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Abstract

1. Quantitative habitat suitability models (HSMs) are frequently used to inform the con-

servation and management of lotic organisms, often in the context of instream flow
management. Correlative statistical models relating hydraulic variables to habitat pref-
erences (habitat suitability curves based on use:availability ratios) are the most common
form of HSM, but face significant criticism on the grounds that habitat preference may
not reflect the fitness consequences of habitat use. Consequently, there has been a

drive to develop mechanistic approaches that link habitat to direct correlates of fitness.

. Bioenergetic foraging models relating hydraulic conditions to energy balance

are particularly well-developed for drift-feeding fishes (e.g. salmonids) and show
promise as a more mechanistic approach to modelling suitability. However, these
models are rarely validated empirically or quantitatively compared with correla-
tive HSMs. We addressed these gaps by comparing the ability of a bioenergetics-
based HSM and two correlative HSMs (a traditional suitability index and a resource
selection function) to predict density and growth of stream salmonids (juvenile

steelhead, Oncorhynchus mykiss, and coastal cutthroat trout, Oncorhynchus clarki).

. Suitability estimates differed between the approaches, with both correlative

models predicting higher suitability relative to the bioenergetic model at shallow
depths and low to intermediate velocities, but lower suitability as depth increased.
The bioenergetic model explained over 90% of variation in trout growth, com-
pared to c. 50% for the correlative model. The bioenergetic model was also better
at predicting fish density; however, the improvement was less striking and a high

proportion of variation remained unexplained by either method.

. Differences in suitability estimates between approaches probably reflect biotic

interactions (e.g. territorial displacement or predation risk) that decouple realised
habitat use from energetics-based estimates of habitat quality. Results highlight
fundamental differences between correlative HSMs, based on observed habitat
use, and mechanistic HSMs, based on the physiology and behaviour of the focal
taxa. They also suggest that mechanistic bioenergetics-based models provide
more rigorous estimates of habitat suitability for drift-feeding stream fishes. The
bioenergetics approach is readily accessible to instream flow practitioners because

model predictions are expressed in terms of traditional habitat suitability curves.

Freshwater Biology. 2019;00:1-14.
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1 | INTRODUCTION

Quantitative models for evaluating habitat suitability are critical for
effective natural resource management and conservation. Habitat
suitability models (HSMs) take a variety of forms but can be gener-
ally grouped into two distinct classes: correlative habitat selection or
preference models and mechanistic niche models. Correlative mod-
els determine suitability by statistically relating habitat features to
the occurrence or density of a target species (Boyce & McDonald,
1999; Manly, McDonald, Thomas, McDonald, & Erickson, 2007). In
contrast, mechanistic models determine suitability by linking habitat
features to more direct fitness correlates, such as, energy balance,
growth, or survival, premised on fundamental knowledge of a target
species’ physiology or behaviour (Kearney & Porter, 2009). Because
mechanistic HSMs more explicitly link habitat to fitness, they argu-
ably provide a more robust and transferable approach for predict-
ing biological responses to habitat change (Cuddington et al., 2013;
Kearney, Simpson, Raubenheimer, & Helmuth, 2010). However,
model practitioners with limited time and resources are often con-
strained by computational complexity and the scope and detail of
information required to make predictions. Consequently, despite
the rapid advancement of mechanistic HSMs for an array of taxa,
simple correlative approaches are often used in lieu of more mech-
anistic ones (Meineri, Deville, Grémillet, Gauthier-Clerc, & Béchet,
2015). This disjunction between model development and application
is especially evident in stream ecosystems, where correlative HSMs
are routinely applied to navigate trade-offs between fish habitat
requirements and water allocation for human use (Anderson et al.,
2006).

Habitat assessments for stream fishes often rely on standardised
suitability indices for physical habitat variables such as depth and
velocity, which are then integrated with hydraulic models to make
predictions of how fish habitat availability responds to changes in
stream flow or channel structure (Ahmadi-Nedushan et al., 2006;
Lamouroux, Hauer, Stewardson, & LeRoy Poff, 2017). This ap-
proach is particularly integral to the physical habitat simulation
model (PHABSIM; Bovee et al., 1998), a widely used framework for
predicting biological responses to changing discharge to inform in-
stream flow management decisions. Suitability indices for these ap-
plications can be developed in different ways (Dunbar, Alfredsen,
& Harby, 2012). Most often, they are defined by habitat suitability
curves (HSCs), which are simple correlative models based on ob-
served frequency of microhabitat use. Habitat suitability curves are
generated by dividing the frequency of use for different microhabi-
tat conditions (e.g. depth) by habitat availability to produce a univar-
iate selection index that is standardised to a maximum of one (e.g.
Beecher, Thorn, & Carleton, 1993). A combined suitability metric is

then computed as the product of standardised suitability indices for
each habitat variable considered.

While HSCs based on use:availability ratios are computationally
and conceptually convenient, they have seen little change since their
initial development, and have been strongly criticised as being out
of step with modern habitat modelling techniques (Railsback, 2016).
Many have advocated for more statistically rigorous approaches that
consider habitat selection as a multivariate process and incorporate
covariance and interactions among habitat variables (e.g. Beakes
et al., 2014; Guay et al., 2000). Numerous methods for this are
available, including probabilistic resource selection functions (RSFs)
developed in the terrestrial wildlife literature (Boyce & McDonald,
1999); however, they are all ultimately correlative. A deeper issue
that no correlative HSM can resolve is that habitat preference
may be a poor indicator of the fitness consequences of habitat use
(Garshelis, 2000), especially for territorial animals like many stream
fishes where subordinate individuals are often displaced into lower
quality habitats at high densities (Railsback, Stauffer, & Harvey,
2003; Van Horne, 1983). Mechanistic models that link habitat condi-
tions to individual-level fitness can address this issue (e.g. Railsback,
Harvey, Jackson, & Lamberson, 2009; Van Winkle et al., 1998), but
the complexity of these approaches has limited their use by practi-
tioners (Reiser & Hilgert, 2018).

