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2 GENERIC METHODOLOGIES APPLICABLE 

TO MULTIPLE LAND USE CATEGORIES 

2.1 INTRODUCTION  

No refinement 

2.2 INVENTORY FRAMEWORK  

This section outlines a systematic approach for estimating carbon stock changes (and associated emissions and 

removals of carbon dioxide (CO2) from biomass, dead organic matter, and soils, as well as for estimating non-CO2 

greenhouse gas emissions from fire. General equations representing the level of land-use categories and strata are 

followed by a short description of processes with more detailed equations for carbon stock changes in specific 

pools by land-use category. Principles for estimating non-CO2 emissions and common equations are then given. 

Specific, operational equations to estimate emissions and removals by processes within a pool and by category, 

which directly correspond to worksheet calculations, are provided in Sections 2.3 and 2.4.   

2.2.1 Overview of carbon stock change estimation 

The emissions and removals of CO2 for the AFOLU Sector, based on changes in ecosystem C stocks, are estimated 

for each land-use category (including both land remaining in a land-use category as well as land converted to 

another land use). Carbon stock changes are summarized by Equation 2.1. 

EQUATION 2.1 

ANNUAL CARBON STOCK CHANGES FOR THE AFOLU SECTOR ESTIMATED AS THE SUM OF 

CHANGES IN ALL LAND-USE CATEGORIES 

OLSLWLGLCLFLAFOLU CCCCCCC   

Where: 

AFOLUC  = Total annual carbon stock change in the AFOLU sector; tonnes C yr-1 

Indices denote the following land-use categories: 

AFOLU = Agriculture, Forestry and Other Land Use 

FL = Forest Land 

CL = Cropland 

GL = Grassland 

WL = Wetlands 

SL = Settlements 

OL = Other Land 

For each land-use category, carbon stock changes are estimated for all strata or subdivisions of land area (e.g., 

climate zone, ecotype, soil type, management regime etc., see Chapter 3) chosen for a land-use category (Equation 

2.2).  Carbon stock changes within a stratum are estimated by considering carbon cycle processes between the five 

carbon pools, as defined in Table 1.1 in Chapter 1. The generalized flowchart of the carbon cycle (Figure 2.1) 

shows all five pools and associated fluxes including inputs to and outputs from the system, as well as all possible 

transfers between the pools. Overall, carbon stock changes within a stratum are estimated by adding up changes 

in all pools as in Equation 2.3.  Further, carbon stock changes in soil may be disaggregated as to changes in C 

stocks in mineral soils and emissions from organic soils. Harvested wood products (HWP) are also included as an 

additional pool. 
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EQUATION 2.2 

ANNUAL CARBON STOCK CHANGES FOR A LAND-USE CATEGORY AS A SUM OF CHANGES IN EACH 

STRATUM WITHIN THE CATEGORY 


i

LULU I
CC  

Where: 

LUC  = carbon stock changes for a land-use (LU) category as defined in Equation 2.1. 

i = denotes a specific stratum or subdivision within the land-use category (by any combination 

of species, climatic zone, ecotype, management regime etc., see Chapter 3), i = 1 to n.  

EQUATION 2.3 

ANNUAL CARBON STOCK CHANGES FOR A STRATUM OF A LAND-USE CATEGORY AS A SUM OF 

CHANGES IN ALL POOLS 

iLU AB BB DW LI SO HWPC C C C C C C         

Where: 

iLUC  = carbon stock changes for a stratum of a land-use category 

Subscripts denote the following carbon pools: 

AB = above-ground biomass 

BB = below-ground biomass 

DW = deadwood 

LI = litter 

SO = soils 

HWP = harvested wood products 

Estimating changes in carbon pools and fluxes depends on data and model availability, as well as resources and 

capacity to collect and analyse additional information (See Chapter 1, Section 1.3.3 on key category analysis).  

Table 1.1 in Chapter 1 outlines which pools are relevant for each land-use category for Tier 1 methods, including 

cross references to reporting tables.  Depending on country circumstances and which tiers are chosen, stock 

changes may not be estimated for all pools shown in Equation 2.3.  Because of limitations to deriving default data 

sets to support estimation of some stock changes, Tier 1 methods include several simplifying assumptions: 

 change in below-ground biomass C stocks are assumed to be zero under Tier 1 (under Tier 2, country-specific 

data on ratios of below-ground to above-ground biomass can be used to estimate below-ground stock changes); 

 under Tier 1, dead wood and litter pools are often lumped together as ‘dead organic matter’ (see discussion 

below); and 

 dead organic matter stocks are assumed to be zero for non-forest land-use categories under Tier 1. For Forest 

Land converted to another land use, default values for estimating dead organic matter carbon stocks are 

provided in Tier 1.  

The carbon cycle includes changes in carbon stocks due to both continuous processes (i.e., growth, decay) and 

discrete events (i.e., disturbances like harvest, fire, insect outbreaks, land-use change and other events). Continuous 

processes can affect carbon stocks in all areas in each year, while discrete events (i.e., disturbances) cause 

emissions and redistribute ecosystem carbon in specific areas (i.e., where the disturbance occurs) and in the year 

of the event.  

Disturbances may also have long-lasting effects, such as decay of wind-blown or burnt trees. For practicality, Tier 

1 methods assume that all post-disturbance emissions (less removal of harvested wood products) are estimated as 

part of the disturbance event, i.e., in the year of the disturbance. For example, rather than estimating the decay of 

dead organic matter left after a disturbance over a period of several years, all post-disturbance emissions are 

estimated in the year of the event.   
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Figure 2.1(unchanged) Generalized carbon cycle of terrestrial AFOLU ecosystems showing the 

flows of carbon into and out of the system as well as between the five C 

pools within the system.  

 

Under Tier 1, it is assumed that the average transfer rate into dead organic matter (dead wood and litter) is equal 

to the average transfer rate out of dead organic matter, so that the net stock change is zero. This assumption means 

that dead organic matter (dead wood and litter) carbon stocks need not be quantified under Tier 1 for land areas 

that remain in a land-use category2. The rationale for this approach is that dead organic matter stocks, particularly 

dead wood, are highly variable and site-specific, depending on forest type and age, disturbance history and 

management. In addition, data on coarse woody debris decomposition rates are scarce and thus it was deemed that 

globally applicable default factors and uncertainty estimates cannot be developed. Countries experiencing 

significant changes in forest types or disturbance or management regimes in their forests are encouraged to develop 

domestic data to estimate the impact from these changes using Tier 2 or 3 methodologies and to report the resulting 

carbon stock changes and non-CO2 emissions and removals.  

All estimates of changes in carbon stocks, i.e., growth, internal transfers and emissions, are in units of carbon to 

make all calculations consistent. Data on biomass stocks, increments, harvests, etc. can initially be in units of dry 

matter that need to be converted to tonnes of carbon for all subsequent calculations. There are two fundamentally 

different and equally valid approaches to estimating stock changes: 1) the process-based approach, which estimates 

the net balance of additions to and removals from a carbon stock; and 2) the stock-based approach, which estimates 

the difference in carbon stocks at two points in time. 

Annual carbon stock changes in any pool can be estimated using the process-based approach in Equation 2.4 which 

sets out the Gain-Loss Method that can be applied to all carbon gains or losses. Gains can be attributed to growth 

(increase of biomass) and to transfer of carbon from another pool (e.g., transfer of carbon from the live biomass 

carbon pool to the dead organic matter pool due to harvest or natural disturbances). Gains are always marked with 

a positive (+) sign. Losses can be attributed to transfers of carbon from one pool to another (e.g., the carbon in the 

                                                           
2 Emissions from litter C stocks are accounted for under Tier 1 for forest conversion to other land-use. 
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slash during a harvesting operation is a loss from the above-ground biomass pool), or emissions due to decay, 

harvest, burning, etc. Losses are always marked with a negative (-) sign. 

EQUATION 2.4 

ANNUAL CARBON STOCK CHANGE IN A GIVEN POOL AS A FUNCTION OF GAINS AND LOSSES 

(GAIN-LOSS METHOD)  

LG CCC   

Where: 

C  = annual carbon stock change in the pool, tonnes C yr-1 

GC    = annual gain of carbon, tonnes C yr-1 

LC    = annual loss of carbon, tonnes C yr-1 

Note that CO2 removals are transfers from the atmosphere to a pool, whereas CO2 emissions are transfers from a 

pool to the atmosphere. Not all transfers involve emissions or removals, since any transfer from one pool to another 

is a loss from the donor pool but is a gain of equal amount to the receiving pool. For example, a transfer from the 

above-ground biomass pool to the dead wood pool is a loss from the above-ground biomass pool and a gain of 

equal size for the dead wood pool, which does not necessarily result in immediate CO2 emission to the atmosphere 

(depending on the Tier used).  

The method used in Equation 2.4 is called the Gain-Loss Method, because it includes all processes that bring about 

changes in a pool. An alternative stock-based approach is termed the Stock-Difference Method, which can be used 

where carbon stocks in relevant pools are measured at two points in time to assess carbon stock changes, as 

represented in Equation 2.5.  

EQUATION 2.5 

CARBON STOCK CHANGE IN A GIVEN POOL AS AN ANNUAL AVERAGE DIFFERENCE BETWEEN 

ESTIMATES AT TWO POINTS IN TIME (STOCK-DIFFERENCE METHOD) 

2 1

2 1

( )

( )

t tC C
C

t t


 


 

Where: 

C  = annual carbon stock change in the pool, tonnes C yr-1 

1t
C  = carbon stock in the pool at time 1t , tonnes C 

2t
C  = carbon stock in the pool at time 2t , tonnes C 

If the C stock changes are estimated on a per hectare basis, then the value is multiplied by the total area within 

each stratum to obtain the total stock change estimate for the pool.  In some cases, the activity data may be in the 

form of country totals (e.g., harvested wood) in which case the stock change estimates for that pool are estimated 

directly from the activity data after applying appropriate factors to convert to units of C mass. When using the 

Stock-Difference Method for a specific land-use category, it is important to ensure that the area of land in that 

category at times t1 and t2 is identical, to avoid confounding stock change estimates with area changes. 

The process method lends itself to modelling approaches using coefficients derived from empirical research data. 

These will smooth out inter-annual variability to a greater extent than the stock change method which relies on the 

difference of stock estimates at two points in time. Both methods are valid so long as they are capable of 

representing actual disturbances as well as continuously varying trends and can be verified by comparison with 

actual measurements. 

2.2.2 Overview of non-CO2 emission estimation  

Non-CO2 emissions are derived from a variety of sources, including emissions from soils, livestock and manure, 

and from combustion of biomass, dead wood and litter.  In contrast to the way CO2 emissions are estimated from 

biomass stock changes, the estimate of non-CO2 greenhouse gases usually involves an emission rate from a source 
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directly to the atmosphere.  The rate (Equation 2.6) is generally determined by an emission factor for a specific 

gas (e.g., CH4, N2O) and source category and an area (e.g., for soil or area burnt), population (e.g., for livestock) 

or mass (e.g., for biomass or manure) that defines the emission source.   

EQUATION 2.6 

NON-CO2 EMISSIONS TO THE ATMOSPHERE 

EFAEmission   

Where: 

Emission = non-CO2 emissions, tonnes of the non-CO2 gas  

A  = activity data relating to the emission source (can be area, animal numbers or mass 

unit, depending on the source type) 

EF  = emission factor for a specific gas and source category, tonnes per unit of A 

Many of the emissions of non-CO2 greenhouse gases are either associated with a specific land use (e.g., CH4 

emissions from rice) or are typically estimated from national-level aggregate data (e.g., CH4 emissions from 

livestock and N2O emissions from managed soils). Where an emission source is associated with a single land use, 

the methodology for that emission is described in the chapter for that specific land-use category (e.g., methane 

from rice in Chapter 5 on Cropland). Emissions that are generally based on aggregated data are dealt with in 

separate chapters (e.g., Chapter 10 on livestock-related emissions, and Chapter 11 on N2O emissions from managed 

soils and CO2 emissions from liming and urea applications). This chapter describes only methods to estimate non-

CO2 (and CO2) emissions from biomass combustion, which can occur in several different land-use categories. 

BOX 2.0A (NEW) 

CONSISTENCY BETWEEN AFOLU PROJECTS OR ACTIVITIES AND IPCC INVENTORY GUIDELINES 

The information presented in this Box is for information purposes only 

IPCC guidelines have been designed for national GHG inventories (NGHGI). They are, however, 

often applied, in conjunction with other guidance, to estimate GHG emissions and removals for 

different situations than those in a NGHGI. These different situations include scales (i.e. to any sub-

aggregation of land), time resolution (i.e., on a non-annual basis), length of time series (i.e., for a 

limited period) and/or for selected carbon pools. Using IPCC guidelines for estimating emissions 

and removals from sub-aggregations - i.e. projects and activities – can help countries maintain 

consistency with the NGHGI. However, projects and activities can introduce additional complexities 

including, but not limited to, system boundaries, double-counting, leakage, and attribution. 

Moreover, projects and activities may use different definitions, sources of data, data and methods 

compared to those used for the NGHGI, including different Approaches for land representation and 

methodological Tiers, impacting the consistency between the two. These need to be considered when 

applying the IPCC Guidelines outside of a NGHGI (IPCC, 2015), particularly when there is a need 

for consistency and comparability. 

Thus, when using IPCC guidelines for projects and activities the following steps should be 

considered:  

i) Define the spatial boundaries of the territory impacted by the activity; 

ii) Identify the land-use categories and subcategories of the NGHGI impacted by the activity. 

iii) Identify pools and gases impacted by the activity; 

iv) Identify the time frame (temporal boundaries) of the activity and ensure full reporting of 

any legacy emissions and removals associated with it3; 

v) Develop estimates by applying methods consistent with IPCC guidance, so ensuring 

consistency among the results of activities and the trends of times series of relevant NGHGI 

categories. 

 

                                                           
3 To deal with the limited time frame of reducing deforestation and forest degradation mitigation activities, reporting methods 

provided by the GFOI apply the stock difference approach to estimate the net difference between two long-term average C 
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BOX 2.0A (NEW) (CONTINUED) 

CONSISTENCY BETWEEN AFOLU PROJECTS OR ACTIVITIES AND IPCC INVENTORY GUIDELINES  

For example, 1) Reducing Emissions from deforestation and forest degradation and the role of 

conservation, sustainable management of forests and enhancement of forest carbon stocks in 

developing countries (REDD-plus) activities could be identified in the NGHGI as IPCC categories, 

subcategories, or sums of categories or sub-categories (GFOI, 2016), and relevant IPCC methods 

applied consistently; 2) The Australian Government has developed a framework as part of the 

Emissions Reduction Fund 4 for ensuring consistency in emissions estimation between AFOLU 

project-level mitigation activities and Australia's NGHGI. This framework includes integrity 

standards 5  to ensure emissions estimation methods are consistent with IPCC guidelines, and 

consequently estimated GHG reductions are consistent with trends of times series of relevant 

NGHGI categories. 

Emissions and removals estimates for activities are likely to apply Approach 2 or 3 and Tier 2 or 3 

methods because of the need to prepare GHG estimates that are more disaggregated per activity, e.g. 

organic farming vs traditional farming or coppice vs high-stand, and per population, e.g. by livestock 

sub-populations, crop types and forest types. Moreover, stratification of NGHGI 

categories/subcategories into subdivisions helps avoid double counting of emissions and removals 

from a single category that is impacted by more than an activity.  

Stratification also supports transparency among activity report and NGHGI estimates when the 

activity does not correspond to an entire NGHGI category. In many cases, activities and projects 

require tracking of land where they occur through time, e.g. no tillage. In such cases, Approach 3 

for land representation is required since it is the only approach that provides the spatially explicit 

information (either wall-to-wall or from sampling) across time needed to track activities and drivers, 

and to support estimation of GHG emissions or removals with higher accuracy. Where activities are 

known to lead to permanent changes or the activity includes management practices that determine 

temporary changes in the land cover, Approach 2 methods may provide sufficient information to 

prepare accurate estimates. 

Where activity and project data have been collected and analysed consistently with good practice, 

they can be used in the NGHGI either for deriving activity data and/or emission factors, or any other 

ancillary data used for preparing GHG estimates for the land subject to the activity, or for calibrating 

the model used in the NGHGI for the same land and/or verifying the outputs of such model. Where 

data have inconsistencies with those collected for the NGHGI, iterations and cross-checks between 

NGHGI experts and experts involved in the monitoring of the activity should be done until 

improvements applied to the activity and/or the NGHGI estimates enable consistency. When using 

data collected from activities and projects for improving or evaluating information and estimates 

reported in the NGHGI, it is important to: 

i) Define and report the reference conditions (e.g. climate, soil, management system) for 

which the data from the activity or project are valid and how it could be used in the NGHGI 

compilation; 

ii) Determine if the activity or emissions factor data in the project are representative of the 

national average and, if not, apply methods that ensure the NGHGI is not biased by them, 

e.g. limiting the use of the data to the land subject to the activity or project only and 

modifying the data used in the NGHGI to prevent bias 

iii) Define and report the level of variability (heterogeneity) of the data; 

iv) Ensure the data is available and consistently applied for the entire time series. 

 

 

                                                           
stocks at a single point in time (i.e. by assuming instantaneous oxidation). This is to allow a complete reporting of total net 

C stock changes associated with the activities, including lagged emissions and removals. 

4 http://www.environment.gov.au/climate-change/government/emissions-reduction-fund/publications 

5 http://www.environment.gov.au/climate-change/emissions-reduction-fund/publications/erf-methods-development 
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2.2.3 Conversion of C stock changes to CO2 emissions 

For reporting purposes, changes in C stock categories (that involve transfers to the atmosphere) can be converted 

to units of CO2 emissions by multiplying the C stock change by -44/12. In cases where a significant amount of the 

carbon stock change is through emissions of CO and CH4, then these non-CO2 carbon emissions should be 

subtracted from the estimated CO2 emissions or removals using methods provided for the estimation of these gases. 

In making these estimates, inventory compilers should assess each category to ensure that this carbon is not already 

covered by the assumptions and approximations made in estimating CO2 emissions. 

It should also be noted that not every stock change corresponds to an emission. The conversion to CO2 from C, is 

based on the ratio of molecular weights (44/12). The change of sign (-) is due to the convention that increases in 

C stocks, i.e. positive (+) stock changes, represent a removal (or ‘negative’ emission) from the atmosphere, while 

decreases in C stocks, i.e. negative (-) stock changes, represent a positive emission to the atmosphere 

2.3 GENERIC METHODS FOR CO2 EMISSIONS 

AND REMOVALS  

No refinement. 

2.3.1 Change in biomass carbon stocks (above-ground 

biomass and below-ground biomass) 

No refinement. 

2.3.1.1 LAND REMAINING IN A LAND-USE CATEGORY  

No refinement. 

2.3.1.2 LAND CONVERTED TO A NEW LAND-USE CATEGORY  

No refinement. 

2.3.1.3 ADDITIONAL GENERIC GUIDANCE FOR TIER 2  METHODS 

A.  USING ALLOMETRIC MODELS FOR BIOMASS ESTIMATION 

This section provides new guidance to inventory compilers on the use of allometric models (see Box 2.0b for 

definitions) for quantifying volume, biomass and carbon stocks in land uses containing vegetation. Allometric 

models can be used with country specific data to estimate carbon stocks at the Tier 2 level. Allometric models may 

also form part of more sophisticated Tier 3 approaches including measurement-based inventories and model-based 

inventories.   

Allometric models quantify the relationships between certain size variables of organisms. Allometric models6 can 

be used to estimate volume, biomass or carbon stocks of individuals, vegetation or forest stands. Allometric models 

have been developed for a wide range of species, habitats, regions and environmental conditions (e.g. documented 

in the GlobAllomeTree database (http://www.globallometree.org/; Schepaschenko et al, 2017). Allometric models 

used for forest tree species are commonly estimated from individual trees through destructive sampling from a 

population using a sampling design that provides accurate and representative data. As destructive sampling is 

usually costly and labour intensive or ecologically sensitive, it makes sense to utilize existing allometric models 

when valid under the respective conditions as outlined below (in the section on the use of allometric models). 

                                                           
6  The term “allometric equation” is also used when referencing to the mathematical descriptions of allometric models and 

relationships. When the parameters are estimated from sample data and/or uncertainty is involved, “model” is the correct 

term. Although allometric models are used to predict the values of a variable, for practical reasons in the context of these 

guidelines the term estimates is also used. 

http://www.globallometree.org/
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BOX 2.0B (NEW) 

ALLOMETRIC DEFINITIONS 

Allometry: The term allometry refers to the proportional relationship between the relative 

dimensional relationships or growth rates of two size variables and therefore allometric relations 

allow that one variable can be used to predict the corresponding value of another variable. For 

example, tree diameter at breast height (DBH) can be used to estimate tree volume or total tree 

biomass. Allometry can also describe the change of one part of an organism in relation to the change 

of its body size, either in the same organism (while growing over time), in populations (e.g., tree 

stands), or between species (e.g. different tree species). These changes follow rules, so the change 

in proportion between two variables of an organism can be described mathematically. 

 Allometric model: An allometric model is a formula that quantitatively describes an allometric 

relationship. The basic form is an equation: y=f(x) where y and x are the dependent and independent 

variables. Often the equation is in the form of y = a*x^b + c, where a, b and c are parameters (please 

note: “c” is not identical to the statistical error term “ε”). If “x” is equal to zero (e.g., if height is 

below breast height when using DBH to estimate tree biomass), then “y” is equal to the parameter 

“c”, noting that biologically “y” is always a positive number. Parameter “a” is the value of y if x is 1 

and describes the initial ratio between x and y . The parameter “b” is also called an “allometric parameter” 

or “allometric constant” and gives the proportionality between the relative increases of “x” and “y” 

(Fabrika und Pretzsch 2013; Picard et al. 2012). The general form of an allometric model, without 

intercept (i.e. when “c” = 0), is also often represented in its logarithmic transformation as a linear 

relationship, log(y) = log(a) + b*log(x) or ln(y) = ln(a) + b*ln(x). Other mathematical functions have 

also been adopted to describe allometric relationships.  

This basic model can be augmented by additional terms that include e.g. tree height as a second 

predictor variable (e.g. Ketterings et al. 2001). Models are usually provided with a residual error 

term (e.g., y = f(x) + ε), set in the model fitting against the sample data; to consider the residual 

error, calculated for each model, can be used to assess the uncertainty related to use of the selected 

model in the estimation process. 

The use of  a l lo metric models  

The choice of appropriate allometric models should be based on several criteria including the availability of 

country-specific data, the meta-data about the allometric models, the coincidence of data with the models’ domain 

of validity according to the meta-data, and the appropriateness of the allometric model by comparing the estimates 

to ones obtained with the Tier 1 method (Figure 2.2a). The accuracy of the models may be lower than e.g. available 

default factors or Biomass Emission Factors (BEFs), so it is good practice to choose the method with the higher 

accuracy. When applying an allometric model for predicting the biomass of a given species or at a given site, data 

on required variables must be available as e.g. from national forest inventories (Tomppo et al. 2010, Vidal et al. 

2016). For woody plant species, these variables commonly include DBH and height, and to lesser extent crown 

variables such as crown length or crown width. For shrubs or smaller trees and understorey vegetation, diameters 

nearer to the ground or shoot length may be used, among other variables. Carbon fractions and basic wood density 

may also be required for some models. Individual tree estimates can then be aggregated up to provide volume, 

biomass or carbon stock estimates at higher spatial scales (e.g. by plot, region or nation-wide). Tree-level estimates 

may refer to the whole tree, or individual components like above-ground and below-ground parts, stem, branches 

and/or foliage. Allometric models may be used within a specified forest stratum, to estimate above-ground and 

below-ground biomass estimation from direct measurements e.g. forest inventory plots. Allometric models may 

also be used for non-woody plant biomass estimates. Data collection programmes are often designed to collect the 

data specifically for this purpose.   

Allometries are influenced by an individual’s growing conditions and size classes, so in each case the allometric 

models developed will have a limited domain of validity. When selecting an appropriate allometric model, check 

the associated metadata supplied. Conditions such as: 

 Ecoregion, geographic range, environmental factors (e.g., ecosystem, climatic or soil types), 

 Representativeness of the model in consideration of individual size range and sampled population,  

 Plant components estimated (e.g., above-ground, below-ground, stem, branches, foliage), 

 Species functional traits (e.g., wood density and tree architecture), 

 Land or crop management practices, current and historic, 

file:///C:/Users/brandona/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/2PMZVLLJ/Definitions.docx%23_ENREF_2
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should be assessed for their suitability (Henry et al. 2011; Rock 2007; Vieilledent et al. 2012) as well as sample 

size and accuracy assessment. The use of existing allometric models beyond the range they were developed for 

may result in a lack of accuracy (e.g. Mugasha et al 2016; Nam et al, 2016), depending on the degree to which 

external variables control the partitioning of biomass among components and the geometric relationships of the 

species. The applicability of a model can also be tested using a representative data set (e.g. Paul et al, 2016; Perez-

Cruzado et al, 2015; Youkhana et al 2017). The accuracy of the allometric model should be assessed by evaluating 

the related statistical indicators. 

Figure 2.2a Generic decision tree for the identification of appropriate allometric 

models to estimate volume, biomass or carbon stocks  

Start
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models available?

Are metadata about 
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the allometric models
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Generalized and site or species-specific allometric models have been developed for use in different circumstances. 

While species-specific models will give more accurate estimates for the respective tree species (all other aspects 

being the same as the ones for which the model was developed) (Henry et al. 2011), generalized models may be 
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better suited in regions with a very large diversity of tree species, where models are lacking for a large proportion 

of species. The use of species-specific models however is encouraged for the species for which specific models 

and appropriate input data are available. For natural forests, which may contain many different species, application 

of species-specific allometric models may be impractical; in this case, a model specific for the ecosystem type can 

be used (Krisnawati et al, 2012). When species-specific or ecosystem-specific models are not available, regionally 

relevant allometric models can be applied (Chave et al., 2004). Generic models developed based on a large number 

of sample trees across landscapes tend to be more reliable than locally developed models if these are based on only 

a small number of individuals (Chave et al 2005; Chave et al 2014; Paul et al, 2016).  

Stand leve l  models and their equat ions  

When individual or species specific allometric models for biomass or carbon stocks are not appropriate, stand level 

allometric models, which may include canopy height, basal area and community age as predictor variables, may 

be applicable to estimate biomass parameters. Stand-level allometric models using canopy height estimate carbon 

stocks per unit area based on the assumption that canopy height is directly proportional to biomass (Mascaro et al, 

2011; Saatchi et al, 2011). Information on canopy height can be predicted from ground-based inventory or by 

remote sensing such as airborne Light Detection and Ranging (LiDAR), polarimetric interferometry SAR or 

airborne imagery. Auxiliary information such as digital elevation models are necessary to predict canopy height 

from airborne and satellite-borne imagery because only canopy surface elevation can be predicted from them. The 

accuracy of carbon stock estimation from canopy height depends on the number of field measurement plots used 

to estimate the relationship between canopy height and carbon stocks. Basal area is an important parameter to 

understand stand characteristics and it is used in the model to estimate stand volume or stand biomass. Basal area 

is estimated easily in the field using simple equipment. When basal area is used in the stand-level model to estimate 

biomass or carbon stocks, mean tree height is also needed in the model (Lang et al, 2016; Mensah et al, 2016). The 

stand-level allometric model estimated from community age estimates carbon stocks per unit area by assuming 

that community biomass increases monotonically as the forest ages, and then drawing a saturation curve for 

community age (Inoue et al, 2010). It is applicable where land use is rotated at fixed intervals, so that a mosaic of 

communities of different ages exists. 

Tier 3 methods  

The hierarchical tier structure implies that use of higher tiers (Tier 2 or Tier 3) usually results in an increased 

accuracy of the method and/or emissions factor and other parameters used in the estimation of the emissions and 

removals. Tier 3 approaches for biomass carbon stock change estimation allow for a variety of methods, including 

measurement-based forest inventories. Measurement-based Tier 3 inventories require detailed national forest 

inventories containing data on growing stock, and, ideally, repeated measurements from which periodic increments 

can be estimated. In some circumstances these data are used directly in empirical models while in other cases they 

are supplemented with allometric models (for example, Chambers et al. (2001) and Baker et al. (2004) for the 

Amazon; Seiler et al. (2014) for tropical forest of Bolivia, Jenkins et al. (2004) and Kurz and Apps (2006) for 

North America; and Zianis et al. (2005) for Europe, Paul et al. (2016) for Australia, Luo et al. (2014) for China, 

Youkhana et al 2017 for tropical grasses), calibrated to national circumstances that allow for direct estimation of 

biomass increment or growth. Model-based Tier 3 inventories build on model-specific input data and may contain 

allometric models as empirical model components. Additional information related to the use of higher Tier 

methods can be found in Section 2.5. 

Uncerta inty  

Sources of uncertainty when using allometric models include:  

1. Model-related uncertainty, i.e. the uncertainty related to the model used, stemming from the estimation of the 

parameters of this model and residual variability around model; 

2. Sampling variability and measurement errors in input data (see volume 1, chapter 3, section 3.1.6 for 

additional information); 

3. The uncertainty of transferring the model to trees not used for estimation of the parameters (lack of 

representativeness) (see volume 1, chapter 3, section 3.1.6 for additional information). 

Magnitudes of the effects of the first and second sources should be reported with the model, the latter can be 

reduced by careful selection of models.  

Recalculat ions  

Recalculations of C stocks may be necessary, if new and/or better data or methodology becomes available. When 

BEF’s are replaced with parameters that are estimated using allometries, recalculations across the time series will 

be required. The replacement of generalised models with species-specific models also may require recalculations. 

It should be noted that allometry can change over time (Lopez-Serrano et al. 2005), for example, if the thinning 

regime in a plantation forest is changed. This may influence the ratio of crown biomass / DBH and, over time, the 

trees in this plantation may show different allometric relationships at two distant points in time. An updated 
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allometric model would therefore be required in order to reflect the impact of the changes. In this case, to ensure 

time series consistency, apply the guidance provided in Volume 1 Chapter 5 and in Volume 4, Chapter 4 in relation 

to the Forest Land category  

New technolog ies  

Remotely sensed data from airborne or terrestrial platforms can be useful sources of information for deriving 

variables relevant for constructing and validating allometric models. They can improve measurements of height, 

volume and crown dimensions of individual trees that are difficult to collect with traditional ground-based 

approaches, particularly in dense and complex canopies. They can underpin a new generation of allometric models 

which have tree height and crown size as explanatory variables (Jucker et al, 2017). Of particular potential is 

terrestrial laser scanning, offering a means to collect data on tree volume in a non-destructive manner (see Box 

2.0c). 

BOX 2.0C (NEW) 

NEW TECHNOLOGY: TERRESTRIAL LASER SCANNING 

Terrestrial laser scanning is a ground-based active remote sensing technique which can be used to 

derive 3D vegetation structure, and compute key variables such as tree height, stem diameter, crown 

dimensions and tree volume for above-ground biomass predictions and to develop and validate 

allometric models (Calders et al., 2015). These under-canopy terrestrial laser systems emit millions 

of laser pulses that reflect off solid objects such as trunks, branches and leaves and form 3D point 

clouds. Individual trees can be segmented from plot-scale point cloud data and individual tree point 

clouds can then be used to reconstruct the woody elements of a tree.  

Terrestrial laser scanning provides non-destructive and highly detailed measurements independent 

of the size and shape of a tree that are otherwise only available from destructive methods (Disney et 

al., 2018). Aboveground biomass calculated from the point cloud data is independent of allometry 

and with quantifiable accuracy. Many trees can be sampled and measured in an efficient manner and 

can provide most of the fundamental data needed to develop new or test the usefulness of existing 

allometric models for NGHGIs. Terrestrial laser scanning has proven useful for large and complex 

tropical trees (Gonzalez de Tanago et al., 2018). Terrestrial laser scanners cannot measure 

belowground or look inside trees, i.e. they do not provide information on wood density or whether 

a tree is hollow. 

B.  USING ABOVEGROUND BIOMASS DENSITY MAP CONSTRUCTED FROM 

REMOTELY SENSED DATA FOR BIOMASS ESTIMATION 

Biomass density maps are wall-to-wall, polygon- or pixel-based predictions of above-ground biomass for woody 

plants and trees. 

Consideration when developing bio mass densi ty maps  

Biomass density maps are constructed by combining remotely sensed data (see Box 2.0d) and field observations. 

They have been developed at national scales (e.g., Avitabile et al., 2012) as well as for continental to global scales 

(e.g., Baccini et al., 2012; Saatchi et al., 2011, Avitabile et al., 2016). The characteristics and usefulness of biomass 

density maps for NGHGIs depend on multiple factors: 

1. The definitions for forest and aboveground woody biomass used to produce the map and how this definition 

relates to the one used in the NGHGI. 

2. The type of remotely sensed data sources in terms of spatial resolution, temporal coverage and the degree to 

which the signal responds to aboveground biomass (sensitivity). The response depends on the type and 

biomass ranges of the woody plants. Different remote sensing technologies have varying abilities for 

predicting biomass for different types of woody plants (i.e. boreal versus tropics) and combining remotely 

sensed data from multiple sources can increase sensitivity and the resulting accuracy of biomass density 

predictions. 

3. The method used to construct the map. Such methods can range from simple interpolation of field estimates 

of biomass density using spatial covariates to more complex modelling of above-ground woody biomass using 

field estimates and observed remotely sensed signals.  

4. The availability and reliability of biomass estimates obtained from field data needed to produce and validate 

the biomass density map. Combining co-located remotely sensed data and field observations can be 

challenging because of the size and shape of the primary elements (i.e. field plot size and shape versus 

geometric resolution of remotely sensed data), the timing of their acquisition, accuracy of geolocations, and 
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differences in the variables and parameters that are measured and estimated in the field and predicted from 

the remotely sensed data.  

5. The degree to which map uncertainty is characterized and the manner in which it is used to assess bias and 

precision for large area estimates in support of NGHGIs (see Volume IV, Chapter 3). 

BOX 2.0D (NEW) 

REMOTE SENSING TECHNOLOGIES 

Optical, Synthetic Aperture Radar (SAR) and Light Detection and Ranging (Lidar) sensors are 

available currently as remote sensing data sources for producing biomass density maps. Data from 

optical satellite sensors are classified into three types on the basis of their spatial resolution; coarse 

resolution data with a pixel size greater than about 250 m (e.g., MODIS), medium resolution data 

with a pixel size of 10-80 m (e.g., Landsat and Sentinel 1 and 2), and fine resolution data with a 

pixel size smaller than 10 m (e.g., Rapideye or SPOT and ALOS-2).  

SAR and LiDAR are active sensors available as air borne and space borne instruments whose derived 

metrics are used to predict height, volume or biomass of woody plants and trees. SAR emits 

microwave pulses obliquely and measures attributes of the pulses that are reflected back from the 

Earth’s surface towards the sensor. In forest land, emitted pulses reflect from the ground, or canopy 

or trunk of woody plants and trees. Using the strength of the signal of the reflected pulses, volume 

or biomass of woody plants and trees can be predicted as demonstrated for satellite data from ALOS-

PALSAR and Sentinel 1 (Santoro and Cartus, 2018). LiDAR emits laser pulses and measures the 

traveling time from the sensor to the target which can be converted to distance. When the LiDAR 

emitter is aimed at woody plants and trees, these laser pulses can be reflected by the woody 

components, the leaves within the canopy, or the ground surface. Using the difference of a laser 

pulse reflected from canopy and ground surface, the height, volume or biomass of woody plants and 

trees can be predicted (Næsset 1997a,b, Lim et al 2003). Starting in 2019, a series of targeted space-

based missions will improve the capabilities for forest biomass predictions from LiDAR (e.g. GEDI, 

ICESAT-2) and SAR (e.g. BIOMASS, NISAR), that might be found useful for national purposes 

(Herold et al. 2019). 

Besides mapping biomass density, there are evolving approaches that monitor changes in biomass density through 

time directly from remotely sensed data (Baccini et al., 2017). Such approaches require consistent measurements 

and estimates, and such consistency can be challenging when different satellite data sources and different ways of 

processing and analysing the data are used. In principle, the direct prediction of wall-to-wall biomass change has 

the advantage of including all detectable change events, including those occurring in forest remaining forest (i.e., 

forest degradation and regrowth) which are not considered when a single biomass map is combined with activity 

data characterizing land use change. However, the sensitivity of the remotely sensed data to subtle biomass changes 

needs to be carefully evaluated. The mapped biomass change might also not distinguish between anthropogenic or 

natural causes and not fully characterize all components of the carbon emissions. For example, some carbon loss 

may have accumulated as dead organic matter (e.g., dead wood or litter), and additional data are usually required 

to estimate the fate of that initial biomass (e.g., burned, left on site, and removed from the site). 

Because above-ground woody biomass is the variable predicted from remotely sensed data, additional information 

such as country-specific data for root-to-shoot ratios are needed to estimate carbon stocks in other pools.  

Guidance  on the  use  of  bio mass  density maps for nat ional GHG inventories  

Biomass density maps can be used to enhance the stratification of ground carbon inventories, to improve the 

estimation of carbon emissions by increasing data density in under-sampled or inaccessible areas, and as an 

independent data source for verification purposes (provided that the field data were not used to predict the biomass 

density maps used for stratification).  

Use of biomass maps for the estimation of carbon emissions at Tier 2 and Tier 3 levels can be achieved in several 

ways: 

1. Combination with activity data where a biomass density map provides the base to estimate emission factors. 

Such analyses require consistency among the activity data and biomass maps concerning definitions, 

geolocation, and spatial and temporal data characteristics. The use of regionally aggregated emission factor 

analysis (i.e., using average estimates for different forest types, or change trajectories) helps to reduce inherent 

pixel-level uncertainties in biomass map data for national-scale estimations. Countries have used such an 

approach to increase data density in areas under-sampled by ground inventories (see Box 2.0e).  

2. Estimate biomass change directly from multi-temporal biomass density maps. Such an approach would 

provide an assessment of carbon stock changes in above-ground biomass from land use change and, in 
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particular, it would also include changes within forests remaining forests such as degradation and regrowth, 

management and harvest, and natural disturbances. Such analysis requires consistent and well-calibrated 

biomass density maps using ground and remotely sensed data to accurately estimate biomass changes; a 

quality requirement that has so far not been achieved for the NGHGIs at this stage. Improvements in both the 

field estimates of biomass change and remote sensing technologies and analysis in the coming years can lead 

to such approaches becoming more efficient and accurate for NGHGI purposes. 

3. Biomass density maps can be integrated with remote sensing-assisted, time-series of land change and/or with 

Tier 3 models to localize emissions estimates. This way the biomass map data can be linked to land and carbon 

evolution over time that better reflect the complexity of forest-related carbon fluxes. Critical for this type of 

application is the consistency among the various data sources and models concerning definitions (forest, 

biomass pools), and, spatial and temporal data characteristics. Map unit uncertainties in biomass maps 

propagate to larger area estimates and can lead to substantial uncertainties in national emissions estimation if 

not properly considered.  

The application of such approaches requires maps well-calibrated for national circumstances. Many available 

large-area biomass maps, such as global biomass maps, might not be consistent with national definitions of forest 

and/or biomass pools, and often exhibit large systematic errors in the estimation of carbon stock and changes for 

national and local assessments (Avitabile et al., 2016). Since countries may have national products, including 

biomass maps, large-area biomass maps can be useful for the purpose of independent comparison and verification. 

Depending on how a map is produced and how it is used to enhance NGHGIs, additional metadata on the applied 

models and procedures used to produce the map, such as for example the covariance matrix of model parameters 

of a model that was used to generate the map (see Volume 1, Chapter 6, section 6.1.4.2), may be required for 

characterization and reporting of uncertainty in a fully compliant way, particularly for application to country-

specific circumstances. 

