) would be the sum of the yearly average bulk of all
fish in a year-class, for all the years that it contributes to the fishery. If recruitment is
invariable from year to year, this is equal to the weight of commercial stock on hand.

Expression (9.9) of Section 9.6.2 describes the mean length of a fish at age ¢,
when growth is of the Brody-Bertalanffy type. Provided this type of growth prevails
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over the fishable life span (it can be assumed to apply to the conventional pre-recruit-
ment period), and when growth of the brood is isometric (year-class 5 = 3), we may
cube each side of (9.9) and multiply by #’ of (9.4), obtaining;:

W, = Wa(l —eXC1)3 (10.17)

Expanding (10.17) gives:
;t — Wm(l _ 3€~K(l‘fro) a4 36—2[((!-0‘0) _ e—3K(f—|’g)) (10.18)
Substituting (10.18) for w, in (10.16), and integrating (Beverton, 1954, p. 45), gives

. e-—Z?\. 36—1{3‘(1 _ e—(Z+K);\,)

Z Z+K

|
Y = RFWm(

(10.19)

36-21(7'(] _e...(Z—!»ZK)?L) e—SKr(I _ e—(Z-’;-SK)?n)
Z -+ 2K T Z4+3K

When examining different recruitment ages it is convenient to combine (10.14) with
(10.19):

1- e-Z?L 3e—Kr(1 _ e-(Z-!—K)?\.)

- ~Mr .
Y = FNge Wm< 7z 71K

(10.20)

3e"2K’(1 B e—(Z-i—ZK)JL) e"gK’(l u e-(Z+3K)L))
+ —

Z 42K Z +- 3K

This is essentially an expanded form of Beverton’s (1953) expression (4), except that
the conventional starting point is Ny fish at age #y, rather than those in existence at
a conventional mean age of entry to the fishing grounds (age of recruitment in the
Beverton-Holt sense).

For many purposes {10.20) is more complex than is necessary, or even desirable,
Selection of the quantity #,, the greatest age considered, is always somewhat arbitrary
and the terms containing A = #, — fg are all close to unity except when Z and X are
both small. The expression can be simplified by omitting such terms, that is, by
making #, = co. In that manner we obtain:

1 37K 372K oK )

_ ~M# - _
¥ = FNye W“"(Z Z K Z 12K Z13K

(10.21)

To see how vield varies with rate of fishing and age of recruitment we vary F
and r (= ty — fy} in expression (10.20) or (10.21}. A typical computation for a moder-
ately long-lived fish, the North Sea haddock, is shown in Beverton and Holt’s (1957)
figure 17.26 (Fig. 10.2 here}). The yvicld contours or “isopleths” indicate a ridge of
high production that staris near the origin of the graph and curves upward and to the
right. For any given rate of fishing, F, the maximum yield is calculated to be taken at
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Fra. 10.2. Yield contour diagram for North Sea haddock. Yields shown are in
grams pet fish reaching conventional age 1, computed by the Beverton-Iolt
method using M = 0,20, K = 0.20, Wo = 1209 g, 1y = -1.066 yr, f, = 10 yr,
Point H represents rafe of fishing and mean recruitment age in 1939. Ordinate —
mean age of recruitment io the fishery {fr here); abscissa — instantaneous rate of
fishing, (Reproduced with slight modification from Beverton and Holt 1956, by
permission of the Controller of Her Majesty’s Stationery Office.)

the point where the perpendicular from F grazes a contour’s left edge; for example,
for F = 0.5 the perpendicular is tangent to the contour of 172 g, approximately, and
referring this point to the vertical axis, this maximum is obtained when mean age of
recruitment is a little less than 4.2 years. The line B-B’ in Fig. 10.2 is the locus of all
such tangents, and is called by Beverton and Holt the line of eumerric fishing. Equally,
to find the maximum yield for any mean age of recruitment (for example 3 years)
a horizontal line can be drawn to the point where it grazes the bottom of one of the
contours, in this case 168 g; and the necessary rate of fishing is about 0.9, found on the
abscissa below. The locus of best yields for a given recruitment age is the line A-A.

A Fortran computer program for Beverton-Holt yield computation was written
at the College of Fisheries, University of Washington, Seattle, and is also available
as Program BHYLD at the Nanaimo Biclogical Station of the Fisheries Research
Board of Canada (Pienaar and Thomson 1973).
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10.6, ESTIMATION OF EQUILIBRIUM Y1BLD — JONES’ MODIFICATION OF THE BEVERTON-
HovLt MgTHOD

Jones (1957) proposed that the Beverton-Holt yield equation (10.16 above) be
integrated in a form that would permit it to be evaluated using tables of the incom-
plete beta function. The resulting expression is:

FNge" W,
Y = L (BXP,Q] - BIX41,P.Q)) (10.22)
X =W
Xy = e—K(l‘a,-ro)
P =Z/K

Q = b 4 1, where 5’ is the exponent in the population weight:length relation-
ship (expression 9.4),

f = the symbol of the incomplete beta function

Values of B[X,P,Q] have been tabulated by Wilimovsky and Wicklund (1963) over
the ranges of X, P, and Q that are of most interest in this work. Alternatively, the
function can be integrated by computer using a program by L. E. Gales (Program
FRG-701 of Abramson 1971).

An advantage of (10.22) over (10.20) is that it makes it possible to deal with
populations in which the weight:length exponent differs from 3. Also, the arithmetic
is somewhat simpler, and although accurate interpolation in the incomplete beta
table would take time, for practical purposes it is sufficient to use linear interpolation
(see Example 10.5).

If t, is large, the expression comparable to (10.21) is:

Fr-
v = 220 Megnceqn (10.23)

If for no other purpose, it is useful to make a computation using one of Jones’s
formulae, with ' = 3, to check the arithmetic of the computations using the Beverton-
Holt formula — or vice versa. This applies even if the work has been done by com-
puter; indeed, it is especially necessary then.

10.7. APPROXIMATIONS IN BEVERTON-HOLT YIELD COMPUTATIONS

10.7.1. COMPARISON OF THE LONG AND SHORT FORMS. The shortened expressions
(10.21) and (10.23} are the preferable ones when Z and 4, have values characteristic
of a reasonably intensive fishery — that is, when Z = 0.5 or more and when #,
represents the greatest age observed in a sample of 500 to a few thousand individuals.
If, for prediction purposes, 7 is given a considerably smaller value and 7, is not
changed, the full expressions (10.20) and (10.22) then describe a population in which
an appreciable fraction of the fish reach age #, each year and then suddenly perish. This
is true, for example, of the isopleths to the left of A, approximately, in Fig. 10.2.
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Although the above danger is avoided by using expression (10.21) or (10.23) —
which imply that the old fish continue to die off gradually and evenly at the same rate
as younger fish — this may often be biased somewhat in the opposite direction. In
some populations it has been shown that natural mortality rate increases among
mature and older fish (cf. Ricker 1949a; Kennedy 1954b; Tester 1955), and the
Beverton—-Holt formulae do not allow for age variation in this statistic, other than a
sudden increase to 1009%. For a more exact treatment the method of Section 10.3 is
available.

10.7.2. EFFECT OF USING &' = 3 AS AN APPROXIMATION. (1} If W, is calculated
from L., using W,, = @ L%, it is important that the correct exponent 5’ be used. For
example, if L, = 10, and " = 3 is used as an approximation when true b’ = 3.25,
W and thus vield is underestimated by 449 (provided the same &' is used in both
cases).

(2) Assuming that a correct W, has been obtained, what is the remaining effect
of using 5" = 3 as an approximation in (10.20) or (10.21)? This can easily be discovered
from Wilimovsky and Wicklund’s table. For example, for a cod population similar
to that of Example 10.5 below, the following figures are obtained (using X = (.55,
P=3):

4 Beta function 103
2.75 1.960
3.0 1.703
3.25 1.482
3.5 1.292

The effect of using &' = 3 is to underestimate yield if true 4’ is less than 3, and to
overestimate it when &' > 3. The greatest difference within the range above is 249,
but usually it will be considerably less since few fish have an exponent & as large as 3.5.
Paulik and Gales (1964) have illustrated effects of such differences for a number of
types of population.

In any event the absolute level of yield from a Beverton—-Holt computation is
not usually of any great interest, as it merely shows what is obtained from a unit
number of fish of some conventional age. What is of interest is the difference in yield
that will result from varying tg or F, and the relative error in such differences, when
using an incorrect &', tends to be much less than that in the absolute figures, This
rule of course applies also to the approximations used in yield computations of other
sorfs.

ExampLE 10.5. COMPUTATION OF EQUILIBRIUM YIELDS FOR A CoD FISHERY BY
THE BRVERTON-HOLT METHOD. (Modified from Halliday 1972.)

Mortality and Bertalanffy growth statistics for the stock of cod (Gadus morhua)
in ICNAF regions 4Vs and 4W were estimated as follows:

F  0.49 A 8.8 yr (= f—ta)
M 0.20 Wo, 11.41 kg
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Z 0.69 K 0.14

& 0.07yr ¥ 3.07

R 4.2yr X 0.550 (=e™n
r 413 yr(=tp-tp) P 4.93(=Z/K)
h, 13 yr (see below) Q 4.07(=8+1)

The statistic 4 above is defined by Halliday as the “maximum age of significant
contribution to the fishery,” instead of the end of the life span, This seems question-
able for it implies that, at rates of fishing less than those observed, substantial numbers
of cod reach age 13 and then die immediately; whereas in fact Atlantic cod are rather
long-lived fish, some surviving to 25 years at least. When #, is put equal to a figure
of this order all terms containing A in (10.19) become negligible, so the shorter (10.21)
can be used.