For stream fishes that feed on drifting invertebrates (e.g. salmo-
nids), bioenergetics-based foraging models provide a useful interme-
diate step between correlative HSMs and more complex mechanistic
approaches (e.g. Railsback et al., 2009). Drift-foraging bioenergetics
models describe the energetic consequences of foraging as a func-
tion of the hydraulic environment, temperature, and prey abun-
dance, ultimately estimating habitat quality in terms of net energy
intake (NEI), i.e. the balance between energetic costs and benefits
in different habitat conditions (Fausch, 1984; Hughes & Dill, 1990;
Piccolo, Frank, & Hayes, 2014). While NEl is not an explicit measure
of fitness per se and there are issues directly translating model esti-
mates to predict growth, NEI does effectively rank relative habitat
quality (Rosenfeld, Bouwes, Wall, & Naman, 2014). Thus, it provides
a metric of suitability that causally links habitat conditions to poten-
tial energy gain, which is an improvement over correlative suitabil-
ity metrics that often lack a clear ecological interpretation (Addley,
1993; Hayes, Goodwin, Shearer, Hay, & Kelly, 2016). Consequently,
bioenergetics-based HSMs have been gaining traction in applied
contexts (e.g. Bouwes, Bennett, & Wheaton, 2016) and numerous
iterations of the approach have been developed (Piccolo et al., 2014;
Rosenfeld et al., 2014). These include converting bioenergetic pre-
dictions into standardised suitability indices for water velocity and
water depth (hereafter: velocity and depth) as a simple mechanistic

alternative to correlative indices within the PHABSIM modelling



NAMAN ET AL.

Freshwater Biology =aAWA| LEYJ—3

framework (Braaten, Dey, & Annear, 1997; Rosenfeld, Beecher, &
Ptolemy, 2016).

Regardless of whether habitat suitability indices are defined by
simple use, availability ratios, occupancy probability, or energy bal-
ance, there is an implicit assumption that indices accurately repre-
sent fish abundance and/or performance. This assumption is rarely
confronted, especially for bioenergetic HSMs where model devel-
opment has outpaced empirical validation (but see Urabe, Nakajima,
Torao, & Aoyama, 2010; Wall, Bouwes, Wheaton, Saunders, &
Bennett, 2016). In addition, correlative and bioenergetic HSMs are
rarely directly compared, making it difficult to quantify their respec-
tive benefits and limitations. We addressed these gaps by comparing
correlative and bioenergetic HSMs both in terms of their predicted
habitat suitability values and their ability to predict observed density
and growth of juvenile salmonids across a gradient of habitat condi-
tions. We specifically contrasted three models: (1) a mechanistic bio-
energetic drift-foraging model; (2) a simple correlative model based
on the product of univariate HSCs for depth and velocity (hereafter:
HSC-based model), as typically used in instream flow assessments;
and (3) a more statistically rigorous (but still correlative) RSF based
on a generalised linear model that incorporates multiple habitat vari-
ables simultaneously.

We predicted that biotic interactions might cause suitability es-
timates from both correlative models to diverge from the density-in-
dependent bioenergetic predictions. In particular, we expected that
correlative models would over-estimate habitat suitability relative
to the bioenergetic model due to territorial displacement of sub-
dominant fish into energetically unfavourable habitat, e.g. very slow
velocities and shallow depths (Nielsen, 1992). Territoriality is fre-
quently observed in stream salmonids (Nakano, 1995) and probably
exerts a strong influence on correlative HSMs (Beecher, Caldwell,
DeMond, Seiler, & Boessow, 2010; Orth, 1987; Rosenfeld, Leiter,
Lindner, & Rothman, 2005). With respect to HSM performance pre-
dicting density and growth, we predicted that: (1) the bioenergetics
model would outperform both correlative models given that it in-
corporates the fundamental mechanisms linking habitat to energy
intake and swimming costs; (2) the RSF would outperform the HSC-
based model due to its enhanced statistical rigor; and (3) bioener-
getic suitability estimates would predict growth better than density,
since the mechanistic relationship between modelled net energy in-
take and growth is more direct, whereas additional influences (e.g.
predation risk, competition) can complicate the link between net en-
ergy intake estimates and density.

2 | METHODS

Two independent validation data sets were used to address our ob-
jectives. First, we generated correlative HSMs and parameterised
the bioenergetic model with field observations of juvenile steelhead
(Oncorhynchus mykiss) microhabitat use and abundance, invertebrate
drift, and hydraulic attributes from two streams. We then compared

suitability estimates among the three HSMs as well as their ability

to predict steelhead density at the channel unit scale. Second, we
used data from an earlier field experiment (Rosenfeld & Boss, 2001)
to compare how well the contrasting HSMs (specifically the bioener-
getic versus HSC model) could predict density-independent growth
of coastal cutthroat trout (Oncorhynchus clarki) in experimental en-
closures. We elaborate further on these procedures below but first
describe our bioenergetics-based HSM.

2.1 | Bioenergetics-based HSM

Our bioenergetics-based HSM is premised on the drift-foraging bi-
oenergetics model from Rosenfeld and Taylor (2009) and Hughes,
Hayes, Shearer, and Young (2003), which built on the foundational
work by Fausch (1984) and Hughes and Dill (1990). Drift-foraging
bioenergetics models essentially describe how velocity and depth
influence the geometry of prey detection and capture for fish in
flowing water, while also accounting for the energetic costs of swim-
ming, maneuvering to capture prey, and metabolism. The ultimate
currency of the model is instantaneous NEI (J/s), which is computed
as gross energy intake less the combined energy costs. Gross en-
ergy intake is determined by invertebrate drift concentration (num-
ber/m3), size-dependent reaction distances of a fish to discrete size
classes of invertebrates, and the total flux of drift through a fish's
reaction volume. Energy costs of swimming and maneuvering are
primarily functions body size, temperature, and water velocity
(Table 1).