BOX 2.0E (NEW) 

USING A BIOMASS MAP FOR GHG ESTIMATION: AN EXAMPLE FROM THE BRAZILIAN AMAZON  

Brazil is applying a methodology for estimating forest biomass combining data from airborne 

LiDAR, satellite remote sensing and forest inventories. The aim for using the biomass map for the 

NGHGI is to provide coverage over the whole Amazon where the availability and quality of ground 

data varies. Deforestation and associated land use change in the Amazon are heterogeneous and 

patchy. Related estimates of carbon emissions carry some level of uncertainty unless this spatial 

variability in both types of change and biomass variability is captured.  

The methodology to estimate the biomass was based on 1,000 LiDAR transects randomly distributed 

across 3.5 million km2 of the Amazon forests. Aboveground biomass is estimated at three different 

levels. At field plot level (first level), the data are used to validate the biomass estimated by LiDAR 

(second level) by adopting and using the models and data provided by Chave et al 2014 and Longo 

et al 2016. A total of 407 field plots were used for this validation. At the third level the biomass was 

estimated by extrapolating the biomass to the Brazilian Amazon Biome by the use of MODIS 

vegetation index, Shuttle Radar Topography Mission data, precipitation data from the Tropical 

Rainfall Measuring Mission and Synthetic Aperture Radar data of the Phased Array type L-band 

Synthetic Aperture Radar, soil and vegetation maps. A nonparametric regression method (Random 

Forest) is used for correlating the above ground biomass within the LiDAR transects to a list of 

variables, and then used for the extrapolation of the biomass to the region. The coefficient of 

determination and the root mean squared error between the third level extrapolated biomass data and 

the LiDAR data were R2=0.7485 and RMSE=27.18 MgCha-1, respectively. In this process, the 

SRTM elevation data were the most important variable for the biomass extrapolation process, 

followed by the TRMM precipitation data and Enhanced Vegetation Index data. The estimated 

biomass map uncertainty is calculated by propagating the uncertainties through the different levels 

of biomass estimation, i.e., field plots, LiDAR and satellite (Longo et al 2016). This process allows 

us to obtain total uncertainty estimates for each pixel in the final biomass map. 

 



Volume 4: Agriculture, Forestry and Other Land Use 

2.20 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

 

2.3.2 Change in carbon stocks in dead organic matter 

No refinement in Introduction. 

2.3.2.1 LAND REMAINING IN A LAND-USE CATEGORY  

The Tier 1 assumption for both dead wood and litter pools (see table 1.1 for definitions) for all land-use categories 

is that their stocks are not changing over time if the land remains within the same land-use category. Thus, the 

carbon in biomass killed during a disturbance or management event (less removal of harvested wood products) is 

assumed to be released entirely to the atmosphere in the year of the event. This is equivalent to the assumption 

that the carbon in non-merchantable and non-commercial components that are transferred to dead organic matter 

is equal to the amount of carbon released from dead organic matter to the atmosphere through decomposition and 

oxidation. Countries can use higher tier methods to estimate the carbon dynamics of dead organic matter. This 

section describes estimation methods if Tier 2 (or 3) methods are used. 

Countries that use Tier 1 methods to estimate dead organic matter (DOM) pools in land remaining in the same 

land-use category, report zero changes in carbon stocks or carbon emissions from those pools. Following this rule, 

CO2 emissions resulting from the combustion of dead organic matter during fire are not reported, nor are the 

increases in dead organic matter carbon stocks in the years following fire. However, emissions of non-CO2 gases 

from burning of DOM pools are reported.  Tier 2 methods for estimation of carbon stock changes in DOM pools 

calculate the changes in dead wood and litter carbon pools (Equation 2.17). Two methods can be used: either track 

inputs and outputs (the Gain-Loss Method, Equation 2.18) or estimate the difference in DOM pools at two points 

in time (Stock-Difference Method, Equation 2.19). These estimates require either detailed inventories that include 

repeated measurements of dead wood and litter pools, or models that simulate dead wood and litter dynamics. It 

is good practice to ensure that such models are tested against field measurements and are documented. Figure 2.3 

provides the decision tree for identification of the appropriate tier to estimate changes in carbon stocks in dead 

organic matter.  

BOX 2.0E (NEW) (CONTINUED) 

USING A BIOMASS MAP FOR GHG ESTIMATION: AN EXAMPLE FROM THE BRAZILIAN AMAZON  

 

Biomass map of the Amazon biome in Brazil (Ometto et al. 2018) 

 



 Chapter 2: Generic Methodologies Applicable to Multiple Land-Use Categories 

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 2.21 

Figure 2.3 Generic decision tree for identification of appropriate tier to estimate 

changes in carbon stocks in dead organic matter for a land-use 

category  

Start

Are data on managed area and DOM 

stocks at two periods of time available 

to estimate  changes in C stocks?

Collect data for Tier 2 method (Gain-

Loss Method or Stock Difference 

Method²)

Use the data for Tier 2 method (Stock-

Difference Method) or Tier 3 Method

Use the data for Tier 2 method (Gain-

Loss Method) or Tier 3

                        
             Are data on manged 

area and annual transfer into and  out of 
DOM stocks available?

                              

Yes

No

Yes

Yes

Box 3:Tier 2 and 3

Box 2:Tier 2 and 3

Are changes in C stocks in DOM a key 

category¹?

No

No
Assume that the dead organic 

matter stock is in equilibrium 

Box 1:Tier 1

Note:

1: See Volume 1 Chapter 4 "Methodological  Choice  and Identification of key Categories” (noting Section 4.1.2 on limited resources), 

for discussion of  key categories and use of decision trees

2: The two methods are defined in Equations 2.18 and 2.19, respectively.

Equation 2.17 summarizes the calculation to estimate the annual changes in carbon stock in DOM pools: 

EQUATION 2.17 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD ORGANIC MATTER 

LTDWDOM CCC   

Where: 

∆C
DOM

 = annual change in carbon stocks in dead organic matter (includes dead wood and litter), tonnes C 

yr-1 
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∆C
DW

 = change in carbon stocks in dead wood, tonnes C yr-1 

∆C
LT

 = change in carbon stocks in litter, tonnes C yr-1  

The changes in carbon stocks in the dead wood and litter pools for an area remaining in a land-use category 

between inventories can be estimated using two methods, described in Equation 2.18 and Equation 2.19. The same 

equation is used for dead wood and litter pools, but their values are calculated separately.  

EQUATION 2.18 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD WOOD OR LITTER (GAIN-LOSS METHOD) 

{( ) }DOM in outC A DOM DOM CF      

Where:  

DOMC  = annual change in carbon stocks in the dead wood/litter pool, tonnes C yr-1  

A  = area of managed land, ha  

inDOM  = average annual transfer of biomass into the dead wood/litter pool due to annual processes 

and disturbances, tonnes d.m. ha-1 yr-1 (see next Section for further details). 

outDOM  = average annual decay and disturbance carbon loss out of dead wood or litter pool, tonnes 

d.m. ha-1 yr-1 

CF  = carbon fraction of dry matter, tonne C (tonne d.m.)-1 

The net balance of DOM pools specified in Equation 2.18, requires the estimation of both the inputs and outputs 

from annual processes (litterfall and decomposition) and the inputs and losses associated with disturbances. In 

practice, therefore, Tier 2 and Tier 3 approaches require estimates of the transfer and decay rates as well as activity 

data on harvesting and disturbances and their impacts on DOM pool dynamics. Note that the biomass inputs into 

DOM pools used in Equation 2.18 are a subset of the biomass losses estimated in Equation 2.7. The biomass losses 

in Equation 2.7 contain additional biomass that is removed from the site through harvest or lost to the atmosphere, 

in the case of fire. 

The method chosen depends on available data and will likely be coordinated with the method chosen for biomass 

carbon stocks. Transfers into and out of a dead wood or litter pool for Equation 2.18 may be difficult to estimate. 

The stock difference method described in Equation 2.19 can be used by countries with forest inventory data that 

include DOM pool information, other survey data sampled according to the principles set out in Annex 3A.3 

(Sampling) in Chapter 3, and/or models that simulate dead wood and litter dynamics. 

When the gain – loss method is chosen, inventory measurements may provide estimates for DOM stocks. 

Alternatively, relevant information on transfers out of the litter and dead wood pools through decomposition can 

be found in the literature. Care must be taken not to confound decomposition flow “rates” and decomposition 

“rate-constants” (e.g., k’s) when DOMout is estimated. DOMout using the second approach is the product of the 

rate-constant describing the proportion lost per year and the stock of DOM (e.g., DOMout = k *DOM). One should 

be aware that decomposition rate-constants describe total losses and not just those via respiration. The fate of 

leached and fragmented carbon is not well understood; much of the material is likely respired but whether this is 

slower or faster than the source material is highly variable. Negative exponential decay models are commonly used 

to determine the decomposition rate-constants that characterize the volume, mass, or density loss in dead wood 

and litter over time (Cook et al. 2016, Harmon et al. 2000, Russell et al. 2014). While models to predict volume, 

biomass, or density loss are relatively simple, the decomposition rate-constants may vary substantially. The 

decomposition of dead wood and litter mass is driven by many factors including: woodiness (i.e., wood and bark 

versus foliage); position (i.e., standing versus downed dead wood); species of the material decomposing; state of 

decomposition (i.e., fresh versus highly decomposed) and decomposers present (e.g., the presence of termites 

and/or soil biota); climate under the canopy (for example condition by openness of the canopy) (Lavelle et al., 

1993; Hattenschwiler et al., 2005, Harmon et al. 2011, García‐Palacios et al., 2013, Russell et al., 2014, Filser et 

al. 2016, Chertov et al. 2017, Hu et al., 2017, Kornarnov et al. 2017), among others. Having specific information 

on these attributes will help to assign a specific decomposition constant to a particular DOM stock (Rock et al. 

2008). 
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EQUATION 2.19 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD WOOD OR LITTER (STOCK-DIFFERENCE 

METHOD) 

CF
T

DOMDOM
AC

tt

DOM 






 


)(
12

 

Where: 

DOMC  = annual change in carbon stocks in dead wood or litter, tonnes C yr-1  

A  = area of managed land, ha 

1t
DOM  = dead wood/litter stock at time t1 for managed land, tonnes d.m. ha-1 

2t
DOM  = dead wood/litter stock at time t2 for managed land, tonnes d.m. ha-1 

T = (t2 – t1) = time period between time of the second stock estimate and the first stock estimate, yr 

CF  = carbon fraction of dry matter (default for litter = 0.37 (Smith & Heath 2002), default for 

dead wood (temperate species) = 0.5 tonne C (tonne d.m.)-1 

Note that whenever the stock change method is used (e.g., in Equation 2.19), the area used in the carbon stock 

calculations at times t1 and t2 must be identical. If the area is not identical then changes in area will confound the 

estimates of carbon stocks and stock changes. It is good practice to use the area at the end of the inventory period 

(t2) to define the area of land remaining in the land-use category. The stock changes on all areas that change land-

use category between t1 and t2 are estimated in the new land-use category, as described in the sections on land 

converted to a new land category.   

INPUT OF BIOMASS TO DEAD ORGANIC MATTER 

Whenever a tree is felled, non-merchantable and non-commercial components (such as tops, branches, leaves, 

roots, and non-commercial trees) are left on the ground and transferred to dead organic matter pools. In addition, 

annual mortality can add substantial amounts of dead wood to that pool. For Tier 1 methods, the assumption is 

that the carbon contained in all biomass components that are transferred to dead organic matter pools will be 

released in the year of the transfer, whether from annual processes (litterfall and tree mortality), land management 

activities, fuelwood gathering, or disturbances. For estimation procedures based on higher Tiers, it is necessary to 

estimate the amount of biomass carbon that is transferred to dead organic matter. The quantity of biomass 

transferred to DOM is estimated using Equation 2.20. 

EQUATION 2.20 

ANNUAL CARBON IN BIOMASS TRANSFERRED TO DEAD ORGANIC MATTER 

{ ( )}in mortality slash disturbance BLolDOM L L L f     

Where:  

inDOM  = total carbon in biomass transferred to dead organic matter, tonnes C yr-1 

mortalityL  = annual biomass carbon transfer to DOM due to mortality, tonnes C yr-1 (See Equation 2.21) 

slashL  = annual biomass carbon transfer to DOM as slash, tonnes C yr-1 (See Equations 2.22) 

disturbanceL  = annual biomass carbon loss resulting from disturbances, tonnes C yr-1 (See Equation 2.14) 

BLolf  = fraction of biomass left to decay on the ground (transferred to dead organic matter) from loss 

due to disturbance.  As shown in Table 2.1, the disturbance losses from the biomass pool are 

partitioned into the fractions that are added to dead wood (cell B in Table 2.1) and to litter (cell 

C), are released to the atmosphere in the case of fire (cell F) and, if salvage follows the 

disturbance, transferred to HWP (cell E). 

Note: If root biomass increments are counted in Equation 2.10, then root biomass losses must also be counted in 

Equations 2.20, and 2.22. 



Volume 4: Agriculture, Forestry and Other Land Use 

2.24 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

Examples of the terms on the right-hand side of Equation 2.20 are obtained as follows:  

Transfers to dead organic matter from mortali ty,  L m o r t a l i t y  
Mortality is caused by competition during stand development, age, diseases, and other processes that are not 

included as disturbances. Mortality cannot be neglected when using higher Tier estimation methods. In extensively 

managed stands without periodic partial cuts, mortality from competition during the stem exclusion phase, may 

represent 30-50 percent of total productivity of a stand during its lifetime. In regularly tended stands, additions to 

the dead organic matter pool from mortality may be negligible because partial cuts extract forest biomass that 

would otherwise be lost to mortality and transferred to dead organic matter pools. Available data for increment 

will normally report net annual increment, which is defined as net of losses from mortality. Since in this text, net 

annual growth is used as a basis to estimate biomass gains, mortality must not be subtracted again as a loss from 

biomass pools. Mortality must, however, be counted as an addition to the dead wood pool for Tier 2 and Tier 3 

methods.  

The equation for estimating mortality is provided in Equation 2.21: 

EQUATION 2.21 

ANNUAL BIOMASS CARBON LOSS DUE TO MORTALITY 

  )( mCFGAL Wmortality  

Where: 

mortalityL  = annual biomass carbon transfer to DOM due to mortality, tonnes C yr-1 

A  = area of land remaining in the same land use, ha 

WG  = above-ground biomass growth, tonnes d.m. ha-1 yr-1 (see Equation 2.10) 

CF  = carbon fraction of dry matter, tonne C (tonne d.m.)-1 

m  = mortality rate expressed as a fraction of above-ground biomass growth  

When data on mortality rates are expressed as proportion of growing stock volume, then the term Gw in Equation 

2.21 should be replaced with growing stock volume to estimate annual transfer to DOM pools from mortality. 

Mortality rates differ between stages of stand development and are highest during the stem exclusion phase of 

stand development. They also differ with stocking level, forest type, management intensity and disturbance history. 

Thus, providing default values for an entire climatic zone is not justified because the variation within a zone will 

be much larger than the variation between zones. 

Annual carbon transfer to slash,  L s l a s h  

This involves estimating the quantity of slash left after wood removal or fuelwood removal and transfer of biomass 

from total annual carbon loss due to wood harvest (Equation 2.12). The estimate for logging slash is given in 

Equation 2.22 and which is derived from Equation 2.12 as explained below: 

EQUATION 2.22 

ANNUAL CARBON TRANSFER TO SLASH 

   (1 )slash RL H BCEF R H D CF          

Where:  

slashL  = annual biomass carbon transfer to DOM as slash, tonnes C yr-1, including dead roots, tonnes 

C yr-1 

H  = annual wood harvest (wood or fuelwood removal), m3 yr-1 

RBCEF  = biomass conversion and expansion factors applicable to wood removals, which transform 

merchantable volume of wood removal into above-ground biomass removals, tonnes biomass 

removal (m3 of removals)-1. If BCEFR values are not available and if BEF and Density values 

are separately estimated then the following conversion can be used:   

R RBCEF BEF D   
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o D  is basic wood density, tonnes d.m. m-3 

o Biomass Expansion Factors ( RBEF ) expand merchantable wood removals to 

total aboveground biomass volume to account for non-merchantable components 

of the tree, stand and forest. BEFR is dimensionless.  

R  = ratio of below-ground biomass to above-ground biomass, in tonne d.m. below-ground 

biomass (tonne d.m. above-ground biomass)-1. R must be set to zero if root biomass 

increment is not included in Equation 2.10 (Tier 1) 

CF  = carbon fraction of dry matter, tonne C (tonne d.m.)-1  

Fuelwood gathering that involves the removal of live tree parts does not generate any additional input of biomass 

to dead organic matter pools and is not further addressed here. 

Inventories using higher Tier methods can also estimate the amount of logging slash remaining after harvest by 

defining the proportion of above-ground biomass that is left after harvest (enter these proportions in cells B and 

C of Table 2.2 for harvest disturbance) and by using the approach defined in Equation 2.14. In this approach, 

activity data for the area harvested would also be required.  

2.3.2.2 LAND CONVERSION TO A NEW LAND-USE CATEGORY  

The reporting convention is that all carbon stock changes and non-CO2 greenhouse gas emissions associated with 

a land-use change be reported in the new land-use category. For example, in the case of conversion of Forest Land 

to Cropland, both the carbon stock changes associated with the clearing of the forest as well as any subsequent 

carbon stock changes that result from the conversion are reported under the Cropland category. 

The Tier 1 assumption is that DOM pools in non-forest land categories after the conversion are zero, i.e., they 

contain no carbon. The Tier 1 assumption for land converted from forest to another land-use category is that all 

DOM carbon losses occur in the year of land-use conversion. Conversely, conversion to Forest Land results in 

build-up of litter and dead wood carbon pools starting from zero carbon in those pools. DOM carbon gains on land 

converted to forest occur linearly, starting from zero, over a transition period (default assumption is 20 years). This 

default period may be appropriate for litter carbon stocks, but in temperate and boreal regions it is probably too 

short for dead wood carbon stocks. Countries that use higher Tier methods can accommodate longer transition 

periods by subdividing the remaining category to accommodate strata that are in the later stages of transition.  

The estimation of carbon stock changes during transition periods following land-use conversion requires that 

annual cohorts of the area subject to land-use change be tracked for the duration of the transition period. For 

example, DOM stocks are assumed to increase for 20 years after conversion to Forest Land. After 20 years, the 

area converted enters the category Forest Land Remaining Forest Land, and no further DOM changes are assumed, 

if a Tier 1 approach is applied. Under Tier 2 and 3, the period of conversion can be varied depending on vegetation 

and other factors that determine the time required for litter and dead wood pools to reach steady state. 

Higher Tier estimation methods can use non-zero estimates of litter and dead wood pools in the appropriate land-

use categories or subcategories. For example, settlements and agro-forestry systems can contain some litter and 

dead wood pools, but because management, site conditions, and many other factors influence the pool sizes, no 

global default values can be provided here. Higher Tier methods may also estimate the details of dead organic 

matter inputs and outputs associated with the land-use change. 

The conceptual approach to estimating changes in carbon stocks in dead wood and litter pools is to estimate the 

difference in C stocks in the old and new land-use categories and to apply this change in the year of the conversion 

(carbon losses), or to distribute it uniformly over the length of the transition period (carbon gains) Equation 2.23: 

EQUATION 2.23 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD WOOD AND LITTER DUE TO LAND CONVERSION 

on

onon
DOM

T

ACC
C




)(
 

Where: 

DOMC = annual change in carbon stocks in dead wood or litter, tonnes C yr-1 

oC  = dead wood/litter stock, under the old land-use category, tonnes C ha-1 
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nC  = dead wood/litter stock, under the new land-use category, tonnes C ha-1 

onA  = area undergoing conversion from old to new land-use category, ha 

onT  = time period of the transition from old to new land-use category, yr. The Tier 1 default is 20 years 

for carbon stock increases and 1 year for carbon losses. 

Inventories using a Tier 1 method assume that all carbon contained in biomass killed during a land-use conversion 

event (less harvested products that are removed) is emitted directly to the atmosphere and none is added to dead 

wood and litter pools. Tier 1 methods also assume that dead wood and litter pool carbon losses occur entirely in 

the year of the transition.  

Countries using higher Tier methods can modify Co in Equation 2.23 by first accounting for the immediate effects 

of the land-use conversion in the year of the event. In this case, they would add to Co the carbon from biomass 

killed and transferred to the dead wood and litter pools and remove from Co any carbon released from dead wood 

and litter pools, e.g., during slash burning. In that case Co in Equation 2.23 would represent the dead wood or litter 

carbon stocks immediately after the land-use conversion. Co will transit to Cn over the transition period, using 

linear or more complex dynamics. A disturbance matrix (Table 2.1) can be defined to account for the pool 

transitions and releases during the land-use conversion, including the additions and removals to Co. 

Countries using a Tier 1 approach can apply the Tier 1 default carbon stock estimates for litter, and if available 

dead wood pools, provided in Table 2.2, but should recognize that these are broad-scale estimates with 

considerable uncertainty when applied at the country level. Table 2.2 is incomplete because of the paucity of 

published data. A review of the literature has identified several problems. The IPCC definitions of dead organic 

matter carbon stocks include litter and dead wood. The litter pool contains all litter plus fine woody debris up to a 

diameter limit of 10 cm (see Chapter 1, Table 1.1). Published litter data generally do not include the fine woody 

debris component, so the litter values in Table 2.2 are incomplete.  

There are numerous published studies of coarse woody debris (Harmon and Hua, 1991; Karjalainen and 

Kuuluvainen, 2002) and a few review papers (e.g., Harmon et al., 1986), and but to date only two studies are found 

to provide regional dead wood carbon pool estimates that are based on sample plot data.  Krankina et al. (2002) 

included several regions in Russia and reported coarse woody debris (> 10 cm diameter) estimates of 2 to 7 Mg C 

ha-1. Cooms et al. (2002) reported regional carbon pools based on a statistical sample design for a small region in 

New Zealand. Regional compilations for Canada (Shaw et al., 2005) provide estimates of litter carbon pools based 

on a compilation of statistically non-representative sample plots, but do not include estimates of dead wood pools. 

Review papers such as Harmon et al. (1986) compile a number of estimates from the literature. For example, their 

Table 5 lists a range of coarse woody debris values for temperate deciduous forests of 11 – 38 Mg dry matter ha-1 

and for temperate coniferous forests of 10 – 511 Mg dry matter ha-1. It is, however, statistically invalid to calculate 

a mean from these compilations as they are not representative samples of the dead wood pools in a region. 

While it is the intent of these IPCC Guidelines to provide default values for all variables used in Tier 1 

methodologies, it is currently not feasible to provide estimates of regional defaults values for litter (including fine 

woody debris < 10 cm diameter) and dead wood (> 10 cm diameter) carbon stocks. Litter pool estimates (excluding 

fine woody debris) are provided in Table 2.2. Tier 1 methodology only requires the estimates in Table 2.2 for lands 

converted from Forest Land to any other land-use category (carbon losses) and for lands converted to Forest Land 

(carbon gains). Tier 1 methods assume that litter and dead wood pools are zero in all non-forest categories and 

therefore transitions between non-forest categories involve no carbon stock changes in these two pools. 
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TABLE 2.2 (UPDATED) 

TIRE 1 DEFAULT VALUES FOR LITTER AND DEAD WOOD CARBON STOCKS 

Climate 1 

Forest type 

Broadleaf deciduous Needleleaf evergreen All vegetation types References2 

Litter carbon stocks (tonnes C ha-1) 

Mean Min/Max Mean Min/Max Mean Min/Max  

Boreal coniferous 

forest 
19.1 4.0-38.7 40.3 4.0-117.4 31.4 4.0-117.4 

93, 98, 99, 

100, 101 

Boreal tundra 

woodland 
29.3 23.7-33.7 67.4 23.7-85.1 49.5 23.7-85.1 100, 101 

Polar n.a n.a n.a n.a n.a n.a n.a. 

Subtropical desert n.a n.a n.a n.a n.a n.a n.a. 

Subtropical humid 

forest 
5.6 4.4-8.1 6.8 4.7-11.6 8.7 1.2-24.0 

6, 7, 44, 93, 

98, 99, 103 

Subtropical 

mountain system 
n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Subtropical steppe n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Temperate 

continental forest 
23.9 4.6-64.4 66.3 6.0-279.1 47.8 4.6-279.1 

93, 98, 99, 

100, 101 

Temperate desert n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Temperate 

mountain system 
3.4 n.a. 3.9 n.a. 3.7 3.4-3.9 98 

Temperate oceanic 

forest 
n.a. n.a. n.a. n.a. 2.9 n.a. 15 

Temperate steppe 36.9 7.6-98.8 26.4 7.1-43.0 28.7 3.8-98.8 
97, 98, 100, 

101 

Tropical dry forest n.a. n.a. n.a. n.a. 2.4 2.1-2.7 11 

Tropical moist 

forest 
4.3 2.0-9.0 14.8 n.a. 5.9 1.9-14.8 21, 93, 98 

Tropical mountain 

system 
n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tropical rainforest 2.5 n.a. 4.7 n.a. 4.8 2.1-16.4 
11, 26, 35, 89, 

93, 99 

Climate 
Dead wood carbon stocks (tonnes C ha-1) 

Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Boreal coniferous 

forest 
16.4 2.3-50.7 22.2 4.1-76.5 19.7 2.3-76.5 

46, 54, 55, 56, 

59, 62, 63, 70, 

81, 87, 88, 93 

Boreal tundra 

woodland 
5.7 n.a. 1.3 0.5-2.4 3.1 0.5-6.1 5, 70 

Polar n.a n.a 26.2 n.a. 26.2 n.a. 70 

Subtropical desert n.a n.a 64.4 
14.4-

134.5 
64.4 

14.4-

134.5 
40 

Subtropical humid 

forest 
4.1 2.5-7.5 10.9 3.5-32.8 13.2 0.2-43.8 

6,7,44, 46, 68, 

93 

Subtropical 

mountain system 
n.a. n.a. 11.8 7.2-16.3 11.8 7.2-16.3 77 
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TABLE 2.2 (UPDATED) (CONTINUED) 

TIRE 1 DEFAULT VALUES FOR LITTER AND DEAD WOOD CARBON STOCKS 

Climate 1 

Forest type  

Broadleaf deciduous Needleleaf evergreen All vegetation types References2 

Dead wood carbon stocks (tonnes C ha-1) 

Mean  Min/Max Mean  Min/Max Mean  Min/Max   

Subtropical steppe n.a. n.a. 6.8 6.0-7.7 6.8 6.0-7.7 27 

Temperate 

continental forest 
23.6 1.6-150.0 22.1 2.1-59.5 23.0 1.6-150.0 

1, 2, 23, 28, 36, 

37, 46, 54, 55, 

64, 70, 80, 83, 

87, 92, 93, 

95,110 

Temperate desert n.a. n.a. 10.5 n.a. 10.5 n.a. 22 

Temperate 

mountain system 
21.2 2.8-80.6 48.1 1.7-181.8 37.6 1.7-181.8 

3, 9, 10, 12, 13, 

17, 25, 29, 30, 

31, 33, 34, 39, 

41, 50, 57, 58, 

60, 67, 68, 69, 

71, 75, 76, 78, 

82, 84, 90, 91, 

105, 109 

Temperate oceanic 

forest 
40.5 2.8-95.0 24.3 n.a. 36.8 2.8-95.0 

15, 16, 24, 32, 

52, 61, 85, 86 

Temperate steppe 26.2  9.7-50.0 8.0  n.a 21.7 8.0 -50.0 4, 70, 83, 98 

Tropical dry forest 16.0 14.7-17.3 n.a. n.a. 9.0 1.3-17.3 11, 20 

Tropical moist 

forest 
8.4 1.2-21.2 3.4 n.a. 8.0 1.2-21.2 

19, 20, 21, 38, 

4893, 96, 107 

Tropical mountain 

system 
3.3 n.a. n.a. n.a. 3.3 n.a. 20 

Tropical rainforest 17.7 0.9-218.9 1.9 n.a. 14.8 0.6-218.9 

11, 14, 18, 26, 

35, 42, 43, 45, 

46, 47, 49, 51, 

53, 65, 66, 72, 

73, 74, 79, 89, 

93, 94, 104, 

105, 107, 108 
1 FAO. 2012. Forest Resources Assessment Working Paper 179. 
2References:  1Canada NFI, 2006; 2Alban and Perala, 1992; 3Arthur and Fahey, 1992; 4Barney and Fahey, 1992; 5Barney and Van Cleve, 

1973; 6Beets et al. 2011; 7Beets et al. 2014; 8Beets, 1980; 9Bingham and Sawyer Jr., 1988; 10Blackwell et al., 1992; 11FRA2015, Brazil; 

12Brown and See, 1981; 13Busing, 1998; 14Chambers et al., 2000; 15FRA2015, Chile; 16Christensen, 1977; 17Clark et al., 1998; 
18Cochrane et al., 1999; 19Collins, 1981; 20Delaney et al., 1998; 21FRA2015, Ecuador; 22Fahey, 1983; 23Falinski, 1978; 24Frangi et al., 

1997; 25Franklin et al., 1984; 26FRA2015, French Guyana; 27Fule and Covington, 1994; 28Goodburn and Lorimer, 1998; 29Gore and 

Patterson, III, 1986; 30Gosz, 1980; 31Grahom and Cromack, 1982; 32Green and Peterken, 1998; 33Grier, 1978; 34Grier et al., 1981; 

35FRA2015, Guyana; 36Hale et al., 1999; 37Harmon and Chen, 1991; 38Harmon et al., 1995; 39Harmon et al., 1986; 40Harmon et al., 

1987; 41Harmon, 1980; 42Higucki and Biot, 1995; 43Hofer et al., 1996; 44Holdaway et al., 2017; 45Hughes et al., 2000; 46Japanese NFI, 

2018; 47John, 1973; 48Jordan, 1989; 49Kauffman and Uhl, 1990; 50Keenan et al., 1993; 51Kira, 1978; 52Kirby et al., 1998; 53Klinge, 
1973; 54Krankina et al., 1999; 55Krankina, Unpublished; 56Lamas and Fries, 1994; 57Lambert et al., 1980; 58Lang, 1985; 59Lee et al., 

1997; 60Lesica et al., 1990; 61Levett et al., 1985; 62Linder and Ostlund, 1992; 63Linder et al. 1997; 64MacMillan, 1981; 65Martinelli et 

al., 1988; 66Martius, 1997; 67McCarthy and Bailey, 1994; 68McMinn and Hardt, 1996; 69Muller and Liu, 1991; 70Canada NFI, 2018b; 
71Nicholas and White, 1984; 72Proctor et al. 1983; 73Revilla, 1987; 74Robertson and Daniel, 1989; 75Robertson and Bowser, 1999; 

76Roskoski, 1980; 77Sackett, 1980; 78Sackett, 1979; 79Saldarriaga et al., 1988; 80Shifley et al., 1997; 81Sippola, 1998; 82Sollins, 1982; 
83Spetich et al., 1999; 84Spies et al., 1988; 85Stewart and Burrows, 1994; 86Stokland, ; 87Storozhenko, 1997; 88Sturtevant et al., 1997; 

89FRA2015, Suriname; 90Taylor and Fonda, 1990; 91Tritton 1980; 92Tyrrell and Crow, 1994; 93Ugawa et al., 2012; 94Uhl et al., 1988; 

95van Hees and Clerkx, 1999; 96Zhou et al.,; 97FRA2015, Argentina; 98Domke et al., 2016; 99Japan NFI, 2018; 100Canada NFI, 2018; 
101Canada NFI, 2018a; 102Shaw et al. 2005; 103Beets et al., 2012; 104Klinge et al., 1975; 105Kaufman et al., 1988; 106Nicholas and 

White, 1985; 107Revilla, 1986; 108Revilla, 1988; 109Sollins et al., 1980; 110Lang and Forman, 1978 

n.a. denotes ‘not available’ 
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2.3.3 Change in carbon stocks in soils  

Although both organic and inorganic forms of C are found in soils, land use and management typically has a larger 

impact on organic C stocks. Consequently, the methods provided in these guidelines focus mostly on soil organic 

C. Overall, the influence of land use and management on soil organic C is dramatically different in a mineral 

versus an organic soil type. Organic (e.g., peat and muck) soils have a minimum of 12 percent organic C by mass 

(see Chapter 3 Annex 3A.5, for the specific criteria on organic soil classification), and develop under poorly 

drained conditions of wetlands (Brady & Weil 1999). All other soils are classified as mineral soil types, and 

typically have relatively low amounts of organic matter, occurring under moderate to well drained conditions, and 

predominate in most ecosystems except wetlands. Discussion about land-use and management influences on these 

contrasting soil types is provided in the next two sections. 

MINERAL SOILS 

Mineral soils contain an organic carbon pool that is influenced by land-use and management activities. Land use 

can have a large effect on the size of this pool through activities such as conversion of native Grassland and Forest 

Land to Cropland, where 20-40 percent of the original soil C stocks can be lost (Mann 1986; Davidson & 

Ackerman 1993; Ogle et al. 2005). Within a land-use type, a variety of management practices can also have a 

significant impact on soil organic C storage, particularly in Cropland and Grassland (e.g., Paustian et al. 1997; 

Conant et al. 2001; Ogle et al. 2004 and 2005).  In principle, soil organic C stocks can change with management 

or disturbance if the net balance between C inputs and C losses from soil is altered. Management activities 

influence organic C inputs through changes in plant production (such as fertilisation or irrigation to enhance crop 

growth), direct additions of C in organic amendments, and the amount of carbon left after biomass removal 

activities, such as crop harvest, timber harvest, fire, or grazing. Decomposition largely controls C outputs and can 

be influenced by changes in moisture and temperature regimes as well as the level of soil disturbance resulting 

from the management activity. Other factors also influence decomposition, such as climate and edaphic 

characteristics. Specific effects of different land-use conversions and management regimes are discussed in the 

land-use specific chapters (Chapters 4 to 9). 

Land-use change and management activity can also influence soil organic C storage by changing erosion rates and 

subsequent loss of C from a site; some eroded C decomposes in transport and CO2 is returned to the atmosphere, 

while the remainder is deposited in another location. The net effect of changing soil erosion through land 

management is highly uncertain, however, because an unknown portion of eroded C is stored in buried sediments 

of wetlands, lakes, river deltas and coastal zones (Smith et al. 2001). 

ORGANIC SOILS 

No refinement. See Chapter 2, Sections 2.2 and 2.3 of the 2013 Wetlands Supplement. 

2.3.3.1 SOIL ORGANIC C  ESTIMATION METHODS (LAND REMAINING 

IN A LAND-USE CATEGORY AND LAND CONVERSION TO A NEW 

LAND USE) 

Soil C inventories include estimates of soil organic C stock changes for mineral soils and CO2 emissions from 

organic soils due to enhanced microbial decomposition caused by drainage and associated management activity. 

In addition, inventories can address C stock changes for soil inorganic C pools (e.g., calcareous grassland that 

become acidified over time) if sufficient information is available to use a Tier 3 approach. The equation for 

estimating the total change in soil C stocks is given in Equation 2.24: 

EQUATION 2.24 (UPDATED) 

ANNUAL CHANGE IN CARBON STOCKS IN SOILS 

    Soils Mineral Organic InorganicC C L C  

Where: 

SoilsC  = annual change in carbon stocks in soils, tonnes C yr-1  

MineralC  = annual change in organic carbon stocks in mineral soils, tonnes C yr-1 

OrganicL  = annual loss of carbon from drained organic soils, tonnes C yr-1 
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 InorganicC  = annual change in inorganic carbon stocks from soils, tonnes C yr-1 (assumed to be 0 unless 

using a Tier 3 approach) 

For Tier 1 methods, soil organic C stocks for mineral soils are computed to a default depth of 30 cm because 

default reference soil organic C stocks (SOCREF – see Equation 2.25 and Table 2.3) and stock change factors (e.g. 

FLU, FMG and FI see Equation 2.25) are based on a 30 cm depth. In addition, the reference condition is defined as 

that present in native lands (i.e. non-degraded, unimproved lands under native vegetation) for the default reference 

soil organic C stocks (SOCREF). For Tier 2, a different reference condition and depth can be used as described in 

the section on Tier 2 methods. Residue/litter C stocks are not included in Tier 1 because they are addressed by 

estimating dead organic matter stocks (see section 2.3.2). Inventories can also estimate the change in mineral soil 

organic C stock due to biochar amendments to soils (Tier 2 and Tier 3 only). Stock changes in organic soils are 

based on emission factors that represent the annual loss of organic C throughout the profile due to drainage and 

associated management activity.  

No Tier 1 or 2 methods are provided for estimating the change in soil inorganic C stocks (∆𝐶𝐼𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐) due to 

limited scientific data for derivation of stock change factors; thus, the net flux for inorganic C stocks is assumed 

to be zero. Tier 3 methods could be developed to estimate changes in the stock of inorganic carbon in mineral or 

organic soils.  

It is possible that compilers will use different tiers to prepare estimates for mineral soils, organic soils, biochar 

amendments and soil inorganic C, depending on the availability of resources. Thus, stock changes are discussed 

separately for organic carbon in mineral and organic soils and for inorganic C pools (Tier 3 only). Generalised 

decision trees in Figures 2.4 and 2.5 can be used to assist inventory compilers in determining the appropriate tier 

for estimating stock changes for mineral and organic soil C, respectively. 
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Figure 2.4 Generic decision tree for identification of appropriate tier to estimate 

changes in carbon stocks in mineral soils by land-use category. 
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Figure 2.5 Generic decision tree for identification of appropriate tier to estimate 

changes in carbon stocks in organic soils by land-use category  
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Tier 1 –  Default Method 

Mineral soils  

For mineral soils, the stock change factor method is based on changes in soil C stocks (∆𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙) over a finite 

period of time of 20 years (Equation 2.25). The change in organic C stock in mineral soil (𝑆𝑂𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙) is computed 

by calculating the organic C stock remaining after a management change relative to the organic C stock in a 

reference condition and summing this change over all climate zones, soil types and management practices included 

in the inventory. The soil organic C stock present under the reference condition for the Tier 1 method is defined 

as that in non-degraded, unimproved lands under native vegetation (Table 2.3). The following assumptions are 

made: 

(i) Over time, soil organic C stock reaches a spatially-averaged, stable value specific to the soil, climate, 

land-use and management practices; and  

(ii) Soil organic C stock change during the transition to a new equilibrium SOC occurs in a linear fashion 

over a period of 20 years. 

Assumption (i), that under a given set of climate and management conditions soils tend towards an equilibrium 

organic C stock, is widely accepted.  Although, soil organic C stock changes in response to management changes 

may often be best described by a curvilinear function, assumption (ii) greatly simplifies the Tier 1 methodology 

and provides a good approximation over a multi-year inventory period, where changes in management and land-

use conversions are occurring throughout the inventory period.  
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Using the default method, changes in mineral soil organic C stocks are computed over an inventory time period.  

Inventory time periods will likely be established based on the years in which activity data are collected, such as 

1990, 1995, 2000, 2005 and 2010, which would correspond to inventory time periods of 1990-1995, 1995-2000, 

2000-2005, 2005-2010. For each inventory time period, the soil organic C stocks are estimated for the first (SOC0-T) 

and last year (SOC0) based on multiplying the reference C stocks by stock change factors. Annual rates of carbon 

stock change are estimated as the difference in stocks at two points in time divided by the time dependence of the 

stock change factors.  