Calculations can most conveniently be started from a conventional round

number of fish at age fp, say 1000, With »" = 3 as an approximation, the yield equation
(10.21) can be used; it becomes:

Y 3 F.‘ 103 >< 02 X ll 41 I 36-0.14?' + 33—‘0.231‘ e—0.42r 10 24
= EX ¢ M E 02 Fr0 TE+ 048 F 4062/ 10

Tor the observed F = 0.49 and r = 4.13 the vield is 577 kg. Values for other rates of
fishing and other mean recruitment ages can be found by varying F and r,

Alternatively, we could use Jones’s solution (10.23), obtaining:

108 X6 X 11.41 .
_ X ST; a (B[e"o'“’, F+02 b’+1]) (10,25)

0.14

For F =049, r =413, and ' = 3, p = [.921 X 107 and the yield is 582 kg; the
19 difference between this figure and the 577 above is because linear interpolation
was used in the incomplete beta table.

However, Jones’ method permits us to use the true b = 3.07, so the beta
function becomes 1.847 X 107 and the yield is 559. Thus the approximate 4’ = 3
gives a result only 497 greater than the true value, so that using the approximate
exponent makes fittle difference in this example.

To produce a graph such as Fig. 10.2 is quite tedious, because the contour lines
must be interpolated among the computed yield values. An casier presentation of
the data is shown in Fig. 10.3, which shows yields for each integral age of entry and
at closely-spaced series of rates of fishing.® (A similar graph can be plotted using age

SHalliday’s yield graph (1972, fig. 7) is nof directly comparable to Fig. 10.3. 1t shows yicld in
kilograms per fish of age 1, which is 0.93 year lator than the conventional age #. Thus his figures are
approximately 1073 /%2 %088 — | 503 % 1073 times those computed above on the basis of 1000fish of age
fo, using (10.24) or (10.25). Also, Halliday used 1, = 13 whereas Fig. 10.3 uses #;, = =. From the fish’s
point of view the age [ starting point used by Halliday is as arbitrary as the time #g, as it is unlikely
that natural mortality rate would remain at M = 0.2 back to age 1.
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Fig, 10.3. Yield from a cod stock per unit number of fish of conventional age
fo = 0.07, plotted against rate of fishing (F), for recruitment ages (rr) from 2 to
10. The ordinate divisions represent 1 kg of yield per fish at #. (Data from Halli-
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day 1972; see the text.)
of entry on the abscissa and a series of about 10 values of F in the range of interest).

In either case the ordinate scale represents the vields read directly from a computer
printout. There is a maximum of yield at intermediate Ievels of effort for recruitment
ages of 7 or less; for larger fr, yield continues to increase to an asymptote. The ob-
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served yield maxima for each age of entry are joined to form a broken line that
indicates (on the abscissa) the rate of fishing needed for best vield at each fg.

For any given fishing effort, the value of rg that gives greatest vield is circled
on Fig. 10.3, The circles form an ascending curved progression analogous to the
eumetric fishing curve of Fig. 10.2. Within the range of F values shown, the best
age of entry is 8 years or less, and beyond age 6 the gain is minute.

The actual situation of the fishery at the time of Halliday’s analysis was close
to the square point of Fig. 10.3. To obtain maximum yield at the observed F = 0.49,
the mean age of entry should be increased to tg = 5. Alternatively, to obtain maximum
yield using the observed mean age of entry the rate of fishing should be reduced to
about F = 0.37.

10.8. CHANGES IN AGE STRUCTURE AND BIOMASS RESULTING FROM FISHING

For fishes having moderate to long life-spans, even a little fishing can cause a
marked change in age structure. Figure 10.4 shows the biomass contributed by suc-
cessive ages of a moderately long-lived stock, based on mortality rates of a stock of
lingcod (Ophiodon elongatus). A fishing rate of only F = 0.1 reduces the equilibrium
representation of old fish in the stock very substantially. At F = 0.4 there will be only
a handful of fish left that are older than age 7, although these originally made up
half the biomass of the stock. Yet F = 0.4 corresponds here to a rate of exploitation

¥ T T T g T

T T T T T T T Y T T

10 14
AGE

Fig. 10.4. BEquilibrium weight of fish present at successive ages, for different
rates of fishing (f)in terms of a unit weight of recruits at age 1, for a moderately
long-lived stock. (After Ricker 1963, fig. 1.)
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of about 30%, which is usually considered quite moderate. For F = 0.8 (exploitation
about 449;) there are very few fish older than age 4.

If the annual recruitment and the growth rate of the fish do not change, there are
corresponding decreases in biomass of the stock. F = 0.1 reduces total biomass to
about half the original, while at ¥ = 0.4 it is 169} of the original and at F = 0.8 it is
only 79,. The corresponding increases in rate of exploitation are insufficient to com-
pensate for such large decreases in biomass, so with constant recruitment the catch
would decline greatly at large F. Since quite a number of long-lived stocks have
supported moderate fisheries for a considerable period of time, this suggests that their
absolute annual recruitments must have increased subsiantially when the mature
population was first fished down. In some cases growth rates also increased appre-
ciably,

10.9. TEMPORARY EFFECTS OF A CHANGE IN THE RATE OF FISHING

Previous sections of this chapter have described the equifibrium catches and
stocks to be expected under stated conditions of growth and rate of fishing, with
steady recruitment. However, the immediate effect of a change in fishing effort is
often quite different from its long-term effect; it is important to know what will
happen along the road to maximum equilibrium yield, assuming measures for achiev-
ing the Jatter are actually adopted. Apart from that, in most stocks rates of fishing
have changed drastically during the present century, especially since 1950; thus the
effects of such changes on the catches obtained need to be interpreted.

It is fairly obvious that, in any given season, increased fishing will make for greater
catch at that time, and less fishing will mean Tess catch, whatever may happen later, The
pattern of change from immediate yield to equilibrium yield became known when
Baranov (1918)6 and Huntsman (1918) simultaneously described the effect of a sus-
tained change in mortality rate upon a stock’s age composition and upon the catch
taken from it, Huntsman showed by pyramidal diagrams that, by imposing a condi-
tional fishing mortality rate (m) of 1/4 upon an unfished stock in which natural
mortality rate () was 1/7, the relative number of old fish in the population decreased
progressively. Baranov illusirated the same process by examining the effect of an
increase in mortality, A, from 0.2 {0 0.5, using the graph reproduced here as Fig. 1.1;
he particularly emphasized the temporary nature of the large increase in catch which
follows such an increase in rate of fishing.

Unfortunately, neither of these presentations created much impression at the
time, Only during the later 193(’s, after Thompson and Bell’s (1934) excellent exposi-
tion and illustrations became available, did a general appreciation of these effects
become evident in our fishery literature, Today the sequence of catches obtained
during an expanding fishery is usually described as “‘the fishing-up effect” or “the
removal of accumulated stock”; in Russian, melozhenie or “juvenation of the age
structure,” The reverse process could appropriately be called “reptacement of stock™
or restoration of an earlier age structure.

6 According to Zasosov (1971), Baranov’s classical paper was printed and distributed separately
in 1916, although the journal containing it is dated 1918,
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To illustrate these situations, schedules fike Table 10.1 or Table 10.3 can be used,
but each year must be treated separately during the period of transition from the old
to the new rate of fishing. The contrast between equilibrium yields and temporary
catch potential is illustrated in Fig, 10.5: three different rates of fishing (F = 0.3,
0.8, and 1.3) have equilibrium levels of yield that are much alike, the intermediate
level being slightly the best. A yield four times as great, however, is taken in the first
year of the change from F = 0.3 to F = 1.3. Similar shor{-lerm potentialities exist

T T T t T T T T T T T T T
YIELD IN WEIGHT
o 4
g9}k E
2F .
0
CATCH IN NUMBERS
I+ .
0
ol STOCK IN NUMBERS A
‘- -
0 | S 1 1 I 1 1 1 1 1 i 1 1
¢ 4 8 12 14 6 YEARS

F1G. 10.5. Trends of yield in weight, catch in numbers, and stock size in numbers,
for a stock in which natural mortality (M) is 0.2 throughout, and rate of fishing
(F) changes from 0.3 to 1.3, and then to 0.8, The first year of each change is
marked by the high peak and low trough, respectively, on the yield curve. Yalues
were compufed using a model of the type of Table 10.1, with an appropriate age—
weight distribution, the same for ail years.
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in any new or lightly-fished stock that consists of many age-groups.” A stand of
virgin timber affords a close analogy.

Familiar and even obvious though these relationships now appear, their dis-
covery in 1916 represented a major feat of imaginative analysis. Furthermore, their
practical value to date may have been greater than that of all the various determina-
tions of equilibrium yield of the kinds described in Sections 10.2-10.8, for two reasons,
(1) Temporary effects of changes in rate of fishing tend to be much greater than the
equilibrium effects which are calculated on the basis of constant recruitment; thus it
has been easier to check theory against practice and to make useful predictions. (2)
Constant recruitment seems unlikely to be a suitable basis for predicting true equili-
brium yield at different levels of fishing, in anything more than a minority of stocks
{cf. Chapter 11); but it is a suitabie basis for predicting the immediate effect of a
change in fishing, because the increased or decreased year-classes resulting from change
in stock density (caused by change in fishing) usually take some years to “grow into”
the usable stock.

Moreover, these temporary changes in yield bulk very large in the view of fisher-
men whenever new regulations are contemplated; because of this, goals which seem
desirable from the equilibrium-yield standpoint must sometimes be approached quite
gradualiy. Conversely, knowledge of the direction and magnitude of expected tem-
porary increases or decreases in yield makes it possible to avoid mistaking them for
indications of long-term prospects.