Further details of the modelling approach are well described
elsewhere (see Rosenfeld & Taylor, 2009; Rosenfeld et al., 2014);
however, our model differs from earlier efforts in several ways. First,
NEI calculations in most drift-foraging models are made on a series
of grid cells within a teardrop-shaped reaction volume that extends
from a fish's focal point out to the maximum distance it can detect
and capture prey. To match the circular volume boundary, cells at
the edges are wedge-shaped (Hughes et al., 2003). In contrast, our
model treats the foraging volume as a symmetric grid of 5 cm? cells
on the plane of the focal point that extend upstream to the reaction
distance; cells are included in the reaction volume if their centres fall
within the maximum capture distance. This approach was motivated
by our goal of building bioenergetic HSCs from depth and velocity
alone, as opposed to mapping NEI across a channel with known ge-
ometry. It also still approximates a hemispherical foraging volume
while considerably simplifying its calculation. However, by using a
symmetric grid the model cannot account for irregularly shaped for-
aging volumes or lateral velocity gradients within a fish's reactive
field (Guensch, Hardy, & Addley, 2001; Hughes et al., 2003). Second,
our model includes a novel diet optimisation algorithm to account
for fish ignoring low-quality prey items that would not increase their
overall NEI. Following the logic of optimal foraging theory (Charnov,
1976), the model performs the full NEI calculations with and with-
out each prey category, then removes a prey category if a fish's NEI
would be higher without it (i.e. if costs of prey acquisition exceed
benefits). This process is repeated until a full cycle over all prey cat-

egories is completed without any additional removals. This feature
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TABLE 1 Components of the drift-foraging bioenergetics model

Parameter
T

%

i

j

J

FL

Conc;

MCD,
Cs

sc
PD
PT
RT

PS
RS
TS
MC
ER

El

EIA
T
GEI
EC
NEI

of the model is particularly influential in preventing unrealistically

negative NEI values under conditions where drift-feeding is not en-

Definition

Temperature (°C)

Velocity (cm/s)

Prey length class within | 1-mm bins
Subscript denoting one 5-cm? cell

Total number of cells in foraging
volume

Fork length (cm)
Concentration of prey class i

Energy content of prey class i

Minimum prey length in diet (mm)
Maximum prey length in diet (mm)
Reaction distance (cm) to prey class i

Maximum sustainable swimming speed
(cm/s)

Optimal swimming speed (cm/s)
Maximum prey capture distance (cm)

Prey capture success proportion

Focal swimming cost (J/s)
Pursuit distance (cm)
Pursuit time (s)

Return time to focal point (s)

Scaler for pursuit in unsteady flow
Scaler for return in unsteady flow
Scaler for energy costs of turning
Energy costs of maneuvering (J)

Total prey encounter rate (n/s)
Total energy intake (J)

Total energy intake assimilated (J)
Total searching and handling time (s)
Gross energy intake rate (J/s)

Total energy costs (J/s)

Net energy intake rate (J/s)

ergetically profitable (Rosenfeld et al., 2014).

We used predicted NEI from the bioenergetics model to gener-
ate standardised habitat suitability criteria following Rosenfeld et al.
(2016). Using invertebrate drift concentrations, fish size, and water
temperature as inputs, the model computes NEI across all combi-
nations of depth and velocity over a user-specified range, creating

a bivariate NEI surface (Figure 1). Net energy intake rate values are

Method

Field data
Field data
Field data
This model
This model

Field data
Field data

Published conversions

PL,.. = 0.115FL

PL,.. = 4.415FL

RD; = 0.12PL(1 - e %2
- 0.19

Viax = 36.23FL

VOpt = 17.6 mass®®

MCD = (RD2 — (V+ RD; /Vmax2)°3)
CS=e"/(1+¢€")

u=1.28-0.0588V + FL
-0.0918(Depth/RD)
-0.210V(Depth/RD)

SC = a(mass)e"?Te3(0-91)(4.2/86,400)
PD; = (2/3)RD,

PT = PD/V

RT = PD/V,,,

PS = (3V2)%

RS = (3\/ozpt)05

TS = 0.978e%002V

MC = (PT)(SC)(PS) + (RT)(RS)(TS)

j
ER=2(3 1100V,CONC;)
i

El= ¥ ICS EREC,

EA = ENO.7(EI/1 + PT))
TT=1+PT

GEl = EI/TT
EC=SC+MC

NEI = GEI-EC

Reference/Source

Benke et al. (1999); Cummins and
Wuycheck (1971)

Warkowski (1979)
Warikowski (1979)
Hughes and Dill (1990)
Warikowski (1979)

Hughes and Dill (1990)
Wankowski (1979)
Rosenfeld and Taylor (2009)
Rosenfeld and Taylor (2009)
Rosenfeld and Taylor (2009)

Hayes et al. (2016)
Hayes et al. (2016)
Hayes et al. (2016)

Rosenfeld and Taylor (2009);
Hayes et al. (2016)

Hayes et al. (2016)
Hayes et al. (2016)
Hayes et al. (2016)
Hayes et al. (2016)
Hughes et al. (2003)

Hughes et al. (2003)