EQUATION 2.25 

ANNUAL CHANGE IN ORGANIC CARBON STOCKS IN MINERAL SOILS 

0 (0 )( )T

Mineral

SOC SOC
C

D


   

 
, , , , , , , , , ,

, ,

     c s i c s i c s i c s iMineral REF LU MG I c s i

c s i

SOC SOC F F F A  

(Note: T is used in place of D in the ∆𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙  equation if T is ≥ 20 years, see note below 

associated with the parameter 𝐷) 

Where: 

MineralC  = annual change in organic C stocks in mineral soils, tonnes C yr-1 

0SOC  = mineral soil organic C stock (SOCMineral) in the last year of an inventory time period, tonnes 

C 

(0 )TSOC 
 = mineral soil organic C stock (SOCMineral) at the beginning of the inventory time period, 

tonnes C 

T  = number of years over a single inventory time period, yr  

D  = Time dependence of mineral soil organic C stock change factors which is the default time 

period for transition between equilibrium SOC values, yr. Commonly 20 years, but depends 

on assumptions made in computing the factors FLU, FMG and FI.  If T exceeds D, use the value 

for T to obtain an annual rate of change over the inventory time period (0-T years).   

c  = represents the climate zones included in the inventory 

s = represents the soil types included in the inventory 

i = represents the set of management systems included in the inventory. 

MineralSOC  = total mineral soil organic C stock at a defined time, tonnes C 

, ,c s iREFSOC  = the soil organic C stock for mineral soils in the reference condition, tonnes C ha-1 (Table 

2.3) 

, ,c s iLUF  = stock change factor for mineral soil organic C land-use systems or sub-systems for a 

particular land-use, dimensionless  

 [Note: FND is substituted for FLU in forest soil organic C stock calculations to estimate the 

influence of natural disturbance regimes (see Chapter 4, Section 4.2.3 for more discussion)]. 

, ,c s iMGF  = stock change factor for mineral soil organic C for management regime, dimensionless 

, ,c s iIF  = stock change factor for mineral soil organic C for the input of organic amendments, 

dimensionless 

, ,c s iA  = land area of the stratum being estimated, ha 

[Note: All land in the stratum should have common biophysical conditions (i.e., climate and 

soil type) and management history over the inventory time period to be treated together for 

analytical purposes.] 
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Inventory calculations are based on land areas that are stratified by climate regions (see Chapter 3 Annex 3A.5, 

for default classification of climate), and default soils types as shown in Table 2.3 (see Chapter 3, Annex 3A.5, for 

default classification of soils). The stock change factors are very broadly defined and include: 1) a land-use factor 

(FLU) that reflects C stock changes associated with type of land use, 2) a management factor (FMG) representing 

the principal management practice specific to the land-use sector (e.g., different tillage practices in cropland), and 

3) an input factor (FI) representing different levels of C input to soil. As mentioned above, FND is substituted for 

FLU in Forest Land to account for the influence of natural disturbance regimes (see Chapter 4, Section 4.2.3 for 

more discussion). The stock change factors are provided in the soil C sections of the land-use chapters. Each of 

these factors represents the change over a specified number of years (D), which can vary across sectors, but is 

typically invariant within sectors (e.g., 20 years for the cropland systems). In some inventories, the time period for 

inventory (T years) may exceed D, and under those cases, an annual rate of change in C stock may be obtained by 

dividing the product of [(SOC0 – SOC(0 –T)) ● A] by T, instead of D. See the soil C sections in the land-use chapters 

for detailed step-by-step guidance on the application of this method. 

When applying the stock change factor method using Equation 2.25, the type of land-use and management activity 

data has a direct influence on the formulation of the equation (See Box 2.1). Formulation A is based on activity 

data collected with Approach 1, while Formulation B is based on activity data collected with Approaches 2 or 3 

(Box 2.1). See Chapter 3 for additional discussion on the approaches for activity data collection. 

Special consideration is needed if using Approach 1 activity data (see Chapter 3) as the basis for estimating land-

use and management effects on soil C stocks, using Equation 2.25. Approach 1 data do not track individual land 

transitions, and so SOC stock changes are computed for inventory time periods equivalent to D years, or as close 

as possible to D, which is 20 years in the Tier 1 method. For example, Cropland may be converted from full tillage 

to no-till management between 1990 and 1995, and Formulation A (see Box 2.1) would estimate a gain in soil C 

for that inventory time period. However, assuming that the same parcel of land remains in no-till between 1995 

and 2000, no additional gain in C would be computed (i.e., the stock for 1995 would be based on no-till 

management and it would not differ from the stock in 2000 (SOC0), which is also based on no-till management). 

If using the default approach, there would be an error in this estimation because the change in soil C stocks occurs 

over 20 years (i.e., D = 20 years). Therefore, SOC(0 –T) is estimated for the most distant time that is used in the 

inventory calculations up to D years before the last year in the inventory time periods (SOC0). For example, 

assuming D is 20 years and the inventory is based on activity data from 1990, 1995, 2000, 2005 and 2010, SOC(0 

–T) will be computed for 1990 to estimate the change in soil organic C for each of the other years, (i.e., 1995, 2000, 

2005 and 2010). The year for estimating SOC(0 –T) in this example will not change until activity data are gathered 

at 2011 or later (e.g., computing the C stock change for 2011 would be based on the most distant year up to, but 

not exceeding D, which in this example would be 1995).  

If transition matrices are available (i.e., Approach 2 or 3 activity data), the changes can be estimated between each 

successive year. From the example above, some no-till land may be returned to full tillage management between 

1995 and 2000. In this case, the gain in C storage between 1990 and 1995 for the land base returned to full tillage 

would need to be discounted between 1995 and 2000.  Further, no additional change in the C stocks would be 

necessary for land returned to full tillage after 2000 (assuming tillage management remained the same).  Only land 

remaining in no-till would continue to gain C up to 2010 (i.e., assuming D is 20 years). Hence, inventories using 

transition matrices from Approach 2 and 3 activity data will need to be more careful in dealing with the time 

periods over which gains or losses of SOC are computed.  See Box 2.2 for additional details.  The application of 

the soil C estimation approach is much simpler if only using aggregated statistics with Approach 1 activity data. 

However, it is good practice for countries to use transition matrices from Approach 2 and 3 activity data if that 

information is available because the more detailed statistics will provide an improved estimate of annual changes 

in soil organic C stocks. 

There may be some cases in which activity data are collected over time spans longer than the time dependence of 

the stock change factors (D), such as every 30 years with a D of 20. For those cases, the annual stock changes can 

be estimated directly between each successive year of activity data collection (e.g., 1990, 2020 and 2050) without 

over- or under-estimating the annual change rate, as long as T is substituted for D in Equation 2.25. 
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TABLE 2.3 (UPDATED) 

DEFAULT REFERENCE CONDITION SOIL ORGANIC CARBON STOCKS (SOCREF) FOR MINERAL SOILS (TONNES C HA-1 IN 0-30 

CM DEPTH) 1, 2 

IPCC Climate Zone 5 

IPCC soil class 6 

High activity clay 

soils (HAC) 7 

Low activity clay 

soils (LAC) 8 

Sandy soils 

(SAN) 9 

Polar Moist/Dry (Px - undiff)13 59 ± 41% (24) NA 27 ± 67% (18) 

Boreal Moist/Dry (Bx - undiff)13 63 ± 18% (35) NA 10 ± 90% 4 

Cool temperate dry (C2) 43 ± 8% (177) 33 ± 90% 3 13 ± 33% (10) 

Cool temperate moist (C1) 81 ± 5% (334) 76 ± 51% (6) 51 ± 13% (126) 

Warm temperate dry (W2) 24 ± 5% (781) 19 ± 16% (41) 10 ± 5% (338) 

Warm temperate moist (W1) 64 ± 5% (489) 55 ± 8% (183) 36 ± 23% (39) 

Tropical dry (T4) 21 ± 5% (554) 19 ± 10% (135) 9 ± 9% (164) 

Tropical moist (T3) 40 ± 7% (226) 38 ± 5% (326) 27 ± 12% (76) 

Tropical wet (T2) 60 ± 8% (137) 52 ± 6% (271) 46 ± 20% (43) 

Tropical montane (T1) 51 ± 10% (114) 44 ± 11% (84) 52 ± 34% (11) 

 
Spodic soils 

(POD) 10 

Volcanic soils 

(VOL) 11 

Wetland soils 

(WET) 12 

Polar Moist/Dry (Px - undiff)13 NO NA NA 

Boreal Moist/Dry (Bx - undiff)13 117 ± 90% 3 20 ± 90% 4 116 ± 65% (6) 

Cool temperate dry (C2) NO 20 ± 90% 4 87 ± 90% 3 

Cool temperate moist (C1) 128 ± 14% (45) 136 ± 14% (28) 128 ± 13% (42) 

Warm temperate dry (W2) NO 84 ± 65% (10) 74 ± 17% (49) 

Warm temperate moist (W1) 143 ± 30% (9) 138 ± 12% (42) 135 ± 28% (28) 

Tropical dry (T4) NA 50 ± 90% 4 22 ± 17% (32) 

Tropical moist (T3) NA 70 ± 90% 4 68 ± 17% (55) 

Tropical wet (T2) NA 77 ± 27% (14) 49 ± 19% (33) 

Tropical montane (T1) NA 96 ± 31% (10) 82 ± 50% (12) 

Note: Data are derived from Batjes (2010) and Batjes (2011) unless otherwise noted through the use of superscripts. 
1 NA denotes that soil categories the soil category may occur in a climate zone, but no data was available.  NO denotes that the soil type 

does not normally occur within a climate zone.   2 All values are presented in the format of the mean for the soil by climate combination ± 
the 95% confidence limit expressed as a percentage of the mean (that is ± 1.96 * standard error /mean *100).  Values in parentheses are the 

number of soils included in the derivation of mean and standard error values for each combination of soil and climate types.  3 Indicates 

where no data were available from Batjes (2011) but values were derived for the 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories and have been used in the table.  No values of n were available.  A nominal error estimate of ±90% of the mean was assigned 

as per the 2006 IPCC Guidelines.  4 Indicates where no data were available either from Batjes (2011) or in the 2006 IPCC Guidelines for 
National Greenhouse Gas Inventories.  Mean values present the default values used in the 1996 IPCC Guidelines. No values of n were 

available.   A nominal error estimate of ±90% of the mean was assigned as per the 2006 IPCC Guidelines.  5 Climate classes are defined 

according to (IPCC 2006, p. 3.39) using elevation, mean annual temperature, mean annual precipitation, mean annual precipitation to 
potential evapotranspiration ratio and frost occurrence.  6 Soil classes are inferred from the FAO-1990/WRB-2006 classification in 

accordance with IPCC (2006, p. 3.40 - 3.41).  7 Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils 

dominated by 2:1 silicate clay minerals (in the World Reference Base for Soil Resources (WRB) classification: Leptosols, Vertisols, 
Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Calcisols, Gypsisols, Umbrisols, Cambisols, Regosols; 

in USDA classification: Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).   8 Soils with low activity clay (LAC) minerals 

are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminium oxides (in WRB classification: Acrisols, 
Lixisols, Nitisols, Ferralsols, Durisols; in USDA classification: Ultisols, Oxisols, acidic Alfisols).  9 Soils (regardless of taxonomic 

classification) having > 70% sand and < 8% clay (in WRB classification: Arenosols; in USDA classification: Psamments).  10 Soils 

exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols).  11 Soils derived from volcanic 
ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols).  12 Soils with restricted drainage 

leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).  13 The 

Boreal dry and Boreal moist zones and the Polar dry and Polar moist zones were not differentiated.  Results presented represent the SOC30 

stocks for the undifferentiated (undiff.) Boreal (Bx) and Polar (Px) classes. 
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BOX 2.1 (UPDATED) 

ALTERNATIVE FORMULATIONS OF EQUATION 2.25 FOR APPROACH 1 ACTIVITY DATA VERSUS APPROACH 2 OR 

3 ACTIVITY DATA WITH TRANSITION MATRICES 

Two alternative formulations are possible for Equation 2.25 depending on the Approach used to 

collect activity data, including 

Formulation A (Approach 1 for Activity Data Collection) 
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Formulation B (Approaches 2 and 3 for Activity Data Collection) 
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Where: 

p = a parcel of land representing an individual unit of area over which the inventory calculations are 

performed.  

See the description of other terms under the Equation 2.25. 

Activity data may only be available using Approach 1 for data collection (Chapter 3).  These data 

provide the total area at two points in time for climate, soil and land-use/management systems, 

without quantification of the specific transitions in land use and management over the inventory time 

period (i.e., only the aggregate or net change is known, not the gross changes in activity).  With 

Approach 1 activity data, mineral C stock changes are computed using formulation A of Equation 

2.25.  In contrast, activity data may be collected based on surveys, remote sensing imagery or other 

data providing not only the total areas for each land management system, but also the specific 

transitions in land use and management over time on individual parcels of land.  These are considered 

Approach 2 and 3 activity data in Chapter 3, and soil C stock changes are computed using 

formulation B of Equation 2.25.  Formulation B contains a summation by land parcel (i.e., "p" 

represents land parcels in formulation B rather than the set of management systems “i”) that allows 

the inventory compiler to compute the changes in C stocks on a land parcel by land parcel basis. 

 

BOX 2.2 (UPDATED) 

COMPARISON BETWEEN USE OF APPROACH 1 AGGREGATE STATISTICS AND APPROACH 2 OR 3 ACTIVITY DATA 

WITH TRANSITION MATRICES 

This box examines the application of Equation 2.25 to calculate ∆𝐶𝑚𝑖𝑛𝑒𝑟𝑎𝑙 . Assume a country where 

a fraction of the land is subjected to land-use changes, as shown in the following table, where each 

line represents one land unit with an area of 1 Mha (F = Forest Land; C = Cropland; G = Grassland).  

Where a land-use change occurs, it is assumed to occur in the year following the previous inventory 

year (e.g. for land unit 1, the conversion from F to C occurred at the start of 1991 such that for the 

five years from the start of 1991 to the end of the 1995 inventory year the land was under land-use 

C) 
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BOX 2.2 (UPDATED) (CONTINUED) 

COMPARISON BETWEEN USE OF APPROACH 1 AGGREGATE STATISTICS AND APPROACH 2 OR 3 ACTIVITY 

DATA WITH TRANSITION MATRICES 

Land Unit ID 1990 1995 2000 2005 2010 2015 2020 

1 F C C C C C C 

2 F C C C G G G 

3 G C C C C G G 

4 G G F F F F F 

5 C C C C G G G 

6 C C G G G C C 

 
 

For simplicity, it is assumed that the country has a single soil type, with a SOCREF (0-30 cm soil 

C stock under native forest vegetation) value of 77 tonnes C ha-1. Values for FLU are 1.00, 1.05 

and 0.92 for F, G and C, respectively. FMG and FI are assumed to be equal to 1. The time 

dependence of the stock change factors (D) is 20 years. Finally, the soil C stock is assumed to 

be at equilibrium in 1990 (i.e., no changes in land-use occurred during the 20 years prior to 

1990).  When using Approach 1 activity data (i.e., aggregate statistical data), annual changes in 

C stocks are computed for every inventory year following Equation 2.25 above. The following 

table shows the results of calculations1: 

 1990 1995 2000 2005 2010 2015 2020 

F (Mha) 2 0 1 1 1 1 1 

G (Mha) 2 1 1 1 3 3 3 

C (Mha) 2 5 4 4 2 2 2 

SOC0 (Mt C) 457.4 435.1 441.2 441.2 461.2 461.2 461.2 

SOC(0-T) (Mt C) 457.4 457.4 457.4 457.4 457.4 435.1 441.2 

∆C
Mineral

 (Mt C yr-1) 0.0 -1.1 -0.8 -0.8 0.2 1.3 1.0 

 

  

If Approach 2 or 3 data are used in which land-use changes are explicitly known, C stocks can 

be computed taking into account historical changes for every individual land unit. The total C 

stocks for the sum of all units is compared with the most immediate previous inventory year, 

rather than with the inventory of 20 years before to estimate annual changes in C stocks: 

 1990 1995 2000 2005 2010 2015 2020 

SOC0 (Mt C) for unit 1 77.0 75.5 73.9 72.4 70.8 70.8 70.8 

SOC0 (Mt C) for unit 2 77.0 75.5 73.9 72.4 74.5 76.6 78.7 

SOC0 (Mt C) for unit 3 80.9 78.3 75.8 73.3 70.8 73.3 75.8 

SOC0 (Mt C) for unit 4 80.9 80.9 79.9 78.9 78.0 77.0 77.0 

SOC0 (Mt C) for unit 5 70.8 70.8 70.8 70.8 73.3 75.8 78.3 

SOC0 (Mt C) for unit 6 70.8 70.8 73.3 75.8 78.3 76.5 74.6 

SOC0 (Mt C) 457.4 451.8 447.8 443.7 445.8 450.1 455.4 

SOC(0-T) (Mt C) 457.4 457.4 451.8 447.8 443.7 445.8 450.1 

∆C
Mineral

 (Mt C yr-1) 0.0 -1.1 -0.8 -0.8 0.4 0.9 1.0 
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BOX 2.2 (UPDATED) (CONTINUED) 

COMPARISON BETWEEN USE OF APPROACH 1 AGGREGATE STATISTICS AND APPROACH 2 OR 3 ACTIVITY DATA 

WITH TRANSITION MATRICES 

Both methods yield different estimates of C stocks, and use of Approach 2 or 3 data with land 

transition matrices would be more accurate than use of Approach 1 aggregate statistics. However, 

estimates of annual changes of C stocks would not differ greatly, as shown in this example. The 

effect of underlying data approaches on the estimates differ more when there are multiple changes 

in land-use on the same piece of land (as in land units 2, 3 and 6 in the example). It is noteworthy 

that Approach 1, 2 and 3 activity data produce the same changes in C stocks if the systems reach a 

new equilibrium, which occurs with no change in land-use and management for a 20-year time 

period using the Tier 1 method.  Consequently, no C stock increases or losses are inadvertently lost 

when applying the methods for Approach 1, 2 or 3 activity data, but the temporal dynamics do vary 

somewhat as demonstrated above. A spreadsheet is available with the full set of calculations: 

Vol4_Ch2_Spreadsheet_Box_2.2_Calculations.xlsx. 

Organic soils  

No refinement. See Chapter 2, Section 2.2 of the 2013 Wetlands Supplement. 

Soil  inorganic C 

No refinement. 

Tier 2 Methods 

Mineral soils  

A Tier 2 method is an extension of the Tier 1 method that allows an inventory to incorporate country-specific data. 

It is good practice for countries to use a Tier 2 method, if possible, even if they are only able to better specify 

certain components of the Tier 1 method. For example, a compiler may only have data to derive country-specific 

reference C stocks, which would then be used with default stock change factors to estimate changes in soil organic 

C stocks for mineral soils. 

Country-specific data can be used to improve four components when applying the Tier 1 equations for estimating 

stock changes in mineral soils. The components include a) derivation of region or country-specific stock change 

factors, b) reference condition C stocks, c) specification of management systems, and/or d) classification of climate 

and soil categories (e.g., Ogle et al., 2003; VandenBygaart et al., 2004; Tate et al., 2005). Inventory compilers can 

choose to derive specific values for all of these components, or any subset, which would be combined with default 

values provided in the Tier 1 method to complete the inventory calculations using Equation 2.25. Also, the Tier 2 

method uses the same procedural steps for calculations as provided for Tier 1.  

1) Defining management systems. Although the same management systems may be used in a Tier 2 inventory as 

found in the Tier 1 method, the default systems can be disaggregated into a finer categorisation that better 

represents management impacts on soil organic C stocks in a particular country based on empirical data (i.e., stock 

change factors vary significantly for the proposed management systems).  Such an undertaking, however, is only 

possible if there is sufficient detail in the underlying data to classify the land area into the finer, more detailed set 

of management systems. 

2) Climate regions and soil types. Countries that have detailed soil classifications and climatic data have the option 

of developing country-specific classifications. Moreover, it is considered good practice to specify better climate 

regions and soil types during the development of a Tier 2 inventory if the new classification improves the 

specification of reference C stocks and/or stock change factors. In practice, reference C stocks and/or stock change 

factors should differ significantly among the proposed climate regions and soil types based on an empirical analysis. 

Note that specifying new climate regions and/or soil types requires the derivation of country-specific reference C 

stocks and stock change factors. The default reference soil C stocks and stock change factors are only appropriate 

for inventories using the default climate and soil types. 

3) Reference C stocks. Deriving country-specific reference condition soil C stocks (SOCREF) is another possibility 

for improving an inventory using a Tier 2 method (Bernoux et al. 2002), which will likely produce more accurate 

and representative values. Country-specific stocks can be estimated from soil measurements, for example, as part 

of a country’s soil survey. It is important that reliable taxonomic descriptions be used to group soils into categories. 

Three additional points require consideration when deriving the country-specific values, including possible 

specification of country-specific soil categories and climate regions (i.e., instead of using the IPCC default 

classification), choice of reference condition, and choice of depth increment over which the stocks are estimated. 
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Stocks are computed by multiplying the proportion of organic C (i.e., %C divided by 100) by the depth increment 

(default is 30 cm), bulk density, and the proportion of coarse-fragment free soil (i.e., < 2mm fragments) in the 

depth increment (Ogle et al. 2003).  The coarse fragment-free proportion is on a mass basis (i.e., mass of coarse 

fragment-free soil/total mass of the soil). If the soil C reference condition differs from that used in Table 2.3 or the 

soil depth used differs from 30 cm, then appropriate country specific soil C stocks for the reference condition and 

stock change factors must be derived. For developing a Tier 2 method, it would also be possible to define reference 

SOC stocks and SOC stock change factors using an equivalent mass approach (see Box 2.2b) rather than an 

approach based on a fixed depth. 

The soil reference condition is the land-use/cover category (or condition within a land-use/cover category) that is 

used for evaluating the relative effect of land-use change on the amount of soil C storage (e.g., relative difference 

in soil C storage between a reference condition, such as native lands, and another land use, such as cropland, 

forming the basis for FLU in Equation 2.25). It is likely that many countries will use the Tier 1 default soil reference 

condition in a Tier 2 method. However, another land use or condition can be selected to define the reference 

condition, which is good practice if it allows for a more accurate assessment of soil C stock changes.  The same 

reference condition should be used for each climate zone and soil type, regardless of the land use. The soil C stock 

associated with the reference condition is then multiplied by land use, input and management factors to estimate 

the stocks at the beginning and last year in an inventory time period (See Equation 2.25). 

Another consideration in deriving country-specific reference soil C stocks is the possibility of estimating C stocks 

to a different depth in the soil. Default soil C stocks given in Table 2.3 are based on the amount of soil organic C 

in the top 30 cm of a soil profile. A different depth can be selected and used for Tier 2 methods if all appropriate 

data are available. Consideration should be given to the introduction of bias (positive or negative) that may arise 

in response to the depth selected. For example, where depth is set to 20 cm and cultivation mixes soils to a 

depth >20 cm, an apparent difference in SOC stock between cultivated and uncultivated soils may be observed for 

the 20cm depth that is not representative of the change in SOC stocks to the depth over which mixing occurs in 

the cultivated soil. It is good practice to derive reference condition soil C stocks to the depth at which land use and 

management impact soil C stocks, but this will require that the data are available or could be acquired to the 

selected depth. Any change in the depth for reference condition soil C stocks will require derivation of new stock 

change factors (e.g. FLU, FMG and FI see Equation 2.25) consistent with the depth selected because the defaults are 

based on impacts to a 30 cm depth.   

It is possible to use a soil C model to derive steady state soil C stocks indicative of the soil reference condition for 

the various combinations of soil type and climate that exist within a country. However, this would require sufficient 

testing of the model used to provide evidence that the model is adequate for this purpose (See Section 2.5.2 for 

more information). Further information related to soil sampling strategies and how to derive soil reference C stocks 

can be found in Batjes (2011), as well as in a range of soil sampling and analysis texts (e.g. Carter & Gregorich 

2008; de Gruijter et al. 2006) 

4) Stock change factors. An important advancement for a Tier 2 method is the estimation of country-specific stock 

change factors (FLU, FMG and FI). The derivation of country-specific factors can be accomplished using 

experimental/measurement data and computer model simulation. In practice, deriving stock change factors 

involves estimating a response ratio for each study or observation (i.e., the C stocks in different input or 

management classes are divided by the value for the nominal practice, respectively). 

Optimally, stock change factors are based on experimental/measurement data in the country or surrounding region, 

by estimating the response ratios from each study and then analysing those values using an appropriate statistical 

technique (e.g., Ogle et al. 2003 and 2004; VandenBygaart et al. 2004). Studies may be found in published 

literature, reports and other sources, or inventory compilers may choose to conduct new experiments.  Regardless 

of the data source, it is good practice that the plots being compared have similar histories and management as well 

as similar topographic position, soil physical properties and be located in close proximity.  Studies should provide 

soil C stocks (i.e., mass per unit area to a specified depth) or the information needed to calculate soil C stocks (i.e., 

percent organic carbon together with bulk density; proportion of rock in soil, which is often measured as the greater 

than 2mm fraction and by definition contains negligible soil organic C). If percent organic matter is available 

instead of percent organic carbon, a conversion factor of 0.58 can be used to estimate the C content. Moreover, it 

is good practice that the measurements of soil C stocks are taken on an equivalent mass basis (e.g., Ellert et al. 

2001; Gifford & Roderick, 2003). In order to use this method, the inventory compiler will need to determine a 

depth to measure the C stock for the nominal land use or practice, such as native lands or conventional tillage. This 

depth will need to be consistent with the depth for the reference C stocks. The soil C stock for the land-use or 

management change is then measured to a depth with the equivalent mass of soil.  Box 2.2b provides further 

information on issues associated with conducting an inventory on an equivalent mass basis. 

Another option for deriving country-specific values is to simulate stock change factors from advanced models 

(Bhatti et al., 2001). To demonstrate the use of advanced models, simulated stock change factors can be compared 

to with measured changes in C stocks from experiments. It is good practice to provide the results of model 
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evaluation, citing published papers in the literature and/or placing the results in the inventory report. This approach 

is considered a Tier 2 method because it relies on the stock change factor concept and the C estimation method 

elaborated in the Tier 1 method.   

Derivation of country-specific management factors (FMG) and input factors (FI), either with empirical data or 

advanced models, will need to be consistent with the management system classification.  If more systems are 

specified for the inventory, unique factors will need to be derived representing the finer categories for a particular 

land use.   

Another consideration in deriving country-specific stock change factors is their associated time dependence (D in 

Equation 2.25), which determines the number of years over which the majority of a soil C stock change occurs, 

following a management change.  It is possible to use the default time dependence (D) for the land-use sector (e.g., 

20 years for cropland), but the dependence can be changed if sufficient data are available to justify a different time 

period. In addition, the method is designed to use the same time dependence (D) for all stock change factors as 

presented in Equation 2.25. If different periods are selected for FLU, FMG and FI, it will be necessary to compute 

the influence of land use, management and inputs separately and divide the associated stock change dependence. 

This can be accomplished by modifying Equation 2.25 so that SOC at time T and 0-T is computed individually for 

each of the stock change factors (i.e., SOC is computed with FLU only, then computed with FMG, and finally 

computed with FI). The differences are computed for the stocks associated with land use, management, and input, 

dividing by their respective D values, and then the changes are summed.  

Changes in soil C stocks normally occur in a non-linear fashion, and it is possible to further develop the time 

dependence of stock change factors to reflect this pattern. For changes in land use or management that cause a 

decrease in soil C content, the rate of change is highest during the first few years, and progressively declines with 

time. In contrast, when soil C is increasing due to land-use or management change, the rate of accumulation tends 

to follow a sigmoidal curve, with rates of change being slow at the beginning, then increasing and finally 

decreasing with time. If historical changes in land-use or management practices are explicitly tracked by re-

surveying the same locations (i.e., Approach 2 or 3 activity data, see Chapter 3), it may be possible to implement 

a Tier 2 method that incorporates the non-linearity of changes in soil C stock.  

BOX 2.2A (NEW) 

USING EQUIVALENT MASS METHODS TO DERIVE MINERAL SOIL ORGANIC CARBON STOCK CHANGE FACTORS 

Soil carbon stock estimates may be improved when deriving country-specific factors for FLU and FMG, by 

expressing carbon stocks on a soil-mass equivalent basis rather than a soil-volume equivalent (i.e. fixed depth) 

basis. This is because the soil mass to a certain soil depth changes in response to altered management practices 

associated with land use change (e.g. uprooting forest vegetation, land levelling, and rain compaction due to 

the disappearance of the cover of tree canopy). In addition, soil bulk density may be affected differently by 

particular management practices within a given land use (e.g. tillage and machinery traffic within cropping 

systems or the extent of compaction induced by different animal at stocking rates within pasture systems). 

Where the soil bulk density changes due to land use and/or management, the comparison of the soil carbon 

stocks between the cropland, settlements, grassland, wetlands, or forest land to the same depth introduces 

changes to soil carbon stocks as a direct consequence of changes in soil bulk density (Ellert & Bettany 1995).  

With a management induced change in soil bulk density, it is possible to calculate a change in soil carbon stock 

to a fixed depth in the absence of any change in soil carbon content.  Therefore, it is more robust to calculate 

soil carbon stock change on an equivalent mass basis rather than on a fixed-depth basis (Toriyama et al. 2011; 

Bruun et al. 2013; Halvorson et al. 2016; Hu et al., 2016). The equivalent mass approach has more rigorous 

comparability when the bulk density between cropland, grassland, wetland, settlements and forest land is 

markedly different even if the site is within close proximity.  It is important to realise that comprehensive data 

of soil carbon concentration and soil bulk density would be required to derive stock change factors across all 

land uses.  The changing mass of organic carbon itself will affect the equivalent soil mass and therefore 

equivalent mass basis is not appropriate for organic soils.  There are proposals for methods based on only 

equivalent mass of the mineral soil portion (McBratney & Minasny 2010) that would reduce the effect of 

changing soil organic mass distorting the equivalent soil mass.  Adopting an equivalent-mass based carbon 

stock inventory requires thorough consideration of the challenges. 

The impact of biochar C amendments on mineral soils can also be estimated with a Tier 2 method for mineral soils 

using Equation 2.25A and adding this estimate to the result in Equation 2.25.7 

                                                           
7 Biochar is a solid carbonised product from thermochemical conversion through pyrolysis (heating with limited air). The term 

biochar is used herein only to refer to materials that have been produced under process conditions in which relatively easily 

mineralisable organic materials are converted to more persistent forms by heating to above 350 °C with limited air through a 
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EQUATION 2.25A 

ANNUAL CHANGE IN BIOCHAR CARBON STOCK IN MINERAL SOILS RECEIVING BIOCHAR 

ADDITIONS 

 
1

• •


  p p p

n

Mineral TOT C perm

p

BC BC F F  

Where: 

MineralBC  = the total change in carbon stocks of mineral soils associated with biochar amendment, tonnes 

sequestered C yr-1 

pTOTBC  = the mass of biochar incorporated into mineral soil during the inventory year for each 

biochar production type p  , tonnes biochar dry matter yr-1 

pCF  = the organic carbon content of biochar for each production type p , tonnes C tonne-1 biochar 

dry matter 

ppermF  = fraction of biochar carbon for each production type p  remaining (unmineralised) after 100 

years, tonnes sequestered C tonne-1 biochar C 

n  = the number of different production types of biochar 

Country-specific values the C content of the forms of biochar included in the inventory (
pCF in units of tonnes C 

tonne-1 biochar on a dry mass basis) can be measured directly from representative samples of biochar. Country-

specific values may also be based on published data on carbon content of biochar produced using the same 

feedstock and process conditions as the biochar that is applied to soils in the country.  

The fraction of biochar C remaining after 100 years is defined by the parameter 
ppermF . It is not possible to measure 

this value directly due to the time scales involved. So, this parameter is estimated from other data. The elemental 

composition of biochar, specifically the ratio of hydrogen to organic carbon (H/Corg) or ratio of oxygen to organic 

carbon (O/Corg), has been shown to correlate non-linearly with biochar residence time (Spokas 2010; Lehmann et 

al. 2015). Therefore, country-specific Tier 2 estimates of 
ppermF  can be based on H/Corg or O/Corg measured directly 

from representative samples of biochar, or from published data for biochar produced using similar process 

conditions as the biochar that is applied to soils in the country. This parameter can also be derived from the biochar 

elemental composition using published equations relating this composition to mean residence time or half-life (for 

example H/Corg, Lehmann et al. 2015; or O/Corg, Spokas 2010), and extrapolated to the permanence time frame 

assuming one-, two-, or three-pool exponential decay (Zimmerman 2010; Herath et al. 2015; Lehmann et al. 2015). 

A justification should be provided if a permanence time frame other than 100 years is used. 

Since the impact of biochar amendments is a separate calculation and summed with the result from Equation 2.25 

in the Tier 2 method, it is essential that biochar C is not included as an organic amendment in the estimates of 

MineralSOC  in Equation 2.25. 

                                                           
gasification or pyrolysis process. This guidance does not deal with pyrolytic organic materials that result from wild fires or 

open fires, and is only applicable for biochar added to mineral soils. 
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BOX 2.2B (NEW) 

GHG EMISSION SOURCES WITH BIOCHAR PRODUCTION 

Biochar production involves emissions from several different sectors and source categories. All 

GHG emissions and removals are reported in a greenhouse gas inventory, but estimation and 

reporting is done based on sources in which the activity occurs. The guidance in this section is 

addressing C stock changes associated with the end-product use of biochar amendments to mineral 

soils.  However, other emissions do occur along the biochar feedstock supply chains that are 

estimated in other source categories.  For example, the harvesting and use of forest wood biomass 

for biochar production would be part of reported C stock changes in Forest Land Remaining Forest 

Land (Volume 4).  Moreover, biomass may be grown specifically as a feedstock and the C stock 

changes are estimated and reported under the appropriate source categories for land use associated 

with feedstock production (Volume 4).  For plant residues and manures, their utilisation as feedstock 

reduces input of organic amendments to soil and thereby affects soil C stocks in cropland and 

grassland, and possibly other land uses receiving manure amendments (Volume 4).  For waste 

materials, their utilisation as feedstock reduces input to waste streams and is addressed in the 

calculation of emissions from waste management (Volume 5). There may also be use of fossil fuels 

in the harvesting, transport and pyrolysis of the feedstock and a potential release of other non-CO2 

greenhouse gases during the heating process that would be included in the energy sector (Volume 

2). 

Organic soils  

No refinement. See Chapter 2, Section 2.2 of the 2013 Wetlands Supplement. 

Soil  inorganic C 

No refinement. 

Tier 3: Advanced estimation systems  

Tier 3 approaches for soil C involve the development of an advanced estimation system that will typically better 

capture annual variability in fluxes, unlike Tier 1 and 2 approaches that mostly assume a constant annual change 

in C stocks over an inventory time period based on a stock change factor. Essentially, Tiers 1 and 2 represent land-

use and management impacts on soil C stocks as a linear shift from one equilibrium state to another. To understand 

the implications better, it is important to note that soil C stocks typically do not exist in an absolute equilibrium 

state or change in a linear manner through a transition period, given that many of the driving variables affecting 

the stocks are dynamic, periodically changing at shorter time scales before a new “near” equilibrium is reached. 

Tier 3 approaches can address this non-linearity using more advanced models than Tiers 1 and 2 methods, and/or 

by developing a measurement-based inventory with a monitoring network. In addition, Tier 3 inventories are 

capable of capturing longer-term legacy effects of land use and management. In contrast, Tiers 1 and 2 approaches 

typically only address the most recent influence of land use and management, such as the last 20 years for mineral 

C stocks. See Section 2.5 (Generic Guidance for Tier 3 methods) for additional discussion on Tier 3 methods 

beyond the text given below. 

Mineral soils  

Model-based approaches can use mechanistic simulation models that capture the underlying processes driving 

carbon gains and losses from soils in a quantitative framework, such as the influence of land use and management 

on processes controlling carbon input resulting from plant production and litter fall as well as microbial 

decomposition (e.g., McGill, 1996; Smith et al., 1997b; Smith et al., 2000; Falloon and Smith, 2002; Tate et al., 

2005; Campbell&Paustian, 2015). Note that Tier 3 methods provide the only current opportunity to explicitly 

estimate the impact of soil erosion on C fluxes (Box 2.2d). In addition, Tier 3 model-based approaches may 

represent C transfers between biomass, dead biomass and soils, which are advantageous for ensuring conservation 

of mass in predictions of C stock changes in these pools relative to CO2 removals and emissions to the atmosphere. 

Tier 3 modelling approaches are capable of addressing the influence of land use and management with a dynamic 

representation of environmental conditions that affect the processes controlling soil C stocks, such as weather, 

edaphic characteristics, and other variables. The impact of land use and management on soil C stocks can vary as 

environmental conditions change, and such changes are not captured in lower Tiers, which may create biases in 

those results. Tier 3 methods can also include lateral flows of C associated with erosion and deposition (See Box 

2.2c). Consequently, Tier 3 approaches are capable of providing a more accurate estimation of C stock changes 

associated with land-use and management activity if the modelling approach has been calibrated to the range of 

environmental conditions, soil properties and management practices to which the model will subsequently be 

applied (See Section 2.5 for more information).     
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For Tier 3 approaches, a set of benchmark sites will be needed to evaluate model results. Ideally, a series of 

permanent, benchmark monitoring sites would be established with statistically replicated design, capturing the 

major climatic regions, soil types, and management systems as well as system changes, and would allow for 

repeated measurements of soil organic C stocks over time (Smith, 2004a).  Monitoring is based on re-sampling 

plots every 3 to 5 years or each decade; shorter sampling frequencies are not likely to produce significant 

differences due to small annual changes in C stocks relative to the large total amount of C in a soil (IPCC, 2000; 

Smith, 2004b).  

BOX 2.2C (NEW) 

REPRESENTING THE IMPACT OF SOIL EROSION AND DEPOSITION ON SOIL CARBON STOCK CHANGES 

Soil erosion and/or deposition can have marked effect on measured carbon stocks (Chappell et al. 

2016).  Soil carbon stock changes due to soil erosion/deposition are not considered to be embedded 

in factors for land-use change or land management.  In practice, it is difficult to determine whether 

soil erosion/deposition effects are or are not included in stock change factors derived from empirical 

data.  Different land use changes and subsequent management practices could result in different 

extents of soil movement. For example, land-use change from forest or grassland to cropland, or 

land management change from no-till to full tillage are typically associated with increased soil 

movement.  The amounts of soil erosion or deposition are rarely measured or documented in datasets 

that have quantified soil carbon stock changes.   

One option to include the effects of soil erosion and deposition is using well-tested models that 

capture these dynamics with required input data to make estimates of the effect of past 

erosion/deposition on soil carbon stocks (Van Oost et al. 2005; Causarano et al. 2007).  However, 

use of such models also requires having empirical data on erosion/deposition effects on carbon 

stocks for evaluation of the model predictions. Another option is to consistently apply a rationale 

that identifies measured data of soil carbon stock changes that are affected by erosion/deposition for 

the development of Tier 2 or 3 methods, developing factors related to erosion/deposition impacts, 

and then applying these factors in areas affected by erosion/deposition.  

In addition to model-based approaches, Tier 3 methods afford the opportunity to develop a measurement-based 

inventory using a similar monitoring network as needed for model evaluation. However, measurement networks, 

which serve as the basis for a complete inventory, will have a considerably larger sampling density to minimise 

uncertainty, and to represent all management systems and associated land-use changes, across all climatic regions 

and major soil types (Sleutel et al., 2003; Lettens et al., 2004). Measurement networks can be based on soil 

sampling at benchmark sites or flux tower networks. Flux towers, such as those using eddy covariance systems 

(Baldocchi et al., 2001), constitute a unique case in that they measure the net exchange of CO2 between the 

atmosphere and land surface. Thus, with respect to changes in C stocks for the soil pool, flux tower measurement 

networks are subject to the following caveats: 1) towers need to occur at a sufficient density to represent fluxes 

for the entire country; 2) flux estimates need to be attributed to individual land-use sectors and specific land-use 

and management activities; and 3) CO2 fluxes need to be further attributed to individual pools including stock 

changes in soils (also biomass and dead organic matter). Additional considerations about soil measurements are 

given in the previous section on Tier 2 methods for mineral soils (See stock change factor discussion).  

It is important to note that measurement-based inventories represent full C estimation approaches, addressing all 

influences on soil C stocks. Partial estimation of only land-use and management effects may be difficult, however. 