ExaMpLE 10.6. COMPUTATION OF YIELDS DURING THE PERIOD OF TRANSITION
FROM A SMALLER TO A LLARGER RATE oF FisminG. (From Ricker 1958a.)

Table 10.5 shows the effect, upon the population of Table 10.3, of doubling
the rate of fishing at all ages. Divisions of the year are condensed to the two fishing
periods and the long period between. Column 2 shows the resultants of growth and
natural mortality taken from Table 10.3, to which are added the new mortality rates of
column 3, giving the new instantanecus rates of population change (column 4) and
corresponding change factors (column 5). The latter are applied to previous equilib-
rium population weights at the start of each age shown in column 6 (from column 11
of Table 10.3). Fish of each age decrease in bulk during year 1 as shown in column 7;
the average for each period was computed and multiplied by the instantaneous rate
of fishing to give the yield shown in column 8, In year 2 the overwinter survivors of
each gge in year | arc computed and their weight is entered at the start of the next
greater age: for example, 2497 X 0.878 == 2192; 1056 X 0.741 = 782; etc. During

7 This effect, perhaps mere than any other, accounts for the fisherman’s nostalgia for the *good
old days™ when, for a few years, catch per hour or per set was so much greater than at present. Of
course other factors may also be involved. Ceitain types of relationship between stock density and
recruitment can produce a similar effect (Section 12.2), though usually less extreme. There may also
be increased wariness on the part of the fish, or bad memory on the part of the fisherman (cf. Kennedy
1956, p. 47). Finally, simply increasing the amount of gear implies a decline even in equilibrium catch
per unit, which usually becomes apparent long before the level of maximum sustained yield is reached
(cf. Table 10.2).
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TasiE 10.5. Effect of doubling the rate of fishing at all ages, upon the population of Table 10.3. (See text for explanation.)

1 2 3 4 5 6 i 8 9 10 11 12 13 14
Previous Year 1 Year 2 Year 3 Year 4
Weight  equilibrium
change weight of  Inmitial Initial Initial Initial
Age G-M F G-M-F factor stock weight  Yield weight  Yield weight Yield weight Yield
2% 2086 2086 2086 2086 2086
+0.335 0.08 +0.255 1.290 191 191 191 i91
2% 2691 2691 2691 2691
—+0.205 0.28 -0.075 0.928 726 726 726 726
23 2497 2497 2497 2497
-0.130 0 —0.130 0.878
3 2625 2625 2192 2192 2192
+0.055 0.66 -0.605 0.546 1339 1118 1118 1118
33 1433 1197 1197 1197
—+0.035 0.34 —0.305 0.737 423 353 353 353
32 1056 882 882 882
—.300 0 —0.300 0.741
4% 1291 1291 782 654 654
-0.005 0.66 —_665 0.514 645 391 327 327
41 664 402 336 336
=0.025 0.34 —0.365 0.694 191 116 97 97
43 461 279 233 233
-0.370 0 -0.370 0.691
5% 525 525 319 193 161
-0.075 .66 -0.735 0.480 256 156 94 79
54 252 153 93 77
-0.100 0.34 —0.440 0.644 70 43 26 22
58 162 99 60 50
Totals 3841 3094 2932 2913




year 2 fishing occurs and the population decreases at the same rate as in year 1, but the
yield is less for age 3 and older. By year 4 the new equilibrium population structure is
established, shown in column 3.

The change from the old to the new conditions is completed in four years, which
is the number of vulnerable age-groups of fish present in significant numbers. In the
first year of change the yield rises from 2.29 to 3.84 kg (per kilogram of age 2 recruits),
then falls to 3.09, to 2.93, and finally to the new equilibrium value 2,91 kg.

10.10. ALrLeN’s METHoD OF CALCULATING BEST MINIMUM SIZE

Allen (1953) suggested a method of computing the best minimum size of fish
for maximum yield. It implies “knife-edge” recruitment (Section 11.1.2), but approxi-
mate adjustments can be made when this condition is only approximated. Suppose
that the existing minimum weight of the fish harvested is wg, the mean weight of
fish in the catch is W, and the exploitation ratio for the stock is E. Allen shows that
if wg > EW the value of wg is less than what will provide maximum sustainabie yicld,
whereas if wg < EW the value of wy is too great for MSY.

This method requires an estimate of B, which is the ratio of the number of fish
caught from a year-class to the total number present when it became vulnerable to
fishing. When rates of fishing (F) and of natural mortality (M) are unchanging or
change proportionally throughout life, E = F/Z. Thus the information needed for this
method is similar to what is required for one of the more complete analyses of the
earlier sections of this chapter.

264




CHAPTER 11. — RECRUITMENT AND
STOCK-RECRUITMENT RELATIONSHIPS

11.1. TyYPES OF RECRUITMENT

11.1.1. RepropUCTION, The reproduction accomplished by a fish stock can be
assessed at any stage: eggs, larvae, fry, juveniles, smolts, and so on. Of most interest
in practical fishery work is the number of recruits to the usable stock. As used here,
recruitment is the process of becoming catchable; for an individual fish it is the mo-
ment or interval during which it becomes in some degree vulnerable to capture by the
fishing gear in use. Three types of situations can be distinguished.

11.1.2. KNiFe-EDGE RECRUITMENT. All fish of a given age become vulnerable at a
particular time in a given year, and their vulnerability remains the same throughout
their lives (or at least for two consecutive complete years). Few fish populations
approximate this ideal.

11.1.3. RECRUITMENT BY PLATOONS, Vulnerability of a year-class increases
gradually over a period of 2 or more years, but during any year (fishing season) cach
individua! fish is either fully catchable or not catchable. Thus a year-class is divided
into two different platoons: recruited and not recruited. The fish of the recruited
platoon of any age are of larger average size than the unrecruited ones, but there is
often a broad overlap of sizes. Platoon recrnitment is typical when fishing attacks a
population during a breeding migration and non-maturing fish do not mingle with
the maturing ones.

Let the number of fish in the recruited platoon of any age-group be Ng, and let
the total number of fish of that age be N. Then it is clear that the ratio Ny /N repre-
sents the ratio of the rate of exploitation (1) of that age-group (considered as & whole)
to the rate of exploitation of fully-vulnerable ages.

11.1.4. CoNTINUOUS RECRUITMENT. There is a gradual increase in vulnerability
of members of a year-class over a period of two or more years, related to the increas-
ing size of the individual fish, or a change in their behavior or distribution, or any
combination of these. This is probably the commonest type of recruitment; each fish
becomes more and more likely to be caught as it grows larger and older, until the
limit of maximum vulnerability is reached, This situation is indicated for the halibut
population of Example 5.5, where the smaller tagged {ish were retaken Iess frequently
during the first year or two after tagging than they were during later years - that is,
their catchability gradually increased.

For convenience in calculation, however, continuous recruitment can often be
treated as though it were platoon recruitment. In that event what appears as the ratio
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Ngr/N of the previous section has no objective meaning in terms of platoons, but it is
the ratio of the rate of exploitation of the whole age-group to the rate of exploitation
of fully-vulnerable ages.

Both platoon recruitment and continuous recruitment have often been approxi-
mated by knife-edge recruitment in yield computations, in which event the computed
mean age at which the fish first become catchable need not be a whole number.

11.2. ESTIMATION OF RECRUITMENT — BIOSTATISTICAL METHOD

Early in this century, as soon as age determinations began to be made on a large
scale, the relative abundance or “strength” of successive year-classes came to be
judged from their percentage representation in the catch over a period of years. Such
data were commonly plotted as ordinary columpar histograms — for example the
famous serics for Atlanto—Scandian herring begun by Hjort (1914) and continued by
several subsequent authors (Nikolsky 1965, fig, 28).

Later the utilized stock (V) of successive year-classes, as defined in Section 8.1,
came to be used as a more quantitative but still only relative estimate of recruitment.
Utilized stock is strictly proportional to recruitment if rates of fishing (F) and natural
mortality (M) have not changed over all the years involved, a situation that rarely
occurs. However, moderate fluctuations in either F or M do not seriously interfere
with the usefulness of V for this purpoese, particularly when M is small: in the latter
event, if a fish is not caught one year, it will probably still be available in one or more
future years.

If F changes drastically, and particularly if it has experienced a sustained trend
upward or downward, utilized population (V) becomes less useful as an index of
recruitment. However, it is frequently possible to make adjustments for this based
on known fishing efforts and a reasonable natural mortality rate (Ricker 1971b),

The principal disadvantage of the biostatistical method of estimating recruitment
is that it requires a rather long series of catch statistics, with annual determinations
of the age structure. It is never an absolute estimate of recrujtment, since naturally-
dying individuals are not included, but of itself this is no great disadvantage.

11.3.  ESTTMATION OF RECRUITMENT — ALLEN’S METHOD

11.3.1. Procepure. To treat recruitment quantitatively at successive ages it is
best to define it as full vulnerability to the gear in use, and to assume the platoon type
of recruitment described in Section 11.1.3. We need then to know what fraction of
individuals of a given age in the catch jeined the vulnerable platoon between the
previous and the current fishing season, and what fraction represents the survivors
of the vulnerable fish of earlier years.