Hughes et al. (2003)
Hughes et al. (2003)
Hughes and Dill (1990)
Hughes and Dill (1990)
Hughes and Dill (1990)

then standardised to a maximum of 1 by dividing each value by the

overall maximum. To allow comparison with correlative HSMs that

make predictions on a 0-1 scale, negative bioenergetic suitability

values are set at 0. This effectively assumes all conditions where
a fish would experience an energy deficit are equally unsuitable
(Rosenfeld et al., 2016). The model was built in Python (version 3.3)
and is designed as a graphical user interface-based tool to generate
bioenergetic indices of habitat suitability (preliminary version avail-

able at https://github.com/JasonNeuswanger/BioenergeticHSC).
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FIGURE 1 Conceptual diagram of the bioenergetic habitat suitability modelling approach. The model is initially parameterised with
concentrations of invertebrate drift (in 1-mm length bins), fish length and mass, and temperature. The model then computes net energy
intake (NEI) across all combinations of depth and velocity within a specified range, creating a three-dimensional NEI surface. This surface is
standardised to a maximum of 1 by dividing all NEI values by the global maximum. These standardised suitability values are then matched
to field measurements of depth and velocity and aggregated to characterise the distribution of habitat suitability over a larger scale; for
example, the figure in the top right corner is a riffle from Silver Hope Creek, BC, Canada

TABLE 2 Mean attributes of each sampled reach. Except for the total area sampled, values are the mean among channel units. Dominant
substrate types are based on visual classification during depth and velocity transects. Discharge and temperature data are averaged for the

duration of our sampling. Densities and fork lengths are only for steelhead fry

Stream Reach Total area (m?) Unit area (m?) Substrate Q (m®/s) Temp. (°C) n/m? g/m? FL (mm)
Coquitlam 1 1,297.59 43.25 Cobble-Boulder 2.40 17.50 1.10 1.21 44.36
Silver Hope 1 882.69 51.92 Gravel-Cobble 0.38 10.54 0.87 1.78 54.98
Silver Hope 2 465.39 33.24 Cobble-Boulder 0.30 10.30 0.41 1.00 60.03

2.2 | Habitat suitability curves

We used standard instream flow methodology to develop the cor-
relative HSC-based model by directly measuring juvenile steelhead
microhabitat preferences, i.e. depth and velocities used relative to
depths and velocities available in the environment. Data were col-
lected in August and September from the Coquitlam River (49.3370’
N, -122.770" W) and Silver Hope Creek (49.2600" N, -121.3970'
W), two tributaries to the lower Fraser River in Southwest, British

Columbia, Canada (site attributes presented in Table 2). Both sys-
tems contain populations of resident and anadromous O. mykiss and
several other fish species; coho (Oncorhynchus kisutch), mountain
whitefish (Propesium williamasi), speckled dace (Rhinichthys osculus),
and sculpins (Cottus spp.) occur in the Coquitlam, while low densities
of bull char (Salvelinus confluentus) occur in Silver Hope. Several of
these species are also drift-feeders but were not sufficiently abun-
dant to reliably estimate density. In the absence of information on
length-age relationships, we distinguished steelhead fry (0+) from
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parr (1+) using a threshold of 75 mm that corresponded to distinct
breakpoints in length-frequency histograms for both streams. All re-
sults were insensitive to this cut-off within £ 20 mm.

We conducted steelhead microhabitat observations in a discrete
c. 200-m long reach in the Coquitlam, and two separate c. 100-m
long reaches of Silver Hope Creek. To measure steelhead microhab-
itat use, a snorkelling observer moving upstream would carefully
mark the location of undisturbed fish, where a second observer
would then measure the depth and mean water column velocity
(60% of the water depth; 20% and 80% if depth exceeded 1 m). We
estimated habitat use for 256 steelhead fry, 174 in the Coquitlam
and 82 in Silver Hope (two reaches combined). We quantified habitat
availability by delineating each reach into constituent channel units
(e.g. riffle, pool, run, and glide; Frissell, Liss, Warren, & Hurley, 1986),
and measuring transects of depth and average water column veloc-
ity using a top-set wading rod and Marsh McBirney flow meter (Hach
Corporation). Measurement points were spaced 20 cm apart on each
transect and longitudinal transect spacing varied between 20 and
50 cm depending on the channel unit area. This transect spacing
approximated the reaction distance (18-24 cm) of steelhead in our
study calculated from the drift-foraging model and was also similar
to previous methodology used to construct correlative habitat suit-
ability criteria (Beecher et al., 2010).

Reach-scale habitat availability was computed by summing all
transect points, which were weighted by the proportion of stream
area they represented (Beecher et al., 1993). We determined scaled
habitat preferences for depth and velocity in each reach by divid-
ing proportional use by availability, then standardising to a 0-1 scale
by dividing each preference value by the maximum. Because of low
sample sizes, the two Silver Hope reaches were combined for this
analysis. Smoothed suitability curves for velocity and depth in each
stream were then derived by fitting probability density functions
with L-moments distribution statistics using the R package Imomco
(Som, Goodman, Perry, & Hardy, 2015). In all cases, the Weibull
distribution was selected over several other candidate probability
density functions (Gamma, exponential, and Rayleigh) based on its
higher maximum likelihood. Habitat suitability curves generated
with this method were qualitatively similar to other commonly used
approaches including kernel density smoothers (Hayes & Jowett,
1994) and univariate logistic regressions (Ayllon, Almodévar, Nicola,
& Elvira, 2012).