Examples in Box 2.2d provide illustrations of Tier 3 methods for estimating change in mineral soil C stocks, 

including information such as type of data required, brief description of the models and methods that are used to 

apply the models. For Tier 3 methods, it is important to calibrate and test models against field measurements that 

reflect the variability in climate, soil type and land use over which the model will be applied (See Section 2.5.2 

for more information). Application of the equivalent mass approach may be possible for calculating soil C stocks 

with Tier 3 models, and is discussed in Box 2.2e. 
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BOX 2.2D  (NEW) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

Four examples of Tier 3 model applications for soil organic C stock changes are elaborated in this 

section based on government reporting to the UNFCCC by the Australia, Finland, Japan and United 

States. 

Australia 

Australia has implemented a Tier 3 inventory approach based on the use of the FullCAM model 

(Richards 2001; Richards & Evans 2004) to estimate management induced changes in the stock of 

organic carbon held in the 0-30 cm soil depth layer over time.  Australian lands included in the 

inventory were allocated to forest land, cropland, grassland, deforested land, forest land converted 

to cropland and grassland, grassland converted to forest land, and land with sparse woody vegetation 

based on national land use mapping (ABARES 2016) and remote sensing protocols (Caccetta et al. 

2012)  Detailed presentations of the soil carbon accounting processes under all land uses can be 

found in the National Inventory Reports (NIR) (http://www.environment.gov.au/climate-

change/greenhouse-gas-measurement/publications/national-inventory-report-2015).  Here a 

summary is provided of the Tier 3 approach as applied to soil organic carbon stocks for cropland 

and grassland. 

The FullCAM model simulates soil carbon stock change in 25m x 25m areas across Australia.  This 

size was selected as it represented the finest scale to which the remote sensing process (Caccetta et 

al. 2012; Tupek et al. 2016) can detect land use change and quantify movement of lands between 

the various classes included in the inventory.  The data requirements and processes used to quantify 

the impact of management on Australia’s 0-30 cm stock of soil organic carbon can be summarised 

as follows: 

1) Spatially explicit daily and monthly climatic data (average temperature, total rainfall and total 

pan evaporation) are extracted from the Australian Bureau of Meteorology database and then 

interpolated using thin plate smoothing splines according to (Kesteven & Lansberg 2004).  

Additionally, spatially explicit estimates of soil clay content and water holding capacity are 

extracted from the Soil and Landscape Grid of Australia 

(www.clw.csiro.au/aclep/soilandlandscapegrid/).  These data represent required inputs the 

modelling described in steps 4 and 5. 

2) The initial 0-30 cm total soil organic carbon stock is defined using a national map derived by 

Viscarra Rossel et al. (2014).  This total stock is then allocated to three measurable organic 

carbon fractions (particulate, humus and resistant forms) that provide estimates for the 

respective stocks of resistant plant material, humus and inert carbon required to initialize the 

FullCAM model (Baldock et al. 2013; Skjemstad et al. 2004; Viscarra Rossel & Hicks 2015).   

3) The types of crops and pastures grown, the applied management practices (e.g. tillage and 

residue management) and their relative allocations within defined land areas are calculated 

using national agricultural statistics derived from censuses conducted every five years 

(http://www.abs.gov.au/Agriculture).  

4) For the bulk of Australian crops and pastures, total growth is defined by the availability of water 

received as rainfall.  Thus, a plant growth model applying species specific transpiration 

efficiency terms to the amount of water made available to growing plants is used to estimate 

above ground dry matter production.  This production is then used along with plant species 

specific harvest indices (Unkovich et al. 2010) and root:shoot ratios to define the mass of carbon 

entering the soil and/or deposited on the soil surface for each monthly time step within the 

FullCAM simulation model.  Within irrigated systems, plant growth attains defined plant 

specific maximum values each year. 

5) The FullCAM model is then initialized and run on a monthly time step.  During each step, 

decomposition of decomposable and resistant plant materials and humus pools of C occurs 

according to first order decay equations. The values of the decomposition rate constants 

associated with the resistant plant material and humus pools of carbon within the model were 

calibrated to Australian conditions to the corresponding measured stocks of soil carbon fractions 
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BOX 2.2D (NEW) (CONTINUED) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

5) (continued) of soil temperature  and water content on decomposition is modelled through the 

application of decomposition rate constant modifiers as done in the Rothamsted Carbon Model 

(RothC) soil carbon model (Jenkinson 1990). 

The impact of management on soil carbon stocks is quantified by running the described modelling 

process forward from 1970 under two scenarios.  In both scenarios, the same relative spatial 

allocation of regimes (combinations of crop or pasture species and management practice) is used 

from 1970 to 1990.  From 1990 onwards, the relative spatial allocation of regimes is held constant 

at 1990 values in the first scenario.  For the second scenario, the regimes are varied from 1991 

onwards to reflect the temporal variations in regimes defined within the available data.  The first 

scenario thus estimates the soil carbon stock that would have been attained with no change in 

management from that present in 1990; while the second scenario estimates the soil carbon stock 

attained when management changes over time are accounted for.  The net impact of management 

since 1990 is then calculated as the difference in the soil organic carbon stock between the two 

scenarios. 

Finland 

Finland uses Yasso07 soil carbon model as a Tier 3 method to report carbon stock changes on forest 

and agricultural lands as well as in the cases of land use change (Statistics Finland 2017). Yasso07 

is based on a few explicit assumptions on soil carbon cycling and these assumptions form a 

conceptual model further formulated into mathematical equations (Tuomi et al. 2011b; US EPA 

2017). The model has four state variables based on the solubility of the organic material (acid-, 

water-, ethanol- and non-soluble and in addition, there is a humus pool that has the lowest decay 

rate.  

The model is used in the NGHGI to generate annual C stock change rates per hectare based on 

regional estimates of organic matter input (forest and crop statistics) and annual climate parameters. 

Litter input is given in the four solubility fractions based on laboratory measurements. Organic 

matter decays in the five model fractions driven by temperature and precipitation. The resulting C 

stock change rates are applied on the respective land areas to produce regional estimates of C stock 

change. The model is used consistently across different land use categories so that e.g. the initial C 

allocation to different model compartments in forest land converted to cropland is based on the 

results of the simulation of forest soil remaining forest soil. 

Model parameters rely on a large global database of measurements of litter decay, wood decay and 

soil carbon and all parameter values have been estimated using Markov chain Monte Carlo method. 

Alternative details in the model structure have been evaluated using Bayesian criteria (Tuomi et al. 

2011a). The results of Yasso07 model are characterized by statistical probability distributions that 

represent uncertainty about the parameter values. The Yasso07 approach makes it possible and easy 

to add new data to the database and develop the model continuously (model-data-fusion). The model 

has been extensively tested against independent data on forest land (Dalsgaard et al. 2016; Lehtonen 

et al. 2016; Rantakari et al. 2012; Tupek et al. 2016) and also on cropland (Karhu et al. 2012). 

Yasso07 is a standard component of Max Planck Institute Earth System Model (Goll et al. 2017) 

and the model is used for UNFCCC reporting in several countries (e.g. Austria, Benin, Czech 

Republic, Estonia, Ireland, Finland, Latvia, Norway, Romania and Switzerland), see Hernandez et 

al. (2017). The model is widely used because it is simple, transparent, verifiable, freely available 

and easy to apply. For more information, consult http://en.ilmatieteenlaitos.fi/yasso. 
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BOX 2.2D (NEW) (CONTINUED) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

Japan 

Japan uses a Tier 3 method to estimate soil organic C stock changes in agriculture land (cropland 

and managed grassland) based on RothC. RothC model is a soil carbon dynamic model validated by 

using long-term field experiments (Coleman & Jenkinson 1996). In order to apply the model to 

Japanese agricultural condition, the model was tested against long-term experimental data sets in 

Japanese agricultural lands. It was found that the original model could apply for non-volcanic upland 

soils without any modification or calibration (Shirato & Taniyama 2003), however, the model 

required modification for Andosols and paddy soils by taking unique mechanisms of soil C dynamics 

in these soils into account. For Andosols, the decomposition rate constant of the HUM (humified 

organic matter) pool of RothC was reduced because the presence of Al-humus complexes enhances 

its stability and resistance to decomposition (Shirato et al. 2004). For paddy soils, the decomposition 

rate constants of all four active C pools was reduced on the basis of differences in organic matter 

decomposition rates between upland and paddy (submerged in the rice growing season) soil 

conditions (Shirato & Yokozawa 2005). Model performance was verified by comparing the model 

output with measured soil C stock data under various climate condition, soil types and land uses. 

The model is applied at the country scale (Yagasaki & Shirato 2014) using weather data (monthly 

average temperature, precipitation, and open-pan evaporation), soil property data (soil clay content, 

depth of surface soil, carbon content at the starting year, and bulk density), land use data and other 

activity data (carbon input from crop residue and organic manure) and calculated at each standard 

mesh (100 x 100m). The weather, soil property and land use data are available as spatially explicit 

data set, while carbon input from crop residue and organic manure are calculated by statistical data 

and survey data available based on public administration boundary basis. The all obtained data are 

allocated to each standard mesh and then run the model.  

In the NGHGI, the model is used to generate average C stock change rates per hectare in each 

prefecture and in each sub-category (rice field, upland crop fields, orchards and managed grassland). 

This is because the land use data used for the model estimation (grid-based data set) and used for 

the official land classification in the NGHGI (statistical data) are not consistent very much and so 

Japan put its priority using a consistent land area data among every estimate relating to agriculture 

land in AFOLU sector. This is one of the key challenges of the model application to the NGHGI and 

the development of a standard spatially explicit land use data set is needed for the further 

improvement of estimations. 

United States of America 

The United States uses a Tier 3 method based on the DayCent Ecosystem Model to estimate soil C 

stock changes in cropland and grassland (Ogle et al. 2010, US EPA 2017).  DayCent is a process-

based model that simulated soil organic matter dynamics using a three-pool structure originally 

developed for the Century Model (Parton et al. 1998; Parton et al. 1987). Model testing and 

parameterisation of DayCent has been conducted across a wide range of cropland and grassland sites 

globally. For the inventory, the model is applied using land use data that are compiled through a 

national survey, National Resources Inventory (NRI) (Nusser et al. 1998; Nusser & Goebel 1997).  

The NRI has a two-stage sample with recorded history, starting in 1979, for approximately 400,000 

survey locations that are cropland or grassland throughout the conterminous United States. Each 

survey location that is identified as cropland also has the specific crop rotation histories that were 

grown by the farmer.  Daily weather and soils data are needed to drive the model, and this 

information is based on national datasets. Remote sensing data is used to inform production 

estimates based on MODIS Enhanced Vegetation Index products.  Other data are also incorporated 

into the analysis, such as N fertilization rate data compiled through surveys.   
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BOX 2.2D (NEW) (CONTINUED) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

One of the key challenges in developing a Tier 3 method is to robustly address uncertainties.  

Compilers in the United States have addressed uncertainties in model inputs (e.g., fertilization rates, 

tillage practices and organic amendments), model structure and parameterization, and propagate 

uncertainty through the model application using an Approach 2 method (i.e., Monte Carlo Analysis) 

(Ogle et al. 2010).  Model structure and parameterization is addressed using an empirically-based 

method in which observed experimental data are compared to simulation results, and predictive 

ability of the model is quantified using statistical methods (Ogle et al. 2007).  These experimental 

observations are independent from the data that are used to parameterise the model. The resulting 

statistical equation is applied to adjust for biases in model results, if needed, and address the 

precision of the model C stock changes. The major advantage of the Tier 3 method is that the results 

are much more precise than Tier 1 and 2 methods, with uncertainty ranging from ±60% in the Tier 

1 method to about ±20% for the Tier 3 method (US-EPA 2017).  The improved precision is due to 

the process-based framework in the DayCent model that incorporates more drivers of soil C stock 

changes than lower Tier methods.  However, without adequate activity data or a model with 

sufficient prediction capability, a Tier 3 method could produce less precise results than lower-tier 

methods. 

 

BOX 2.2E (NEW) 

CONSIDERATION OF EQUIVALENT MASS METHODS WITHIN TIER 3 MODELLING APPROACHES 

Process models that are used to estimate carbon stock changes over time, such as Century (Parton et 

al. 1987) and RothC (Coleman & Jenkinson 1996) can also be affected by changing soil bulk density 

by the nature of the carbon stock data used for model parameterisation.  These types of models 

simulate the mass balance of organic carbon over time to a defined soil depth (e.g., 30 cm or an 

alternative).  The models require initialisation at which point an initial carbon stock is determined 

along with an initial soil mass in some cases (although the soil mass is rarely determined explicitly, 

it is implicit in the model application).  The models therefore use an equivalent soil mass approach 

to simulate changes in carbon stocks since the estimated carbon stocks are unaffected by concurrent 

soil bulk density changes. If the models are parameterised to carbon stocks on an equivalent mass 

basis, then the carbon stock changes estimated by the parametrised model, and for a factor derived 

from those modelled estimates, will be for soil carbon change on an equivalent mass basis. However, 

the carbon stock change calculated from carbon stock measurements for a fixed depth is the net 

effect of the effect of soil bulk density changes on carbon stocks and the effect of biochemical 

processes on carbon stocks. Therefore, when parameterised using fixed-depth carbon stock data, the 

model will be estimating the net effect of these processes, so the modelled carbon stock estimates 

only will be appropriate for the fixed depth and cannot address changes in mass of the soil over time. 

Careful consideration of the effects of model assumptions and choice of data used for model 

parametrisation and testing is required to understand and properly report the basis of the carbon 

stock changes that are estimated directly or indirectly by a model based on parameterisation with 

data from fixed depths. 

Tier 3 methods can be used to model the loss of biochar C over time after its application to mineral soils and to 

account for GHG sources and sinks not captured in Tier 2, to address changes to N2O or CH4 fluxes from soils8, 

to estimate changes to net primary production (and associated C inputs to soil organic C pool), the mechanisms 

and effects underlying interactions with soil, climate and other environmental variables. Although positive priming 

of labile soil organic matter is not expected to have a significant impact in the long term (Annex 2A.2), negative 

priming leading to an increase in soil organic carbon stocks could have a substantial impact in soils amended with 

biochar (Woolf et al. 2012). Similarly, to the extent that there are reductions in net emissions of N2O and CH4 

from soil and increases in plant growth, there could be a larger impact of biochar additions on reducing greenhouse 

gas emissions (Gaunt & Lehmann 2008; Woolf et al. 2010; Hammond et al. 2011). It is also important to recognise 

                                                           
8 Impacts of biochar amendments on N2O are estimated in the methods for soil N2O emissions (Chapter 11), and impacts on 

CH4 emissions are estimated from specific land uses in the inventory, such as Rice Cultivation (Chapter 5) and Wetlands 

(Chapter 7).  
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that the dynamic nature of biochar decomposition is important because its net impact on soil C stocks and GHG 

emissions varies with time, which can be better addressed with a Tier 3 model. 

Examples of advanced modelling approaches include representing the dynamic impact of biochar decomposition 

over long time scales (Lenton & Vaughan 2009), and process-based modelling using biochar-specific LCA models 

(e.g. Roberts et al. 2010; Hammond et al. 2011; Shackley et al. 2012; Sparrevik et al. 2013).  There are also 

applications that have focused on soil greenhouse gas emission balances, together with modelling of 

decomposition rates (H/Corg ratio; Lehmann et al. 2015) and priming (Woolf & Lehmann, 2012; Wang et al. 2016). 

In addition, models have been used to simulate nitrous oxide reductions (Cayuela et al. 2013, 2014) as a function 

of H/Corg ratio (Cayuela et al. 2015) and feedbacks to primary plant productivity (Jeffery et al. 2011, 2015) and 

associated impacts on SOC stocks (Whitman et al. 2010, 2011). 

Organic soils  

No Refinement. See Chapter 2 of the 2013 Wetlands Supplement. 

Soil  inorganic C 

No Refinement.  

2.4 NON-CO2 EMISSIONS 

There are significant emissions of non-greenhouse gases from biomass burning, livestock and manure management, 

or soils. N2O emissions from soils are covered in Chapter 11, where guidance is given on methods that can be 

applied nationally (i.e., irrespective of land-use types) if a country chooses to use national scale activity data. The 

guidance on CH4 and N2O emissions from livestock and manure are addressed only in Chapter 10 because 

emissions do not depend on land characteristics. A generic approach to estimating greenhouse gas emissions from 

fire (both CO2 and non-CO2 gases) is described below, with land-use specific enhancements given in the Forest 

Land, Grassland and Cropland chapters. It is good practice to check for complete coverage of CO2 and non-CO2 

emissions due to losses in carbon stocks and pools to avoid omissions or double counting. 

Emissions from fire include not only CO2, but also other greenhouse gases, or precursors of greenhouse gases, that 

originate from incomplete combustion of the fuel. These include carbon monoxide (CO), methane (CH4), non-

methane volatile organic compounds (NMVOC) and nitrogen (e.g., N2O, NOx) species (Levine, 1994). In the 1996 

IPCC Guidelines and GPG2000, non-CO2 greenhouse gas emissions from fire in savannas and burning of crop 

residues were addressed along with emissions from Forest Land and Grassland conversion. The methodology 

differed somewhat by vegetation type, and fires in Forest Land were not included. In the GPG-LULUCF, emissions 

(CO2 and non-CO2) from fires were addressed, particularly in the chapter covering Forest Land (losses of carbon 

resulting from disturbances). In the Cropland and Grassland chapters, only non-CO2 emissions were considered, 

with the assumption that the CO2 emissions would be counterbalanced by CO2 removals from the subsequent re-

growth of the vegetation within one year. This assumption implies maintenance of soil fertility – an assumption 

which countries may ignore if they have evidence of fertility decline due to fire. In Forest Land, there is generally 

a lack of synchrony (non-equivalence of CO2 emissions and removals in the year of reporting).   

These Guidelines provide a more generic approach for estimating emissions from fire. Fire is treated as a 

disturbance that affects not only the biomass (in particular, above-ground), but also the dead organic matter (litter 

and dead wood). The term `biomass burning` is widely used and is retained in these Guidelines but acknowledging 

that fuel components other than live biomass are often very significant, especially in forest systems. For Cropland 

and Grassland having little woody vegetation, reference is usually made to biomass burning, since biomass is the 

main pool affected by the fire. 

Countries should apply the following principles when estimating greenhouse gas emissions resulting from fires in 

Forest Land, Cropland and Grassland: 

 Coverage of reporting: Emissions (CO2 and non- CO2) need to be reported for all fires (prescribed fires and 

wildfires) on managed lands (the exception is CO2 from Grassland, as discussed below). Where there is a land-

use change, any greenhouse gas emission from fire should be reported under the new land-use category 

(transitional category). Emissions from wildfires (and escaped prescribed fires) that occur on unmanaged lands 

do not need to be reported, unless those lands are followed by a land-use change (i.e., become managed land). 

 Fire as a management tool (prescribed burning): greenhouse gas emissions from the area burnt are reported, 

and if the fire affects unmanaged land, greenhouse gas emissions should also be reported if the fire is followed 

by a land-use change. 

 Equivalence (synchrony) of CO2 emissions and removals: CO2 net emissions should be reported where the 

CO2 emissions and removals for the biomass pool are not equivalent in the inventory year. For grassland 
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biomass burning and burning of agriculture residues, the assumption of equivalence is generally reasonable. 

However, woody vegetation may also burn in these land categories, and greenhouse gas emissions from those 

sources should be reported using a higher Tier method. Further, in many parts of the world, grazing is the 

predominant land use in Forest Land that are regularly burnt (e.g., grazed woodlands and savannas), and care 

must be taken before assuming synchrony in such systems. For Forest Land, synchrony is unlikely if 

significant woody biomass is killed (i.e., losses represent several years of growth and C accumulation), and 

the net emissions should be reported. Examples include: clearing of native forest and conversion to agriculture 

and/or plantations and wildfires in Forest Land.  

 Fuels available for combustion: Factors that reduce the amount of fuels available for combustion (e.g., from 

grazing, decay, removal of biofuels, livestock feed, etc.) should be accounted for. A mass balance approach 

should be adopted to account for residues, to avoid underestimation or double counting (refer to Section 2.3.2).  

 Annual reporting: despite the large inherent spatial and temporal variability of fire (in particular that from 

wildfires), countries should estimate and report greenhouse gas emissions from fire on an annual basis.      

These Guidelines provide a comprehensive approach for estimating carbon stock changes and non-CO2 emissions 

resulting from fire in the Forest Land (including those resulting from forest conversion), and non-CO2 emissions 

in the Cropland and Grassland. Non-CO2 emissions are addressed for the following five types of burning: (1) 

grassland burning (which includes perennial woody shrubland and savanna burning); (2) agricultural residues 

burning; (3) burning of litter, understory and harvest residues in Forest Land, (4) burning following forest clearing 

and conversion to agriculture; and (5) other types of burning (including those resulting from wildfires). Direct 

emissions of CO2 are also addressed for items (3) and (4) and (5). Since estimating emissions in these different 

categories have many elements in common, this section provides a generic approach to estimate CO2 and non-CO2 

emissions from fire, to avoid repetition in specific land-use sections that address emissions from fire in these 

Guidelines.  

Prescribed burning of savannas is included under the grassland biomass burning section (Chapter 6, Grassland, 

Section 6.3.4). It is important to avoid double counting when estimating greenhouse gas emissions from savannas 

that have a vegetation physiognomy characteristic of Forest Land. An example of this is the cerradão (dense 

woodland) formation in Brazil which, although being a type of savanna, is included under Forest Land, due to its 

biophysical characteristics.   

In addition to the greenhouse gas emissions from combustion, fires may lead to the creation of an inert carbon 

stock (charcoal or char). Post-fire residues comprise unburned and partially burnt components, as well as a small 

amount of char that due to its chemical nature is highly resistant to decomposition. The knowledge of the rates of 

char formation under contrasting burning conditions and subsequent turnover rates is currently too limited (Forbes 

et al., 2006; Preston and Schmidt, 2006) to allow development of a reliable methodology for inventory purposes, 

and hence is not included in these Guidelines. A technical basis for further methodological development is included 

in Appendix 1. 

Additionally, although emissions of NMVOC also occur as a result of fire, they are not addressed in the present 

Guidelines due to the paucity of the data and size of uncertainties in many of the key parameters needed for the 

estimation, which prevent the development of reliable emission estimates.  

METHOD DESCRIPTION 

Each relevant section in these Guidelines includes a three-tiered approach to address CO2 (where applicable) and 

non-CO2 greenhouse gas emissions from fire. The choice of Tier can be made following the steps in the decision 

tree presented in Figure 2.6. Under the Tier 1 approach, the formulation presented in Equation 2.27 can be applied 

to estimate CO2 and non-CO2 emissions from fire, using the default data provided in this chapter and in the relevant 

land-use sections of these Guidelines. Higher Tiers involve a more refined application of Equation 2.27. 

Since Tier 1 methodology adopts a simplified approach to estimating the dead organic matter pool (see Section 

2.3.2), certain assumptions must be made when estimating net greenhouse gas emissions from fire in those systems 

(e.g. Forest Land, and Forest Land converted to another land use), where dead organic matter can be a major 

component of the fuel burnt. Emissions of CO2 from dead organic matter are assumed to be zero in forests that are 

burnt, but not killed by fire. If the fire is of sufficient intensity to kill a portion of the forest stand, under Tier 1 

methodology, the C contained in the killed biomass is assumed to be immediately released to the atmosphere. This 

Tier 1 simplification may result in an overestimation of actual emissions in the year of the fire, if the amount of 

biomass carbon killed by the fire is greater than the amount of dead wood and litter carbon consumed by the fire.  

Non-CO2 greenhouse gas emissions are estimated for all fire situations. Under Tier 1, non-CO2 emissions are best 

estimated using the actual fuel consumption provided in Table 2.7, and appropriate emission factors (Table 2.8) 

(i.e., not including newly killed biomass as a component of the fuel consumed). Clearly, if fire in forests contributes 

significantly to net greenhouse gas emissions, countries are encouraged to develop a more complete methodology 
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(higher tiers) which includes the dynamics of dead organic matter and improves the estimates of direct and post-

fire emissions. 

For Forest Land converted to other land uses, organic matter burnt is derived from both newly felled vegetation 

and existing dead organic matter, and CO2 emissions should be reported.  In this situation, estimates of total fuel 

consumed (Table 2.6) can be used to estimate emissions of CO2 and non- greenhouse gases using Equation 2.27. 

Care must be taken, however, to ensure that dead organic matter carbon losses during the land-use conversion are 

not double counted in Equations 2.27 (as losses from burning) and Equation 2.23 (as losses from decay). 

A generic methodology to estimate the emissions of individual greenhouse gases for any type of fire is summarised 

in Equation 2.27. 

EQUATION 2.27 

ESTIMATION OF GREENHOUSE GAS EMISSIONS FROM FIRE 

310    fire B f efL A M C G  

Where: 

fireL  = amount of greenhouse gas emissions from fire, tonnes of each GHG e.g., CH4, N2O, etc. 

A  = area burnt, ha  

BM  = mass of fuel available for combustion, tonnes ha-1. This includes biomass, ground litter and 

dead wood. When Tier 1 methods are used then litter and dead wood pools are assumed zero, 

except where there is a land-use change (see Section 2.3.2.2). 

fC  = combustion factor, dimensionless (default values in Table 2.6) 

efG  = emission factor, g kg-1 dry matter burnt (default values in Table 2.5) 

Note. Where data for MB and Cf are not available, a default value for the amount of fuel actually burnt (the product 

of MB and Cf) can be used (Table 2.4) under Tier 1 methodology.  

For CO2 emissions, Equation 2.27 relates to Equation 2.14, which estimates the annual amount of live biomass 

loss from any type of disturbance.  

The amount of fuel that can be burnt is given by the area burnt and the density of fuel present on that area. The 

fuel density can include biomass, dead wood and litter, which vary as a function of the type, age and condition of 

the vegetation. The type of fire also affects the amount of fuel available for combustion. For example, fuel available 

for low-intensity ground fires in forests will be largely restricted to litter and dead organic matter on the surface, 

while a higher-intensity ‘crown fire’ can also consume substantial amounts of tree biomass.   

The combustion factor is a measure of the proportion of the fuel that is actually combusted, which varies as a 

function of the size and architecture of the fuel load (i.e., a smaller proportion of large, coarse fuel such as tree 

stems will be burnt compared to fine fuels, such as grass leaves), the moisture content of the fuel and the type of 

fire (i.e., intensity and rate of spread which is markedly affected by climatic variability and regional differences as 

reflected in Table 2.4). Finally, the emission factor gives the amount of a particular greenhouse gas emitted per 

unit of dry matter combusted, which can vary as a function of the carbon content of the biomass and the 

completeness of combustion. For species with high N concentrations, NOx and N2O emissions from fire can vary 

as a function of the N content of the fuel. A comprehensive review of emission factors was conducted by Andreae 

and Merlet (2001) and is summarised in Table 2.5. 

Tier 2 methods employ the same general approach as Tier 1 but make use of more refined country-derived emission 

factors and/or more refined estimates of fuel densities and combustion factors than those provided in the default 

tables. Tier 3 methods are more comprehensive and include considerations of the dynamics of fuels (biomass and 

dead organic matter). 
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Figure 2.6 Generic decision tree for identification of appropriate tier to estimate 

greenhouse gas emissions from fire in a land-use category 
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Yes

No

Is prescribed burning or 

wildfire  a key

category1?

Gather  data on 

burning.

Yes

No

Yes
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TABLE 2.4 (UPDATED) 

FUEL (DEAD ORGANIC MATTER PLUS LIVE BIOMASS) BIOMASS CONSUMPTION VALUES (TONNES DRY MATTER HA-1) FOR 

FIRES IN A RANGE OF VEGETATION TYPES 

(To be used in Equation 2.27, to estimate the product of quantities ‘MB • Cf’, i.e., an absolute amount) 

Vegetation type Subcategory Mean SE References 

Primary tropical forest (slash 

and burn) 

Primary tropical forest 83.9 25.8 7, 15, 66, 3, 16, 17, 45 

Primary open tropical forest 163.6 52.1 21,  

Primary tropical moist forest 160.4 11.8 37, 73 

Primary tropical dry forest - - 66 

All primary tropical forests 119.6 50.7  

Secondary tropical forest 

(slash and burn) 

Young secondary tropical forest (3-5 yrs) 8.1 - 61 

Intermediate secondary tropical forest (6-10 

yrs) 
41.1 27.4 61, 35 

Advanced secondary tropical forest (14-17 

yrs) 
46.4 8.0 61, 73 

All secondary tropical forests 42.2 23.6 66, 30 

All Tertiary tropical forest 54.1 - 66, 30 

Boreal forest 

Wildfire (general) 52.8 48.4 2, 33, 66 

Crown fire 25.1 7.9 11, 43, 66, 41, 63, 64 

Surface fire 21.6 25.1 43, 69, 66, 63, 64, 1 

Post logging slash burn 69.6 44.8 49, 40, 66, 18 

Land clearing fire 87.5 35.0 10, 67 

All boreal forest 41.0 36.5 43, 45, 69, 47 

Eucalypt forests 

Wildfire 53.0 53.6 66, 32, 9 

Prescribed fire – (surface) 16.0 13.7 66, 72, 54, 60, 9 

Post logging slash burn 168.4 
168.

8 
25, 58, 46 

Felled, wood removed, and burned (land-

clearing fire) 
132.6 - 62, 9 

All Eucalypt forests 69.4 100.

8 
 

Other temperate forests 

Wildfire 19.8 6.3 32, 66 

Post logging slash burn 77.5 65.0 55, 19, 14, 27, 66 

Felled and burned (land-clearing fire) 48.4 62.7 53, 24, 71 

All “other” temperate forests 50.4 53.7 43, 56 

Shrublands 

Shrubland (general) 26.7 4.2 43 

Calluna heath 11.5 4.3 26, 39 

Sagebrush 5.7 3.8 66 

Fynbos 12.9 0.1 70, 66 

All Shrublands 14.3 9.0  
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TABLE 2.4 (UPDATED) (CONTINUED) 

FUEL (DEAD ORGANIC MATTER PLUS LIVE BIOMASS) BIOMASS CONSUMPTION VALUES (TONNES  DRY MATTER HA-1) FOR 

FIRES IN A RANGE OF VEGETATION TYPES 

(To be used in Equation 2.27, to estimate the product of quantities ‘MB • Cf’, i.e., an absolute amount) 

Vegetation type Subcategory Mea

n 
SE References 

Savanna woodlands (early dry 

season burns)* 

Savanna woodland 2.5 - 28 

Savanna parkland 2.7 - 57 

All savanna woodlands (early dry season burns) 2.6 0.1  

Savanna woodlands  (mid/late 

dry season burns)* 

Savanna woodland 3.3 - 57 

Savanna parkland 4.0 1.1 57, 6, 51 

Tropical savanna 6 1.8 52, 73 

Other savanna woodlands 5.3 1.7 59, 57, 31 

All savanna woodlands (mid/late dry season burns)* 4.6 1.5  

Savanna Grasslands/ Pastures 

(early dry season burns)* 

Tropical/sub-tropical grassland  2.1 - 28 

Grassland - - 48 

All savanna grasslands (early dry season burns)* 2.1 -  

Savanna Grasslands/ Pastures 

(mid/late dry season burns)* 

Tropical/sub-tropical grassland  5.2 1.7 9, 73, 12, 57 

Grassland 4.1 3.1 43, 9 

Tropical pasture~ 23.7 11.8 4, 23, 38, 66 

Savanna 7.0 2.7 42, 50, 6, 45, 13, 65 

All savanna grasslands (mid/late dry season burns)* 10.0 10.1  

Other vegetation types 
Peatland 41 1.4 68, 33 

Tundra 10 - 33 

Agricultural residues (post-

harvest field burning) 

MB = AGR(T) x FracBrunt(T) 

 

See Equation 11.6 in 

Chapter 11, Volume 4 

for AGR(T) calculation 

* Surface layer combustion only 

 ~ Derived from slashed tropical forest (includes unburned woody material) 

a For sugarcane, data refer to burning before harvest of the crop. 

b Expert assessment by authors. 
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TABLE 2.5 

EMISSION FACTORS (g kg-1 DRY MATTER BURNT) FOR VARIOUS TYPES OF BURNING. VALUES ARE MEANS ± SD AND ARE 

BASED ON THE COMPREHENSIVE REVIEW BY ANDREAE AND MERLET (2001) 

(To be used as quantity ‘Gef’ in Equation 2.27) 

Category CO2 CO CH4 N2O NOX 

Savanna and grassland 1613 

± 95 

65 

± 20 

2.3 

± 0.9 

0.21 

± 0.10 

3.9 

± 2.4 

Agricultural residues 1515 

± 177 

92 

± 84 

2.7 0.07 2.5 

± 1.0 

Tropical forest 1580 

± 90 

104 

± 20 

6.8 

± 2.0 

0.20 1.6 

± 0.7 

Extra tropical forest 1569 

± 131 

107 

± 37 

4.7 

± 1.9 

0.26 

±0.07 

3.0 

± 1.4 

Biofuel burning 1550 

± 95 

78 

± 31 

6.1 

± 2.2 

0.06 1.1 

± 0.6 

Note: The “extra tropical forest’ category includes all other forest types. 

Note: For combustion of non-woody biomass in Grassland and Cropland, CO2 emissions do not need to be estimated and reported, because 

it is assumed that annual CO2 removals (through growth) and emissions (whether by decay or fire) by biomass are in balance (see earlier 

discussion on synchrony in Section 2.4. 
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TABLE 2.6 (UPDATED) 

COMBUSTION FACTOR VALUES (PROPORTION OF PREFIRE FUEL BIOMASS CONSUMED) FOR FIRES IN A RANGE OF 

VEGETATION TYPES 

(Values in column ‘mean’ are to be used for quantity Cf in Equation 2.27) 

Vegetation type Subcategory Mean SD References 

Primary tropical forest 

(slash and burn) 

Primary tropical forest 0.32 0.12 
7, 8, 15, 56, 66, 3, 16, 

53, 17, 45,  

Primary open tropical forest 0.45 0.09 21 

Primary tropical moist forest 0.50 0.03 37, 73 

Primary tropical dry forest - - 66 

All primary tropical forests 0.36 0.13  

Secondary tropical forest 

(slash and burn) 

Young secondary tropical forest (3-

5 yrs) 
0.46 - 61 

Intermediate secondary tropical 

forest (6-10 yrs) 
0.67 0.21 61, 35 

Advanced secondary tropical forest 

(14-17 yrs) 
0.50 0.10 61, 73 

All secondary tropical forests 0.55 0.06 56, 66, 34, 30 

All tertiary tropical forest 0.59 - 66, 30 

Boreal forest 

Wildfire (general) 0.40 0.06 33 

Crown fire 0.43 0.21 66, 41, 64, 63 

surface fire 0.15 0.08 64, 63 

Post logging slash burn 0.33 0.13 49, 40, 18 

Land clearing fire 0.59 - 67 

All boreal forest 0.34 0.17 45, 47 

Eucalyptus forests 

Wildfire - -  

Prescribed fire – (surface) 0.61 0.11 72, 54, 60, 9 

Post logging slash burn 0.68 0.14 25, 58, 46 

Felled and burned (land-clearing 

fire) 
0.49 - 62 

All Eucalyptus forests 0.63 0.13  

Other temperate forests 

Post logging slash burn 0.62 0.12 55, 19, 27, 14 

Felled and burned (land-clearing 

fire) 
0.51 - 53, 24, 71 

All “other” temperate forests 0.45 0.16 53, 56 
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TABLE 2.6 (UPDATED) (CONTINUED) 

COMBUSTION FACTOR VALUES (PROPORTION OF PREFIRE FUEL BIOMASS CONSUMED) FOR FIRES IN A RANGE OF 

VEGETATION TYPES 

(Values in column ‘mean’ are to be used for quantity Cf in Equation 2.27) 

Vegetation type Subcategory Mean SD References 

Shrublands 

Shrubland (general) 0.95 - 44 

Calluna heath 0.71 0.30 26, 56, 39 

Fynbos 0.61 0.16 70, 44 

All shrublands 0.72 0.25  

Savanna woodlands (early 

dry season burns)* 

Savanna woodland 0.22 - 28 

Savanna parkland 0.73 - 57 

Other savanna woodlands 0.37 0.19 22, 29 

All savanna woodlands (early dry season burns) 0.40 0.22  

Savanna woodlands  

(mid/late dry season 

burns)* 

Savanna woodland 0.72 - 66, 57 

Savanna parkland 0.82 0.07 57, 6, 51 

Tropical savanna 0.73 0.04 52, 73, 66, 12 

Other savanna woodlands 0.68 0.19 22, 29, 44, 31, 57 

All savanna woodlands (mid/late dry season burns)* 0.74 0.14  

Savanna Grasslands/ 

Pastures (early dry season 

burns)* 

Tropical/sub-tropical grassland  0.74 - 28 

Grassland - - 48 

All savanna grasslands (early dry season burns)* 0.74 -  

Savanna Grasslands/ 

Pastures (mid/late dry 

season burns)* 

Tropical/sub-tropical grassland  0.92 0.11 44, 73, 66, 12, 57 

Tropical pasture~ 0.35 0.21 4, 23, 38, 66 

Savanna 0.86 0.12 
53, 5, 56, 42, 50, 6, 45, 

13, 44, 65, 66 

All savanna grasslands (mid/late dry season burns)* 0.77 0.26  

Other vegetation types 
Peatland 0.50 - 20, 44 

Tropical Wetlands 0.70 - 44 

Agricultural residues 

(Post-harvest field 

burning) 

Wheat residues 0.90 - see Note b 

Maize residues 0.80 - see Note b 

Rice residues 0.80 - see Note b 

Sugarcane a 0.80 - see Note b 

Other Crops 0.85 - see Note b 

* Surface layer combustion only;   ~ Derived from slashed tropical forest (includes unburned woody material);   a For sugarcane, data 

refer to burning before harvest of the crop;   b Expert assessment by authors. 
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2.5 ADDITIONAL GENERIC GUIDANCE FOR TIER 

3 METHODS 

Tier 3 inventories are advanced systems using measurements and/or modelling, with the goal of improving the 

estimation of greenhouse gas (GHG) emissions and removals, beyond what is possible with Tier 1 or 2 methods.   

In this section, guidelines are elaborated that provide a sound scientific basis for the development of Tier 3 

Inventories in the AFOLU sector. These guidelines do not limit the selection of Tier 3 sampling schemes or 

modelling methods but provide general guidance to assist the inventory developer in their implementation. 

AFOLU inventory compilers are advised to read this section in conjunction with general guidance for Tier 3 

methods relevant to all sectors found in Volume 1, Chapter 6. 

2.5.1 Measurement-based Tier 3 inventories 

Inventories can be based on direct measurements from which emissions and removals of carbon are estimated. 

Purely measurement-based inventories, e.g., based on repeated measurements using a national forest inventory or 

similar estimation methods can produce carbon stock change estimates but still rely on appropriate statistical 

models, such as allometric models or volume and wood density functions. Inventories using measurement-based 

methods also need to select appropriate statistical sampling estimators to produce a national inventory from the 

plot estimates. Moreover, inventory plot remeasurements will typically require additional data or methods to arrive 

at estimates of GHG emissions from disturbance events, in particular for non-CO2 GHG. Measurement of non-

CO2 greenhouse gas emissions is possible, but because of the high spatial and temporal variability, Tier 3 methods 

for estimating non-CO2 emissions typically use a combination of models (see Section 2.5.2) and measurements. 

Many countries using a measurement-based Tier 3 method will already have well established national inventories. 

Typically, these inventories have been established for purposes other than collecting data for estimating carbon 

stock changes and non-CO2 emissions (e.g., National Forest Inventories for timber resource assessments or soil 

resource mapping for agricultural planning). In general, the following six steps should be considered when 

implementing a measurement-based Tier 3 inventory.  