Allen (1966b, 1968) proposed a method of estimating this, in the first instance for
Type 1 fisheries in which fishing is assumed to occur before natural mortality in each
biological year. The method requires knowledge of age composition of a represent-
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ative sample of the catch in at least two successive years. These need not be reduced
to a common sample size, The following symbols are used:

Qy = number of fish of all fully-recruited ages in the sample of year 1

Q; = number of fish of same year-classes (nof ages) as Q; in the sample of year 2

p1 = number of fish of an incompletely-recruited age £ in the sample of year 1

P2 = number of fish, of the same year-class as py, taken at age ¢ - 1 in the sample
of year 2

Year-class strengths vary and this will affect the size of Qp and of pa, relative to Q
and p;. However, the change will be in proportion for both; that is, the ratio:

_ b/;
Qo/n

is independent of absolute strengths of year-classes in the population. It is also
independent of the relative size of the two samples,

2 (11.1)

Suppose that the instantaneous natural mortality rate of the recruited platoons of
incompletely recruited age-groups is M, and that of completely recruited age-groups
is M,, while F represents the rate of fishing for all vulnerable fish. Let a ratio T be
defined as the survival rate of fully recruited ages divided by the survival rate of the
recruited platoons of incompletely-recruited ages; that is;

e—(M-+-F)

T= e (M) (11.2)

Allen shows that the proportion of new recruits of age ¢ -+ 1 in year 2 is approximately
equal to:

By~ T

W:
2 B,

(11.3)

T is difficuli to estimate. Usually it will be unknown and the assumption that
T = 1 must be used: that is, that natural mortality rate is the same for vulnerable
fish of both incompletely recruited and fully recruited ages. Then (11.3) reduces to:

:Bz—l :lsz/Ql

Wa
B, P2/p1

(11.4)

11.3.2. ILLusTRATION, Allen’s mathematical development of expression (11.3)
is rather involved. Instead of reproducing it here, I will illustrate its applicability by
means of numerical models. Table 11.1 shows a simple Type 1 population in which
year-class abundance is the same over the period of years involved, and all members
of all age-groups have the same natural mortality rate. The instantaneous natural
mortality rate is M = 0.3; thus the natural survival rate is e~%-3 = 0.7408. The instan-
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Tapre 1.1 Model of a stock with recruitment occurring al ages 3-6, as follows: 109 of each year-
class becomes vulnerable at age 3; 509, of the previously non-vulnerable fish become vulnerable
at age 4; 80%, of the previously non-vulnerable fish become vulnerable at age 5: all of the previously
non-vulnerable fish become vulnerable at age 6. Natural mortality rate is M = (.3 throughout.
Fishing mortality precedes natural mortality in each biological year (Type 1 fishery). The number of
fish at the start of age 3 is 10,000 in each year. For vulnerable fish the rate of fishing is F = 0.4; rate
of exploitation, # = 0.3297; total instantaneous mortality rate, Z = 0.7; survival rate, S = 0.4966,
For non-vulnerable fish Z = M == 0.3, § = 0.7408,

1 2 3 4 5 6 7 8 9
From previous year’s Catch
nonvulnerable fish Yulner-
able Total Newly
Not vul-  Vulner- carry- vulner- vulner- 9
Age Total nerable able over able fish  Total able new
3 10,000 9,000 1000 A 1,000 330 330 100
4 6,668 3,334 3334 496 3,830 1263 1099 87.0
3 2,470 494 1976 1902 3,878 1278 651 50.9
6 366 0 366 1926 2,202 756 121 16.0
7 0 0 W 1138 1,138 375 0 0
8 0 0 4] 565 565 186 0 0
9 0 0 0 281 281 93 0 0
10-18 0 0 Q 275 275 9 0 0
Total 19,504 12,828 6676 6583 13,259 4372 2201 50.3
Ages 3-5 2871
Ages 6and up 1501

taneous rate of fishing is F = 0.4, and fishing occurs before natural moertality each
year; thus the rate of exploitation is u = 1 -e¢ ¢4 = 0,3297, and the survival rate
from fishing is 0.6703. The total survival rate of the vulnerable members of the stock
is § = 103404 = (,7408 X 0.6703 = 0.4966.

At ages 0, 1, and 2 the fish are all too small to be captured. At age 3, 1000 out
of 10,000 become vulnerable (column 4), and 0.3297 X 1000 = 330 are caught
(column 7); of the 670 remaining, 0.7408 X 670 = 496 survive to be carried over
into the vulnerable stock at the beginning of age 4 (column 5). At age 4 there are
0.7408 > 5000 == 6668 survivors of the non-vulnerable stock of the previous year
{column 2). Half of these become vulnerable at age 4 (column 4), and these join the
496 survivors of the first year’s vulnerable fish, for a total of 3830 vulnerable (column
6). Of these, 0.3297 X 3830 = 1263 are caught, 0.2592 of the 2567 survivors die
naturally, and 0.4966 X 3830 = 1902 survive the year (column 5 at age 5). Survivors
of the age4 non-vulnerable fish number 0.7408 X 3334 = 2470 at age 5 (column 2},
and 809% of these are vulnerable, or 1976 fish {column 4). The total vulnerable fish
of age 5 number 1976 + 1902 = 3878, of which 0,3297 or 1278 are caught. At age 6
there are 366 survivors of the 494 non-vulnerable fish of age 5, and all have become
vulnerable; added to the 1926 carry-over they make 2292 vulnerable fish and the
catch is 756. From age 6 onward the rate of decrease in catch from one age to the
next in Table 11.1 reflects the total survival rate; ages 10 and older are condensed
into a single line.
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Since Table 11.1 represents a series of year-classes of identical abundance, any
two successive catch entries in column 7 can also be used to represent members of
the same year-class, In applying formula (11.4) we first calculate:

Q, 91 + 93 + 186 + 375 745 0.4963
Q, 91934186 +375+756 1501

{(In this illustration Q,/Qy is an estimate of survival rate, but this is true only when
there is no variation in year-class strength from vear to year.)

The following calculations of percentage recruits in each year’s catch are inde-
pendent of year-class strength.

For age 4: ps = 1263; p; = 330; so from (11.4):

Wo = 1 04963 oo
27 T 1263330 7
; ) - B . 51.0%
orageS: py= i = P2 1278/1263  ~ 7 °
. 6: ps = 756 (278, Wy = 1 - 2036
orage o pa =101 p = P2 T Tgsei1a78 T %

These computed values of W agree closely with the true values in column 9 of Table
11.1. The percentage of new recruits in the catch as a whole is 2201 /4372 = 50.3%,.

11.3,3. EFFECT OF CHANGE IN RATE OF FISHING. Table 11.2 follows the population
of Table 11.1 through two years in which rate of fishing increases first to 0.8 and then
to 1.2. Calling these years 2 and 3:

Q; 129 -+ 132 4 265 + 533 04224
Q, 152 -- 155 + 311 4+ 627 + 1262
Apgain applying expression (11.4):
F 4 2562 5515 W; = | 4224 90,99
or age d: py = 2362 pa = 3515 Wa = L= o5 1ss1 = 209%
F 5 22 2110; W5 = 1 o4z 60,79
orageS:py=2272;p, = > T om0 o
F 6 1158 2136: Wy = 1 0424 22.1
or age 6: py = Py = P Wa =T Tiss 2136 ~ 2> %o
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Taste 11.2. The population of Table 11.1 in two consecutive subsequent years, characterized by rates of fishing of F = 0.8 and 1.2, respectively.
Column numbers are as in Table 11.1, columns 2—4 being omitted because they are the same as Table 11.1 in both years. For year 2, F = 0.8, # = 0.5507,
Z =11, and S = 0.3329 for vulnerable fish. In year 3, F = 1.2, u = 0.6988, Z = 1.5, and S = 0.2231 for vulnerable fish.

1 5 6 7 8 S 5 6 7 8 9
Year 2 Year 3
Catch Catch
Vuiner- Vulner-
able Total Newly able Total Newly
carry- vulner- vulner- A CAITy- vulner- vulner- A
Age over able fish Total able new over able fish Total able new
3 e 1,000 551 551 100 Ceas 1,000 699 699 100
4 496 3,830 2110 1836 87.0 333 3,667 2562 2330 90.9
5 1902 3,878 2136 1088 50.9 1275 3,251 2272 1381 60.8
6 1926 2,292 1262 . 202 16.0 1291 1,657 1158 256 22.1
7 1138 1,138 627 0 0 763 763 533 0 0
8 565 565 a1 0 0 379 379 265 0 0
9 : 281 281 155 0 0 188 188 132 0 4]
10-18 275 275 152 0 0 185 185 129 4] ¢
Totals 6583 13,259 7304 3677 50.3 4414 11,050 7750 4666 60.3




Here again the percentage recruitment at each age agrees with figures in the model
(year 3 of Table 11.2). Thus estimates of recruitment by this method are independent
of changes in rate of fishing, as long as the latter affect all age-groups proportionally.

11.3.4. EFFECT OF A DIFFERENCE IN NATURAL MORTALITY RATE RETWEEN RECRUITED
AND UNRECRUITED PLATOONS, If recruited and unrecruited platoons in a population
differ in the size or behavior of their fish, possibly they differ also in respect to natural
mortality rate (M), By constructing a table similar to Table 11.1 it can be shown that
this makes no difference to the estimate of percentage recruitment obtained from
expression (11.3) or (11.4),

However, when the recrvited and unrecruited parts of an age-group have dif-
ferent natural mortality rates it is not possible to compute total abundance or total
mortality rate of the fish at any incompletely-recruited age, even though the rate of
fishing can be estimated for its recruited members.