2.3 | Multivariate RSFs

As a more statistically rigorous correlative HSM, we developed prob-
abilistic RSFs, a form of HSM that describes the relative probability
that habitat features are used in relation to their availability (Boyce &
McDonald, 1999). We constructed RSFs for steelhead in each stream
by creating matrices of relative preference for every unique com-
bination of depth and velocity (Coquitlam: n = 1,294; Silver Hope:
n = 1,084), then fitting a generalised linear model with a quasibino-
mial error distribution and log link function using the R package Ime4
(Bates, Machler, Bolker, & Walker, 2015). This approach for RSFs is

analogous to logistic regression using presence-absence data (Manly
et al., 2007). We fit both linear and second-order polynomial terms
as well as interactions and tested significance with nested likelihood
ratio tests based on the X2 distribution (Zuur, Leno, Walker, Saveliev,
& Smith, 2009). We used the RSFs to predict habitat use probabili-
ties across all combinations of depth and velocity observed in the
field, then standardised probabilities to a 0-1 scale to be consistent
with other HSMs (Ayllén et al., 2012). Substrate size and presence of
cover were measured in the field but were not significant predictors
in the RSFs and did not influence HSC-based suitability predictions,

and thus were not included in subsequent analysis.

2.4 | Comparison of model performance

To compare the ability of the three HSMs (bioenergetics, correla-
tive HSCs, and the multivariate RSF) to predict steelhead density, we
identified discrete geomorphic channel units within the designated
reaches based on homogeneity of depth and velocity. We then es-
timated the density of steelhead fry in each channel unit (n = 45; 22
in the Coquitlam, 23 in Silver Hope) by either snorkelling or electro-
fishing depletion. Snorkelling was conducted in channel units with
depths exceeding 20 cm. Starting from downstream, one observer
would move upstream in a zig-zag pattern while enumerating fish
and estimating their body length to the nearest 10 mm using mark-
ings on their glove as a reference. Means and standard errors of
abundance estimates were computed based on 3-5 replicate snor-
kels for each unit. To increase the accuracy of snorkel estimates, we
approximated stream-specific detection efficiencies with mark-re-
capture (Korman, Decker, Mossop, & Hagen, 2010). Steelhead col-
lected outside the study reach (n = 5-10) were marked with a small
strip of elastomer (Northwest Marine Technology) injected under the
dorsal fin, then released into channel units (n = 2 per stream) prior to
snorkelling. The elastomer tag was designed to be visible once a fish
was seen without increasing the likelihood a fish would be detected,
as would a larger tag. We then snorkelled through each habitat unit
6-8 hr after releasing fish as well as in directly adjacent units to en-
sure fish movement did not bias estimates. Abundance was then cor-
rected for efficiency (Coquitlam = 0.87; Silver Hope = 0.56).

In shallow units, we estimated steelhead abundance using
multi-pass electrofishing depletion. Channel units were completely
enclosed with 5-mm mesh nets to prevent biases associated with
fish movement (Wathen, Weber, Bennett, Bouwes, & Jordan, 2017),
then sampled until either zero fish were caught or the number of
fish caught decreased for three successive passes. Low conductivity
precluded electrofishing in two channel units in the Coquitlam, so
depletion procedures were conducted using pole seines. Captured
fish were anaesthetised with tricaine methanesulfonate, measured
to the nearest 1 mm and weighed to the nearest 0.1 g. Abundance
was estimated for each channel unit using the maximum likelihood
method for closed populations following Carle and Strub (1978)
implemented in the R package FSA (Ogle, 2018). Abundance was
estimated by both snorkelling and electrofishing in a subset (n = 7)

of channel units to determine whether methods were comparable,
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which indicated a close correspondence in population estimates
with no strong directional bias (r = 0.81).

We characterised the hydraulic environment within each chan-
nel unit by measuring transects of depth and velocity as described
above, which resulted in 80-200-cm depth and mean water column
velocity observations per unit. Temperature was recorded every
15 minin each reach using Onset HOBO temperature loggers (Onset
Computing Corporation). To parameterise the bioenergetics model,
invertebrate drift was measured at three or four locations within
each reach (n = 36 total samples). Sampling at each location involved
setting two adjacent drift nets (306 cm? opening, 250-pm mesh)
for two replicate 30-45 min periods between 10h00 and 14h00.
Filtration efficiency, estimated from the ratio of velocity at the be-
ginning relative to the end of the sampling period, was always above
95%. Drift samples were preserved in 75% ethanol, then inverte-
brates were separated from debris under a dissecting microscope
in the laboratory at 10x magnification, identified to order, and mea-
sured to the nearest 0.1 mm using an ocular micrometer. We com-
puted drift concentrations by dividing the number of invertebrates
in each 1-mm body length class by the volume of water filtered, then
estimated dry mass and energy content using order-level conver-
sion equations (Benke, Huryn, Smock, & Wallace, 1999; Cummins &
Wuycheck, 1971).

Habitat suitability was estimated for all transect points within
each channel unit. For the bioenergetics approach, we estimated
habitat suitability at each point by parameterising the model with
reach-averaged invertebrate drift concentration, fish size, and day-
time temperatures in each stream. We set the focal point of fish at
80% of the water depth (i.e. 20% off of the stream bottom) to match
snorkel observations (S. Naman, unpublished data) and assumed a
logarithmic vertical velocity profile (Hayes, Hughes, & Kelly, 2007).
Bioenergetic habitat suitability was then modelled across all com-
binations of depth (0-2 m) and velocity (0-2 m/s) at 0.01 (m or m/s)
intervals to correspond to the depth and velocity ranges measured
in the field, then suitability values were matched to each transect
point. For the HSC model based on microhabitat use frequency,
we computed a composite suitability index at each point using the
HSIDepth - HSI where HSl;is the
depth or velocity suitability index from the HSC generated from our

product equation: HSI

Composite = Velocity’

microhabitat observations. Finally, for the RSF, we matched stan-
dardised suitability predictions for the depth and velocity combina-
tion at each transect point.