Step 1.   Develop a sa mpling  scheme,  including sa m ple unit  (plot)  design and 

measurements to  be col lected.   

Sampling schemes can be developed using a variety of methods such as simple random, stratified random, 

systematic or model-based sampling. When designing a sampling scheme, countries often also consider factors 

such as spatial variability and temporal dynamics of carbon stocks, key environmental variables (e.g., climate) and 

management systems (e.g., harvested forest land, grazed grassland).  

When using a repeated measurement design, the timing of re-measurement may be influenced by the rate of change 

experienced. For example, re-measurement periods in boreal and some temperate regions, where trees grow slowly 

and DOM pools change little in single years, can be longer than in environments where carbon dynamics are more 

rapid. When implementing a measurement-based Tier 3 inventory, the inventory compiler should take into 

consideration that it will not be possible to estimate emissions and removals using the stock-difference method 

until a minimum of two measurement cycles have been conducted (often 10 years or longer in total).  

Some sampling schemes do not include re-sampling of the same sites (e.g., temporary inventory plot designs). 

Such designs may limit the statistical power of the analysis when estimating change, and therefore lead to greater 

uncertainty in estimates of carbon stock change. Repeated measurement designs with permanent plot locations 

typically provide a better basis for estimating carbon stock changes or emissions. The utility of permanent plots is 

often greater if they are accurately georeferenced to facilitate the use of spatial auxiliary variables, such as from 

remote sensing (GFOI, 2016). 

For some carbon pools, such as soil carbon, litter and woody debris, it is not necessarily possible to remeasure the 

same material through time (i.e., if taking a soil core, that soil has been removed from the site and cannot be 

remeasured, unlike measuring the same trees through time). However, multiple samples can be taken at each time 

step to capture local site scale heterogeneity in the carbon stock and detect changes over time with each re-sampling 

of a site (Ellert et al., 2002, Conant et al., 2003). Where countries use direct measurement methods for soil C, the 

sampling design needs to ensure that a sufficient number of samples are taken at each measurement time for 

estimating stock change (Spencer et al., 2011).  

Inventory and plot designs should consider the practicality of implementation given country circumstances (e.g., 

terrain, access, safety, vegetation type). The types and number of measurements will depend on the plot design, 

the underlying population of carbon pools to be reported and the data requirements of methods adopted to estimate 

carbon stocks and stock changes from the plot data.  
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It is good practice to develop a methodology handbook (e.g., Canadian Forest Service, 2008; US Forest Service, 

2006) explaining the entire sampling scheme as part of Step 1. This handbook can be useful for those involved 

with the measurements, laboratory analyses and other aspects of the process, as well as possibly providing 

supporting material for documentation purposes. The handbook should document the plot design, in particular 

how plots are to be located and, in the case of repeated measurement designs, re-located for future measurements 

(Vidal et al., 2016). 

Step 2.  Se lect  sa mple si tes.   

Specific sampling sites will be located based on sampling design. It is good practice to have an appropriate process 

in place for selecting alternative sites in case it is not possible to sample some original locations.  In a repeated 

measurement design, the sites will become a monitoring network that is periodically re-sampled. 

Determining sampling locations will likely involve the use of a geographic information system. A geographic 

database may include information on land use and land-use changes (i.e., activity data) as well as a variety of 

environmental and management data, such as climate, soils, land use, and livestock operations, depending on the 

source category and stratification. If key geographic data are not available at the national scale, or are spatially 

inconsistent, the inventory developer may either 1) re-evaluate the design and stratification (if used) in Step 1 and 

possibly modify the sampling design or 2) re-develop the geographic data to meet the inventory requirements. 

Normally the sampling intensity should be the same within a stratum but not necessarily between strata. However, 

where the stratification is based on land use and is updated for each inventory, changes in land use between 

measurement periods can complicate the estimation of changes in carbon stocks over time. As such, it is good 

practice to use stratification methods that do not lead to bias or time-series inconsistencies due to changes in land 

use. 

Sampling may require coordination among different national ministries, provincial or state governments, corporate 

and private land owners. Establishing relationships among these stakeholders can be undertaken before collecting 

initial samples. Informing stakeholders about ongoing monitoring may also be helpful and lead to greater success 

in implementing monitoring programs. 

Step 3.  Col lect  init ial  samples .   

Once the plot locations have been determined, a measurement team can visit those locations, establish plots and 

collect initial measurements and samples. It is helpful to take geographic coordinates of plot locations or sample 

points with a global positioning system (GPS) to help relocate them later, noting that GPS readings are often not 

accurate enough to relocate the exact plot location, especially under dense forest canopies.  As such, if repeated 

measurements are planned, it is good practice to permanently mark the location for ease of finding and re-sampling 

the site in the future.  Where possible these markers should not be visible to the land owner (e.g., utility ball 

markers that can be buried in the soil and re-located precisely over time).  

It is good practice to take relevant measurements and notes of the environmental conditions and management at 

the site. This will confirm that the conditions were consistent with the design of the sampling scheme, and also 

may be used in data analysis (Step 5). If a stratified sampling approach is used, and it becomes apparent that many 

or most sites are not consistent with the expected environmental conditions and management systems, it is good 

practice to repeat Step 1, re-evaluating and possibly modifying the sampling scheme based on the new information. 

Step 4.  Re-sa mple the monitor ing network on a periodic basis.   

For repeated measurement designs, sampling sites will be periodically re-sampled with the time between re-

measurement dependant on the rate of stock changes or the variability in emissions, the resources available for the 

monitoring program, and the design of the sampling scheme. It is good practice to avoid any impact of 

measurement techniques on C stocks and their dynamics (i.e. no destructive sampling) where permanent sample 

plots are used. 

If destructive sampling is involved, such as removing a soil core or dead organic matter sample, it is good practice 

to re-sample at the same site but not at the exact location in which the sample was removed during the past. 

Destructive sampling the exact location is likely to create bias in the measurements. Such biases would 

compromise the monitoring and produce results that are not representative of national trends. When destructive 

sampling of trees is undertaken, for example to develop or validate allometric equations, the samples are usually 

taken from locations or species that are considered representative of the trees in the plots.  

Step 5.  Analyse data and determine carbon stock changes/non -CO 2  emiss ions,  and 

infer national emissions  and removal  est imates and their  uncertainty .  

A well-designed sampling scheme will provide an unbiased estimate and variance for the measured quantities (See 

Volume I, Chapter 3 for more information).  The overall result of the statistical analysis will be estimates of carbon 

stock changes or measurements of emissions from which the national emission and removal estimates can be 

derived.  
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To derive estimates of carbon stock changes or emissions from measurements collected on the plots typically 

requires the use of models that relate these measurements to carbon stocks. The types of models and the uncertainty 

associated with them vary depending on measurements taken and the carbon pools being estimated.  Examples of 

these models include allometric equations for estimating tree and deadwood biomass, root:shoot ratios for 

estimating belowground biomass (Mokany et al., 2006) and the use of spectral signatures to estimate soil carbon 

(Baldock et al., 2013).  

When estimating uncertainty for carbon stock changes and/or emissions it is good practice to include all relevant 

sources of uncertainty, including the sampling scheme, plot measurements and model parameters and structure 

and laboratory processing methods (see discussion for each source category later in this volume in addition to the 

uncertainty chapter in Volume 1). Overall uncertainty can be reduced by increasing the sampling intensity, using 

additional strata or covariates to explain more of the variance or improving the models. Model uncertainty may 

be relatively small, at least in situations with well-developed models calibrated for national situations, or relatively 

large where global models are applied. 

To obtain national estimates of carbon stock changes or emission of non-CO2 greenhouse gases, it may be 

necessary to interpolate or extrapolate measurements using spatial statistical analyses and models that take into 

consideration environmental conditions, management and other activity data. Such models are necessary because 

of the expense and difficulty in obtaining a sufficient sampling intensity to infer C stock changes or emissions 

directly from the survey sample. For example, CH4 and N2O emissions from forest fires are typically inferred from 

data on the area burnt, and fuel consumption estimates derived from specific case studies. In a similar fashion, soil 

N2O emissions could be readily estimated using chambers, but this can be very expensive to establish a network 

with the sampling intensity needed to provide national emission estimates based solely on measurements without 

use of models for extrapolation. Alternatively, compilers may use a model-based approach in these cases, which 

is informed by the limited sample of C stock or emission measurements (See Section 2.1.2). 

It is good practice to analyse emissions relative to environmental conditions in addition to the contribution of 

various management practices to those trends. Interpretation of the patterns will be useful in evaluating possibilities 

for future mitigation. 

Step 6.  Report ing  and Documentat ion.  

It is good practice to assemble inventory results in a systematic and transparent manner for reporting purposes.   

Documentation typically includes a description of the sampling scheme and statistical methods, sampling schedule 

(including re-sampling), stock change and emissions estimates and the interpretation of emission trends (e.g., 

contributions of management activities). In addition, QA/QC should be completed and documented in the report. 

For details on QA/QC, reporting and documentation, see the section dealing with the specific source category later 

in this volume, as well as information provided in Volume 1, Chapter 6. 

When developing/collating documentation for reporting Tier 3 measurement-based methods it is good practice to: 

 describe the sampling design and/or measurements; 

 describe any changes in the design or measurements through time and how these changes are addressed to 

ensure time series consistency in carbon stocks or emissions; 

 describe the models used to calculate carbon stock changes and non-CO2 emissions from the measurements, 

including the uncertainty;  

 describe how area estimates are derived from the survey, such as a national forest inventory, and harmonized 

with land representation data for other land-uses; 

 discuss the influence of time periods between measurement cycles on estimated C stock changes or emission 

estimates, and how this impact is incorporated into the uncertainty analysis; and  

 document, if applicable, how Tier 3 measurement methods are applied consistently with Tier 2 or Tier 3 

model-based methods to prevent errors of omission or commission in reported carbon stock changes or 

emissions for the entire spatial and temporal domain of the country. 



Volume 4: Agriculture, Forestry and Other Land Use 

2.60 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

TABLE 2.6A (NEW) 

EXAMPLES OF DOCUMENTATION TO ASSEMBLE IN SUPPORT OF TRANSPARENT REPORTING OF TIER 3 MEASUREMENT 

BASED INVENTORIES 

Step 1.  Develop sampling scheme, including sample size 

and design and measurements to be collected. 

A description of the sampling scheme including size and 

design and measurements to be collected 

Reason for adopting the selected sampling scheme  

Step 2.  Select sample sites. Description of the process for selecting sample sites and 

processes for dealing with exclusions/replacements 

Step 3.  Collect initial samples.   Sample collection and quality assurance / quality control 

protocols. 

Step 4.  Re-sample the monitoring network on a periodic 

basis.   

Description of re-sampling strategy and reasoning for 

adopted resampling period  

Step 5.  Analyse data and determine carbon stock changes 

and other sources of emissions, and infer national 

emissions and removals estimates and measures of 

uncertainty.   

Data processing and quality assurance / quality control 

protocols including how adopted re-sampling period is 

handled when making carbon stock change estimates and 

their associated uncertainty. 

Step 6.  Reporting and Documentation All of the above material summarised into a report for 

third party review. 

2.5.2 Model-based Tier 3 inventories 

Model-based Tier 3 inventories are developed using empirical (e.g. forest growth curves that represent carbon 

stock increase with tree age.), process-based (e.g. model representation of underlying physiological, biophysical, 

and management processes that drive carbon dynamics in ecosystems), hybrid (e.g. the development of forest 

growth curves from empirical data combined with a process model calibrated from research data on dead organic 

matter dynamics) and/or other types of models. Just as Tier 3 measurement-based methods typically also require 

models to estimate carbon stock changes (see Section 2.1.1), Tier 3 model-based inventories require measurements 

to calibrate and validate the models used to estimate carbon stock changes. 

It is unlikely that one single model will be suitable for estimating emissions and removals for all carbon pools and 

non-CO2 gases across all land uses, land-use changes and management actions. Therefore, inventory compilers 

will need to select a suite of different models to develop estimates of interest. In many cases existing models need 

to be adapted, coupled and/or integrated to provide a complete estimate of emissions and removals in the source 

categories of interest.  

When selecting a model, it is important to consider how it will be used and interact with other models. This is 

particularly important when using Tier 3 mass-balance models in combination with Tier 1 or 2 emissions factors 

(e.g. if different soil carbon models or methods are used for different land-uses, how will the carbon pools be 

transferred between them in the case of land-use change). If changes in modelling methods within the reporting 

time series occur adequate steps should be taken to ensure time series consistency.  

Models may be run individually for different land uses and carbon pools and the results combined or brought 

together in a single framework using coupling and integration techniques. Individual model simulations are 

typically used where multiple agencies are responsible for developing different parts of the inventory (e.g., the 

forest agency responsible for forest lands, the agriculture agency responsible for cropland and grassland). 

Coupling different models is a convenient strategy for addressing effects with different time and space scales. In 

contrast, model integration links different modelling approaches to elucidate the complex dimension of time and 

space dynamics (Panichelli & Gnansounou, 2015), helping ensure consistency in land representation, carbon pools 

and input variables (Brack et al., 2006). Integration frameworks can also help organize data and estimation methods 

at any level of methodological complexity and facilitate the systematic progression from simpler to more complex 

methods (GFOI, 2016).  

In all cases, models used in Tier 3 methods ensure higher accuracy only when they are correctly implemented and 

capable of representing the population of interest. In general, the following seven steps are used to correctly 

implement a Tier 3 model-based inventory (see also Figure 1, Volume 1, Chapter 6, Section 2.4).  

Step 1.  Model se lect ion or development  

Inventory compilers can choose from a wide range of model types depending on reporting needs, data availability 

and capacity. As part of model selection or development, it is good practice to consider if the model/s:  

 adequately represent the range of land uses, ecosystems and management practices in the region or country; 
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 allow for the quantification of uncertainty; 

 reduce uncertainty relative to other available methods (e.g., Tier 1 methods) or estimates are improved in other 

ways (e.g., more complete coverage of carbon pools or lands); 

 can be run and maintained in an operational context with available time and resources (e.g., input data is 

readily available, staff have sufficient experience and knowledge, suitable compute infrastructure is available); 

 produce outputs that can be used for reporting emissions and removals by relevant land-use categories; 

 produce time-series consistent results; 

 are compatible with other existing models used in the inventory; and 

 are well documented and tested. 

Multiple models will likely be selected as potentially suitable as part of Step 1. These models can then be tested 

prior to implementation using steps 2 and 3 below. Therefore, before moving to Step 2, at least a sub-set of the 

input data required to run the model should be collected or collated, including input variables (such as forest 

species or type, climate, soil characteristics), and any existing parameters and data required for further model 

calibration and evaluation. In some cases, input data may be a limiting factor in model selection or development, 

requiring some models to be discarded or modified to accommodate the available activity and/or environmental 

data.  

Step 2.  Model Calibrat ion  

Model calibration (i.e. parameterisation) is the process of selecting or adjusting model parameters to obtain results 

that best represent the processes of interest in the region (and time period) for which the model will be applied. 

The model calibration procedure readies a model for its further use in analyses. For example, replacing default 

growth curves with those specific to the tree species or site conditions to which the model will be applied or 

replacing climate averages with regional climate data are examples of model parameterisation.  

Calibration data should represent the population.  In practice, this does not mean that all environmental conditions 

are covered, but that the calibration data includes a range of the conditions existing the country that is 

representative of national circumstances. 

Model sensitivity analyses may be used to determine the most important parameters for calibration.  In a sensitivity 

analysis, parameter values are varied through a series of simulations to determine the associated change in model 

output. The parameters are ranked from most to least sensitive based on the level of change in model output.  Some 

techniques also incorporate measurements into the sensitivity analysis (Sobol, 2001). The most sensitive 

parameters are typically calibrated to improve the agreement between modelled and measured carbon stocks, stock 

changes or non-CO2 greenhouse gas emissions.  

There are multiple methods for calibrating models. Simpler empirical models (e.g., empirical forest growth models 

based on forest age or site indices) are commonly developed by fitting functions to data on carbon stocks or stock 

changes using standard statistical methods and software. More advanced models (e.g., hybrid or process-based 

models) typically have numerous, interrelated parameters. For these models calibration is often completed using 

parameter optimisation methods that vary the model parameters within known ranges to best match known results 

(e.g., carbon stocks). There are several methods for doing this, including generic algorithms, machine learning and 

Bayesian. The methods may also be used to propagate error through the inventory analysis (e.g., Hararuk et al., 

2017).   

In all cases it is good practice to document the calibration procedure and results.   

Re-calibration of the model or modifications to the structure may be necessary if the model does not capture 

general trends or there are large systematic biases. Full evaluation of the model is described in Step 3.  See Box 

2.2f for examples of model calibration. 
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BOX 2.2F (NEW) 

AN EXAMPLE OF MODEL CALIBRATION, EVALUATION AND IMPROVEMENT THROUGH DATA ASSIMILATION 

The development of Canada’s Carbon Budget Model for the Canadian Forest Sector started in 1989 

and is continually being improved through new data collection, analysis and model enhancements. 

As part of this process, Shaw et al., (2014) assessed CBM-CFS3’s ability to predict ecosystem 

carbon stocks in independent plots established as part of Canada’s national forest inventory (NFI). 

The study demonstrated close agreement in the predictions of total ecosystem carbon stocks (within 

1percent) but found some compensating errors (bias) in specific pools, ecozones, and plots with 

different tree species. 

To further improve the CBM-CFS3 performance in Canadian forest ecosystems, a Bayesian Markov 

Chain Monte Carlo (MCMC) technique was used to calibrate 45 model parameters by assimilating 

carbon stocks of six deadwood and soil carbon pools estimated from 635 plots from Canada’s 

National Forest Inventory (Hararuk et al., 2017). These plots were randomly split into two groups; 

calibration (n = 326), used to calibrate the parameters, and validation (n = 309), used to evaluate the 

performance of the model with calibrated parameters. 

Calibration led to most improvement in the simulation of carbon stocks in small and fine woody 

debris, reducing RMSE by 54.3 percent, followed by the snag stems (RMSE reduced by 23.2 

percent), and coarse woody debris (13 percent). Twenty of the 45 parameters were well constrained 

by the available data. The calibrated parameters resulted in increased rates of carbon cycling in fine 

and coarse woody debris and the soil organic layer, distinct carbon dynamics in hardwood and 

softwood dominated stands, and increased temperature sensitivity of the carbon contained in the 

mineral soil.  

While parameter calibration considerably improved the simulation of the small and fine woody 

debris and snags stem pools, model representation of the branch snag, coarse woody debris, soil 

organic layer, and mineral soil pools were not substantially improved. This indicated the need for 

the inclusion of additional processes in carbon dynamics simulation or a change in the modelling 

paradigm. Model improvements may be achieved by including a lignin effect on deadwood decay 

and by including the effects of tree species, soil types, and mosses (see Box 2.2g) in the CBM-CFS3. 

Further data assimilation analyses are ongoing. 

Step 3.  Evaluat ion of  Model Behaviour    

Once the model has been calibrated, it should be evaluated to demonstrate that the model effectively simulates 

measured trends for the source category of interest.  Evaluation can also support the justification for selecting, 

developing or possibly improving a particular model for the inventory analysis.   

It is good practice to use measurements independent of those used for model calibration when evaluating model 

behaviour and to confirm that the model is capable of estimating emissions and removals in the source categories 

of interest (Falloon and Smith, 2002; Prisley and Mortimer, 2004). In practice, this is typically achieved by setting 

aside a subset of data collected for model calibration to be used exclusively for model evaluation. Comparisons 

between model output and independent measurements can be made using statistical tests and/or graphically.  In 

addition to evaluation with independent data, other evaluation checks may be useful, including: 

 range checks to show that estimates of carbon stocks and changes in all pools do not exceed pre-defined 

expected limits; 

 in models that track both stocks and flows between carbon pools and the atmosphere, that mass-balance is 

been maintained through all simulations; 

 use of other statistical methods for assessing model behaviour, such as resampling methods (e.g., 

bootstrapping); and 

 assessment of the sensitivity of various parameters in the model (sensitivity analysis). 

It is good practice to ensure that the model responds appropriately to variations in activity data and environmental 

conditions occurring in the spatial and temporal domain where the model will be applied. Re-calibration of the 

model or modifications to the structure (i.e., algorithms) may be necessary if the model does not capture general 

trends or there are large systematic biases. In some cases, a new model may be selected or developed based on this 

evaluation. Evaluation results are an important component of the reporting documentation. See Box 2.2g for 

examples of model evaluation and improvement. 
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BOX 2.2G (NEW) 

EXAMPLE OF MODEL EVALUATION AND IMPROVEMENT 

Finland 

The sample sizes in soil carbon inventories are usually not adequate for national level soil carbon 

stock change assessment with few exceptions (e.g., Sweden, and Germany, see Gamfeldt et al., 2014 

and Grüneberg et al., 2014). As such, most countries use soil carbon models to estimate carbon stock 

changes then evaluate the results using repeated soil inventories. In general, it has been shown that 

models can estimate soil carbon stock change in the same magnitude as that measured, but 

uncertainties of both measurements and model estimates are often higher than actual measurements 

(Ortiz et al., 2009; Rantakari et al., 2012). This makes the evaluation of model outputs challenging.  

Two soils carbon models are commonly used in Finland: Yasso07 and ROMULv. An evaluation of 

the performance of these models against forest soil carbon stock measurements was undertaken by 

Lehtonen et al. (2016). Both models require estimates of carbon input from vegetation. Litter input 

from trees was estimated using litter production rates from research sites and stem volume maps 

from the National Forest Inventory. Inputs from understorey vegetation were estimated using new 

biomass models.  

To evaluate the models, both were applied across Finland and run until steady state was achieved; 

thereafter, measured soil carbon stocks were compared with model estimates. The evaluation showed 

that the role of understorey litter input was underestimated by Yasso07, especially in northern 

Finland, and the inclusion of soil water holding capacity in the ROMULv model improved 

predictions, especially in southern Finland. Simulations and measurements indicated that models 

using only litter quality and quantity and weather data underestimate soil carbon stock in southern 

Finland, and this underestimation is due to omission of the impact of droughts on the decomposition 

of organic layers. The model evaluation results imply improving estimates of understorey litter 

production in the northern latitudes would be an area for improvement in greenhouse gas inventories 

(Lehtonen et al., 2016). 

Canada 

An evaluation of CBM-CFS3 ability to predict ecosystem carbon stock estimates derived from an 

entirely independent data set from the initial establishment of Canada’s new National Forest 

Inventory (Gillis et al., 2005) was undertaken (Stinson et al., 2016). Estimates of aboveground 

biomass, dead organic matter and soil carbon stocks from up to 696 ground plots were compared to 

model-derived estimates (Shaw et al., 2014). Model simulations for each ground plot used only the 

type of input data available to the NFCMARS for the NIR in 2010.None of the model’s default 

parameters were altered. Ecosystem total C stocks estimated by CBM-CFS3 were unbiased (mean 

difference = 1.9 Mg ha−1, p = 0.397), and significantly correlated (r = 0.54, p > 0.001) with ground 

plot-based estimates. Although the overall C stock estimates were within 1 percent of the observed 

values, detailed analyses also revealed compensating biases specific to pools, ecozones or leading 

species.  Contribution to ecosystem total C stocks error from soil was large, and from deadwood and 

aboveground biomass small. Results for percent error in the aboveground biomass (7.5 percent) and 

deadwood (30.8 percent) pools compared favourably to the GPG-LULUCF standards of 8 percent 

and 30 percent, respectively. Further details are provided in Shaw et al. (2014). 

Subsequent analyses assessed the reasons for the consistent under prediction of organic carbon 

stocks in low productivity boreal sites, in which mosses can contribute 30 percent or more of total 

ecosystem Net Primary Production (Bona et al., 2013). Although mosses are not a carbon stock that 

is included in the IPCC pools, it is increasingly evident that omitting them will result in significant 

under prediction of both carbon stocks and fluxes in forest ecosystems with high moss cover. Bona 

et al. (2016) estimated that in poorly drained upland black spruce forests of boreal Canada as much 

as 31–49 percent of the total carbon stocks are potentially contributed by mosses alone. A new moss 

module was developed and added to the CBM-CFS3 and off-line comparisons indicate that 

representing moss carbon stocks and inputs will reduce bias in organic carbon stock estimates (Bona 

et al., 2016). 

Step 4.  Col lect  and col late require model data inputs   

Models require specific input data to estimate greenhouse gas emissions and removals associated with a source 

category. These inputs may range from weather and soils data to livestock numbers, forest types, natural 

disturbances or cropping management practices. While much of this data may have been collected as part of the 

model selection process (Step 1), additional data may need to be collected prior to full implementation. For 



Volume 4: Agriculture, Forestry and Other Land Use 

2.64 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

example, the climate data used in model selection may have only been for specific points, while for implementation 

the model will require the data spatially over large areas. In these cases, the new spatial input data may need to be 

developed to implement the model at the desired spatio-temporal scale.   

Step 5.  Model Implementation  

The major consideration when implementing the model is to obtain enough computing resources and personnel 

time to prepare the input data, conduct the model simulations, and analyse the results. In some cases, limitations 

in computing resources may constrain the complexity and range of spatial or temporal resolution that can be used 

in implementing the model at the national scale (i.e. simulating at finer spatial and temporal scales will require 

greater computing resources). An initial analysis of computing needs should be explored during model selection 

and development (Step 1). It may be possible to increase the efficiency of this process using programming scripts, 

re-coding parts of the model and adjusting the spatial and temporal extent and resolution of the simulations. It may 

also be possible to implement the model on computing resources that are outside the agency (e.g. cloud-based 

computing). 

Step 6.  Assess uncertainty  

Uncertainty analysis should not be confused with sensitivity analysis. Uncertainty analysis determines the 

probabilities of a range of estimates that can be used to derive confidence intervals for the estimates, and to develop 

plans to further reduce uncertainties. Sensitivity analysis is conducted to determine the relative change in model 

output given changes in model input values, which can be informative for model calibration (See Step 3). 

In many Tier 3 models, Monte Carlo analyses can be used to simulate the uncertainty arising from the large number 

of possible parameters in the systems.  Empirical analyses may also be an option to quantify uncertainty in model 

structure and parameterization based on an evaluation of model prediction error for sites with known inputs (See 

Box 2.2h). In general, uncertainties are quantified at national scales on annual time steps for reporting but may 

also be estimated at finer spatial and temporal scales. However, it may not be feasible or sensible to apply full 

Monte Carlo simulations to, for example, every spatial unit in a country. Given the computing resource and time 

requirements, it may also not be necessary to repeat a full Monte Carlo analysis every year. For example, in the 

case where only the activity data time series has been updated, but no other material changes to the inventory have 

been made, uncertainty estimates can be extrapolated to the additional years in the time series. A smaller test may 

also be run to demonstrate there has been no material change in uncertainty.  

BOX 2.2H (NEW) 

EXAMPLES OF QUANTIFICATION OF MODEL UNCERTAINTY 

This box is provided for information purposes and for the presentation of examples of quantification 

of uncertainties in Tier 3 modelling approaches. 

Canada 

Both uncertainty and sensitivity analyses were conducted on Canada’s CBM-CFS3 integration 

framework (Metsaranta et al., 2017) and uncertainty analysis results are summarized below. 

A wide range of factors that contribute to the uncertainty in the model estimates were varied using 

Monte-Carlo simulations using the entire national system. These factors include the processes used 

to initialize dead organic matter and soil carbon pools, biomass increment data (a multiplier with a 

range of ±50 percent was applied to net biomass increment), activity data (wildfire (±10 percent), 

insects (±25 percent), and harvest (range varies by jurisdiction)), selection of stands during the 

allocation of natural disturbances to affected stands, and parameters defining litter input and dead 

organic matter pool dynamics. Parameter ranges for 32 biomass turnover and dead organic matter 

carbon modelling parameters were obtained from the literature and used as minimum and maximum 

values of triangular distributions (with mode set to the CBM-CFS3 default value). All parameter 

values and input data were varied independently, because the correlation structure among parameters 

could not be estimated. 

Input data for Canada’s 230 million ha of managed forest are contained in 20 CBM-CFS3 databases, 

each representing a specific region in Canada. Monte Carlo simulations for each of  
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BOX 2.2H (NEW) (CONTINUED) 

EXAMPLES OF QUANTIFICATION OF MODEL UNCERTAINTY 

these 20 databases were conducted independently and the sample size for national totals was 

increased by summing random combinations of the 100 Monte Carlo runs from the 20 projects to 

generate 1000 randomly recombined estimates of national totals. The approximated 95 percent 

confidence interval (CI) was defined from the 2.5th and 97.5th percentiles of these national 

estimates. 

Under the assumptions of this analysis, the 95 percent confidence interval width averaged 32.2 Tg 

C·year−1 (+16.6 and –15.6 Tg C·year−1) for net biome production (total stock changes) relative to an 

overall simulation median of –0.8 Tg C·year−1 from 1990 to 2014. The largest sources of uncertainty 

were related to factors determining biomass increment and the parameters used to model soil and 

dead organic matter carbon dynamics. Some of these processes also vary in their intrinsic degree of 

predictability (Luo et al., 2015), and some factors causing large contributions to uncertainty may 

prove difficult to reduce (e.g., fine root turnover and its spatial and temporal variations). 

United States of America 

Uncertainty analysis for agricultural soil carbon and N2O emissions have been conducted for the US 

greenhouse gas inventory (Ogle et al. 2010; Del Grosso et al. 2010; US EPA, 2017). A Tier 3 method 

is applied to generate emissions estimates with application of the DayCent ecosystem model. This 

process-based model simulates plant production, soil organic matter formation, nutrient cycling, 

water flows, and temperature regimes (Parton et al. 1998). Uncertainty is quantified through a 

combination of Monte Carlo simulations, an empirical analysis of model prediction error, and 

propagation of variance associated with the land representation survey data. 

The inventory is compiled by simulating plant production and soil processes based on land use 

histories at about 400,000 locations that are part of a national survey, the National Resources 

Inventory (NRI) (Nusser et al. 1998, Nusser and Goebel 1997). The major input uncertainties in the 

Tier 3 model application are associated with fertilization and tillage management and are quantified 

in probability distribution functions (PDFs), representing the likelihood of different fertilization 

rates, tillage practices and manure amendments. The model is applied using a Monte Carlo Analysis 

in a series of 100 simulations for each NRI survey locations based on random draws from the PDFs. 

In turn, the analysis produces 100 estimates of soil C stock changes and N2O emissions for each 

survey location. 

Model prediction error, including bias and precision, is quantified in statistical models with an 

empirical analysis based on a comparison of model output to measured observations of soil C stocks 

and N2O emissions from experimental sites (Ogle et al. 2007).  The model inputs are mostly known 

for the DayCent model simulations of the experimental sites and so the primary sources of 

uncertainty that are quantified in this analysis are associated with model structure and 

parameterisation, in addition to the variance in measured observations. Moreover, the experimental 

sites are independent from model calibration allowing for an independent evaluation of model 

prediction error. The resulting empirical model is applied to the DayCent model output to adjust for 

biases, to the extent needed, and to quantify precision in model results. 

In a final step, variance associated with the NRI is derived based on the standard variance estimator 

for a stratified two-stage sample design (Särndal et al. 1992) and propagated through calculations to 

estimate national totals for the inventory (Ogle et al. 2010). The largest source of uncertainty in the 

analysis is associated with model structure and parameterization, as quantified in the empirical 

analysis.  This source accounts for more than 80 percent of the total uncertainty in soil carbon stock 

change and N2O emission estimates at the national scale, highlighting the importance of further 

improving the model to reduce uncertainty. 

Step 7.  Verif icat ion of  inventory est imates  with independent data    

NGHGI estimates from Tier 3 models can be difficult to verify because alternative measurements often do not 

exist at the national scale. This is not unique to the AFOLU sector. There may however, be opportunities to verify 

component estimates against independent data.  For example, model derived estimates of crop yield, or timber 

harvest can be compared against independent data such as crop or timber production statistics. Such comparisons 

require a good understanding of the methods used for both the Tier 3 and the comparative estimates, to avoid 

interpreting possible discrepancies as an indicator of problems in the Tier 3 model, when the discrepancy is in fact 

due to methodological differences. 
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Another useful step in verification of inventory estimates is to compare current estimates against those in the 

inventory submissions of prior years. Changes in time series estimates that are not consistent with changes in 

activity or other input data should be examined and understood as these could be indicative of a variety of problems, 

including errors in data processing. Developing quality assurance/quality control (QA/QC) procedures that 

document the changes in estimates attributed to each change in input data, model parameters, or other 

methodological changes can assist inventory compilers in the verification of inventory estimates. 

Verification of inventory estimates can also be based on measurements from a monitoring network or from 

research sites that were not used to calibrate model parameters or evaluate model behaviour. The network would 

be similar in principle to a series of sites that are used for a measurement-based inventory. However, the 

uncertainty of the estimates (output) from a model-based approach does not depend directly on the sample size 

and therefore the sampling need not be as dense. In some cases, verification may demonstrate that the model-based 

estimation system is inappropriate due to large and unexplainable differences between model results and the 

measured trends from the monitoring network. Problems may stem from one of three possibilities: errors in the 

implementation step, poor input data, or an inappropriate model. Implementation problems typically arise from 

computer programming or data input errors, while model inputs may generate erroneous results if these data are 

not representative of management activity or environmental conditions. In these cases, it is good practice for the 

inventory compiler to return to either Steps 2 or 5 depending on the issue. It seems less likely that the model would 

be inappropriate if Step 2 was deemed reasonable. However, if this is the case, it is good practice to return to the 

model selection/development phase (Step 1) or to further refine the existing model.   

In addition to verifying inventory estimates, independent data may also be used to check areas estimates for land-

use and land use change including  

 that land area is conserved over time;  

 changes between land-use types are logical in terms of the type, frequency and time periods between changes, 

defined by the country;  

 consistency between input data (e.g. area to be disturbed by disturbance type X) and model simulation results 

(e.g., area actually disturbed in the model by disturbance type X). 

Step 8.  Report ing  and Documentat ion   

It is good practice to assemble inventory results in a systematic and transparent manner for reporting purposes. 

Documentation of model-based Tier 3 inventory systems should include those items listed in Table 2.6b. For 

further details on QA/QC, reporting and documentation, see the sections dealing with the specific source categories 

later in this volume, as well as information provided in Volume 1, Chapter 6. 

TABLE 2.6B (NEW) 

EXAMPLES OF DOCUMENTATION TO ASSEMBLE IN SUPPORT OF TRANSPARENT REPORTING OF TIER 3 MODEL-BASED 

INVENTORIES 

Step 1 – Model selection or development  A description of the model 

 Reason for choosing or designing the model demonstrating 

applicability  

 Discussion of any likely consequences if the model is used outside 

the domain that the model is parameterised to simulate. 

Step 2 - Model calibration   Description of the process undertaken to calibrate the model and 

documentation of the data sources informing the manual or 

automated calibration. 

Step 3 – Evaluate model behaviour   Results of the analysis verifying model behaviour using independent 

measurements to confirm that the model is capable of estimating 

carbon stocks, stock changes and/or emissions and removals in the 

source/sink categories of interest. The sources of independent data 

should also be documented. 

Step 5 - Implement the model  Overview of procedures that are used to apply the model. 

Step 6 - Quantify uncertainties  Description of the approach taken to estimate uncertainty in the 

model outputs.   

Step 7 - Verification of inventory estimates  Summary of the verification results for the inventory. 

Step 8 – Reporting and Documentation  Information on QA/QC steps 
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2.6 INTER-ANNUAL VARIABILITY 

In the AFOLU sector, the management of land is used as the best approximation of human influence and thus, 

estimates of emissions and removals on managed land are used as a proxy for anthropogenic emissions and 

removals on the basis that the preponderance of anthropogenic effects occurs on managed lands (see Vol. 4 Chapter 

1). This allows for consistency, comparability, and transparency in estimation. Referred to as the Managed Land 

Proxy (MLP), this approach is currently recognised by the IPCC as the only universally applicable approach to 

estimating anthropogenic emissions and removals in the AFOLU sector (IPCC 2006, IPCC 2010). However, it is 

also recognised that the estimated emissions and removals on managed lands can represent a combination of both 

anthropogenic (direct and indirect) and natural effects (Vol. 4 Chapter 1 p1.5; IPCC 2010; see Fig. 2.6A).  

Some of the emissions and removals from managed land are characterised by high interannual variability. 

Interannual variability (IAV) refers to the variability in the annual emissions and removals (E/R) estimates between 

years within a time series. In the AFOLU sector, the application of the MLP means that IAV can be caused by 

both anthropogenic and natural causes. The three main causes of IAV in GHG emissions and removals in the 

AFOLU sector are (1) natural disturbances (such as wildfires, insects, windthrow, and ice storms), which can cause 

large immediate and delayed emissions and kill trees; (2) climate variability (e.g. temperature, precipitation, and 

drought), which affects photosynthesis and respiration (Ciais et al. 2005; Aragão et al. 2018); and, (3) variation in 

the rate of human activities, including land use (such as forest harvesting), and land-use change (Stinson et al. 

2011; Pilli et al. 2016; Kurz et al. 2018).  

In some countries IAV in emissions from natural disturbances can be larger than the IAV of emissions caused by 

human activities such as forest management. For example, IAV in Canada’s 1990 to 2016 time series of annual 

emission and removals due to natural disturbances is much larger than the IAV in the emissions and removals on 

the remaining managed forest land (Figure 2.6C). The NGHGIs for Portugal (Figure 6-32 of Portugal’s NIR 2018 

(Portuguese Environmental Agency 2018)) and Australia (Table 6.21 of Australia’s NIR 2016 Volume 2 

(Commonwealth of Australia 2018)) are two other examples of time series with high IAV. In some countries, the 

areas burned by wildfires can vary by two orders of magnitude between years (Stinson et al. 2011; Miller et al. 

2012; Genet et al. 2018). In other countries, the majority of IAV may be due to human activities.  

When the MLP is used and the IAV in emissions and removals due to natural disturbances is large, it is difficult 

to gain a quantitative understanding of the role of human activities compared to the impacts of natural effects. In 

such situations, disaggregating9 MLP emissions and removals into those that are considered to result from human 

activities and those understood to result from natural effects may provide increased understanding of the emissions 

and removals that are due to human activities such as, land use (including harvesting) and land-use change. In this 

way, disaggregation can contribute to improved understanding of the trends in emission and removals due to 

human activities and mitigation actions that are taken to reduce anthropogenic emissions and preserve and enhance 

carbon stocks.  

Disaggregating emissions and removals according to anthropogenic and natural effects has been recognised as a 

scientific challenge (Canadell et al. 2007; Vetter et al. 2008; IPCC 2010; Kurz 2010; Smith 2010; Brando et al. 

2014; Henttonen et al. 2017). It is not yet possible to fully and accurately separate emissions and removals 

associated with human activity from those associated with natural effects. The last IPCC Expert Meeting Report 

on this topic encouraged further development of scientific methods (IPCC 2010).  

Recognizing that some but not all countries may choose to address emissions and removals from natural 

disturbances on managed land outside the inventory process, this guidance is provided as an option that may be 

used by countries that choose to disaggregate their reported MLP emissions and removals (i.e. all emissions and 

removals on managed land) into those that are considered to result from human activities and those that are 

considered to result from natural disturbances. These supplementary approaches may be of interest to countries 

with AFOLU sector emissions where IAV due to natural effects is large. The section first addresses definitional 

issues, followed by a description of whether or not different methodological approaches used to estimate C stock 

changes quantify the IAV of emissions and removals. A generic approach to report on disaggregation of the 

contribution of natural disturbances in reporting on total emissions and removals on managed lands is then 

provided, along with country-specific examples of methodological approaches to disaggregating anthropogenic 

effects and natural disturbances on managed lands. 