11.3.5. EFFECT OF A DIFFERENCE IN NATURAL MORTALITY RATE BETWEEN INCOM-
PLETELY-RECRUITED AND FULLY-RECRUITED AGES. Table 11.3 is constructed with the
same parameters as Table 11.1, except M. = 0.6 at ages 3-6 for both the vulnerable and
the invulnerable platoons of each age. We estimate first;

Q2 39 - 40 + 80 + 161 320

le39—|—40+80+161+324=E4_4=0'4969

which is the same as for Table 11.1 within rounding error. From (11.2):

~(0.440.6)

¢ 0.3679

T = oy = = 0.7408
e O+00 ™ 04966

Expressions (11.1) and (11.3) are now applied:

For age 4: p, = 935; p; = 330; B, = 935/330 x 0.4969 = 5.702;
W, = (5.702 - 0.741) j5.702 = 87.09,

For age 5: pp = 702; py = 935; B, = T02/935 % 0.4969 = 1.511;
Wy = (1.511 - 0.741)/1.511 = 51.0%,

For age 6: p; = 324; p; = 702; By == 324 /702 % 0.4969 = 0.929;
W, =(0.929 - 0.741) /0.929 = 20.2%,

These results can be compared with values of W, obtained by assuming T = 1,
as follows:

Age T =0.741 T=1
4 87.09 82.5%,
5 51-0%, 33.8%,

20.29, ~7-6%
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Taere 11.3. Model of a stock similar to that of Table 11.1, but with M = 0.6 between ages 3 and 6,
and M = 0.3 from age 6 onward.

1 2 3 4 5 6 7 8 g
From previous year’s Catch
nonvulnerable fish Vulner-
able Total Newly
Not vul-  Vulner- carry- vulner- vulner- %
Age Total nerable able over able fish Total able new
3 10,000 9,000 1000 1000 330 330 100
4 4,939 2,470 2469 368 2837 935 814 87.1
5 1,356 2N 1085 1044 2129 702 358 51.0
G 201 0 201 783 984 324 66 20.4
7 0 0 0 489 489 161 0 0-
8 0 0 4] 243 243 80 0 0
9 0 0 0 121 121 40 0 0
10-15 0 0 0 119 119 39 0 0
Total 16,496 11,741 4755 3t67 7922 2,611 1,568 60,1

Estimates of Wy for T' = 0.741 agree with the last column of Table 11.3, whereas
when T = 1 is used they differ considerably; for age 6 an impossible negative figure
is obtained.

In practice, when recruitment is of the platoon type, the recruited platoon of
any age-group would probably tend to resemble the older recruited fish rather than
their unrecruited siblings, in respect to natural mortality. For example, if they had
become vulnerable because they had joined in the spawning migration and breeding
activities, they would be exposed to both the external and the physiological hazards of
mature fish rather than those of immature {ish of the same age. On the other hand, if
the recruitment process is actually a gradual increase in vulnerability of all fish of a
year-class, it is more likely that all fish of the incompletely-recruited ages would have a
natural mortality rate progressively different from that of the fully-recruited fish as
you move toward younger ages, and an estimate of T becomes more important, If
natural mortality rate could be estimated for each year, then a value of T could also be
calculated for each year and used in expression (11.3).

11.3.6. EFFECT OF UNDERESTIMATING AGE OF FULL RECRUITMENT. In practice,
year-class strengths may vary from year to year, and even if they do not there is
sampling variability in the number of fish found at each age; so it is not always easy
to decide what age represents the first age of full recruitment. In Table 11,1, suppose
that the age of full recruitment were estimated one year too low, In that event:
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whereas the true value is .496, The result is that values of B are too small, and hence
the estimated proportion of new recruits (Wz) is also too small, at each age. In addi-
tion, one less age-group has been included in the “incompletely recruited” category,
so total recruitment may be significantly underestimated. The comparison for Table
11.1 is as follows:

New recruits in catch

Age Catch B: = 0.497 B, = 0.540
5 1278 651 467
6 756 121 0
Older 745 0 0
Total 4372 2201 1879

Thus new recruits are estimated as 439, of the total catch, instead of the true figure
509%. This suggests that, when in doubt, the older of two possible boundary ages of
full recruitment should be used, unless it reduces the number of fish in the recruited
ages so much that the sampling error becomes ridiculous.

11.3.7. EFFECT OF SEASON OF FISHING AND OF NATURAL MORTALITY — APPLICA-
TION TO TYPE 2 POPULATIONS. If the fishing and natural mortalities in Table 11.1 or
11.2 operate concurrently instead of consecutively, catches are smaller and natural
deaths greater, but nothing else changes. Total mortality is unaffected, and ratios
of successive catches are the same as before. In Table 11.1, for example, the rate of
exploitation becomes FA/Z = 0.4 x 0.5034/0.7 = 0.2876, and the catches of column
7 are 288, 1102, 1115, 659, 327, 162, 81, and 79. These figures give the same values
of By and W,, within the limits of rounding,

11.3.8. FSTIMATION OF ABSOLUTE RECRUITMENY, The absolute number of recruits
produced by a year-class can be regarded as either: (1) the total number of fish in the
year-clags at the start of the year when it begins to be recruited; or (2) the sum of the
fish of that year-class that first became vuinerable to fishing during each of its years
of recruitment. To estimate either figure it is necessary to have information on the
size of the stock (and hence the rate of exploitation) of the fully-recruited fish, which
may be available from any of the metheds described earlier. For (1) this is needed
in only one year — the initial year of recruitment for the year-class in question;
and as noted above, it requires also the assumption that recruited and unrecruited
platoons of the year-class have the same natural mortality rate. For (2) the rates of
exploitation must be available for all the years of recruitment.

For the platoon type of recruitment, definition (2) above might be regarded as the
definition of the number of recruits produced by a spawning. However, if tecruitment
is gradual rather than by platoons (Section 11.1.3), the only definition of number
of recruits that has any consistent meaning is the first one, i.e. the size of the year-class
at the time it begins to become vulnerable to the fishery.

273



11.4. ErrecTs oOF ENVIRONMENT UPON RECRUITMENT

11.4.1. GENERAL. The biggest difficulty in examining the effect of stock density
on net reproduction is that year-to-year differences in environmental characteristics
usually cause fluctuations in reproduction at least as great as those associated with
variation in stock density over the range observed — sometimes much greater.
Sometimes these fluctuations show significant correlation with one or more measured
physical characteristics of the environment. To the extent that this is so, their effect
can be removed from the total variability by some kind of regression analysis.

Detecting relationships between environmeni and some measure of an animal’s reproduction,
or abundance, has a long history; and the subject has an intrinsic interest quite apart from its use to
reduce the variability of the parent-progeny relationship. The procedures most used are described in

elementary stalistical (exts; the discussion here mainly concerns problems of interpretation. More
complex methods have been proposed (e.g. by Doi 1953a, b} but are not considered here.

In general it is not too difficult to discover corrclations, even quite “significant” ones, but it is
necessary to be cautious in deducing causal relationships from them, It is well known, for example,
that correlations between “time series” are particularly likely to be accidental (involve no causal
relationship) when both quantities have a unidirectional trend over a period of years. A correlation
is more likely to have meaning when the two quantities vary the direction of their trend, in parallel
fashion, However, even these cases sometimes prove to be related (if at al) by way of some third
factor whose mode of operation may be unknown and whose very existence is at first unsuspected.

It spite of these dangers, it would be foolish to accept the defeatism of those who argue that
because a regression or correlation is based on “the theory of errors™, any information it provides is
bound to contain error and hence will be of little value. Actually, soundly-considered regression
analysis does exactly the opposite: from an originally large variability (“‘error’’) whose causes are
unknown, it separates out guantitatively the components ascribable to each of a number of factors,
so that the unidentified variability or residual error is substantially reduced.

11.4.2. ADDITIVE AND MULTIPLICATIVE EFFECTS. Consider the progeny of a single
spawning of a fish stock up to the time they become usable — the recruits of that
year-class. The effect of a unit change in an environmental factor might be to change
the number of recruits by some constant quantity, or it might change it to some
constant multiple or fraction of the initial value, or it might act in some more complex
manner. In practice, we should expect the effect of the physical environment normally
to be multiplicative rather than additive: if conditions are favorable, all fry have a
chance ol benefitting; if unfavorable, a certain fraction (not a fixed number) will be
lost. To make multiplicative effects amenable to linear regression analysis, the loga-
rithm of the observed effect is used rather than its actual value. The logarithms have
an additional advantage: they commonly make the variability of the number of
recruits produce.d (Y-values) more neatly uniform over the observed range of en-
vironmental effects (X-values).

These advaniages, however, are obtained only at a price; and the price is that
the “expected” or “most frequent” value of Y, calculated from the logarithmic
telationship for some particular X, is not the arithmetic mean of actual observed Y
values at that X: rather it is their geometric mean (GM), which is always less than the
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corresponding arithmetic mean (AM). The relationship between the two can be
represented by an expression modified {rom formula (8) of Jones (1956, p. 35), For
any series of items whose distribution is log-normal:

log1o(AM/GM) = 1.15185N - 1)/N (11.5)

where s 18 the standard deviation of the normally-distributed base-10 logarithms of
the items, and N is the number of items in the series.! If the data are in terms of
natural fogarithms the formula becomes:

logig{AM/GM) = 0.2172s%N - 1)/N (11.6)

where s is the standard deviation from the regression line of the normally-distributed
natural logarithms of the variates.

~ Table 11.4 shows a selection of values computed by using (N—1)/N =1 in
{11.6). The formula assumes that the logarithms of the variates are normally dis-
tributed, but even if the distribution is not especially close to normal this relationship
will provide an approximate adjustment. That is, average reproduction can be esti-
mated from a computed geometric mean and the standard deviation of the logarithms.