To compare channel unit-scale habitat suitability to observed fish
density, we aggregated suitability values in two ways: first, as the
mean suitability value across all points in a channel unit, and sec-
ond, as the proportion of points in each channel unit with suitability
values above 0, which approximates the area of usable habitat in a
channel unit. For instance, a larger proportion of above-zero bioen-
ergetics-based suitability indicates a larger proportion of area where
fish can achieve a positive energy balance (Wall et al., 2016).

To assess the performance of contrasting HSMs in predicting
salmonid growth, we used data from Rosenfeld and Boss (2001),
who measured the growth of cutthroat trout fry (40-60 mm FL) and

parr (120-160 mm FL) that were enclosed at low densities in pool
or riffle habitats in a natural stream. Individual growth rates were
measured over 27 days and observations of focal foraging depths
and velocities were made from the stream bank. Invertebrate drift
was also collected using similar methods to those we described (see
Rosenfeld & Boss, 2001 for complete description of experiment).
With this information, we parameterised the bioenergetics model
and predicted habitat suitability at each focal depth and velocity.
Correlative HSMs were not available for the specific study stream
so we used published suitability curves for coastal cutthroat trout in
British Columbia; curves for parr came from Heggenes, Northtote,
and Peter (1991) and curves for fry came from Burt and Horchik
(1998). Habitat suitability curve-based suitability indices for each
focal point were computed as the product of suitability curves for
depth and velocity as described above. Bioenergetic and correlative
suitability estimates were then used as independent predictors of
the mean growth (% mass/day) of fish in each enclosure. Bioenergetic
estimates were normalised relative to fish mass (i.e. NEI/g) in order
to compare suitability of fry and parr on the same scale. Because
only univariate suitability curves were available, we were unable
to construct RSFs; consequently, only bioenergetic and HSC-based

HSMs were compared in this analysis.

2.5 | Statistical analysis

All statistical analyses were conducted in R version 3.3.2 (R Core
Development Team). To determine the extent that suitability estimates
differed among HSMs, we examined pairwise correlations between
suitability estimates from the three contrasting HSMs for all transect
points of depth and velocity from our field surveys. Differences were
further examined by comparing three-dimensional surfaces of habitat
suitability estimated across all possible combinations of depth and ve-
locity within their observed ranges. We then used two-sample Cramer
tests to make pairwise comparisons of these suitability surfaces within
each stream. The Cramer test is a non-parametric analogue of the
Kolmogrov-Smirnov cumulative distribution test, which we extended
for multivariate distributions following Baringhaus and Franz (2004),
implemented in R using the cramer package (Franz, 2004). We derived
critical test statistic values using a Monte-Carlo procedure based on
10,000 bootstrap replicates and used a Bonferroni correction to ad-
just p-values for false discovery rates.

We evaluated the ability of the three contrasting HSMs to pre-
dict steelhead density at the channel unit scale using ordinary least
squares regression. Density was standardised relative to the mean
of each reach and was natural log transformed to meet normality as-
sumptions, which were verified with residual plots. We assessed the
significance of predictors based on whether 95% confidence inter-
vals around the slopes overlapped zero. We used a similar ordinary
least-squares approach to test whether HSM suitability estimates
could predict cutthroat trout growth (% mass/day). We assessed the
overall performance of contrasting HSMs based on which explained
the highest proportion of variation in density or growth, i.e. based
on the highest R?.
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3 | RESULTS

Although there were broad similarities among habitat suitability
estimates among the contrasting models, there were also key dif-
ferences. The two correlative HSMs were similar, both in terms
of their suitability estimates applied to our field data (r = 0.87,;
Figure 2) and across the entire surface of depth and velocity
(Coquitlam: Cramer statistic [C] = 2.29, p = 0.24; Silver Hope:
C=0.73, p =0.9; Figure 3). These similarities notwithstanding, the
HSC model did appear to systematically over-estimate suitability
at shallow depths relative to the RSF model (Figure 2). In contrast,
correlations between bioenergetic and correlative HSMs were
weaker (RSF: r = 0.66, HSC: r = 0.52; Figure 2) and bioenergetic
predictions were statistically different from both correlative mod-
els in both the Coquitlam (RSF comparison: C = 64.5. p < 0.001;

HSC comparison: C = 4.1, p < 0.01) and Silver Hope (RSF compari-
son: C=4.1.p <0.01; HSC comparison: C = 4.0, p < 0.01; Figure 3).
Correlative HSMs often predicted higher habitat suitability rela-
tive to the bioenergetic HSM (Figure 2); however, they also pre-
dicted lower suitability in a large proportion of cases (48% for the
HSC model; 41% for the RSF). When we compared suitability sur-
faces, this divergence was especially evident at greater depths; in
general, optimal suitability values for the bioenergetic HSM were
shifted to deeper water where the empirical correlative models
predicted low to zero suitability (Figure 3).

As expected, the bioenergetic model generally outperformed
the correlative models in predicting density and growth, especially
for growth, where the bioenergetic HSM explained over 90% of
the variation (Figure 4; = 5.3 [4.7-6.0], R? = 0.93). The model pre-

dicted suitability values close to O for cutthroat parr, all of which
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experienced low or negative growth rates during the experiment,
while correctly ranking suitability across a broader range of growth
rates for young of year (Figure 4). Suitability from the correlative
HSC model was also a significant predictor of growth (3 = 2.3 [1.3-
3.2]), but it explained considerably less variation (R?=0.52; Figure 4)
and the strength of the relationship appeared to be driven primarily
by the large differences in growth between age classes. For example,
the model predicted suitability values ranging from O to 0.8 for parr,
despite their low growth rates, and predicted high suitability (>0.9)
across the range of growth rates for young-of-year.