 

 

                                                           
9 Disaggregating means that an estimate is separated into its component parts. 
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2.6.1 Definitional issues 

2.6.1.1 DIRECT AND INDIRECT HUMAN EFFECTS,  AND NATURAL 

EFFECTS  

Anthropogenic (i.e., direct and indirect human) effects and natural effects are described in Vol. 4 Chapter 1. Figure 

2.6a summarizes the main factors that cause these effects and their occurrences in managed and unmanaged lands. 

The specific effects included in estimates reported in NGHGIs depend on the estimation method and data used, 

which differ in approach and complexity among countries (see Table 2.6c). Describing how the various effects are 

reflected in the estimates of emissions and removals, based on the estimation method and data used, increases the 

transparency of the NGHGI and its understanding by the scientific and policy communities (Grassi et al. 2018, 

section 2.6.2). Useful information may include definition and spatial maps of managed land, information on areas 

of forest being harvested and those subject to other management, and information on the main determinants of the 

GHG fluxes (e.g., forest age structure, harvested volumes, harvest cycle). 

Figure 2.6a: Conceptual illustration of how various anthropogenic (direct and 

indirect) and natural factors affect land-related GHG emissions and 

removals in managed and unmanaged lands  (Source: Grassi et al. 

(2018)).  

 

Direct human-induced effects of any management activity on emissions or removals, by definition, only occur on 

managed lands. Indirect human-induced effects (i.e., the second order impacts of human activities on emissions or 

removals mediated through environmental change) and natural effects can occur on both unmanaged and managed 

lands. The “anthropogenic GHG emissions and removals by sinks are defined as all those occurring on ‘managed 

land’” (Vol. 4, Ch. 1). The natural effects “tend to average out over time and space” (Vol. 4, Ch. 1), provided 

that there are no trends in disturbance rates, such as increased annual area burned as a result of climate change. 

Nonetheless, their IAV in emissions and removals can have an important impact on annual NGHGIs. Depending 

on the estimation method and data used, GHG estimates for managed land may capture all or only some of this 

IAV (see Section 2.6.2).  

The IPCC describes the MLP as a method to approximate estimates of anthropogenic emissions and removals, but 

this proxy estimate also contains emissions and removals resulting from natural disturbances (IPCC 2006; IPCC 

2010). This section introduces an approach that countries can apply on a voluntary basis within the MLP in order 

to indicate those emissions and removals considered to result from human activity, and those that are understood 

to result from natural disturbances. This is achieved by disaggregating the estimated emissions and removals due 

to natural disturbances (ND E/R) within the estimated total MLP emissions and removals. This remaining 

aggregate of emissions and removals associated with human activity might still include some effects of IAV of 

natural disturbances and other natural effects on anthropogenic emissions and removals. 

2.6.1.2 NATURAL DISTURBANCES  

Disturbances, in particular wildfires, can contribute to large IAV in emissions. The number, frequency and 

intensity of fire events are strongly controlled by climate and weather, fuels, ignition sources, and human activities. 

High temperatures, past levels of fire suppression, and persistent drought events are key drivers of forest fires, for 

Managed land Unmanaged land

Direct-human induced effects

• Land use change

• Harvest and other management

Indirect-human induced effects
•Climate change induced change in temperature, 

precipitation, length of growing season 

•Atmospheric CO2 fertilisation and N deposition, 

impact of air pollution 

•Changes in natural disturbances regime

Natural effects
•Natural interannual variability

•Natural disturbances
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instance in the Western US (Westerling 2016), in the Amazon region (Morton et al. 2013) or in Indonesia (Schimel 

et al. 2015). However, land use and land-use change such as deforestation and peatland drainage can influence the 

likelihood and impacts of fire (Page & Hooijer 2016). In the Brazilian Cerrado, severe drought events explain the 

loss of almost 30 percent of aboveground woody biomass (de Miranda et al. 2014). Other natural disturbances 

with large IAV include storm damage (Yamashita et al. 2002; Lindner et al. 2010). Insects tend to follow outbreak 

cycles, thus causing more long-term trends that contribute to interdecadal rather than interannual variations (Kurz 

et al. 2008; Hicke et al. 2012). However, like IAV, the inter-decadal variability can also make it difficult to identify 

trends in emissions and removals that result from human activities. 

Definit ion of  natural disturbances  

Natural disturbances in the context of the AFOLU sector are non-anthropogenic events or non-anthropogenic 

circumstances that cause significant emissions and are beyond the control of, and not materially influenced by a 

country. These include wildfires, insect and disease infestations, extreme weather events and/or geological 

disturbances, beyond the control of, and not materially influenced by a country. Natural disturbances exclude 

human activities such as harvesting, prescribed burning and fires associated with activities such as slash and burn.10  

Non-anthropogenic events refer to non-human induced events (e.g. fire initiated by lightening, damage by wind 

storms), non-anthropogenic circumstances refer to non-human induced conditions that exacerbate these 

disturbances (e.g., fire occurring during particularly harsh conditions like strong winds, high temperature, drought, 

etc.). For information on how to document that disturbances are beyond the control of and not materially influenced 

by the country, see Section 2.6.4 below.  

The methodological guidance provided in this section is aimed at disaggregating emissions and removals in 

ecosystems where natural disturbances cause large IAV in emissions within the MLP and where subsequent 

removals occur over a multi-year period of time. Therefore, this methodological guidance is applicable to natural 

disturbances in forests, and in woody grassland, undrained wetlands or undrained peatlands, but not in other land 

categories where human actions materially determine and/or deeply influence the conditions and circumstances 

associated with significant emissions by disturbances (such in drained peatlands and in cropland).  

Balance of  emiss ions and subsequent removals  

A fundamental assumption under the MLP is that carbon emissions and removals associated with natural effects 

will average out over space and time (see also Volume 4, Chapter 1). Therefore, consistent with this assumption, 

the CO2 emissions (from above and below ground biomass, dead organic matter and soil carbon) from areas 

affected by natural disturbances are expected to be balanced by subsequent removals across the landscape at some 

future point in time. This expectation has no established time limit because the time to balance depends on the 

types of ecosystems affected by disturbances and their rates of regrowth.  

At stand level, changes in growing conditions could affect this expectation, in particular if environmental 

conditions contribute to regeneration failure of stands that were affected by natural disturbances, e.g. landslides 

and erosion after wildfire, making it more difficult to achieve the balance. Conversely, if environmental changes 

contribute to increased growth rates or reduced mortality rates, then the balance will be achieved faster.  In the 

case of repeated disturbances on the same area, the time to reach balance for that area may increase. 

2.6.2 Relationship between different methodological 

approaches and the representation of emissions and 

removals from interannual variability 

The choice of estimation method and data affects the extent to which the IAV of different drivers is reflected in 

reported estimates (see Table 2.6c). Countries can apply different estimation methods to report their emissions and 

removals capturing the anthropogenic components with different temporal resolution and disaggregation of 

variables (annual to periodic, averaged or disaggregated by drivers). Table 2.6c provides information on how the 

choice of estimation method affects whether or not factors contributing to IAV of reported emissions and removals 

are captured in NGHGIs. This table may help countries in understanding and describing how the various effects 

are reflected in the estimates of emissions and removals, therefore increasing the understanding of NGHGIs by the 

scientific and policy communities. 

                                                           
10 Information on natural disturbance definitions and approaches applied in the Kyoto Protocol accounting can be found in 

IPCC. (2014) In: 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, eds. 

T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda & T. G. Troxler, IPCC, Switzerland. 
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TABLE 2.6C (NEW) 

GENERAL GUIDANCE ON WHETHER OR NOT THE ESTIMATION METHOD IS ABLE TO DISTINGUISH BETWEEN THE IMPACT 

OF THE INDIVIDUAL DRIVERS BELOW ON THE INTERANNUAL VARIABILITY OF REPORTED ANNUAL EMISSION AND 

REMOVAL ESTIMATES  - NOTE THAT SOME EXCEPTIONS MAY OCCUR, DEPENDING ON THE DATA USED 

  Drivers 

Method  Direct Human  Indirect 

Human  

Natural climate 

variability   

Natural 

Disturbances  

Stock Difference11  

Periodic measurements (multi-year) 

No  No  No  No 

Stock Difference12  

Annual measurements 

Yes  Yes  Yes  Yes 

Gai

n- 

Loss
13 

L
iv

e 
b

io
m

as
s 

p
o
o

ls
 Biomass growth 

based on Emission 

Factors or empirical 

yield tables  

Yes  No  No  Yes   

Growth based on 

process (or hybrid) 

model  

Yes  Yes  Yes  Yes  

D
ea

d
 a

n
d

 s
o

il
 o

rg
an

ic
 m

at
te

r 
p
o

o
ls

 Dead and soil 

organic matter 

dynamics based on 

Emission Factors  

Yes  No  No  No  

Dead and soil 

organic matter 

dynamics with 

constant climate 

Yes  No  No  Yes  

Dead and soil 

organic matter 

dynamics with 

variable climate 

Yes  Yes  Yes  Yes  

The Stock Difference method calculates net emissions/removals (E/R) as the difference in estimated C stocks for 

relevant pools measured at two points in time. Average annual net E/R can be calculated by dividing the C stock 

difference of a period by the number of years between the two observations. Periodic stock assessments without 

auxiliary data therefore do not allow the quantification of the IAV of emissions and removals and its relation to 

the various drivers.  

With annual measurements of ecosystem carbon stocks, e.g. via subsets of annual plot measurements in a 

continuous forest inventory, the quantification of IAV of emissions and removals becomes possible. Periodic or 

annual subsets of inventories can by themselves not detect IAV unless auxiliary data – such as area annually burned, 

harvest rates or other specific plot-level measurements on the timing of tree mortality – are used to inform about 

IAV (Röhling et al. 2016). For non-CO2 emissions (e.g., CH4 and N2O from fires), auxiliary data on the type of 

disturbance that caused carbon losses would be required when the stock difference method is used.  

The Gain-Loss method requires annual data on forest management, land-use change and natural disturbances and 

when these are available it can provide estimates of the IAV of net emissions. Depending on the estimation 

methodology and the data sets used, it may capture some or all of the impacts of drivers of the IAV of annual 

emissions and removals. A Gain-Loss approach utilising yield tables or constant emission factors (EF) will be 

insensitive to natural climate variability and, therefore, will only be able to distinguish between the direct human 

impact and natural disturbance impacts on IAV of emissions and removals. Gain-Loss methods that utilise climate-

sensitive growth and mortality models (Richards & Evans 2004; Waterworth et al. 2007; Hember et al. 2018), or 

                                                           
11 Forest inventories with multi-year period remeasurement and no auxiliary data cannot detect IAV. In some cases, periodic 

measurements on permanent sample plots are augmented with additional annual data thus increasing the ability to estimate 

IAV. 

12 Forest inventories with annual remeasurements for the same plots can detect IAV but are rarely implemented. 

13 The assumption for the Gain-Loss method is that activity data such as harvest, land-use change, and natural disturbances are 

available annually. 
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climate sensitive models of dead and soil organic matter dynamics (see Figure 6 in Liski et al. (2006)) can, in 

addition, estimate the indirect human and natural climate variability impacts on the IAV of emissions and removals.  

2.6.3 Optional approach for reporting of emissions and 

removals from Natural Disturbances 

It is good practice for countries to apply the MLP and to estimate and report all emissions and removals that occur 

on managed lands. This section describes a generic approach for use by countries that choose to report on the 

further disaggregation of emissions and subsequent removals from natural disturbances from the total emissions 

and removals estimated using the MLP. As discussed above, disturbances may have a natural and an anthropogenic 

component. This reporting guidance aims to assist countries choosing to report on the disaggregation of emissions 

and subsequent removals associated with human activity and those associated with natural disturbances within the 

total emissions and subsequent removals estimates of the MLP. 

The elements of a generic approach are provided below, followed by examples of how the approach has been 

implemented to date:  

1. Quantification of the total emissions and removals from Managed Lands (consistent with MLP) 

Estimate total E/R consistent with the MLP. Guidance provided by the IPCC for each relevant land category 

applies for the estimation of associated emissions and subsequent removals due to regrowth within the MLP. 

This is the total MLP flux, i.e. the first order approximation of the anthropogenic emissions and removals, 

which also includes emissions and subsequent removals from areas that are identified as subject to natural 

disturbances. 

2. Reporting on the country-specific approach to applying the definition of natural disturbances 

Consistent with the generic definition of natural disturbances provided in section 2.6.1.2, countries describe 

their approach when applying the definition of natural disturbances consistently over time. The country 

description includes the types of disturbances for which the disaggregation of emissions and subsequent 

removals is implemented. The description also explains how the country excludes from natural disturbances 

the impacts of human activities, e.g., salvage logging, prescribed burning, slash and burn and deforestation. 

3. Identification of emissions and removals due to natural disturbances 

The emissions and subsequent removals associated with natural disturbances are identified by applying the ND 

definition to either the individual (stand-level) disturbed areas or the total (landscape-level) emissions from all 

disturbances in the year14. In identifying those emissions and removals, it is good practice to avoid the inclusion 

of emissions and removals that are materially affected by human actions15.  Both approaches provide for the: 

(i) Identification of the lands and area of land affected by each disturbance, as well as a description of the 

methods and criteria applied. 

(ii) For those lands, estimation of the emissions and subsequent removals associated with natural 

disturbances only (e.g. salvage logging emissions and associated subsequent removals are not included), 

as well as a description of the methods and criteria applied. 

If a country chooses to disaggregate ND emissions and removals, then it is good practice to disaggregate as 

anthropogenic the emissions and subsequent removals associated with management activities occurring on land 

affected by natural disturbances, including salvage logging and deforestation. Consequently, subsequent 

removals are disaggregated between human activities and natural disturbances, proportionally to the C stock 

losses these activities have caused, until the CO2 emissions from natural disturbances are balanced by removals.  

For example, if salvage logging follows wildfire, and the wildfire caused instant emissions of 20 t CO2 per 

hectare and subsequent salvage logging caused an additional 40 t CO2, then 20 t CO2 of subsequent removals 

are disaggregated as natural disturbances, and all remaining removals are disaggregated as anthropogenic 

effects.  This could be implemented sequentially (i.e. the first 20 t CO2 removals are disaggregated as due to 

natural causes, and all subsequent removals to anthropogenic causes) or in parallel (i.e. in this example, for 

every tonne of CO2 removal, one third is disaggregated as due to natural causes, and the remaining two thirds 

to anthropogenic causes). In both cases, once natural emissions are balanced by removals disaggregated as 

natural causes, the remaining removals are considered anthropogenic.   

                                                           
14 Methodological guidance on quantification of associated emissions and removals are given in the chapters with general 

guidance (Chapter 2 and 3) as well in the category-specific chapters (Chapter 4 and 6)". 

15 Noting that a portion of the emissions and removals considered to be associated with natural disturbances may be affected 

by human actions. 
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Disaggregation of CO2 removals following natural disturbances can be implemented at the landscape level by 

apportioning these based on, for instance, the proportion of area disturbed of total forest area and the proportion 

of C stock lost of total C stock. For example, if in a year X in a country Y, Z ha of forest land is subject to 

wildfires, representing 0.1percent of the total forest area and 25percent of the total carbon stock present in the 

burned area is lost; the percentage of total CO2 removals in the entire forest land apportioned to natural 

disturbances in this example is 0.025percent (i.e., 0.1percent*25percent) for year X. If the emissions from 

natural disturbances in year X were 25 Mt CO2, then the removals in subsequent years are considered natural 

until the sum of the removals equals that amount. 

Although the different approaches above (i.e., sequential or parallel disaggregation of removals subsequent to 

natural disturbances, stand vs. landscape level) affect the annual disaggregation, as long as the expectation of 

the balance between emissions from natural disturbances and the subsequent removals is fulfilled (see Section 

6.2.1.2), and as long as emissions and subsequent removals are treated consistently, in the long term the totals 

are the same. Furthermore, in all cases it is good practice to report information on assumptions and methods 

implemented to disaggregate subsequent CO2 removals. 

When land-use change (e.g., forest land converted to cropland) follows a natural disturbance (e.g., wildfire), 

then emissions associated with land-use changes after natural disturbances as well as the emissions from the 

prior natural disturbance, are considered to be anthropogenic emissions. If regrowth occurs on that land, then 

any subsequent removals are also considered anthropogenic.  

4. Disaggregation of the MLP 

The natural disturbance component is subtracted from the total estimate of MLP emissions and removals, 

yielding an estimate of the emissions and removals associated with human activity on managed land. Both 

components are estimated and reported as part of the total MLP emissions and removals. In countries where 

natural disturbance contributes large IAV to E/R, the component of the MLP emissions and removals identified 

as associated with human activity is expected to have a lower IAV than the MLP emissions and removals 

because the variability resulting from natural disturbances has been disaggregated. 

Given the expectation of the balance described above (Section 2.6.1.2), when emissions from natural 

disturbances are disaggregated, it is good practice that subsequent removals are also disaggregated until the 

balance has been reached. In this case, it is also good practice to disaggregate to the natural disturbance 

component those removals in each inventory year that are contributed by lands that were affected by natural 

disturbances prior to the start of the time series. In many ecosystems it may take decades for removals following 

natural disturbances to balance emissions from the disturbances. If it is not possible to estimate directly the 

amount of emissions that need to be balanced, for example if natural disturbances occurred before the reporting 

period, the time when the balance is expected can be approximated based on the estimated length (years) of 

the recovery period (see example in Box 2.2j). This ensures a consistent application of the balance principle 

throughout the time series.  

In addition to CO2 emissions, natural disturbances may cause non-CO2 emissions, e.g. wildfires cause N2O and 

CH4 emissions. While CO2 emissions are assumed to average out across time because of vegetation regrowth 

after disturbance, non-CO2 emissions are not taken up by vegetation and therefore there is no expectation that 

these emissions will be balanced by removals because the biological, chemical and physical processes that 

result in the complete decay of CH4 and N2O in the atmosphere are not captured in existing IPCC inventory 

methods. 

Examples of methodological approaches that have been developed are presented for Australia (Box 2.2i), Canada 

(Box 2.2j) and for an EU country (Box 2.2k). 
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BOX 2.2I (NEW) 

AUSTRALIAN APPROACH TO ESTIMATING INTERANNUAL VARIABILITY DUE TO NATURAL DISTURBANCES 

This box is for information only and neither adds guidance nor overrules guidance provided. 

In Australia, all lands are considered managed lands. All areas and carbon stock changes on managed 

land from anthropogenic and ‘natural disturbances’16 are reported, consistent with the MLP. ‘Natural 

disturbance’ emissions and removals are considered to be caused by non-anthropogenic events and 

circumstances beyond the control of, and not materially influenced by, human activity despite 

extensive efforts by emergency management organizations to prevent, manage and control such 

events. 

Both initial carbon losses and subsequent recoveries in carbon stocks are modelled as part of the 

disturbance event, and carbon stocks are spatially tracked until pre-disturbance levels are reached to 

ensure completeness and balance in reporting. Most Australian wildfires are not stand-replacing and 

carbon stocks typically recover after 11 years (Roxburgh et al. 2015). Estimates are prepared using 

a process (hybrid) model with DOM/SOM dynamics with variable climate (FullCAM).  

‘Natural disturbances’ are defined as occurring in a year which is an outlier (exceeding the 95percent 

probability level) in the series of annual carbon stock losses due to wildfire at the national level and, 

spatially, as fires in those regions (States) experiencing abnormal fire activity in that year. (A full 

description of the method to identify outliers can be found in Volume 2 of Australia’s NIR 2016 - 

Section 6.4.1.3) 

‘Natural disturbance’ emissions and removals are modelled on a spatial basis and, consistent with 

the MLP, included in reporting after averaging out initial carbon stock losses and subsequent 

recovery17. This leaves the trend in carbon stock changes as the dominant result of human activity 

(e.g. from prescribed burning, normal seasonal wildfires – see “B” in Figure 2.6B).   

The approach ensures that Australia’s modelled implementation of the MLP is comparable with 

estimates generated using other methods, such as Tier 3 stock-difference approaches, that tend to 

average out IAV due to natural causes over space (scaling from plots to region) and time (averaging 

between periodic re-measurements). All carbon stock changes on managed land from anthropogenic 

and natural disturbances are transparently reported in Australia’s NIR. 

 

Figure 2.6b: Example of the disaggregation of wildfire emissions in Australia into ‘natural 

disturbance’ emissions and removals and the emissions and removals from fires due to human 

activity. 

 

                                                           
16 References to ‘natural disturbances’ in this box refer to the natural ‘background’ of greenhouse gas emissions and removals 

by sinks described in 2006 IPCC Guidelines Vol 4, page 1.5: (Managed land proxy) “Finally, while local and short-term 

variability in emissions and removals due to natural causes can be substantial (e.g. emissions from fire – footnote 1), the 

natural ‘background’ of greenhouse gas emissions and removals by sinks tends to average out over time and space.” 

17 2006 IPCC Guidelines Vol 4, page 1.5: (Managed land proxy) “Finally, while local and short-term variability in emissions 

and removals due to natural causes can be substantial (e.g. emissions from fire – footnote 1), the natural ‘background’ of 
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BOX 2.2J (NEW) 

CANADA’S APPROACH TO ESTIMATING  INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES 

This box is for information only and neither adds guidance nor overrules guidance provided. 

In the 2017 National GHG Inventory Report18 Canada revised its reporting approach to increase the 

transparency of the reporting of anthropogenic emissions and removals on Forest Land remaining 

Forest Land (FL-FL). The new approach disaggregated the emissions and subsequent removals on 

managed lands affected by natural disturbances from those on the remaining lands subject to forest 

management. The concept of the MLP was maintained: the sum of these two emission and removal 

components are identical to the total emissions and removals for FL-FL under the MLP. Canada’s 

2018 National GHG Inventory Report19 further refined the approach. The methods are described in 

detail by (Kurz et al. 2018) and are summarized here. 

Canada defined natural disturbances as all stand-replacing wildfires and all disturbances of other 

natural causes (insects, windthrow etc.) that result in more than 20 percent tree mortality (biomass) 

in affected stands. The threshold of 20 percent was selected because large areas of forests are affected 

by insects that cause low levels of mortality and/or growth reductions. Disturbances with impacts 

below this threshold are considered part of the natural, small-scale forest mortality that affect stand 

dynamics such as self-thinning. 

For all areas affected by stand-replacing fire disturbances, annual CO2 and non-CO2 GHG emissions 

and subsequent CO2 removals are summarized in the natural disturbance land category for several 

decades following the fire event.  The time at which stands affected by natural disturbances transition 

back to the category of lands affected by forest management varies across Canada and is determined 

by the age at which stands are eligible for harvest, typically 60 to 90 years. For other natural 

disturbances that cause more than 20 percent biomass mortality, E/R are summarised in the natural 

disturbance category until the pre-disturbance biomass values are reached. For the 1990 to 2016 time 

series, stands regenerating following wildfire that are younger than the age at which stands are 

eligible for harvest is summarised in the natural disturbance category: removals that occur after 1989 

in stands that have been affected by stand-replacing wildfires prior to 1990 are therefore contributing 

to balancing emissions from wildfires that occurred since 1990. The 56 Mha of managed forest 

affected by wildfire disturbances prior to 1990 contribute in 1990 estimated removals of 64 Mt CO2e 

yr-1. From 1990 to 1994 these cumulative annual removals are larger than the emissions from 

wildfires since 1990, making the lands subject to natural disturbances net sinks  (Kurz et al. 2018). 

This approach contributes to balanced reporting as otherwise only removals from stands affected by 

natural disturbances after 1990 would appear in the natural disturbance component. 

The disaggregation of fluxes improves the estimate of human impacts: reported emissions and 

removals without natural disturbances showed clear temporal trends that are correlated with changes 

in the rates of human activities such as rates of clear-cut harvesting (Figure 2.6C). In areas strongly 

affected by the Mountain Pine Beetle outbreak (Kurz et al. 2008) the trend in emissions reported for 

lands affected by forest management is still somewhat influenced by the impacts of the beetle 

because that area is decreasing  (Kurz et al. 2018).  The high IAV resulting primarily from fires is 

reported separately (Table 6.5 in Canada’s NIR 2018). Further methodological details are provided 

in Canada’s NIR 2018, Sections 6.3.1 and in Annex 3.5.2.3 and in (Kurz et al. 2018). 

 

                                                           
greenhouse gas emissions and removals by sinks tends to average out over time and space. This leaves the greenhouse gas 

emission and removals from managed lands as the dominant result of human activity.” 

18 http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/can-

2017-nir-13apr17.zip 

19 https://unfccc.int/documents/65715 
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BOX 2.2J (NEW) (CONTINUED) 

CANADA’S APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES  

 

Figure 2.6c: Example of the disaggregation of Canada’s FL-FL emissions and removals into those 

occurring on lands dominated by natural disturbance impacts and those occurring in the remaining 

managed forest (A). Note the high IAV in the natural disturbance fluxes (up to 250 Mt CO2e/yr) (B) 

on the area affected by natural disturbances (primarily wildfires) and the low IAV of fluxes on the 

remaining managed forest area (C) which are correlated with forest management activities (e.g. 

primarily area of forest harvest). Fluxes in panel C are shown without (solid line) and with (dashed 

line) the emissions from harvested wood products. Data from Canada’s 2018 NIR and figure from 

(Kurz et al. 2018)).   
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BOX 2.2K (NEW) 

APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES BASED ON THE EU 

LEGISLATION20 

This box is for information only and neither adds guidance nor overrules guidance provided. This 

example demonstrates a methodological approach that has not yet been implemented. 

Forests of example country Z21 are prone to wildfires that in years with extreme weather conditions 

(e.g. drought, especially if combined with strong winds) may cause large emissions from biomass 

burning and cause high IAV in the net CO2 balance. Although, the country recognizes that most of 

its wildfires are human-induced either intentionally, e.g. pyromaniacs, or unintentionally, e.g. 

campfires, fireworks, cigarettes or other causes, some have natural causes. Consequently, emissions 

from wildfires have both an anthropogenic and a natural component. 

 

Figure 2.6d: Time series of managed forest land total GHG net emission (anthropogenic + natural 

disturbance (ND) and area burned. Blue bars (left Y-axis) represent annual total net GHG emission 

(Gg CO2e) from managed forest land net sink. The dashed red line (right Y-axis) represents the 

annual area burned (kha). 

To disaggregate the natural component of emissions and removals from wildfires, the country uses 

its national definition of natural disturbances: Natural Disturbances are those wildfires that are non-

anthropogenic events or non-anthropogenic circumstances that cause significant emissions in 

forests and are beyond the control of, and not materially influenced by, the Country’s land use and 

management practices. These practices exclude salvage logging and prescribed burning.  

All wildfires are considered not materially influenced by the country’s land use and management 

practices since the use of fire is forbidden in any forest land and the country has an advanced national 

fire management system for fire prevention, fire monitoring and fire suppression in all land uses, 

including forest land.  

To identify wildfires that cause significant emissions and are beyond the control of the country’s 

fire management system and are therefore considered natural disturbances, the country looks for 

statistical outliers that fall outside the 95 percent confidence interval of the variability of the 

historical time series of the annual GHG emissions from wildfires22. To do so, the distribution of 

emissions from wildfires is established, and it is assumed that all values within the normal  

 

                                                           
20 The presented methodology is based on the EU Regulation 2018/841 

21 Data for this example are derived from the Italian GHG inventory 

22 Such time series do not include emissions from salvage logging nor emissions from wildfires that are followed by a 

deforestation event. The time series can start before the base year of the country and may include all years for which data are 

available. For this example, the time series starts in 1971. 



 Chapter 2: Generic Methodologies Applicable to Multiple Land-Use Categories 

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 2.77 

BOX 2.2K (NEW) (CONTINUED)  

APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES BASED ON THE EU 

LEGISLATION 

distribution are exclusively associated with the anthropogenic component23, any outlier value, in the 

upper tail, is considered as the signal of a disturbance event that is unlikely to have been generated 

by anthropogenic causes alone and therefore includes a natural component. 

In practice, first a historical time series of annual emissions24 from wildfires is constructed starting 

from 1971, i.e., the base year (1990) of the NGHGI of the country minus 20 years. Then, using an 

iterative process, outliers (if any) that are larger than the mean plus two times 25  the standard 

deviation are removed from the time series in successive iterations, until an outlier-free normal 

distribution is obtained.  

The resulting time series, as well as its mean (referred to below as the background level of 

anthropogenic emissions from wildfires) and two times its standard deviation (referred to below as 

the margin) excludes all outliers. Based on these statistics, natural disturbances are those that occur 

in years when the total immediate emissions from wildfires are larger than the background level plus 

the margin and emissions from these natural disturbances are quantified as the amount exceeding 

the background level. This amount is disaggregated from the anthropogenic component.  

To establish the balance between immediate CO2 emissions (F) and total subsequent CO2 removals26 

(R) due to natural disturbances, and to avoid introducing artificial trends to the time series, the 

country also estimates and reports removals occurring from land disturbed in the X years prior to 

the inventory year, where X27 is the length of the period that is needed for forest vegetation (by 

relevant forest types and site types) to recover the pre-disturbance C stock. The CO2 removals are 

quantified under the assumption that forest vegetation fully recovers within X years after wildfires. 

This assumption is based on the current legislation that forbids conversion of burnt forests to other 

land uses and that prescribes post-fire management activities aimed at rehabilitating the pre-fire 

forest vegetation. Consequently, the average amount of subsequent annual removals (Rannual) to be 

disaggregated for X years of a past ND event28 is equivalent to 
𝐹

𝑋
 and ∑ 𝑅𝑎𝑛𝑛𝑢𝑎𝑙 = 𝑅 = 𝐹𝑋

0  (where 0 

is the year in which the natural disturbances occur and X the time needed for C stocks to recover to 

their pre-disturbance level). 

 

                                                           
23 The average value of this distribution is the so -called background level of emissions associated with disturbances and it is 

considered anthropogenic. 

24 The country includes the emissions of fire events only, delayed emissions associated with the decay of biomass that was 

killed during the fire are not considered 

25 This is an approximation of Student’s t value for data series with number of data >= 30. 

26 Calculated directly from the biomass net increment (ΔCG of IPCC equation 2.7) 

27 For this example, X has been estimated to be 20 years for the entire country’s territory. 

28 This means that in any year Y of the NGHGI the amount of CO2 removals to be disaggregated is equivalent to the 

∑ (
𝐹

𝑋
)
(𝑌−𝑋)

𝑌
𝑌−𝑋  (where (

𝐹

𝑋
)
(𝑌−𝑋)

 are the annual CO= removals occurring on all lands disturbed in the period Y-X that have 

not yet achieved their pre-disturbance level of C stocks.) 
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BOX 2.2K (NEW) (CONTINUED)  

APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES BASED ON THE EU 

LEGISLATION 

 

Figure 2.6e: Time series of managed forest land GHG net emissions and removals (Gg CO2e). Blue 

bars (net sink) represent annual anthropogenic GHG net emissions (Gg CO2e) from managed forest 

land; red bars (source and green line (sink)) disaggregated GHG emissions and subsequent CO2 

removals from natural disturbances in managed forest land, respectively. The coefficient of variation 

of the time series is 0.184.  

2.6.4 Reporting the contribution of natural disturbances 

and anthropogenic effects to the emissions and 

removals for managed lands 

Voluntary disaggregation of the total of emissions and removals in the MLP into those that are associated with 

human effects and those due to natural disturbances may provide a clearer picture of the impact of management 

activities. It is understood that a complete separation of the direct human impacts from natural impacts is, at this 

time, not possible due to limitations of scientific methods (IPCC 2010) but disaggregating the emissions and 

subsequent removals that are associated with natural disturbances on managed lands may be a helpful first step. 

The MLP total is the sum of all emissions and removals on managed land. Box 2.2l describes a possible approach 

to reporting the total E/R from MLP plus the two components from: 

1. Natural disturbances; 

2. Anthropogenic activities (direct and indirect human effects). 

The first component includes emissions from natural disturbances and subsequent net removals from regrowth. 

Emissions may include delayed emissions from dead organic matter that was added by the disturbance to the 

already existing dead organic matter pools.  

The second component includes emissions and removals directly and indirectly associated with human activity 

calculated as the difference between MLP total emissions and removals minus those associated with natural 

disturbances.  

In those cases where natural disturbance fluxes are large compared to the anthropogenic component of the MLP, 

the optional disaggregation of estimates of the emissions and removals associated with natural disturbances can 

identify the estimated trends of the emissions and removals on managed land associated with human activity, as 

demonstrated in recent NGHGI reports (e.g., Boxes 2.2I, 2.2J). 
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Transparency:  

For those countries that choose to identify, quantify and report disaggregated natural disturbance emissions and 

subsequent removals, it is good practice to document disaggregated emissions and removals in the MLP, and the 

approaches, assumptions and methods used.  

It is good practice to document the following: 

 Consistency of the country approach with the generic definition of natural disturbances provided in Section 

2.6.1.2, if any.  

 The types of natural disturbances for which emissions and subsequent removals are identified, quantified and 

disaggregated within MLP reporting. 

 How the requirements associated with the above definition of natural disturbances are met, including that the 

identified ND events are “non-anthropogenic events or non-anthropogenic circumstances”, which can be 

demonstrated by providing information to show that the disturbances were “not materially influenced by, and 

beyond the control of, a country”.  

 How the emissions and removals that are materially influenced by human actions are excluded from the natural 

disturbances component. 

The demonstration that natural disturbances were “not materially influenced by, and beyond the control of, a 

country” is based on scientific reasoning or evidence and documentation on practicable efforts to prevent, manage 

or control the occurrences that led to the natural disturbances. Such evidence and practicable efforts may include 

but are not limited to: 

 Studies showing the prevalent direct cause of fires in a given region, forest type and climate zone; information 

on weather conditions related to the disturbance events or to the cumulative affected areas; 

 Application of preventative measures or modifying factors related to the occurrence or propagation of the 

disturbances that may reduce the likelihood and/or magnitude of the disturbances occurring; 

 Efforts to manage or control the disturbances when they occur, to the extent possible.  

It is good practice to document the methods used to identify, quantify and disaggregate the impact of ND on GHG 

emissions and removals, including information on:  

 How the method is consistent with the expectation that the CO2 emissions from areas affected by natural 

disturbance will be balanced by subsequent removals.  

 The methods by which GHG fluxes are disaggregated from total MLP fluxes.  

 For lands subject to ND, documentation on how subsequent land use and land-use change, if any, is identified 

and how GHG fluxes previously disaggregated as associated with natural disturbances are re-assigned to the 

anthropogenic component following land-use change.  

Documentation on the manner in which emissions associated with human activities that occur after the natural 

disturbance event (such as salvage logging and site rehabilitation or other activities that do not cause a land-use to 

change), and subsequent removals, are estimated and disaggregated. 
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BOX 2.2L (NEW) 

EXAMPLE OF THE TABLE FORMAT THAT COULD BE USED FOR VOLUNTARY DISAGGREGATION OF TOTAL 

ESTIMATED FLUXES ON MANAGED LANDS INTO ANTHROPOGENIC AND NATURAL DISTURBANCE COMPONENTS  

 

 Land-use category e.g. Forest land remaining forest land  

Years   

Start 

year† … … … Inventory year 

Total Area under the MLP (kha)      

Carbon stock change  

Gains      

Losses      

Net      

non-CO2 emissions Emissions      

Net E/R plus non-CO2 Total*      

       

Annual area of natural disturbances (kha)29      

Area subject to natural disturbances (kha)30      

Carbon stock change 

Gains      

Losses      

Net      

non-CO2 emissions Emissions      

Net E/R plus non-CO2 Total       

      

Remaining area of managed land (kha)      

Carbon stock change 

Gains      

Losses      

Net      

non-CO2 emissions Emissions      

Net E/R plus non-CO2 Total #      

† This is the first year in the inventory time series, e.g. 1990. 

* This is the total MLP estimate of net emissions and removals, i.e. the first order approximation of the anthropogenic 

emissions and removals 

# This is the optional disaggregated estimate of the anthropogenic emissions and removals 

 

  

                                                           
29 The area of natural disturbance in the year it first occurs. 

30 The cumulative area which has been subject to natural disturbances up to and including the current inventory year, minus the 

area of natural disturbances on which past CO2 emissions are considered to be balanced by subsequent removals since the 

occurrence of the natural disturbance. In the cumulative area totals, areas affected multiple times are included only once. 
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Annex 2A.1 Default Mineral Soil Reference C Stocks  

Data presented in Table 2.3 were derived from Batjes (2011) and Batjes (2010) unless no values were available 

for particular combinations of IPCC Climate Zones and IPCC soil types. Where no values were available, values 

were taken from the 2006 IPCC Guidelines for National Greenhouse Gas or the 1996 IPCC Guidelines.  

Reference C Stocks for the mineral soils C method were derived for IPCC climate zones (IPCC 2006 p. 3.39)  and 

IPCC soil classes (IPCC 2006 pp. 3.40-3.41). Soil data are from the ISRIC-WISE database (10250 profiles) 

complimented with 1900 additional geo-referenced profiles from under represented temperate and boreal sites.  

Data from all soils were screened and where organic carbon contents were determined using the Walkley Black 

analysis, values were adjusted based on a conversion factor of 1.3 to estimate corresponding values that would 

have been obtained by dry combustion analysis.  Profiles were collected between 1925 and 2010 with two-thirds 

of the pedons sampled between 1955 and 1995. Profiles were classified as “cultivated or disturbed” vs 

“(semi)natural”. Only profiles flagged as being under native vegetation (classified as “(semi)natural”) were 

included (a total of 5560 profiles equating to approximately 1.6 times that used in the 2006 IPCC Guidelines). The 

profiles also had a better geographical distribution across the globe compared to those use to derive reference 

carbon stock values within the 2006 IPCC Guidelines.    

The following equation was used to compute SOC stocks: 

EQUATION 2A.1.1 

ESTIMATION OF SOIL ORGANIC CARBON STOCKS 

 
1

1
k

d i i i i

i

T P D S


      
 

Where:  

dT  = total amount of organic carbon over depth, d, (in kg m−2) 

i  = bulk density of layer i (Mg m−3)  

iP  = the proportion of organic carbon in layer i (g C Kg−1) 

iD  =  thickness of the layer (m) 

iS  = volume of the fraction of fragments >2 mm   

Gaps in bulk density and coarse fragment >2mm content data were filled using pedo(taxo)-transfer functions 

presented by Batjes et al. (2007) on the basis of soil type, soil textural class and soil depth.  IPCC Tier 1 methods 

consider changes in 0-30 cm soil depth layer; however, best-estimates were also derived for 0-50 and 0-100 cm 

soil depth layers.    
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Annex 2A.2 Additional Information for the Estimation of Soil 

Carbon Stock Change from Biochar Amendments 

to Mineral Soils Using Tier 2 and 3 Methods  

Thermochemical Conversion Technologies  
For the purpose of this methodology, biochar is defined as a solid material generated by heating biomass to a 

temperature in excess of 350 °C under conditions of controlled and limited oxidant concentrations to prevent 

combustion. These processes can be classified as either pyrolysis (in which oxidants are excluded), or gasification 

(in which oxidant concentrations are low enough to generate syngas).  

Torrefaction and hydrothermal carbonisation (also called liquefaction) are not included because they do not 

generate solid products that are significantly more persistent in soil than the original organic feedstock material 

(Libra et al. 2011; Kammann et al. 2012). Both of these processes typically utilise temperatures below 350°C, 

with torrefaction operating under dry feedstock conditions in ambient pressure, while hydrothermal carbonisation 

uses pressurised wet aqueous slurries. In contrast, pyrolysis operates at temperatures at 350°C and above (typically 

but not always below 700°C) under variable times, and gasification utilises temperatures between 500 and 1500°C 

and typically short times (Boateng et al. 2015), both in dry conditions.  Dry conditions are defined here in terms 

of the feedstock moisture, whereby feedstocks can have moisture up to 20percent after pre-drying; in comparison, 

wet slurries typically have liquid water contents above 80percent. 