Another, approximate, method of converting GM to AM values is by computing
the expected GM values for the series and comparing their total with that of the ob-
served values (cf. Example 11.4}.

TasLE 11.4. Relation between (1) the standard deviation of the base-10
logarithms of variates whose logarithms are normally distributed, and (2} the
ratio of the arithmetic mean o the geometric mean of those variates, for large
values of N,

Standard Standard
deviation Ratio: deviation Ratio:
of logarithm AM[{GM of logarithm AM/GM
0.05 1.007 0.55 2,230
0.10 1.027 0.60 2.598
0.15 1.061 0.65 3.066
0.20 1.112 0.70 3,667
0.25 1.180 0.75 4.445
0.30 1.270 0.80 5.459
0.35 1.384 0.85 6.794
0.40 1.529 0,50 8.694
0.45 1,711 0.95 10.951
0.50 1.941 1.00 14,183

LTn Jones’s formula AM = p; GM was put = 1, hence x = 0; and a = 0. Before discovering
this formula, a number of values of AM/GM had been worked out by caleulating and averaging
actual series, using Pearson’s (1924) table I1: there was agreement to the second decimal,
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A base-10 log standard deviation of 0.5 corresponds to a 1-in-20 chance of a
single observed reproduction being as small as 1/10 of the geometric mean or as
great as 10 times that mean — a total spread of 100:1. When variability in reproduction
is greafer than this, the concept of an average reproduction becomes rather tenuous,

11.4.3. CURVED REGRESSIONS. For any environmental condition there is typically
an intermediate most favorable range, with less favorable conditions above and
below. For example, water can be either too cold or too warm for successful incuba-
tion of eggs: the optimum is intermediate. Consequently, a graph of reproduction
(Y} against temperature (X) would have a maximum and would probably be dome-
shaped; hence it could not be straightened by any simple (ransformation of either
or both scales. The mathematical procedure is then to find the regression of Y {or
log Y) on X and X* Even higher powers of X can be used, but data for fish stocks
would rarely warrant it. A simpler procedure is to fit a curved line, or two or three
straight lines, freehand to the graph — which can be justified at least for preliminary
analysis (Rounsefell, 1958).

11.4.4. SucULAR TRENDS. If the data exhibit any important trend or trends extend-
ing over periods of years comparable to the total length of the series, it is usually
necessary to remove this trend before examining year-to-year effects of envirenmental
factors, Several methods can be used.

1. It is sometimes possible to fit a regression of Y against time (of linear, quad-
ratic, or even higher order), calculate the “expected” value for each Y, and subtract
this from the actual ¥ to obtain a series of residuals (as was done, for example, by
Milne 1955, p. 476). These residuals can then be plotted and tested against the various
environmental factors,

2, If the series is long and the trend irregular, a moving average of 5, 7, or 9
items will provide an “expected” trend line from which the residuals can be measured.,
Care should be taken that the averaging does not remove variability which can be
related to the factors to be examined.

3. A more satisfying procedure is available when the trend in Y is related to
a trend in an environmental factor (X) whose influence on Y is well established.
In that event the regression of Y on X will take care of the trend, and again residuals
can be computed for use with other factors. But this procedure should ror be used
with environmental factors selected only because of their correlation with Y, in the
absence of independent evidence of an actual effect on Y, because of the time-series
correfation danger discussed above. '

11.4.5, EXPLORATORY CORRELATIONS. In general, there can be an indefinitely
large number of environmental factors which could be selected for comparison with a
record of reproduction or year-class abundance. For example, the temperature,
rainfall, etc., in each of a series of months, and in various combinations of months,
might be examined (Hile 1941 ; Henry 1953; Dickie 1955; Ketchen 1956; and others).
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The usual way to assess possible relationships is to compute the coefficient of correla-
tion for each. If more than one is tested, however, the likelihcod of accidentally
obtaining a “significant” correlation for one of them increases as the number of
factors examined. Thus an investigator is confronted with the paradox that the more
factors he tests, the more likely he is to include the effective ones in his search, but
the less likely he is to be able to recognize them, If all factors tested seem equally
possible @ priori, the level of significance (P-value} for a single effect can be made
more realistic by increasing it in relation to the number of factors — at least as an
approximation (cf. Fisher 1937, p. 66). For example, if four factors are examined
and one of them is apparently “significant” with a P-value of 0.02, the probability
that this factor is really related to abundance is not 989, but about 929, (= 1 -4 X
0.02).

However, the situation is usually more complicated. There is almost always
some provisional hypothesis of a possible relationship behind each correlation tested,
even though some may seem far-fetched. Also, we tend to test first the relationships
which seem most likely to be appropriate, or which are suggested by gross inspection
of the data. The very fact that we have thought of testing a factor is some reflection of
its possible significance. As a rule, then, the likelihood of one of the first-tested
correlations being “real” is much greater than that of (say) the tenth one, tried on the
strength of a wild idea, even though the formal statistical probability be the same for
both. To help his readers assess the reality of observed correlations, an investigator
should publish details of » and P values for e/l the factors he has examined, whether
they seem significant or non-significant. He should also indicate his a priori estimate
of the likelihcod of each, even if only in a general way, Scrupulous attention to these
matiers will forestall many an embarrassing volte-face.

In general, tentative relationships deduced from an exploratory study involving
several to many factors must be confirmed by additional information. This informa-
tion can be more observations of the kind already used, as they accumulate in the
futare. With fish pepulations, ten years or so is usually required to obtain confirmation
in this manner. To get a quicker answer, experiments or observations can sometimes
be made to determine the exact causal nature of any relationship suggested by the
correlation — which is desirable anyway, whenever possible. An observed correlation
gains vastly in acceptability if the implied biological process can be demonstrated
to occur, even if only qualitatively.

11.4.6. DIFFICULTY OF OBTAINING EVIDENCE OF SIGNIFICANT EFFECTS FROM SHORT
SERTES OF OBSERVATIONS. As a rule we expect several environmental factors to be
fairly important in determining year-class abundance. If so, no one of them can be
really outstanding, and none will be apt to have a “significant™ correlation when
series of less than, say, 15 to 25 years are available. For example, suppose that five
and only five independent and uncorrelated factors determine the variation in repro-
duction of a fish species, and that they are all of equal importance. Then the “coeflicient
of determination™ (p?) for each is 1/5 or 0.20, and the coefficient of correlation is p =
4/0.20 = 0,447, Ninetcen pairs of values are necessary to establish an estimated
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correlation of r = 0,45 as “‘significant” at the Pygs level. Hence if only 15 years’
observations were available, there might be no significant effects demonstrable even
though all pertinent possibilities had been examined. In practice, one or two of the
five #’s above would likely exceed the Py.p5 level by chance, while the others would
fall well below it; and adding more vears’ observations would almost certainly shift
the order of these r-values. In such cases the effect which initially seems most “signifi-
cant” may decrease in apparent relative importance or even subside into insignificance,
while some originally “nonsignificant” effect may become demonstrably important,
as future years’ data are added to a correlation series. Such shifts have often been
observed.

11.4,7. EFFECTS OF TWO OR MORE FACTORS CONSIDERED SIMULTANEOUSLY —
MULTIPLE REGRESSION. If measurements of all environmental characteristics examined
are all available for the same period of years, the best method of analysis is that of
multiple regression, or its close ally, partial correlation. This is particularly true if all
the relationships are reasonably close to linear. For a multiple regression analysis, it
is not necessary that the separate factors examined be independent, For example, the
joint effects of sea temperature, salinity, and wind velocity upon survival of pelagic
eggs of a fish might be examined, in a situation where these three are all somewhat
correlated among themselves. The “‘standard regression coefficients’ provide estimates
of the relative value of each factor for predicting survival. They do rot tell whether
it was temperature, salinity, wind, some unimeasured factor like current speed, or
some combination of these, which actually affected survival directly. The square of
the adjusted muliiple correlation coefficient, R;.’;, represents the fraction of the total
variability in survival which is related to all the factors examined, whether or not
the latter are correlated.

The superiority of multiple regression over single-factor analysis consists in
the fact that it will separate the effects of two correlated factors and indicate their
relative value for predictive purposes. This is especially advantageous in connexion
with antagonistic effects. Suppose, for eaxmple, that fry survival is strongly favored
by lower temperatures (over the range examined), and is rather weakly favored by
slow currents, but that years of low temperature usually have strong currents. In
that event, a simple correlation of fry survival with current speed would be positive
in spite of the fact that the biological relationship is negative. When enough years’
observations are at hand, multiple regression or partial correlation will uncover the
true relationship and provide an estimate of the importance of each effect in the
absence of the other. '

Moultiple regressions can be handled to many terms on a desk-size electronic
computer, though their interpretation can become difficult. Without such apparatus,
or for a trial run, it is desirable to limit the number of factors considered to three or
four, and good judgment is required in selecting factors for examination:

I. Preference should be given to factors which are likely to affect the organism
directly, as indicated by known or plausible biological relationships.
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2. Of two or more closely-correlated factors, only one should be used; if it is
impossible to give one of them preference on the basis above, it should be done
arbitrarily. “Close” correlation, for this purpose, would be upward from r = 0.8-0.9,
depending on the number of other factors which have to be incloded.

3. Factors represented by fairly accurate quantitative measures are to be preferred
to those only grossly or subjectively classified {for example, as 1, 2, and 3, correspond-
ing to light-medium-heavy).

For the use of *“path coefficients” in ifluminating relationships discovered,
see papers by Davidson et al, (1943) and by Li (1956), and their references to Sewall
Wright's contributions.