Mean and above-zero proportional suitability were significant
predictors of steelhead density for all three models (Table 3) but
there was substantial unexplained variation (Figure 5). When we
considered density as a function of the mean suitability value across
all points within a channel unit, the bioenergetic model explained the
highest proportion of variation (R = 0.38), marginally more than the
RSF (R? = 0.35), and c. 2x more than the HSC model (R? = 0.20). The
difference between the bioenergetic model and the RSF was mag-
nified when an outlier point with the highest density was removed
(Bioenergetic HSM R? = 0.38; RSF R? = 0.29). All models explained a
lower proportion of variation when expressed as the proportion of

points with suitability values above 0 (Table 3). Density expressed

as g/m2 exhibited the same patterns as density expressed as fish/m?
(results omitted for brevity).

4 | DISCUSSION

Bioenergetic and correlative models made divergent predictions of
habitat suitability. Both correlative models predicted higher suitability
than the bioenergetic HSM in shallow depths and low to intermediate
velocities, which is consistent with the idea that displacement of sub-
ordinates through territoriality or predation risk could inflate occu-
pancy (and predicted suitability) in energetically unfavourable habitats
(assuming minimal benthic or surface feeding). However, the correla-
tive HSMs predicted substantially lower suitability then the bioen-
ergetic model as depth increased, suggesting that steelhead did not
use the full range of energetically suitable habitat available to them.
This unexpected pattern may also be driven by territoriality if larger
conspecifics were excluding fry from deeper habitat (Kaspersson,
Hojesjo, & Bohlin, 2012). Alternatively, avoidance of deeper habi-
tats could result from fry minimising predation risk from larger fish
or avian predators; for instance, mergansers (Mergus merganser) that
we frequently observed at the study sites (Dionne & Dodson, 2002).
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While we cannot disentangle these factors, our results emphasise
the diversity of mechanisms that can lead to incongruent suitability
estimates between bioenergetic and correlative HSMs. More gener-
ally, they highlight the fundamental difference between correlative
models that implicitly incorporate biotic interactions, due to their
basis on existing distribution, and mechanistic models that are largely
independent from biotic interactions due to their basis on the focal
organism itself (Buckley, 2008; Kearney, 2006).

When the two correlative HSMs were compared directly, suit-
ability predictions were highly correlated and did not differ sta-
tistically across the observed depth and velocity ranges. Several
previous comparisons of statistical HSM methods are consistent
with this result (Jowett & Davey, 2007; Vadas & Orth, 2001); how-
ever, others have found strong differences in suitability predictions
when more sophisticated statistical models are used (Beakes et al.,
2014; Vismara, Azzellino, Bosi, Crosa, & Gentili, 2001). The extent
that habitat suitability estimates differ among contrasting statistical
methods is likely to depend on local context; in particular, divergence
of univariate and multivariate models is more likely when strong in-
teractions or covariance exist among habitat variables (Schweizer,
Borsuk, Jowett, & Reichert, 2007), which was not the case in our
system. Despite this broad similarity, the HSC model still systemat-
ically over-predicted suitability at shallow depths and explained c.

15% less variation in steelhead density relative to the RSF model.

These results probably highlight the frequently criticised assumption
of independence among habitat variables by univariate HSCs, which
is alleviated using multivariate methods.

As expected, bioenergetic HSMs generally outperformed both
correlative HSMs at predicting salmonid growth and density, pro-
ducing an especially striking improvement for cutthroat growth,
with the bioenergetic model explaining over 90% of growth vari-
ation. Thus, despite our simplifying assumptions relative to other
drift-foraging models, e.g. laterally homogeneous velocity and
depth through the reaction volume, our model was still able to
quantitatively rank habitat quality (as defined by growth rate) with
a high degree of accuracy. For the correlative HSM, we cannot
discount the possibility that using suitability curves developed
outside the study system contributed to the model's weaker pre-
dictive power. Therefore, we cannot fully discriminate between
inherent biases associated with correlative HSMs and biases intro-
duced from transferring the cutthroat suitability models to novel
locations. While this somewhat dilutes the strength of inference
from this analysis, the comparison is still meaningful given that
transferring suitability curves across systems is common practice
(Guay, Boisclair, Leclerc, & Lapointe, 2003). For instance, the HSC
for cutthroat fry is used as the standard across the province of
British Columbia (R. Ptolomey, personal communication). In addi-

tion, the bioenergetic model itself is populated with parameters
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borrowed from other species and locations, and its robust perfor-
mance suggests more effective transferability.

Compared with cutthroat trout growth, when predicting steel-
head density, the additional explanatory power gained with the
bioenergetic HSM was marginal (3-9% relative to the RSF model de-
pending on inclusion of the outlier point). Moreover, while suitability
values from all three models were significant predictors of density,
over half the variation remained unexplained. This result aligns with
the idea that density-independent growth (i.e. in the absence of
strong competition or predation risk) is a more direct measure of hab-
itat quality than density (Rosenfeld, 2003). Numerous mechanisms
can obscure density-habitat quality relationships (Railsback et al.,
2003), which would degrade the predictive power of the bioenergetic
HSM. For example, channel units with more energetically profitable
habitat may have been under-saturated with steelhead fry due higher
predation risk or territorial interactions with larger conspecifics, while
channel units with less profitable habitat may have been over-sat-
urated, with many individuals occupying energetically unfavourable
habitat as is often observed for juvenile salmonids (Kennedy, Nislow,
& Folt, 2008). For the correlative models, these issues should not in-
fluence suitability-density relationships in principle, given that biotic
interactions are implicitly reflected in realised habitat use (Kearney
et al., 2010). Instead, weak relationships may indicate poor transfer-
ability across locations (even within the same streams) and spatial
scales, e.g. from individual focal points used to generate the models
to density in whole channel units. This issue of mixing spatial scales
has been a frequent critique of correlative suitability indices for fish
(Railsback, 2016) but remains widespread in practice.