Priming of native soil  organic carbon by biochar amendments  
Mineralisation of native soil organic carbon is on average reduced by 4 percent (95 percent CI = -8.1–0.8percent) 

after biochar additions to soil (Wang et al. 2015). Similar to laboratory trials (Kuzyakov et al. 2014), field trials 

also show reductions in mineralisation of native soil organic carbon close to a decade after biochar additions (Weng 

et al. 2017) as well as in biochar-rich soils after several millennia (Liang et al. 2010). Known mechanisms that 

would cause an increase in mineralisation involve co-metabolism (Whitman et al. 2015) that operates over the 

short term by supplying easily mineralisable organic matter as a source of energy to metabolise native organic 

matter (Zimmerman et al. 2011). Conservatively, we assume no effect of biochar on existing soil organic matter 

in the long term.   

Nitrous oxide emissions from soil  after biochar amendments  
Meta-analyses have found that nitrous oxide emissions are on average reduced between 54 percent (Cayuela et al. 

2014), 38 percent (Borchard et al. 2018), 32 percent (Liu et al. 2018) to 0 percent (Verhoeven et al. 2017) after 

addition of biochar to soil. Any reductions in nitrous oxide emissions due to biochar additions typically decline 

over several years after application (Fungo et al. 2017). Furthermore, assessments of nitrous oxide emissions 

several years after biochar additions are indicative of long-term emission reductions although at lower rates, since 

changes in biochar properties occur slowly over long periods of time (decades and centuries) compared to changes 

observed during the initial days to years (Nguyen et al. 2008).  

High-N feedstocks generate biochar with some microbially available N (Wang et al. 2012) and can lead to short-

term (days to weeks) increases in total nitrous oxide emissions if produced at lower temperatures (< 600 °C) 

(Cayuela et al. 2013). However, charring consistently reduces nitrous oxide emissions originating from the 

nitrogen in nitrogen-rich organic materials (Rose et al. 2016), as easily mineralisable amino-groups are converted 

to polyaromatic nitrogen-carbon structures (Knicker 2007).  

Due to limiting evidence demonstrating the long-term persistence of soil nitrous oxide emission reductions, it is 

conservatively assumed that biochar does not reduce nitrous oxide emissions from soil in the Tier 1 method.  

However, any bioavailable N additions associated with biochar amendments should be included in the calculations 

of direct and indirect soil nitrous oxide emissions (Volume 4, Chapter 11) as part of organic N inputs. This 

approach will be conservative in terms of the influence of biochar on greenhouse gas emissions for the Tier 1 

method. 

Biochar Amendments to Organic Soils  
No methods are provided in this guidance for estimating the impact of amending organic soils with biochar.  

Compilers may be able to develop a Tier 3 method for estimating the impact of biochar C amendments to organic 

soils, but it is important to recognise that the dynamics may be different, particularly with respect to priming. Few 

studies have investigated the impact of priming by biochar on organic soils. However, one study that has 

investigated priming of organic horizons in a forest soil found substantial losses of soil C over a ten-year period 

with charcoal additions (Wardle et al. 2008). Wardle et al. (2008) did not use isotopes and were therefore unable 

to attribute these losses unequivocally to the organic soil C or to the charcoal. Nor was their study able to determine 

the extent to which enhanced mass loss of organic soil carbon was due to mineralisation, or was due to vertical 

transport of the C into the soil column as dissolved or colloidal organic carbon (Lehmann & Sohi 2008). 

Nonetheless, the Wardle et al. (2008) study did indicate the possibility that priming of soil organic matter 

decomposition by biochar may lead to a net loss of soil C in organic soils.   
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2 GENERIC METHODOLOGIES APPLICABLE 

TO MULTIPLE LAND USE CATEGORIES 

2.1 INTRODUCTION  

No refinement 

2.2 INVENTORY FRAMEWORK  

This section outlines a systematic approach for estimating carbon stock changes (and associated emissions and 

removals of carbon dioxide (CO2) from biomass, dead organic matter, and soils, as well as for estimating non-CO2 

greenhouse gas emissions from fire. General equations representing the level of land-use categories and strata are 

followed by a short description of processes with more detailed equations for carbon stock changes in specific 

pools by land-use category. Principles for estimating non-CO2 emissions and common equations are then given. 

Specific, operational equations to estimate emissions and removals by processes within a pool and by category, 

which directly correspond to worksheet calculations, are provided in Sections 2.3 and 2.4.   

2.2.1 Overview of carbon stock change estimation 

The emissions and removals of CO2 for the AFOLU Sector, based on changes in ecosystem C stocks, are estimated 

for each land-use category (including both land remaining in a land-use category as well as land converted to 

another land use). Carbon stock changes are summarized by Equation 2.1. 

EQUATION 2.1 

ANNUAL CARBON STOCK CHANGES FOR THE AFOLU SECTOR ESTIMATED AS THE SUM OF 

CHANGES IN ALL LAND-USE CATEGORIES 

OLSLWLGLCLFLAFOLU CCCCCCC   

Where: 

AFOLUC  = Total annual carbon stock change in the AFOLU sector; tonnes C yr-1 

Indices denote the following land-use categories: 

AFOLU = Agriculture, Forestry and Other Land Use 

FL = Forest Land 

CL = Cropland 

GL = Grassland 

WL = Wetlands 

SL = Settlements 

OL = Other Land 

For each land-use category, carbon stock changes are estimated for all strata or subdivisions of land area (e.g., 

climate zone, ecotype, soil type, management regime etc., see Chapter 3) chosen for a land-use category (Equation 

2.2).  Carbon stock changes within a stratum are estimated by considering carbon cycle processes between the five 

carbon pools, as defined in Table 1.1 in Chapter 1. The generalized flowchart of the carbon cycle (Figure 2.1) 

shows all five pools and associated fluxes including inputs to and outputs from the system, as well as all possible 

transfers between the pools. Overall, carbon stock changes within a stratum are estimated by adding up changes 

in all pools as in Equation 2.3.  Further, carbon stock changes in soil may be disaggregated as to changes in C 

stocks in mineral soils and emissions from organic soils. Harvested wood products (HWP) are also included as an 

additional pool. 
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EQUATION 2.2 

ANNUAL CARBON STOCK CHANGES FOR A LAND-USE CATEGORY AS A SUM OF CHANGES IN EACH 

STRATUM WITHIN THE CATEGORY 


i

LULU I
CC  

Where: 

LUC  = carbon stock changes for a land-use (LU) category as defined in Equation 2.1. 

i = denotes a specific stratum or subdivision within the land-use category (by any combination 

of species, climatic zone, ecotype, management regime etc., see Chapter 3), i = 1 to n.  

EQUATION 2.3 

ANNUAL CARBON STOCK CHANGES FOR A STRATUM OF A LAND-USE CATEGORY AS A SUM OF 

CHANGES IN ALL POOLS 

iLU AB BB DW LI SO HWPC C C C C C C         

Where: 

iLUC  = carbon stock changes for a stratum of a land-use category 

Subscripts denote the following carbon pools: 

AB = above-ground biomass 

BB = below-ground biomass 

DW = deadwood 

LI = litter 

SO = soils 

HWP = harvested wood products 

Estimating changes in carbon pools and fluxes depends on data and model availability, as well as resources and 

capacity to collect and analyse additional information (See Chapter 1, Section 1.3.3 on key category analysis).  

Table 1.1 in Chapter 1 outlines which pools are relevant for each land-use category for Tier 1 methods, including 

cross references to reporting tables.  Depending on country circumstances and which tiers are chosen, stock 

changes may not be estimated for all pools shown in Equation 2.3.  Because of limitations to deriving default data 

sets to support estimation of some stock changes, Tier 1 methods include several simplifying assumptions: 

 change in below-ground biomass C stocks are assumed to be zero under Tier 1 (under Tier 2, country-specific 

data on ratios of below-ground to above-ground biomass can be used to estimate below-ground stock changes); 

 under Tier 1, dead wood and litter pools are often lumped together as ‘dead organic matter’ (see discussion 

below); and 

 dead organic matter stocks are assumed to be zero for non-forest land-use categories under Tier 1. For Forest 

Land converted to another land use, default values for estimating dead organic matter carbon stocks are 

provided in Tier 1.  

The carbon cycle includes changes in carbon stocks due to both continuous processes (i.e., growth, decay) and 

discrete events (i.e., disturbances like harvest, fire, insect outbreaks, land-use change and other events). Continuous 

processes can affect carbon stocks in all areas in each year, while discrete events (i.e., disturbances) cause 

emissions and redistribute ecosystem carbon in specific areas (i.e., where the disturbance occurs) and in the year 

of the event.  

Disturbances may also have long-lasting effects, such as decay of wind-blown or burnt trees. For practicality, Tier 

1 methods assume that all post-disturbance emissions (less removal of harvested wood products) are estimated as 

part of the disturbance event, i.e., in the year of the disturbance. For example, rather than estimating the decay of 

dead organic matter left after a disturbance over a period of several years, all post-disturbance emissions are 

estimated in the year of the event.   
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Figure 2.1(unchanged) Generalized carbon cycle of terrestrial AFOLU ecosystems showing the 

flows of carbon into and out of the system as well as between the five C 

pools within the system.  

 

Under Tier 1, it is assumed that the average transfer rate into dead organic matter (dead wood and litter) is equal 

to the average transfer rate out of dead organic matter, so that the net stock change is zero. This assumption means 

that dead organic matter (dead wood and litter) carbon stocks need not be quantified under Tier 1 for land areas 

that remain in a land-use category2. The rationale for this approach is that dead organic matter stocks, particularly 

dead wood, are highly variable and site-specific, depending on forest type and age, disturbance history and 

management. In addition, data on coarse woody debris decomposition rates are scarce and thus it was deemed that 

globally applicable default factors and uncertainty estimates cannot be developed. Countries experiencing 

significant changes in forest types or disturbance or management regimes in their forests are encouraged to develop 

domestic data to estimate the impact from these changes using Tier 2 or 3 methodologies and to report the resulting 

carbon stock changes and non-CO2 emissions and removals.  

All estimates of changes in carbon stocks, i.e., growth, internal transfers and emissions, are in units of carbon to 

make all calculations consistent. Data on biomass stocks, increments, harvests, etc. can initially be in units of dry 

matter that need to be converted to tonnes of carbon for all subsequent calculations. There are two fundamentally 

different and equally valid approaches to estimating stock changes: 1) the process-based approach, which estimates 

the net balance of additions to and removals from a carbon stock; and 2) the stock-based approach, which estimates 

the difference in carbon stocks at two points in time. 

Annual carbon stock changes in any pool can be estimated using the process-based approach in Equation 2.4 which 

sets out the Gain-Loss Method that can be applied to all carbon gains or losses. Gains can be attributed to growth 

(increase of biomass) and to transfer of carbon from another pool (e.g., transfer of carbon from the live biomass 

carbon pool to the dead organic matter pool due to harvest or natural disturbances). Gains are always marked with 

a positive (+) sign. Losses can be attributed to transfers of carbon from one pool to another (e.g., the carbon in the 

                                                           
2 Emissions from litter C stocks are accounted for under Tier 1 for forest conversion to other land-use. 
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slash during a harvesting operation is a loss from the above-ground biomass pool), or emissions due to decay, 

harvest, burning, etc. Losses are always marked with a negative (-) sign. 

EQUATION 2.4 

ANNUAL CARBON STOCK CHANGE IN A GIVEN POOL AS A FUNCTION OF GAINS AND LOSSES 

(GAIN-LOSS METHOD)  

LG CCC   

Where: 

C  = annual carbon stock change in the pool, tonnes C yr-1 

GC    = annual gain of carbon, tonnes C yr-1 

LC    = annual loss of carbon, tonnes C yr-1 

Note that CO2 removals are transfers from the atmosphere to a pool, whereas CO2 emissions are transfers from a 

pool to the atmosphere. Not all transfers involve emissions or removals, since any transfer from one pool to another 

is a loss from the donor pool but is a gain of equal amount to the receiving pool. For example, a transfer from the 

above-ground biomass pool to the dead wood pool is a loss from the above-ground biomass pool and a gain of 

equal size for the dead wood pool, which does not necessarily result in immediate CO2 emission to the atmosphere 

(depending on the Tier used).  

The method used in Equation 2.4 is called the Gain-Loss Method, because it includes all processes that bring about 

changes in a pool. An alternative stock-based approach is termed the Stock-Difference Method, which can be used 

where carbon stocks in relevant pools are measured at two points in time to assess carbon stock changes, as 

represented in Equation 2.5.  

EQUATION 2.5 

CARBON STOCK CHANGE IN A GIVEN POOL AS AN ANNUAL AVERAGE DIFFERENCE BETWEEN 

ESTIMATES AT TWO POINTS IN TIME (STOCK-DIFFERENCE METHOD) 

2 1

2 1

( )

( )

t tC C
C

t t


 


 

Where: 

C  = annual carbon stock change in the pool, tonnes C yr-1 

1t
C  = carbon stock in the pool at time 1t , tonnes C 

2t
C  = carbon stock in the pool at time 2t , tonnes C 

If the C stock changes are estimated on a per hectare basis, then the value is multiplied by the total area within 

each stratum to obtain the total stock change estimate for the pool.  In some cases, the activity data may be in the 

form of country totals (e.g., harvested wood) in which case the stock change estimates for that pool are estimated 

directly from the activity data after applying appropriate factors to convert to units of C mass. When using the 

Stock-Difference Method for a specific land-use category, it is important to ensure that the area of land in that 

category at times t1 and t2 is identical, to avoid confounding stock change estimates with area changes. 

The process method lends itself to modelling approaches using coefficients derived from empirical research data. 

These will smooth out inter-annual variability to a greater extent than the stock change method which relies on the 

difference of stock estimates at two points in time. Both methods are valid so long as they are capable of 

representing actual disturbances as well as continuously varying trends and can be verified by comparison with 

actual measurements. 

2.2.2 Overview of non-CO2 emission estimation  

Non-CO2 emissions are derived from a variety of sources, including emissions from soils, livestock and manure, 

and from combustion of biomass, dead wood and litter.  In contrast to the way CO2 emissions are estimated from 

biomass stock changes, the estimate of non-CO2 greenhouse gases usually involves an emission rate from a source 
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directly to the atmosphere.  The rate (Equation 2.6) is generally determined by an emission factor for a specific 

gas (e.g., CH4, N2O) and source category and an area (e.g., for soil or area burnt), population (e.g., for livestock) 

or mass (e.g., for biomass or manure) that defines the emission source.   

EQUATION 2.6 

NON-CO2 EMISSIONS TO THE ATMOSPHERE 

EFAEmission   

Where: 

Emission = non-CO2 emissions, tonnes of the non-CO2 gas  

A  = activity data relating to the emission source (can be area, animal numbers or mass 

unit, depending on the source type) 

EF  = emission factor for a specific gas and source category, tonnes per unit of A 

Many of the emissions of non-CO2 greenhouse gases are either associated with a specific land use (e.g., CH4 

emissions from rice) or are typically estimated from national-level aggregate data (e.g., CH4 emissions from 

livestock and N2O emissions from managed soils). Where an emission source is associated with a single land use, 

the methodology for that emission is described in the chapter for that specific land-use category (e.g., methane 

from rice in Chapter 5 on Cropland). Emissions that are generally based on aggregated data are dealt with in 

separate chapters (e.g., Chapter 10 on livestock-related emissions, and Chapter 11 on N2O emissions from managed 

soils and CO2 emissions from liming and urea applications). This chapter describes only methods to estimate non-

CO2 (and CO2) emissions from biomass combustion, which can occur in several different land-use categories. 

BOX 2.0A (NEW) 

CONSISTENCY BETWEEN AFOLU PROJECTS OR ACTIVITIES AND IPCC INVENTORY GUIDELINES 

The information presented in this Box is for information purposes only 

IPCC guidelines have been designed for national GHG inventories (NGHGI). They are, however, 

often applied, in conjunction with other guidance, to estimate GHG emissions and removals for 

different situations than those in a NGHGI. These different situations include scales (i.e. to any sub-

aggregation of land), time resolution (i.e., on a non-annual basis), length of time series (i.e., for a 

limited period) and/or for selected carbon pools. Using IPCC guidelines for estimating emissions 

and removals from sub-aggregations - i.e. projects and activities – can help countries maintain 

consistency with the NGHGI. However, projects and activities can introduce additional complexities 

including, but not limited to, system boundaries, double-counting, leakage, and attribution. 

Moreover, projects and activities may use different definitions, sources of data, data and methods 

compared to those used for the NGHGI, including different Approaches for land representation and 

methodological Tiers, impacting the consistency between the two. These need to be considered when 

applying the IPCC Guidelines outside of a NGHGI (IPCC, 2015), particularly when there is a need 

for consistency and comparability. 

Thus, when using IPCC guidelines for projects and activities the following steps should be 

considered:  

i) Define the spatial boundaries of the territory impacted by the activity; 

ii) Identify the land-use categories and subcategories of the NGHGI impacted by the activity. 

iii) Identify pools and gases impacted by the activity; 

iv) Identify the time frame (temporal boundaries) of the activity and ensure full reporting of 

any legacy emissions and removals associated with it3; 

v) Develop estimates by applying methods consistent with IPCC guidance, so ensuring 

consistency among the results of activities and the trends of times series of relevant NGHGI 

categories. 

 

                                                           
3 To deal with the limited time frame of reducing deforestation and forest degradation mitigation activities, reporting methods 

provided by the GFOI apply the stock difference approach to estimate the net difference between two long-term average C 
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BOX 2.0A (NEW) (CONTINUED) 

CONSISTENCY BETWEEN AFOLU PROJECTS OR ACTIVITIES AND IPCC INVENTORY GUIDELINES  

For example, 1) Reducing Emissions from deforestation and forest degradation and the role of 

conservation, sustainable management of forests and enhancement of forest carbon stocks in 

developing countries (REDD-plus) activities could be identified in the NGHGI as IPCC categories, 

subcategories, or sums of categories or sub-categories (GFOI, 2016), and relevant IPCC methods 

applied consistently; 2) The Australian Government has developed a framework as part of the 

Emissions Reduction Fund 4 for ensuring consistency in emissions estimation between AFOLU 

project-level mitigation activities and Australia's NGHGI. This framework includes integrity 

standards 5  to ensure emissions estimation methods are consistent with IPCC guidelines, and 

consequently estimated GHG reductions are consistent with trends of times series of relevant 

NGHGI categories. 

Emissions and removals estimates for activities are likely to apply Approach 2 or 3 and Tier 2 or 3 

methods because of the need to prepare GHG estimates that are more disaggregated per activity, e.g. 

organic farming vs traditional farming or coppice vs high-stand, and per population, e.g. by livestock 

sub-populations, crop types and forest types. Moreover, stratification of NGHGI 

categories/subcategories into subdivisions helps avoid double counting of emissions and removals 

from a single category that is impacted by more than an activity.  

Stratification also supports transparency among activity report and NGHGI estimates when the 

activity does not correspond to an entire NGHGI category. In many cases, activities and projects 

require tracking of land where they occur through time, e.g. no tillage. In such cases, Approach 3 

for land representation is required since it is the only approach that provides the spatially explicit 

information (either wall-to-wall or from sampling) across time needed to track activities and drivers, 

and to support estimation of GHG emissions or removals with higher accuracy. Where activities are 

known to lead to permanent changes or the activity includes management practices that determine 

temporary changes in the land cover, Approach 2 methods may provide sufficient information to 

prepare accurate estimates. 

Where activity and project data have been collected and analysed consistently with good practice, 

they can be used in the NGHGI either for deriving activity data and/or emission factors, or any other 

ancillary data used for preparing GHG estimates for the land subject to the activity, or for calibrating 

the model used in the NGHGI for the same land and/or verifying the outputs of such model. Where 

data have inconsistencies with those collected for the NGHGI, iterations and cross-checks between 

NGHGI experts and experts involved in the monitoring of the activity should be done until 

improvements applied to the activity and/or the NGHGI estimates enable consistency. When using 

data collected from activities and projects for improving or evaluating information and estimates 

reported in the NGHGI, it is important to: 

i) Define and report the reference conditions (e.g. climate, soil, management system) for 

which the data from the activity or project are valid and how it could be used in the NGHGI 

compilation; 

ii) Determine if the activity or emissions factor data in the project are representative of the 

national average and, if not, apply methods that ensure the NGHGI is not biased by them, 

e.g. limiting the use of the data to the land subject to the activity or project only and 

modifying the data used in the NGHGI to prevent bias 

iii) Define and report the level of variability (heterogeneity) of the data; 

iv) Ensure the data is available and consistently applied for the entire time series. 

 

 

                                                           
stocks at a single point in time (i.e. by assuming instantaneous oxidation). This is to allow a complete reporting of total net 

C stock changes associated with the activities, including lagged emissions and removals. 

4 http://www.environment.gov.au/climate-change/government/emissions-reduction-fund/publications 

5 http://www.environment.gov.au/climate-change/emissions-reduction-fund/publications/erf-methods-development 
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2.2.3 Conversion of C stock changes to CO2 emissions 

For reporting purposes, changes in C stock categories (that involve transfers to the atmosphere) can be converted 

to units of CO2 emissions by multiplying the C stock change by -44/12. In cases where a significant amount of the 

carbon stock change is through emissions of CO and CH4, then these non-CO2 carbon emissions should be 

subtracted from the estimated CO2 emissions or removals using methods provided for the estimation of these gases. 

In making these estimates, inventory compilers should assess each category to ensure that this carbon is not already 

covered by the assumptions and approximations made in estimating CO2 emissions. 

It should also be noted that not every stock change corresponds to an emission. The conversion to CO2 from C, is 

based on the ratio of molecular weights (44/12). The change of sign (-) is due to the convention that increases in 

C stocks, i.e. positive (+) stock changes, represent a removal (or ‘negative’ emission) from the atmosphere, while 

decreases in C stocks, i.e. negative (-) stock changes, represent a positive emission to the atmosphere 

2.3 GENERIC METHODS FOR CO2 EMISSIONS 

AND REMOVALS  

No refinement. 

2.3.1 Change in biomass carbon stocks (above-ground 

biomass and below-ground biomass) 

No refinement. 

2.3.1.1 LAND REMAINING IN A LAND-USE CATEGORY  

No refinement. 

2.3.1.2 LAND CONVERTED TO A NEW LAND-USE CATEGORY  

No refinement. 

2.3.1.3 ADDITIONAL GENERIC GUIDANCE FOR TIER 2  METHODS 

A.  USING ALLOMETRIC MODELS FOR BIOMASS ESTIMATION 

This section provides new guidance to inventory compilers on the use of allometric models (see Box 2.0b for 

definitions) for quantifying volume, biomass and carbon stocks in land uses containing vegetation. Allometric 

models can be used with country specific data to estimate carbon stocks at the Tier 2 level. Allometric models may 

also form part of more sophisticated Tier 3 approaches including measurement-based inventories and model-based 

inventories.   

Allometric models quantify the relationships between certain size variables of organisms. Allometric models6 can 

be used to estimate volume, biomass or carbon stocks of individuals, vegetation or forest stands. Allometric models 

have been developed for a wide range of species, habitats, regions and environmental conditions (e.g. documented 

in the GlobAllomeTree database (http://www.globallometree.org/; Schepaschenko et al, 2017). Allometric models 

used for forest tree species are commonly estimated from individual trees through destructive sampling from a 

population using a sampling design that provides accurate and representative data. As destructive sampling is 

usually costly and labour intensive or ecologically sensitive, it makes sense to utilize existing allometric models 

when valid under the respective conditions as outlined below (in the section on the use of allometric models). 

                                                           
6  The term “allometric equation” is also used when referencing to the mathematical descriptions of allometric models and 

relationships. When the parameters are estimated from sample data and/or uncertainty is involved, “model” is the correct 

term. Although allometric models are used to predict the values of a variable, for practical reasons in the context of these 

guidelines the term estimates is also used. 

http://www.globallometree.org/
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BOX 2.0B (NEW) 

ALLOMETRIC DEFINITIONS 

Allometry: The term allometry refers to the proportional relationship between the relative 

dimensional relationships or growth rates of two size variables and therefore allometric relations 

allow that one variable can be used to predict the corresponding value of another variable. For 

example, tree diameter at breast height (DBH) can be used to estimate tree volume or total tree 

biomass. Allometry can also describe the change of one part of an organism in relation to the change 

of its body size, either in the same organism (while growing over time), in populations (e.g., tree 

stands), or between species (e.g. different tree species). These changes follow rules, so the change 

in proportion between two variables of an organism can be described mathematically. 

 Allometric model: An allometric model is a formula that quantitatively describes an allometric 

relationship. The basic form is an equation: y=f(x) where y and x are the dependent and independent 

variables. Often the equation is in the form of y = a*x^b + c, where a, b and c are parameters (please 

note: “c” is not identical to the statistical error term “ε”). If “x” is equal to zero (e.g., if height is 

below breast height when using DBH to estimate tree biomass), then “y” is equal to the parameter 

“c”, noting that biologically “y” is always a positive number. Parameter “a” is the value of y if x is 1 

and describes the initial ratio between x and y . The parameter “b” is also called an “allometric parameter” 

or “allometric constant” and gives the proportionality between the relative increases of “x” and “y” 

(Fabrika und Pretzsch 2013; Picard et al. 2012). The general form of an allometric model, without 

intercept (i.e. when “c” = 0), is also often represented in its logarithmic transformation as a linear 

relationship, log(y) = log(a) + b*log(x) or ln(y) = ln(a) + b*ln(x). Other mathematical functions have 

also been adopted to describe allometric relationships.  

This basic model can be augmented by additional terms that include e.g. tree height as a second 

predictor variable (e.g. Ketterings et al. 2001). Models are usually provided with a residual error 

term (e.g., y = f(x) + ε), set in the model fitting against the sample data; to consider the residual 

error, calculated for each model, can be used to assess the uncertainty related to use of the selected 

model in the estimation process. 

The use of  a l lo metric models  

The choice of appropriate allometric models should be based on several criteria including the availability of 

country-specific data, the meta-data about the allometric models, the coincidence of data with the models’ domain 

of validity according to the meta-data, and the appropriateness of the allometric model by comparing the estimates 

to ones obtained with the Tier 1 method (Figure 2.2a). The accuracy of the models may be lower than e.g. available 

default factors or Biomass Emission Factors (BEFs), so it is good practice to choose the method with the higher 

accuracy. When applying an allometric model for predicting the biomass of a given species or at a given site, data 

on required variables must be available as e.g. from national forest inventories (Tomppo et al. 2010, Vidal et al. 

2016). For woody plant species, these variables commonly include DBH and height, and to lesser extent crown 

variables such as crown length or crown width. For shrubs or smaller trees and understorey vegetation, diameters 

nearer to the ground or shoot length may be used, among other variables. Carbon fractions and basic wood density 

may also be required for some models. Individual tree estimates can then be aggregated up to provide volume, 

biomass or carbon stock estimates at higher spatial scales (e.g. by plot, region or nation-wide). Tree-level estimates 

may refer to the whole tree, or individual components like above-ground and below-ground parts, stem, branches 

and/or foliage. Allometric models may be used within a specified forest stratum, to estimate above-ground and 

below-ground biomass estimation from direct measurements e.g. forest inventory plots. Allometric models may 

also be used for non-woody plant biomass estimates. Data collection programmes are often designed to collect the 

data specifically for this purpose.   

Allometries are influenced by an individual’s growing conditions and size classes, so in each case the allometric 

models developed will have a limited domain of validity. When selecting an appropriate allometric model, check 

the associated metadata supplied. Conditions such as: 

 Ecoregion, geographic range, environmental factors (e.g., ecosystem, climatic or soil types), 

 Representativeness of the model in consideration of individual size range and sampled population,  

 Plant components estimated (e.g., above-ground, below-ground, stem, branches, foliage), 

 Species functional traits (e.g., wood density and tree architecture), 

 Land or crop management practices, current and historic, 

file:///C:/Users/brandona/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/2PMZVLLJ/Definitions.docx%23_ENREF_2
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should be assessed for their suitability (Henry et al. 2011; Rock 2007; Vieilledent et al. 2012) as well as sample 

size and accuracy assessment. The use of existing allometric models beyond the range they were developed for 

may result in a lack of accuracy (e.g. Mugasha et al 2016; Nam et al, 2016), depending on the degree to which 

external variables control the partitioning of biomass among components and the geometric relationships of the 

species. The applicability of a model can also be tested using a representative data set (e.g. Paul et al, 2016; Perez-

Cruzado et al, 2015; Youkhana et al 2017). The accuracy of the allometric model should be assessed by evaluating 

the related statistical indicators. 

Figure 2.2a Generic decision tree for the identification of appropriate allometric 

models to estimate volume, biomass or carbon stocks  
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Generalized and site or species-specific allometric models have been developed for use in different circumstances. 

While species-specific models will give more accurate estimates for the respective tree species (all other aspects 

being the same as the ones for which the model was developed) (Henry et al. 2011), generalized models may be 
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better suited in regions with a very large diversity of tree species, where models are lacking for a large proportion 

of species. The use of species-specific models however is encouraged for the species for which specific models 

and appropriate input data are available. For natural forests, which may contain many different species, application 

of species-specific allometric models may be impractical; in this case, a model specific for the ecosystem type can 

be used (Krisnawati et al, 2012). When species-specific or ecosystem-specific models are not available, regionally 

relevant allometric models can be applied (Chave et al., 2004). Generic models developed based on a large number 

of sample trees across landscapes tend to be more reliable than locally developed models if these are based on only 

a small number of individuals (Chave et al 2005; Chave et al 2014; Paul et al, 2016).  

Stand leve l  models and their equat ions  

When individual or species specific allometric models for biomass or carbon stocks are not appropriate, stand level 

allometric models, which may include canopy height, basal area and community age as predictor variables, may 

be applicable to estimate biomass parameters. Stand-level allometric models using canopy height estimate carbon 

stocks per unit area based on the assumption that canopy height is directly proportional to biomass (Mascaro et al, 

2011; Saatchi et al, 2011). Information on canopy height can be predicted from ground-based inventory or by 

remote sensing such as airborne Light Detection and Ranging (LiDAR), polarimetric interferometry SAR or 

airborne imagery. Auxiliary information such as digital elevation models are necessary to predict canopy height 

from airborne and satellite-borne imagery because only canopy surface elevation can be predicted from them. The 

accuracy of carbon stock estimation from canopy height depends on the number of field measurement plots used 

to estimate the relationship between canopy height and carbon stocks. Basal area is an important parameter to 

understand stand characteristics and it is used in the model to estimate stand volume or stand biomass. Basal area 

is estimated easily in the field using simple equipment. When basal area is used in the stand-level model to estimate 

biomass or carbon stocks, mean tree height is also needed in the model (Lang et al, 2016; Mensah et al, 2016). The 

stand-level allometric model estimated from community age estimates carbon stocks per unit area by assuming 

that community biomass increases monotonically as the forest ages, and then drawing a saturation curve for 

community age (Inoue et al, 2010). It is applicable where land use is rotated at fixed intervals, so that a mosaic of 

communities of different ages exists. 

Tier 3 methods  

The hierarchical tier structure implies that use of higher tiers (Tier 2 or Tier 3) usually results in an increased 

accuracy of the method and/or emissions factor and other parameters used in the estimation of the emissions and 

removals. Tier 3 approaches for biomass carbon stock change estimation allow for a variety of methods, including 

measurement-based forest inventories. Measurement-based Tier 3 inventories require detailed national forest 

inventories containing data on growing stock, and, ideally, repeated measurements from which periodic increments 

can be estimated. In some circumstances these data are used directly in empirical models while in other cases they 

are supplemented with allometric models (for example, Chambers et al. (2001) and Baker et al. (2004) for the 

Amazon; Seiler et al. (2014) for tropical forest of Bolivia, Jenkins et al. (2004) and Kurz and Apps (2006) for 

North America; and Zianis et al. (2005) for Europe, Paul et al. (2016) for Australia, Luo et al. (2014) for China, 

Youkhana et al 2017 for tropical grasses), calibrated to national circumstances that allow for direct estimation of 

biomass increment or growth. Model-based Tier 3 inventories build on model-specific input data and may contain 

allometric models as empirical model components. Additional information related to the use of higher Tier 

methods can be found in Section 2.5. 

Uncerta inty  

Sources of uncertainty when using allometric models include:  

1. Model-related uncertainty, i.e. the uncertainty related to the model used, stemming from the estimation of the 

parameters of this model and residual variability around model; 

2. Sampling variability and measurement errors in input data (see volume 1, chapter 3, section 3.1.6 for 

additional information); 

3. The uncertainty of transferring the model to trees not used for estimation of the parameters (lack of 

representativeness) (see volume 1, chapter 3, section 3.1.6 for additional information). 

Magnitudes of the effects of the first and second sources should be reported with the model, the latter can be 

reduced by careful selection of models.  

Recalculat ions  

Recalculations of C stocks may be necessary, if new and/or better data or methodology becomes available. When 

BEF’s are replaced with parameters that are estimated using allometries, recalculations across the time series will 

be required. The replacement of generalised models with species-specific models also may require recalculations. 

It should be noted that allometry can change over time (Lopez-Serrano et al. 2005), for example, if the thinning 

regime in a plantation forest is changed. This may influence the ratio of crown biomass / DBH and, over time, the 

trees in this plantation may show different allometric relationships at two distant points in time. An updated 
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allometric model would therefore be required in order to reflect the impact of the changes. In this case, to ensure 

time series consistency, apply the guidance provided in Volume 1 Chapter 5 and in Volume 4, Chapter 4 in relation 

to the Forest Land category  

New technolog ies  

Remotely sensed data from airborne or terrestrial platforms can be useful sources of information for deriving 

variables relevant for constructing and validating allometric models. They can improve measurements of height, 

volume and crown dimensions of individual trees that are difficult to collect with traditional ground-based 

approaches, particularly in dense and complex canopies. They can underpin a new generation of allometric models 

which have tree height and crown size as explanatory variables (Jucker et al, 2017). Of particular potential is 

terrestrial laser scanning, offering a means to collect data on tree volume in a non-destructive manner (see Box 

2.0c). 

BOX 2.0C (NEW) 

NEW TECHNOLOGY: TERRESTRIAL LASER SCANNING 

Terrestrial laser scanning is a ground-based active remote sensing technique which can be used to 

derive 3D vegetation structure, and compute key variables such as tree height, stem diameter, crown 

dimensions and tree volume for above-ground biomass predictions and to develop and validate 

allometric models (Calders et al., 2015). These under-canopy terrestrial laser systems emit millions 

of laser pulses that reflect off solid objects such as trunks, branches and leaves and form 3D point 

clouds. Individual trees can be segmented from plot-scale point cloud data and individual tree point 

clouds can then be used to reconstruct the woody elements of a tree.  

Terrestrial laser scanning provides non-destructive and highly detailed measurements independent 

of the size and shape of a tree that are otherwise only available from destructive methods (Disney et 

al., 2018). Aboveground biomass calculated from the point cloud data is independent of allometry 

and with quantifiable accuracy. Many trees can be sampled and measured in an efficient manner and 

can provide most of the fundamental data needed to develop new or test the usefulness of existing 

allometric models for NGHGIs. Terrestrial laser scanning has proven useful for large and complex 

tropical trees (Gonzalez de Tanago et al., 2018). Terrestrial laser scanners cannot measure 

belowground or look inside trees, i.e. they do not provide information on wood density or whether 

a tree is hollow. 

B.  USING ABOVEGROUND BIOMASS DENSITY MAP CONSTRUCTED FROM 

REMOTELY SENSED DATA FOR BIOMASS ESTIMATION 

Biomass density maps are wall-to-wall, polygon- or pixel-based predictions of above-ground biomass for woody 

plants and trees. 

Consideration when developing bio mass densi ty maps  

Biomass density maps are constructed by combining remotely sensed data (see Box 2.0d) and field observations. 

They have been developed at national scales (e.g., Avitabile et al., 2012) as well as for continental to global scales 

(e.g., Baccini et al., 2012; Saatchi et al., 2011, Avitabile et al., 2016). The characteristics and usefulness of biomass 

density maps for NGHGIs depend on multiple factors: 

1. The definitions for forest and aboveground woody biomass used to produce the map and how this definition 

relates to the one used in the NGHGI. 

2. The type of remotely sensed data sources in terms of spatial resolution, temporal coverage and the degree to 

which the signal responds to aboveground biomass (sensitivity). The response depends on the type and 

biomass ranges of the woody plants. Different remote sensing technologies have varying abilities for 

predicting biomass for different types of woody plants (i.e. boreal versus tropics) and combining remotely 

sensed data from multiple sources can increase sensitivity and the resulting accuracy of biomass density 

predictions. 

3. The method used to construct the map. Such methods can range from simple interpolation of field estimates 

of biomass density using spatial covariates to more complex modelling of above-ground woody biomass using 

field estimates and observed remotely sensed signals.  

4. The availability and reliability of biomass estimates obtained from field data needed to produce and validate 

the biomass density map. Combining co-located remotely sensed data and field observations can be 

challenging because of the size and shape of the primary elements (i.e. field plot size and shape versus 

geometric resolution of remotely sensed data), the timing of their acquisition, accuracy of geolocations, and 
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differences in the variables and parameters that are measured and estimated in the field and predicted from 

the remotely sensed data.  

5. The degree to which map uncertainty is characterized and the manner in which it is used to assess bias and 

precision for large area estimates in support of NGHGIs (see Volume IV, Chapter 3). 

BOX 2.0D (NEW) 

REMOTE SENSING TECHNOLOGIES 

Optical, Synthetic Aperture Radar (SAR) and Light Detection and Ranging (Lidar) sensors are 

available currently as remote sensing data sources for producing biomass density maps. Data from 

optical satellite sensors are classified into three types on the basis of their spatial resolution; coarse 

resolution data with a pixel size greater than about 250 m (e.g., MODIS), medium resolution data 

with a pixel size of 10-80 m (e.g., Landsat and Sentinel 1 and 2), and fine resolution data with a 

pixel size smaller than 10 m (e.g., Rapideye or SPOT and ALOS-2).  

SAR and LiDAR are active sensors available as air borne and space borne instruments whose derived 

metrics are used to predict height, volume or biomass of woody plants and trees. SAR emits 

microwave pulses obliquely and measures attributes of the pulses that are reflected back from the 

Earth’s surface towards the sensor. In forest land, emitted pulses reflect from the ground, or canopy 

or trunk of woody plants and trees. Using the strength of the signal of the reflected pulses, volume 

or biomass of woody plants and trees can be predicted as demonstrated for satellite data from ALOS-

PALSAR and Sentinel 1 (Santoro and Cartus, 2018). LiDAR emits laser pulses and measures the 

traveling time from the sensor to the target which can be converted to distance. When the LiDAR 

emitter is aimed at woody plants and trees, these laser pulses can be reflected by the woody 

components, the leaves within the canopy, or the ground surface. Using the difference of a laser 

pulse reflected from canopy and ground surface, the height, volume or biomass of woody plants and 

trees can be predicted (Næsset 1997a,b, Lim et al 2003). Starting in 2019, a series of targeted space-

based missions will improve the capabilities for forest biomass predictions from LiDAR (e.g. GEDI, 

ICESAT-2) and SAR (e.g. BIOMASS, NISAR), that might be found useful for national purposes 

(Herold et al. 2019). 

Besides mapping biomass density, there are evolving approaches that monitor changes in biomass density through 

time directly from remotely sensed data (Baccini et al., 2017). Such approaches require consistent measurements 

and estimates, and such consistency can be challenging when different satellite data sources and different ways of 

processing and analysing the data are used. In principle, the direct prediction of wall-to-wall biomass change has 

the advantage of including all detectable change events, including those occurring in forest remaining forest (i.e., 

forest degradation and regrowth) which are not considered when a single biomass map is combined with activity 

data characterizing land use change. However, the sensitivity of the remotely sensed data to subtle biomass changes 

needs to be carefully evaluated. The mapped biomass change might also not distinguish between anthropogenic or 

natural causes and not fully characterize all components of the carbon emissions. For example, some carbon loss 

may have accumulated as dead organic matter (e.g., dead wood or litter), and additional data are usually required 

to estimate the fate of that initial biomass (e.g., burned, left on site, and removed from the site). 