11.4.8. REGRESSION ANALYSIS BY STAGES. Whether because of the large number
of factors to be examined, because of non-linearity of some relationships, or because
the data are not complete for all factors, it is sometimes necessary to do an analysis
in successive stages (Rounsefell 1958). One or a few factors are used each time, and
the “residuals” computed from each fitting are used for the next one, In such work,
the environmental factors should themselves first be tested by pairs; any which
exhibit moderate correlation and seem likely to have independent effects on the Y
value should be included in the same multiple regression, if possible. Apart from
that, factors should preferably be dealt with in the order of the size of each one’s
correlation (whether positive or negative) with the effect in question; in this way the
variability of the residuals will be reduced most quickly. Probabilities of significance
can be estimated from the » or R for each regression, and an overall P-value can be
obtained by transforming and combining the separate P's to a x2 value (Fisher 1950,
section 21.1).

ExampLE 11.1. PossiBLE RELATION OF CHUM SALMON CATCHES IN TILLAMOOK
Bay To WaTteR FLow AND OTHER Factors, (From Ricker 1958a, after Henry 1953.)

The method of exploratory regression was nsed by Henry to examine relation-
ships between chum salmon landings and stream flows at the time the eggs which
produced each brood were being spawned or were in the redds — that is, in November—
April, 4 to 3% years previously. Of 32 kinds of flow examined, for individual months
or combinations, significant or suggestive (P = 0.15 or less) correlations were found
only for the maximum flow in early November and for the minimum fiow in February
(or some combination of months which included February). Further trials indicated
that minimum flow from January 15 to March 20 produced a regression with apparent
significance of P = 0.01 (this flow index is shown in column 7 of Table 11.6. The
correlation coefficient was 0.63, showing that 409, of the variation in catch is associated
with this index of stream flow over the years in question. The best prediction equation,
using this variable, was:

Y = -493.6 4 2.059x; (L7
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where Y is the expected catch in thousands of pounds, taken from the brood affected
by the flow in question, and x is the minimum flow in cubic feet per second. However,
Henry emphasizes that it is unlikely that as strong a relationship, with precisely
this flow index, would persist into the future, though some index of minimum flow
during the winter might well do so. The biological relation to be postulated is that
low water in winter exposes eggs to drought, frost, or suffocation.

Henry also combined two factors which exhibited suggestive relationships:
maximum water flow early in November {x; — in cubic feet per second), and maximum
air temperature in January or February (x; — in degrees Fahrenheit), into a multiple
regression with the above, as follows:

Y = 346.5 + 0.9731x; + 0.06610xy — 7.782x;4 (11.8)

However, application of this expression reduces the residual variability of catches
only slightly, compared with residuvals from expression {11.7).

11.5. THE RELATION BETWEEN STOCK AND RECRUITMENT

11.5.1. GenerAL. Considering that fish change their food and habits as they
grow, fish of a given age may, to varying degrees, be in competition with, or be preyed
upon by, other ages of the same species, Consequently, a completely adequate descrip-
tion of the effect of stock density on recruitment should be based on measurements of
the density of each age-group in the population separately (or combinations of ecolog-
ically-equivalent ages), together with an index of the effectiveness of each. However,
such an analysis requires information on a larger scale than anything yet in sight.
An approximation to this approach (Ricker 1954a,b) is based on the possibility that,
among the population characteristics affecting reproduction and recruitment, abun-
dance of mature spawners is often sufficiently outstanding in importance (or is suffi-
ciently well correlated with other important factors) to make it of real value for analysis
and prediction. Although cannibalism of young by adults is possible in many species,
it is likely that the effect of parental stock density upon recruitment is usually exerted
via the density of the eggs or larvae they produce, survival of the latter being affected
by density-dependent competition? for food or space, compensatory predation, ete.

11.5.2., RECRUITMENT CURVES. In principle at least, one can census a year-class
at a number of stages: fertilized eggs, larvae, fingerlings, and various older ages, Of
most inferest in. production studies is the number of recruits to the fishable stock
produced by each year-class; for many populations this number is determined mainly

2There has been considerable disagreement, particularly among entomologists, concerning
the role and perhaps even the reality of density dependence, in relation to animal abundance. A
brief review by Solomon (1957) sumimarizes the controversy from a point of view similar to what
underlies the argument here; see also Ricker {1955b).
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during the first year, particularly during egg and larval stages (Cushing and Harris
1973, Jones 1973). During this time mortality rate can vary either moderately or
severely owing to differences in environmental conditions from year to year, but it
must also bear some relation to the size of the existing stock.

A graph of recruits against spawners is called a recruitment curve; reproduction
curve is a more general term, applicable when the progeny are censussed at any
life-history stage. The points on such graphs tend to be rather dispersed because of
environmental effects, so attempts have been made to work out possible interactions
between adults and their progeny and to deduce what kind of an average curve each
would produce. For a description of biological situations that can produce one or
other of several simple relationships, refer to Ricker (1954b, 1958a), Beverton and
Holt (1957), and particularly to recent papers by Chapman (1973) and Cushing
(1973). Unfortunately our knowledge of population regulatory mechanisms in nature
is so slight that it is usually difficult to choose among different curves on this basis, so
we usually fit the simple curve that looks most reasonable. However, of the two curves
most used, the Ricker type is more appropriate when cannibalism of young' by adults
is an important regulatory mechanism, or when the effect of greater density is to in-
crease the time needed by young fish to grow through a particularly vulnerable size
range, or when there is a time lag in the response of a predator or parasite to the abun-
dance of the young fish it consumes, with resulting overcompensation for higher initial
densities of the prey species. The Beverton—Holt curve is likely to be appropriate when
there is a ceiling of abundance imposed by available food or habitat, or when a preda-
tor can adjust its predacious activity immediately and continuously to the abundance
of the prey under consideration.

Some general characteristics desirable in a curve of recruits (R) against parents
(P) are as follows:

1. It should pass through the origin, so that when there is no adult stock there
is no reproduction.,

2. It should not fall to the abscissa at higher levels of stock, so that there is no
point at which reproduction is completely eliminated at high densities. {This is not a
logically necessary requirement, but it appears reasonable and accords with observa-
tions available.)

3. The rate of recruitment (R /P) should decrease continuously with increase
in parental stock (P). In theory at least, this condition might be violated within some
intermediate range of stock densities, but the only example reported has recently been
given a different interpretation (Ricker and Smith 1975).

4, Recruitment must exceed parental stock over some part of the range of P
values {when R and P are measured in equivalent units); otherwise the stock cannot
persist,
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11.6. RICKER RECRUITMENT CURVES

11.6.1. First ForM. The family of curves proposed by Ricker (1954b, 1958a,
1971¢, 1973c) can be written in various ways, of which two are in general use. One is:

R = aPe™ (11.9)

number of recruits

size of parental stock (measured in numbers, weight, egg production, etc.)
a dimensionless parameter

B a parameter with dimensions of 1/P

2 o

Figure 11.1 is an example of such a curve. The slope (differential) of (11.9) is:

(1 - pP)ae™™ (11.10)
Equating this to zero, and since ae™™® cannot = 0, the maximum level of recruitment
is obtained when the spawning stock is:

(1.11)
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Fic. 11.1, Example of a reproduction curve of the type R = aPe-PF or R =
Pes(I-P/P2) with @ = 1.119. Point A is any point on the curve, the distance AB
representing the surplus reproduction which must be removed by fishing if the
stock is to remain in equilibrium at this level, The distance AB becomes a maxi-
mum a little farther fo the left on the curve.
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Substituting (11.11) in (11.9), maximuom recruitment is:

a  0.367%
Ry=_—= .

== (1112

Expression (11.9) can be fitted to data, and P, and R,, estimated, regardless of

what units are used for R and P. For example, P might be biomass of mature stock,

and R the number of age-2 fish produced by that stock. But when recruits and parents

are measured in comparable units such that there is a level of replacement abundance

at which R == P, this replacement level (P,} can be determined by substituting R = P
in (11.9):

1
p, = 2B (11.13)
B
11.6,2. Seconp rorM. With R and P in the same units, expression (11.9) can be
modified by introducing a parameter ¢ = P,} = logea (from 11.13). Substituting
p = a/P,and o = ¢*in (11.9):

R = Pe™i-F/F) (11.14)

In this form, replacement abundance P, appears as an explicit parameter, which is
a convenience whenever P, can be estimated. Another advantage of (11.14) is that
the single parameter g completely describes the shape of the curve (Fig. 11.2). And
since a = P,/P,, the size of spawning stock needed for maximum recruitment is
immediately known. For a>>1 maximum recruitment occurs when spawners are less
than the replacement level, and the curve becomes steeper and more dome-like as
a increases; for a <1 the recruitment maximum is at a stock level greater than replace-
ment.

11.6.3. GEOMETRIC AND ARITHMETIC MEANS. Expressions (11.9) and (11.14)
provide estimates of geometric mean values of R at a given P. To convert to arith-
metic mean values, expression (11.5) or (11.6) can be used, with s2 equal to the variance
of the poinis from the linear regression line of {11,15) or (11.16).

If the distribution of values of R at given P is log normal, the GM curve estimates
the most probable value of the recruitment obtained in any year from the observed P,
while the AM curve estimates the long-term arithmetic average value of recruitments
obtained at that P. '

11.6.4. FrrmiNG THE CURVE, The easiest way to fit (11.9) or (11.14) to a body of
data is to shift P to the left side and take logarithms, as was originally suggested
by Rounsefell (1958):

logeR —logeP == logeat — BP (11.15)
logeR —~logeP = a—aP/P, (11.16)
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The slope of the regression of (logeR —logeP) on P is an estimate of § or a/P,, and
the ordinate intercept is an estimate of logea or a. This geometric mean line can then
be converted to an AM line using expression (11.6). The work may be easier if base-10
logarithms are used, as in Example 11.3 below, Fitting the GM line can be done
using computer program RICKER-1 of P. K. Tomlinson (Abramson 1971).