The weak ability of models to predict density may also relate to
our field methods and the assumptions of the bioenergetic HSM. In
particular, our habitat characterisation probably missed important
hydraulic features that could influence drift-foraging energetics and/
or habitat selection at small scales; for instance, turbulence (Enders,
Boisclair, & Roy, 2003) or velocity gradients around flow obstructions
(Hayes & Jowett, 1994). These factors were ignored in the simplified
drift-foraging model we applied, which assumes that all fish have a
laterally homogeneous and symmetric foraging volume. An additional
source of error is our assumption that invertebrate drift concentra-
tions and size distributions were constant across depth and velocity
gradients in each stream. This assumption is made in nearly all drift-
foraging models (except Hayes et al., 2007, 2016) but is at odds with
evidence that drift varies spatially with channel hydraulics (Naman,
Rosenfeld, Third, & Richardson, 2017; Stark, Shearer, & Hayes, 2002).

In principle, these issues influencing the bioenergetic HSM could
be resolved by measuring or simulating the hydraulic environment in
more detail and by using a spatially explicit drift-foraging bioener-
getics model (e.g. Hayes et al., 2007). However, these more complex
models have not consistently predicted density with any more accu-
racy than our approach (Jenkins & Keeley, 2010; but see Urabe et al.,
2010). For example, in one of the most comprehensive drift-foraging
model applications to date, Wall et al. (2016) found that net energy
intake was a weak predictor of density (RZ = 0.18) unless an addi-

tional model was applied to account for intraspecific competition for

drift-feeding territories. These mixed results highlight the likelihood
that issues with using density to validate density-independent HSMs
may be a primary cause of unexplained variation in our results, as
opposed to shortcomings in our methodology. It also highlights
the potential value of including biotic interactions in mechanistic
HSMs to further improve model predictions and reduce unexplained

variation.

4.1 | Management implications

As long as development and human demand for freshwater conflicts
with stream fish populations, HSMs will continue to be a necessary
tool. Correlative HSMs remain the standard approach but continue
to be controversial (Beecher, 2017; Railsback, 2016; Stalnaker,
Chisholm, & Paul, 2017), while mechanistic population models have
struggled to gain a foothold with practitioners, partly due to their
complexity and lack of validation. The bioenergetics-based approach
may occupy a useful intermediate niche as it is grounded in the in-
trinsic energetics underlying habitat use but is still expressed as a
simple standardised habitat suitability index that is compatible with
existing modelling platforms and the broader hydraulic habitat mod-
elling paradigm currently used by instream flow practitioners.

In addition to the demonstrated improvement in predicting
growth and density, bioenergetics-based HSMs provide several other
key advantages over correlative approaches. First, because bioener-
getic suitability predictions are mechanistic, they should in principle
be transferable to novel locations (Buckley et al., 2010; Rosenfeld
et al., 2016), whereas correlative HSMs are often strongly dependent
on the local conditions where they were developed (e.g. density, prey
abundance; Rosenfeld et al., 2005). Second, bioenergetic HSMs are
amenable to sensitivity analyses not possible with correlative ap-
proaches; for instance, bioenergetic model inputs could be varied
to explore the sensitivity of suitability to factors such as tempera-
ture or prey abundance that covary with flow and habitat structure
(Arismendi, Safeeq, Johnson, Dunham, & Haggerty, 2013; Caldwell,
Rossi, Henery, & Chandra, 2018). Third, inclusion of invertebrate drift
as an input parameter allows bioenergetic HSMs to capture absolute
differences in basal prey production. For instance, while correlative
suitability curves assume the same range of suitability (0-1) regard-
less of productivity, bioenergetic suitability criteria are not con-
strained to be a standardised (0-1) index; for instance, NEI can be
compared directly across streams or flows (Hayes et al., 2016).

Despite these advantages over correlative HSMs, the bioenerget-
ics-based approach is still constrained by some important limitations
intrinsic to the PHABSIM framework. Most notably, when converted
to a standardised index as presented here the model assigns a single
suitability value to a given depth and velocity combination irrespec-
tive of adjacent hydraulic conditions; consequently, it cannot account
for flow separation near obstructions that allow fish to forage in high
velocities while maintaining low swimming costs (Hayes & Jowett,
1994) or larger-scale configurations of mesohabitat patches (e.g. rif-
fles and pools) that influence drift abundance (Naman et al., 2017).
In addition, defining suitability as a standardised 0-1 index arguably
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obscures what the underlying HSM is predicting (e.g. energy gain or
occupancy), opening the door for misinterpretation. These issues are
largely out of the scope of our study but highlight key points of con-
cern within the broader instream flow modelling paradigm.
Ultimately, practitioners need to weigh the benefits of various
HSM approaches with their associated logistical and computational
constraints. If fully dynamic predictions of population-level responses
to habitat and flow modification are the ultimate objective (Anderson
et al., 2006; Lancaster & Downes, 2010), complex mechanistic mod-
els offer clear advantages (Ayllon et al., 2016; McHugh et al., 2017;
Railsback et al., 2009). However, sufficient information to parameter-
ise and validate these approaches will probably continue to limit their
utility in many situations, and their general use in the immediate future.
Consequently, simple mechanistic suitability indices, such as the bioen-
ergetics-based approach we have presented, offer a useful avenue to
increase the rigor of habitat suitability evaluations within the current in-
stream flow modelling framework. PHABSIM remains the most widely
used detailed instream flow modelling application worldwide; conse-
quently, improving the biological realism within PHABSIM may signifi-
cantly improve the quality of instream flow management decisions.
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