LOCUS OF MAXIMUM SURPLUS REPRODUCTION
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FiG. 11.2. Reproduction curves conforming to the Ricker relationship. The point
where the curves cut the diagonal is the replacement level of stock and repro-
duction. The broken lines from the origin are loci of equilibrium reproduction
for the rates of exploitation indicated. (See Table 11.5 for the parameters.)
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An alternative method of fitting, used by Cushing and Harris (1973), is “‘simply”
to minimize the sum of squares of deviations from the curve by trial and error, using
a computer. (Estimates obtained from the logarithmic fitting can be used as initial
trial values.) This procedure gives an AM line which can be very close to the one
obtained using logarithms and (11.6); however, the logarithmic procedure will
usually have the advantage of stabilizing variance of points from the line,

11.6,5. OTHER sTATISTICS., Appendix III summarizes a series of statistics derived
from (11.9) and (11.14). Ttem 19 is probably of greatest interest, showing how to
find maximum sustainable yield (maximum equilibrium catch or maximum surplus
reproduction). Figure 11.2 illustrates that MSY is obtained at the point where the
curve is parallel to the replacement line, i.e. when its slope is 1. Spawners needed
(P,) are found by equating the slope to 1 and solving by trial; the two forms of this
equation are as follows:

(1 BPJae™ =1 (11.17)
(1 — aP,/P )"/ — 1 (11.18)

(If (11.18) is used, it is convenient to put P, = 1 until after P, has been located.)

From the value of P, so obtained, R, is computed from (11.9) or (11.14), and
MSY is computed as C, = R, —P,. Alternatively, the arithmetic mean value of R,
can be computed using (11.6), and again C; is found by difference.

Another point of interest concerns maximum recruitment (R,, — items 9 and
10 of Appendix IID). R, is equal to u/fe, obtained from spawners P, = 1/B; thus
the rate of recruitment at maximum absolute recruitment is R, /P, = w/e. The
maximum rate of recruitment occurs when P—0, and is equal to o (item 3 of Appendix
1ID). Thus maximum abselute recruitment {for this model) always occurs when rate
of recruitment is 1/¢ or 379 of its maximum. The difference in instantaneous morta-
lity rate between the two situations is exactly 1.

11.6.6. ILLUSTRATIONS, Figure 11.2 shows 5 reproduction curves that conform
to (11.9) and (11.14). The corresponding parameters and certain characteristic quan-
tities are shown in Table 11.5. Notice that a wide variety of shapes is possible within
the framework of one simple mathematical expression.

A variety of questions can be answered from Table 11.5 and Appendix 1L
For example, at one time it was required that 50%; escapement be allowed in Alaska
salmon streams; thus we might like to know the shape of the Ricker curve for which
catch and escapement are equal at maximum sustainable yield (MSY). From item
(21) of Appendix III, a = 0.5-loge(l - 0.5y = 1.193; thus the curve lies a little
below E of Fig. 11,2, passing through the point where the locus of maximum surplus
reproduction cuts the line of 50%, exploitation. For this curve the spawning stock
required for MSY is 429 of the primitive average stock abundance.
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TapLE 11.5. Parameters of the five reproduction curves of Figure 11.2, and one other, computed
from Appendix IIT, The replacement level of stock is P == 1000,

Curve D A E F R C
Parameter a of (11.14) 0.667 1.000 1,250 1.500 2.000 2,678
Parameter o of (11.9) 1,948 2,718 3.490 4,482 7.389  14.556
Parameter f} of (11.9) 0.000667 0.001 0.00125  0.0015 0.002 0.002678
Maximum recuitment (R,;) 1072 1000 1027 1102 1359 2000
Spawners needed for maximum

recruitment (Prm) 1500 1000 800 667 500 373
Maximum sustainable yield —

MSY (C,) 198 330 447 587 935 1656
Spawners needed for MSY (P,) 436 433 415 397 361 314
Recruitment at MSY (R,) 654 763 862 984 1296 1970
Rate of exploitation at

MSY (4,) 0.304 0,433 0.519 0,596 0,722 0.841
Limiting equilibrium rate of

exploitation 0.486 0.632 0.714 0.777 0.865 0.932

ExameLE [1.2. FrrmiNG A ReCRUITMENT CURVE TO A Cob PoruLaTION. (Data
from Garrod 1967.)

Figure 11 of Garrod (1967) illustrates success of reproduction for Arcto-Norwe-
gian cod. An index of year-class strength is plotted against an index of stock weight,
both indices being obtained by various adjustments to rather complex primary data.
In Fig. 11.3 the reproduction curve of expression (11.9) is fitted to Garrod’s data,
using the ordinary regression of logeR - logeP against P, because P is likely to be
much more accurate than R. The constants are loget = 1.774, ¢ = 5.89, and § =
0.01861. Variance from the regression line is s2 = 0.3180, and from (11.6) the multi-
plier 1.165 is obtained to convert the GM line to an AM line; both are shown on
Fig. 11.3.

Neither line is a perfect fit to the apparent trends in the data, though they probably
lie within limits of possible random error. An empirical curve would be steeper and
would have a higher dome; however, Garrod (p. 179) suggests that both R and P
are too small for the years 1937-43, and that R is somewhat too large in 1949 and
too small in 1950. If these adjustments were made, the fit would be considerably
better. The large year-to-year variability is typical of the known history of this stock.

There is no direct way to compute the replacement level of stock from Fig, 11.3.
However, the primitive stock size is not likely to have been much if any less than the
[argest shown on the graph, and making allowance for underestimation of points
for the earlier years, I have drawn a possible replacement line to pass through (P =
180, R = 50). In the natural state of this stock a rather small annual contingent of
recruits (starting at age 3, say) joined an existing body of older fish that was many
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Fic. 11.3. Graph of recruitment against parental stock for Arcto-Norwegian cod. Solid curves—
Ricker reproduction curves for geometric and arithmetic mean values; the broken curve is drawn
freehand (see the text). (Data from Garrod 1967.)

times more numerous. Usually these recruits replaced the annual natural deaths
among older fish, which may have amounted to about 109, (in Example 2.5 a total
death rate of 259 was estimated for a period when a considerable fishery already
existed).

Under conditions of intensive exploitation, however, the cod population assumes
a new character. Stock older than age 3 is less numerous, or at least less in total bulk,
and is much younger, and the average number of recruits per year is much greater,
both relatively and absolutely. Figure 11.3 shows that maximum sustainable recruit-
ment should be less than maximum recruitment, but not much less. From (11,11},
the stock size which gives maximum recruitment is P, = [/0.01861 = 53.7, and
from (11.12) the corresponding recruitment is R, = 0.3679 X 5.89/0.01861 = 117
from the GM curve, and 117 X 1.165 = 136 from the AM curve. Thus P, should
be somewhat less than 54, the AM of R, values should be a little less than 136, and
the maximum sustainable yield would be the difference, or about 80.

To estimate sustainable yields for different ages of recruitment and different
fishing mortality rates, growth rates and natural mortality rates need to be known
and combined with recruitment information, Walters (1969) estimated equilibrium
yields for this stock by the method of Section 12.4.2, but the natural mortality rates
he used are so impossibly high that the result is not realistic. Any simulation of the
actual history of the stock would have to be done year by year, and would have to
take account of the fishing-up effect as well as changes in recruitment,

A. possible reason for the cod curve having this shape is found in the observation
of Ponomarenko (1968} that cod in the Barents Sea cat large numbers of their own
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young, As mentioned in Section 11.5.2, population control by cannibalism is one
of the situations which can lead to the reproduction curve of expression (11.9),

ExaMPLE 11.3. FITTING A RECRUITMENT CURVE TO STATISTICS OF TILLAMOOK
Bay Caum SArMon, (Modified from Ricker 1958a, after Henry, 1953.)

Chum salmon (Oncorfiynchus keia) of Tillamook Bay mature mostly at age 4,
as described in Example 11.1; so each year’s catch (C) can be considered as largely
the progeny of the spawning stock of 4 years earlier. Henry says that much the same
group of fishermen fished the bay over the years included in Table 11.6, so that
year-to-year variation in rate of exploitation was probably not large except in 1932:
in that year economic conditions greatly reduced the catch in November and December
(Henry 1953; p. 11, 17; the quantities taken in October suggest there would have been
a better-than-average catch if fishing had continued). To make an objective recruil-
ment analysis of these data, it would be necessary to know also the escapement (P)
in each year, so that total return (R = P - C) could be related to P four years earlier.
No such data are available, but for the purpose of illustration I have assumed C = P
each year; thus C serves as an estimate of P, and 2C of four years later serves as an
estimate of the resulting R {Table 11.6). To obtain a curve of the form of expression
(11.16), an ordinary regression line was fitted to log o(R /P) against P, the unit being
1000 Ib throughout. The slope was -0.0003919 and the Y-axis intercept -}0.6295,
These values are converted to terms of natural Togarithms and applied in (11.16):

a/P, = 0.0003919 /0.4343 = 0.0009024
a = 0.6295/0.4343 = 1.450
P, = 1.450/0.0009024 = 1607 thousand Ib

The equation becomes:
R = Pel500-p/1607) (11.19)

Figure 11.4A shows the log data and the line fitted; the lower curve