Because above-ground woody biomass is the variable predicted from remotely sensed data, additional information 

such as country-specific data for root-to-shoot ratios are needed to estimate carbon stocks in other pools.  

Guidance  on the  use  of  bio mass  density maps for nat ional GHG inventories  

Biomass density maps can be used to enhance the stratification of ground carbon inventories, to improve the 

estimation of carbon emissions by increasing data density in under-sampled or inaccessible areas, and as an 

independent data source for verification purposes (provided that the field data were not used to predict the biomass 

density maps used for stratification).  

Use of biomass maps for the estimation of carbon emissions at Tier 2 and Tier 3 levels can be achieved in several 

ways: 

1. Combination with activity data where a biomass density map provides the base to estimate emission factors. 

Such analyses require consistency among the activity data and biomass maps concerning definitions, 

geolocation, and spatial and temporal data characteristics. The use of regionally aggregated emission factor 

analysis (i.e., using average estimates for different forest types, or change trajectories) helps to reduce inherent 

pixel-level uncertainties in biomass map data for national-scale estimations. Countries have used such an 

approach to increase data density in areas under-sampled by ground inventories (see Box 2.0e).  

2. Estimate biomass change directly from multi-temporal biomass density maps. Such an approach would 

provide an assessment of carbon stock changes in above-ground biomass from land use change and, in 
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particular, it would also include changes within forests remaining forests such as degradation and regrowth, 

management and harvest, and natural disturbances. Such analysis requires consistent and well-calibrated 

biomass density maps using ground and remotely sensed data to accurately estimate biomass changes; a 

quality requirement that has so far not been achieved for the NGHGIs at this stage. Improvements in both the 

field estimates of biomass change and remote sensing technologies and analysis in the coming years can lead 

to such approaches becoming more efficient and accurate for NGHGI purposes. 

3. Biomass density maps can be integrated with remote sensing-assisted, time-series of land change and/or with 

Tier 3 models to localize emissions estimates. This way the biomass map data can be linked to land and carbon 

evolution over time that better reflect the complexity of forest-related carbon fluxes. Critical for this type of 

application is the consistency among the various data sources and models concerning definitions (forest, 

biomass pools), and, spatial and temporal data characteristics. Map unit uncertainties in biomass maps 

propagate to larger area estimates and can lead to substantial uncertainties in national emissions estimation if 

not properly considered.  

The application of such approaches requires maps well-calibrated for national circumstances. Many available 

large-area biomass maps, such as global biomass maps, might not be consistent with national definitions of forest 

and/or biomass pools, and often exhibit large systematic errors in the estimation of carbon stock and changes for 

national and local assessments (Avitabile et al., 2016). Since countries may have national products, including 

biomass maps, large-area biomass maps can be useful for the purpose of independent comparison and verification. 

Depending on how a map is produced and how it is used to enhance NGHGIs, additional metadata on the applied 

models and procedures used to produce the map, such as for example the covariance matrix of model parameters 

of a model that was used to generate the map (see Volume 1, Chapter 6, section 6.1.4.2), may be required for 

characterization and reporting of uncertainty in a fully compliant way, particularly for application to country-

specific circumstances. 

BOX 2.0E (NEW) 

USING A BIOMASS MAP FOR GHG ESTIMATION: AN EXAMPLE FROM THE BRAZILIAN AMAZON  

Brazil is applying a methodology for estimating forest biomass combining data from airborne 

LiDAR, satellite remote sensing and forest inventories. The aim for using the biomass map for the 

NGHGI is to provide coverage over the whole Amazon where the availability and quality of ground 

data varies. Deforestation and associated land use change in the Amazon are heterogeneous and 

patchy. Related estimates of carbon emissions carry some level of uncertainty unless this spatial 

variability in both types of change and biomass variability is captured.  

The methodology to estimate the biomass was based on 1,000 LiDAR transects randomly distributed 

across 3.5 million km2 of the Amazon forests. Aboveground biomass is estimated at three different 

levels. At field plot level (first level), the data are used to validate the biomass estimated by LiDAR 

(second level) by adopting and using the models and data provided by Chave et al 2014 and Longo 

et al 2016. A total of 407 field plots were used for this validation. At the third level the biomass was 

estimated by extrapolating the biomass to the Brazilian Amazon Biome by the use of MODIS 

vegetation index, Shuttle Radar Topography Mission data, precipitation data from the Tropical 

Rainfall Measuring Mission and Synthetic Aperture Radar data of the Phased Array type L-band 

Synthetic Aperture Radar, soil and vegetation maps. A nonparametric regression method (Random 

Forest) is used for correlating the above ground biomass within the LiDAR transects to a list of 

variables, and then used for the extrapolation of the biomass to the region. The coefficient of 

determination and the root mean squared error between the third level extrapolated biomass data and 

the LiDAR data were R2=0.7485 and RMSE=27.18 MgCha-1, respectively. In this process, the 

SRTM elevation data were the most important variable for the biomass extrapolation process, 

followed by the TRMM precipitation data and Enhanced Vegetation Index data. The estimated 

biomass map uncertainty is calculated by propagating the uncertainties through the different levels 

of biomass estimation, i.e., field plots, LiDAR and satellite (Longo et al 2016). This process allows 

us to obtain total uncertainty estimates for each pixel in the final biomass map. 
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2.3.2 Change in carbon stocks in dead organic matter 

No refinement in Introduction. 

2.3.2.1 LAND REMAINING IN A LAND-USE CATEGORY  

The Tier 1 assumption for both dead wood and litter pools (see table 1.1 for definitions) for all land-use categories 

is that their stocks are not changing over time if the land remains within the same land-use category. Thus, the 

carbon in biomass killed during a disturbance or management event (less removal of harvested wood products) is 

assumed to be released entirely to the atmosphere in the year of the event. This is equivalent to the assumption 

that the carbon in non-merchantable and non-commercial components that are transferred to dead organic matter 

is equal to the amount of carbon released from dead organic matter to the atmosphere through decomposition and 

oxidation. Countries can use higher tier methods to estimate the carbon dynamics of dead organic matter. This 

section describes estimation methods if Tier 2 (or 3) methods are used. 

Countries that use Tier 1 methods to estimate dead organic matter (DOM) pools in land remaining in the same 

land-use category, report zero changes in carbon stocks or carbon emissions from those pools. Following this rule, 

CO2 emissions resulting from the combustion of dead organic matter during fire are not reported, nor are the 

increases in dead organic matter carbon stocks in the years following fire. However, emissions of non-CO2 gases 

from burning of DOM pools are reported.  Tier 2 methods for estimation of carbon stock changes in DOM pools 

calculate the changes in dead wood and litter carbon pools (Equation 2.17). Two methods can be used: either track 

inputs and outputs (the Gain-Loss Method, Equation 2.18) or estimate the difference in DOM pools at two points 

in time (Stock-Difference Method, Equation 2.19). These estimates require either detailed inventories that include 

repeated measurements of dead wood and litter pools, or models that simulate dead wood and litter dynamics. It 

is good practice to ensure that such models are tested against field measurements and are documented. Figure 2.3 

provides the decision tree for identification of the appropriate tier to estimate changes in carbon stocks in dead 

organic matter.  

BOX 2.0E (NEW) (CONTINUED) 

USING A BIOMASS MAP FOR GHG ESTIMATION: AN EXAMPLE FROM THE BRAZILIAN AMAZON  

 

Biomass map of the Amazon biome in Brazil (Ometto et al. 2018) 
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Figure 2.3 Generic decision tree for identification of appropriate tier to estimate 

changes in carbon stocks in dead organic matter for a land-use 

category  

Start

Are data on managed area and DOM 

stocks at two periods of time available 

to estimate  changes in C stocks?

Collect data for Tier 2 method (Gain-

Loss Method or Stock Difference 

Method²)

Use the data for Tier 2 method (Stock-

Difference Method) or Tier 3 Method

Use the data for Tier 2 method (Gain-

Loss Method) or Tier 3

                        
             Are data on manged 

area and annual transfer into and  out of 
DOM stocks available?

                              

Yes

No

Yes

Yes

Box 3:Tier 2 and 3

Box 2:Tier 2 and 3

Are changes in C stocks in DOM a key 

category¹?

No

No
Assume that the dead organic 

matter stock is in equilibrium 

Box 1:Tier 1

Note:

1: See Volume 1 Chapter 4 "Methodological  Choice  and Identification of key Categories” (noting Section 4.1.2 on limited resources), 

for discussion of  key categories and use of decision trees

2: The two methods are defined in Equations 2.18 and 2.19, respectively.

Equation 2.17 summarizes the calculation to estimate the annual changes in carbon stock in DOM pools: 

EQUATION 2.17 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD ORGANIC MATTER 

LTDWDOM CCC   

Where: 

∆C
DOM

 = annual change in carbon stocks in dead organic matter (includes dead wood and litter), tonnes C 

yr-1 
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∆C
DW

 = change in carbon stocks in dead wood, tonnes C yr-1 

∆C
LT

 = change in carbon stocks in litter, tonnes C yr-1  

The changes in carbon stocks in the dead wood and litter pools for an area remaining in a land-use category 

between inventories can be estimated using two methods, described in Equation 2.18 and Equation 2.19. The same 

equation is used for dead wood and litter pools, but their values are calculated separately.  

EQUATION 2.18 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD WOOD OR LITTER (GAIN-LOSS METHOD) 

{( ) }DOM in outC A DOM DOM CF      

Where:  

DOMC  = annual change in carbon stocks in the dead wood/litter pool, tonnes C yr-1  

A  = area of managed land, ha  

inDOM  = average annual transfer of biomass into the dead wood/litter pool due to annual processes 

and disturbances, tonnes d.m. ha-1 yr-1 (see next Section for further details). 

outDOM  = average annual decay and disturbance carbon loss out of dead wood or litter pool, tonnes 

d.m. ha-1 yr-1 

CF  = carbon fraction of dry matter, tonne C (tonne d.m.)-1 

The net balance of DOM pools specified in Equation 2.18, requires the estimation of both the inputs and outputs 

from annual processes (litterfall and decomposition) and the inputs and losses associated with disturbances. In 

practice, therefore, Tier 2 and Tier 3 approaches require estimates of the transfer and decay rates as well as activity 

data on harvesting and disturbances and their impacts on DOM pool dynamics. Note that the biomass inputs into 

DOM pools used in Equation 2.18 are a subset of the biomass losses estimated in Equation 2.7. The biomass losses 

in Equation 2.7 contain additional biomass that is removed from the site through harvest or lost to the atmosphere, 

in the case of fire. 

The method chosen depends on available data and will likely be coordinated with the method chosen for biomass 

carbon stocks. Transfers into and out of a dead wood or litter pool for Equation 2.18 may be difficult to estimate. 

The stock difference method described in Equation 2.19 can be used by countries with forest inventory data that 

include DOM pool information, other survey data sampled according to the principles set out in Annex 3A.3 

(Sampling) in Chapter 3, and/or models that simulate dead wood and litter dynamics. 

When the gain – loss method is chosen, inventory measurements may provide estimates for DOM stocks. 

Alternatively, relevant information on transfers out of the litter and dead wood pools through decomposition can 

be found in the literature. Care must be taken not to confound decomposition flow “rates” and decomposition 

“rate-constants” (e.g., k’s) when DOMout is estimated. DOMout using the second approach is the product of the 

rate-constant describing the proportion lost per year and the stock of DOM (e.g., DOMout = k *DOM). One should 

be aware that decomposition rate-constants describe total losses and not just those via respiration. The fate of 

leached and fragmented carbon is not well understood; much of the material is likely respired but whether this is 

slower or faster than the source material is highly variable. Negative exponential decay models are commonly used 

to determine the decomposition rate-constants that characterize the volume, mass, or density loss in dead wood 

and litter over time (Cook et al. 2016, Harmon et al. 2000, Russell et al. 2014). While models to predict volume, 

biomass, or density loss are relatively simple, the decomposition rate-constants may vary substantially. The 

decomposition of dead wood and litter mass is driven by many factors including: woodiness (i.e., wood and bark 

versus foliage); position (i.e., standing versus downed dead wood); species of the material decomposing; state of 

decomposition (i.e., fresh versus highly decomposed) and decomposers present (e.g., the presence of termites 

and/or soil biota); climate under the canopy (for example condition by openness of the canopy) (Lavelle et al., 

1993; Hattenschwiler et al., 2005, Harmon et al. 2011, García‐Palacios et al., 2013, Russell et al., 2014, Filser et 

al. 2016, Chertov et al. 2017, Hu et al., 2017, Kornarnov et al. 2017), among others. Having specific information 

on these attributes will help to assign a specific decomposition constant to a particular DOM stock (Rock et al. 

2008). 
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EQUATION 2.19 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD WOOD OR LITTER (STOCK-DIFFERENCE 

METHOD) 

CF
T

DOMDOM
AC

tt

DOM 






 


)(
12

 

Where: 

DOMC  = annual change in carbon stocks in dead wood or litter, tonnes C yr-1  

A  = area of managed land, ha 

1t
DOM  = dead wood/litter stock at time t1 for managed land, tonnes d.m. ha-1 

2t
DOM  = dead wood/litter stock at time t2 for managed land, tonnes d.m. ha-1 

T = (t2 – t1) = time period between time of the second stock estimate and the first stock estimate, yr 

CF  = carbon fraction of dry matter (default for litter = 0.37 (Smith & Heath 2002), default for 

dead wood (temperate species) = 0.5 tonne C (tonne d.m.)-1 

Note that whenever the stock change method is used (e.g., in Equation 2.19), the area used in the carbon stock 

calculations at times t1 and t2 must be identical. If the area is not identical then changes in area will confound the 

estimates of carbon stocks and stock changes. It is good practice to use the area at the end of the inventory period 

(t2) to define the area of land remaining in the land-use category. The stock changes on all areas that change land-

use category between t1 and t2 are estimated in the new land-use category, as described in the sections on land 

converted to a new land category.   

INPUT OF BIOMASS TO DEAD ORGANIC MATTER 

Whenever a tree is felled, non-merchantable and non-commercial components (such as tops, branches, leaves, 

roots, and non-commercial trees) are left on the ground and transferred to dead organic matter pools. In addition, 

annual mortality can add substantial amounts of dead wood to that pool. For Tier 1 methods, the assumption is 

that the carbon contained in all biomass components that are transferred to dead organic matter pools will be 

released in the year of the transfer, whether from annual processes (litterfall and tree mortality), land management 

activities, fuelwood gathering, or disturbances. For estimation procedures based on higher Tiers, it is necessary to 

estimate the amount of biomass carbon that is transferred to dead organic matter. The quantity of biomass 

transferred to DOM is estimated using Equation 2.20. 

EQUATION 2.20 

ANNUAL CARBON IN BIOMASS TRANSFERRED TO DEAD ORGANIC MATTER 

{ ( )}in mortality slash disturbance BLolDOM L L L f     

Where:  

inDOM  = total carbon in biomass transferred to dead organic matter, tonnes C yr-1 

mortalityL  = annual biomass carbon transfer to DOM due to mortality, tonnes C yr-1 (See Equation 2.21) 

slashL  = annual biomass carbon transfer to DOM as slash, tonnes C yr-1 (See Equations 2.22) 

disturbanceL  = annual biomass carbon loss resulting from disturbances, tonnes C yr-1 (See Equation 2.14) 

BLolf  = fraction of biomass left to decay on the ground (transferred to dead organic matter) from loss 

due to disturbance.  As shown in Table 2.1, the disturbance losses from the biomass pool are 

partitioned into the fractions that are added to dead wood (cell B in Table 2.1) and to litter (cell 

C), are released to the atmosphere in the case of fire (cell F) and, if salvage follows the 

disturbance, transferred to HWP (cell E). 

Note: If root biomass increments are counted in Equation 2.10, then root biomass losses must also be counted in 

Equations 2.20, and 2.22. 
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Examples of the terms on the right-hand side of Equation 2.20 are obtained as follows:  

Transfers to dead organic matter from mortali ty,  L m o r t a l i t y  
Mortality is caused by competition during stand development, age, diseases, and other processes that are not 

included as disturbances. Mortality cannot be neglected when using higher Tier estimation methods. In extensively 

managed stands without periodic partial cuts, mortality from competition during the stem exclusion phase, may 

represent 30-50 percent of total productivity of a stand during its lifetime. In regularly tended stands, additions to 

the dead organic matter pool from mortality may be negligible because partial cuts extract forest biomass that 

would otherwise be lost to mortality and transferred to dead organic matter pools. Available data for increment 

will normally report net annual increment, which is defined as net of losses from mortality. Since in this text, net 

annual growth is used as a basis to estimate biomass gains, mortality must not be subtracted again as a loss from 

biomass pools. Mortality must, however, be counted as an addition to the dead wood pool for Tier 2 and Tier 3 

methods.  

The equation for estimating mortality is provided in Equation 2.21: 

EQUATION 2.21 

ANNUAL BIOMASS CARBON LOSS DUE TO MORTALITY 

  )( mCFGAL Wmortality  

Where: 

mortalityL  = annual biomass carbon transfer to DOM due to mortality, tonnes C yr-1 

A  = area of land remaining in the same land use, ha 

WG  = above-ground biomass growth, tonnes d.m. ha-1 yr-1 (see Equation 2.10) 

CF  = carbon fraction of dry matter, tonne C (tonne d.m.)-1 

m  = mortality rate expressed as a fraction of above-ground biomass growth  

When data on mortality rates are expressed as proportion of growing stock volume, then the term Gw in Equation 

2.21 should be replaced with growing stock volume to estimate annual transfer to DOM pools from mortality. 

Mortality rates differ between stages of stand development and are highest during the stem exclusion phase of 

stand development. They also differ with stocking level, forest type, management intensity and disturbance history. 

Thus, providing default values for an entire climatic zone is not justified because the variation within a zone will 

be much larger than the variation between zones. 

Annual carbon transfer to slash,  L s l a s h  

This involves estimating the quantity of slash left after wood removal or fuelwood removal and transfer of biomass 

from total annual carbon loss due to wood harvest (Equation 2.12). The estimate for logging slash is given in 

Equation 2.22 and which is derived from Equation 2.12 as explained below: 

EQUATION 2.22 

ANNUAL CARBON TRANSFER TO SLASH 

   (1 )slash RL H BCEF R H D CF          

Where:  

slashL  = annual biomass carbon transfer to DOM as slash, tonnes C yr-1, including dead roots, tonnes 

C yr-1 

H  = annual wood harvest (wood or fuelwood removal), m3 yr-1 

RBCEF  = biomass conversion and expansion factors applicable to wood removals, which transform 

merchantable volume of wood removal into above-ground biomass removals, tonnes biomass 

removal (m3 of removals)-1. If BCEFR values are not available and if BEF and Density values 

are separately estimated then the following conversion can be used:   

R RBCEF BEF D   
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o D  is basic wood density, tonnes d.m. m-3 

o Biomass Expansion Factors ( RBEF ) expand merchantable wood removals to 

total aboveground biomass volume to account for non-merchantable components 

of the tree, stand and forest. BEFR is dimensionless.  

R  = ratio of below-ground biomass to above-ground biomass, in tonne d.m. below-ground 

biomass (tonne d.m. above-ground biomass)-1. R must be set to zero if root biomass 

increment is not included in Equation 2.10 (Tier 1) 

CF  = carbon fraction of dry matter, tonne C (tonne d.m.)-1  

Fuelwood gathering that involves the removal of live tree parts does not generate any additional input of biomass 

to dead organic matter pools and is not further addressed here. 

Inventories using higher Tier methods can also estimate the amount of logging slash remaining after harvest by 

defining the proportion of above-ground biomass that is left after harvest (enter these proportions in cells B and 

C of Table 2.2 for harvest disturbance) and by using the approach defined in Equation 2.14. In this approach, 

activity data for the area harvested would also be required.  

2.3.2.2 LAND CONVERSION TO A NEW LAND-USE CATEGORY  

The reporting convention is that all carbon stock changes and non-CO2 greenhouse gas emissions associated with 

a land-use change be reported in the new land-use category. For example, in the case of conversion of Forest Land 

to Cropland, both the carbon stock changes associated with the clearing of the forest as well as any subsequent 

carbon stock changes that result from the conversion are reported under the Cropland category. 

The Tier 1 assumption is that DOM pools in non-forest land categories after the conversion are zero, i.e., they 

contain no carbon. The Tier 1 assumption for land converted from forest to another land-use category is that all 

DOM carbon losses occur in the year of land-use conversion. Conversely, conversion to Forest Land results in 

build-up of litter and dead wood carbon pools starting from zero carbon in those pools. DOM carbon gains on land 

converted to forest occur linearly, starting from zero, over a transition period (default assumption is 20 years). This 

default period may be appropriate for litter carbon stocks, but in temperate and boreal regions it is probably too 

short for dead wood carbon stocks. Countries that use higher Tier methods can accommodate longer transition 

periods by subdividing the remaining category to accommodate strata that are in the later stages of transition.  

The estimation of carbon stock changes during transition periods following land-use conversion requires that 

annual cohorts of the area subject to land-use change be tracked for the duration of the transition period. For 

example, DOM stocks are assumed to increase for 20 years after conversion to Forest Land. After 20 years, the 

area converted enters the category Forest Land Remaining Forest Land, and no further DOM changes are assumed, 

if a Tier 1 approach is applied. Under Tier 2 and 3, the period of conversion can be varied depending on vegetation 

and other factors that determine the time required for litter and dead wood pools to reach steady state. 

Higher Tier estimation methods can use non-zero estimates of litter and dead wood pools in the appropriate land-

use categories or subcategories. For example, settlements and agro-forestry systems can contain some litter and 

dead wood pools, but because management, site conditions, and many other factors influence the pool sizes, no 

global default values can be provided here. Higher Tier methods may also estimate the details of dead organic 

matter inputs and outputs associated with the land-use change. 

The conceptual approach to estimating changes in carbon stocks in dead wood and litter pools is to estimate the 

difference in C stocks in the old and new land-use categories and to apply this change in the year of the conversion 

(carbon losses), or to distribute it uniformly over the length of the transition period (carbon gains) Equation 2.23: 

EQUATION 2.23 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD WOOD AND LITTER DUE TO LAND CONVERSION 

on

onon
DOM

T

ACC
C




)(
 

Where: 

DOMC = annual change in carbon stocks in dead wood or litter, tonnes C yr-1 

oC  = dead wood/litter stock, under the old land-use category, tonnes C ha-1 
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nC  = dead wood/litter stock, under the new land-use category, tonnes C ha-1 

onA  = area undergoing conversion from old to new land-use category, ha 

onT  = time period of the transition from old to new land-use category, yr. The Tier 1 default is 20 years 

for carbon stock increases and 1 year for carbon losses. 

Inventories using a Tier 1 method assume that all carbon contained in biomass killed during a land-use conversion 

event (less harvested products that are removed) is emitted directly to the atmosphere and none is added to dead 

wood and litter pools. Tier 1 methods also assume that dead wood and litter pool carbon losses occur entirely in 

the year of the transition.  

Countries using higher Tier methods can modify Co in Equation 2.23 by first accounting for the immediate effects 

of the land-use conversion in the year of the event. In this case, they would add to Co the carbon from biomass 

killed and transferred to the dead wood and litter pools and remove from Co any carbon released from dead wood 

and litter pools, e.g., during slash burning. In that case Co in Equation 2.23 would represent the dead wood or litter 

carbon stocks immediately after the land-use conversion. Co will transit to Cn over the transition period, using 

linear or more complex dynamics. A disturbance matrix (Table 2.1) can be defined to account for the pool 

transitions and releases during the land-use conversion, including the additions and removals to Co. 

Countries using a Tier 1 approach can apply the Tier 1 default carbon stock estimates for litter, and if available 

dead wood pools, provided in Table 2.2, but should recognize that these are broad-scale estimates with 

considerable uncertainty when applied at the country level. Table 2.2 is incomplete because of the paucity of 

published data. A review of the literature has identified several problems. The IPCC definitions of dead organic 

matter carbon stocks include litter and dead wood. The litter pool contains all litter plus fine woody debris up to a 

diameter limit of 10 cm (see Chapter 1, Table 1.1). Published litter data generally do not include the fine woody 

debris component, so the litter values in Table 2.2 are incomplete.  

There are numerous published studies of coarse woody debris (Harmon and Hua, 1991; Karjalainen and 

Kuuluvainen, 2002) and a few review papers (e.g., Harmon et al., 1986), and but to date only two studies are found 

to provide regional dead wood carbon pool estimates that are based on sample plot data.  Krankina et al. (2002) 

included several regions in Russia and reported coarse woody debris (> 10 cm diameter) estimates of 2 to 7 Mg C 

ha-1. Cooms et al. (2002) reported regional carbon pools based on a statistical sample design for a small region in 

New Zealand. Regional compilations for Canada (Shaw et al., 2005) provide estimates of litter carbon pools based 

on a compilation of statistically non-representative sample plots, but do not include estimates of dead wood pools. 

Review papers such as Harmon et al. (1986) compile a number of estimates from the literature. For example, their 

Table 5 lists a range of coarse woody debris values for temperate deciduous forests of 11 – 38 Mg dry matter ha-1 

and for temperate coniferous forests of 10 – 511 Mg dry matter ha-1. It is, however, statistically invalid to calculate 

a mean from these compilations as they are not representative samples of the dead wood pools in a region. 

While it is the intent of these IPCC Guidelines to provide default values for all variables used in Tier 1 

methodologies, it is currently not feasible to provide estimates of regional defaults values for litter (including fine 

woody debris < 10 cm diameter) and dead wood (> 10 cm diameter) carbon stocks. Litter pool estimates (excluding 

fine woody debris) are provided in Table 2.2. Tier 1 methodology only requires the estimates in Table 2.2 for lands 

converted from Forest Land to any other land-use category (carbon losses) and for lands converted to Forest Land 

(carbon gains). Tier 1 methods assume that litter and dead wood pools are zero in all non-forest categories and 

therefore transitions between non-forest categories involve no carbon stock changes in these two pools. 
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TABLE 2.2 (UPDATED) 

TIRE 1 DEFAULT VALUES FOR LITTER AND DEAD WOOD CARBON STOCKS 

Climate 1 

Forest type 

Broadleaf deciduous Needleleaf evergreen All vegetation types References2 

Litter carbon stocks (tonnes C ha-1) 

Mean Min/Max Mean Min/Max Mean Min/Max  

Boreal coniferous 

forest 
19.1 4.0-38.7 40.3 4.0-117.4 31.4 4.0-117.4 

93, 98, 99, 

100, 101 

Boreal tundra 

woodland 
29.3 23.7-33.7 67.4 23.7-85.1 49.5 23.7-85.1 100, 101 

Polar n.a n.a n.a n.a n.a n.a n.a. 

Subtropical desert n.a n.a n.a n.a n.a n.a n.a. 

Subtropical humid 

forest 
5.6 4.4-8.1 6.8 4.7-11.6 8.7 1.2-24.0 

6, 7, 44, 93, 

98, 99, 103 

Subtropical 

mountain system 
n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Subtropical steppe n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Temperate 

continental forest 
23.9 4.6-64.4 66.3 6.0-279.1 47.8 4.6-279.1 

93, 98, 99, 

100, 101 

Temperate desert n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Temperate 

mountain system 
3.4 n.a. 3.9 n.a. 3.7 3.4-3.9 98 

Temperate oceanic 

forest 
n.a. n.a. n.a. n.a. 2.9 n.a. 15 

Temperate steppe 36.9 7.6-98.8 26.4 7.1-43.0 28.7 3.8-98.8 
97, 98, 100, 

101 

Tropical dry forest n.a. n.a. n.a. n.a. 2.4 2.1-2.7 11 

Tropical moist 

forest 
4.3 2.0-9.0 14.8 n.a. 5.9 1.9-14.8 21, 93, 98 

Tropical mountain 

system 
n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tropical rainforest 2.5 n.a. 4.7 n.a. 4.8 2.1-16.4 
11, 26, 35, 89, 

93, 99 

Climate 
Dead wood carbon stocks (tonnes C ha-1) 

Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Boreal coniferous 

forest 
16.4 2.3-50.7 22.2 4.1-76.5 19.7 2.3-76.5 

46, 54, 55, 56, 

59, 62, 63, 70, 

81, 87, 88, 93 

Boreal tundra 

woodland 
5.7 n.a. 1.3 0.5-2.4 3.1 0.5-6.1 5, 70 

Polar n.a n.a 26.2 n.a. 26.2 n.a. 70 

Subtropical desert n.a n.a 64.4 
14.4-

134.5 
64.4 

14.4-

134.5 
40 

Subtropical humid 

forest 
4.1 2.5-7.5 10.9 3.5-32.8 13.2 0.2-43.8 

6,7,44, 46, 68, 

93 

Subtropical 

mountain system 
n.a. n.a. 11.8 7.2-16.3 11.8 7.2-16.3 77 
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TABLE 2.2 (UPDATED) (CONTINUED) 

TIRE 1 DEFAULT VALUES FOR LITTER AND DEAD WOOD CARBON STOCKS 

Climate 1 

Forest type  

Broadleaf deciduous Needleleaf evergreen All vegetation types References2 

Dead wood carbon stocks (tonnes C ha-1) 

Mean  Min/Max Mean  Min/Max Mean  Min/Max   

Subtropical steppe n.a. n.a. 6.8 6.0-7.7 6.8 6.0-7.7 27 

Temperate 

continental forest 
23.6 1.6-150.0 22.1 2.1-59.5 23.0 1.6-150.0 

1, 2, 23, 28, 36, 

37, 46, 54, 55, 

64, 70, 80, 83, 

87, 92, 93, 

95,110 

Temperate desert n.a. n.a. 10.5 n.a. 10.5 n.a. 22 

Temperate 

mountain system 
21.2 2.8-80.6 48.1 1.7-181.8 37.6 1.7-181.8 

3, 9, 10, 12, 13, 

17, 25, 29, 30, 

31, 33, 34, 39, 

41, 50, 57, 58, 

60, 67, 68, 69, 

71, 75, 76, 78, 

82, 84, 90, 91, 

105, 109 

Temperate oceanic 

forest 
40.5 2.8-95.0 24.3 n.a. 36.8 2.8-95.0 

15, 16, 24, 32, 

52, 61, 85, 86 

Temperate steppe 26.2  9.7-50.0 8.0  n.a 21.7 8.0 -50.0 4, 70, 83, 98 

Tropical dry forest 16.0 14.7-17.3 n.a. n.a. 9.0 1.3-17.3 11, 20 

Tropical moist 

forest 
8.4 1.2-21.2 3.4 n.a. 8.0 1.2-21.2 

19, 20, 21, 38, 

4893, 96, 107 

Tropical mountain 

system 
3.3 n.a. n.a. n.a. 3.3 n.a. 20 

Tropical rainforest 17.7 0.9-218.9 1.9 n.a. 14.8 0.6-218.9 

11, 14, 18, 26, 

35, 42, 43, 45, 

46, 47, 49, 51, 

53, 65, 66, 72, 

73, 74, 79, 89, 

93, 94, 104, 

105, 107, 108 
1 FAO. 2012. Forest Resources Assessment Working Paper 179. 
2References:  1Canada NFI, 2006; 2Alban and Perala, 1992; 3Arthur and Fahey, 1992; 4Barney and Fahey, 1992; 5Barney and Van Cleve, 

1973; 6Beets et al. 2011; 7Beets et al. 2014; 8Beets, 1980; 9Bingham and Sawyer Jr., 1988; 10Blackwell et al., 1992; 11FRA2015, Brazil; 

12Brown and See, 1981; 13Busing, 1998; 14Chambers et al., 2000; 15FRA2015, Chile; 16Christensen, 1977; 17Clark et al., 1998; 
18Cochrane et al., 1999; 19Collins, 1981; 20Delaney et al., 1998; 21FRA2015, Ecuador; 22Fahey, 1983; 23Falinski, 1978; 24Frangi et al., 

1997; 25Franklin et al., 1984; 26FRA2015, French Guyana; 27Fule and Covington, 1994; 28Goodburn and Lorimer, 1998; 29Gore and 

Patterson, III, 1986; 30Gosz, 1980; 31Grahom and Cromack, 1982; 32Green and Peterken, 1998; 33Grier, 1978; 34Grier et al., 1981; 

35FRA2015, Guyana; 36Hale et al., 1999; 37Harmon and Chen, 1991; 38Harmon et al., 1995; 39Harmon et al., 1986; 40Harmon et al., 

1987; 41Harmon, 1980; 42Higucki and Biot, 1995; 43Hofer et al., 1996; 44Holdaway et al., 2017; 45Hughes et al., 2000; 46Japanese NFI, 

2018; 47John, 1973; 48Jordan, 1989; 49Kauffman and Uhl, 1990; 50Keenan et al., 1993; 51Kira, 1978; 52Kirby et al., 1998; 53Klinge, 
1973; 54Krankina et al., 1999; 55Krankina, Unpublished; 56Lamas and Fries, 1994; 57Lambert et al., 1980; 58Lang, 1985; 59Lee et al., 

1997; 60Lesica et al., 1990; 61Levett et al., 1985; 62Linder and Ostlund, 1992; 63Linder et al. 1997; 64MacMillan, 1981; 65Martinelli et 

al., 1988; 66Martius, 1997; 67McCarthy and Bailey, 1994; 68McMinn and Hardt, 1996; 69Muller and Liu, 1991; 70Canada NFI, 2018b; 
71Nicholas and White, 1984; 72Proctor et al. 1983; 73Revilla, 1987; 74Robertson and Daniel, 1989; 75Robertson and Bowser, 1999; 

76Roskoski, 1980; 77Sackett, 1980; 78Sackett, 1979; 79Saldarriaga et al., 1988; 80Shifley et al., 1997; 81Sippola, 1998; 82Sollins, 1982; 
83Spetich et al., 1999; 84Spies et al., 1988; 85Stewart and Burrows, 1994; 86Stokland, ; 87Storozhenko, 1997; 88Sturtevant et al., 1997; 

89FRA2015, Suriname; 90Taylor and Fonda, 1990; 91Tritton 1980; 92Tyrrell and Crow, 1994; 93Ugawa et al., 2012; 94Uhl et al., 1988; 

95van Hees and Clerkx, 1999; 96Zhou et al.,; 97FRA2015, Argentina; 98Domke et al., 2016; 99Japan NFI, 2018; 100Canada NFI, 2018; 
101Canada NFI, 2018a; 102Shaw et al. 2005; 103Beets et al., 2012; 104Klinge et al., 1975; 105Kaufman et al., 1988; 106Nicholas and 

White, 1985; 107Revilla, 1986; 108Revilla, 1988; 109Sollins et al., 1980; 110Lang and Forman, 1978 

n.a. denotes ‘not available’ 
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2.3.3 Change in carbon stocks in soils  

Although both organic and inorganic forms of C are found in soils, land use and management typically has a larger 

impact on organic C stocks. Consequently, the methods provided in these guidelines focus mostly on soil organic 

C. Overall, the influence of land use and management on soil organic C is dramatically different in a mineral 

versus an organic soil type. Organic (e.g., peat and muck) soils have a minimum of 12 percent organic C by mass 

(see Chapter 3 Annex 3A.5, for the specific criteria on organic soil classification), and develop under poorly 

drained conditions of wetlands (Brady & Weil 1999). All other soils are classified as mineral soil types, and 

typically have relatively low amounts of organic matter, occurring under moderate to well drained conditions, and 

predominate in most ecosystems except wetlands. Discussion about land-use and management influences on these 

contrasting soil types is provided in the next two sections. 

MINERAL SOILS 

Mineral soils contain an organic carbon pool that is influenced by land-use and management activities. Land use 

can have a large effect on the size of this pool through activities such as conversion of native Grassland and Forest 

Land to Cropland, where 20-40 percent of the original soil C stocks can be lost (Mann 1986; Davidson & 

Ackerman 1993; Ogle et al. 2005). Within a land-use type, a variety of management practices can also have a 

significant impact on soil organic C storage, particularly in Cropland and Grassland (e.g., Paustian et al. 1997; 

Conant et al. 2001; Ogle et al. 2004 and 2005).  In principle, soil organic C stocks can change with management 

or disturbance if the net balance between C inputs and C losses from soil is altered. Management activities 

influence organic C inputs through changes in plant production (such as fertilisation or irrigation to enhance crop 

growth), direct additions of C in organic amendments, and the amount of carbon left after biomass removal 

activities, such as crop harvest, timber harvest, fire, or grazing. Decomposition largely controls C outputs and can 

be influenced by changes in moisture and temperature regimes as well as the level of soil disturbance resulting 

from the management activity. Other factors also influence decomposition, such as climate and edaphic 

characteristics. Specific effects of different land-use conversions and management regimes are discussed in the 

land-use specific chapters (Chapters 4 to 9). 

Land-use change and management activity can also influence soil organic C storage by changing erosion rates and 

subsequent loss of C from a site; some eroded C decomposes in transport and CO2 is returned to the atmosphere, 

while the remainder is deposited in another location. The net effect of changing soil erosion through land 

management is highly uncertain, however, because an unknown portion of eroded C is stored in buried sediments 

of wetlands, lakes, river deltas and coastal zones (Smith et al. 2001). 

ORGANIC SOILS 

No refinement. See Chapter 2, Sections 2.2 and 2.3 of the 2013 Wetlands Supplement. 

2.3.3.1 SOIL ORGANIC C  ESTIMATION METHODS (LAND REMAINING 

IN A LAND-USE CATEGORY AND LAND CONVERSION TO A NEW 

LAND USE) 

Soil C inventories include estimates of soil organic C stock changes for mineral soils and CO2 emissions from 

organic soils due to enhanced microbial decomposition caused by drainage and associated management activity. 

In addition, inventories can address C stock changes for soil inorganic C pools (e.g., calcareous grassland that 

become acidified over time) if sufficient information is available to use a Tier 3 approach. The equation for 

estimating the total change in soil C stocks is given in Equation 2.24: 

EQUATION 2.24 (UPDATED) 

ANNUAL CHANGE IN CARBON STOCKS IN SOILS 

    Soils Mineral Organic InorganicC C L C  

Where: 

SoilsC  = annual change in carbon stocks in soils, tonnes C yr-1  

MineralC  = annual change in organic carbon stocks in mineral soils, tonnes C yr-1 

OrganicL  = annual loss of carbon from drained organic soils, tonnes C yr-1 
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 InorganicC  = annual change in inorganic carbon stocks from soils, tonnes C yr-1 (assumed to be 0 unless 

using a Tier 3 approach) 

For Tier 1 methods, soil organic C stocks for mineral soils are computed to a default depth of 30 cm because 

default reference soil organic C stocks (SOCREF – see Equation 2.25 and Table 2.3) and stock change factors (e.g. 

FLU, FMG and FI see Equation 2.25) are based on a 30 cm depth. In addition, the reference condition is defined as 

that present in native lands (i.e. non-degraded, unimproved lands under native vegetation) for the default reference 

soil organic C stocks (SOCREF). For Tier 2, a different reference condition and depth can be used as described in 

the section on Tier 2 methods. Residue/litter C stocks are not included in Tier 1 because they are addressed by 

estimating dead organic matter stocks (see section 2.3.2). Inventories can also estimate the change in mineral soil 

organic C stock due to biochar amendments to soils (Tier 2 and Tier 3 only). Stock changes in organic soils are 

based on emission factors that represent the annual loss of organic C throughout the profile due to drainage and 

associated management activity.  

No Tier 1 or 2 methods are provided for estimating the change in soil inorganic C stocks (∆𝐶𝐼𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐) due to 

limited scientific data for derivation of stock change factors; thus, the net flux for inorganic C stocks is assumed 

to be zero. Tier 3 methods could be developed to estimate changes in the stock of inorganic carbon in mineral or 

organic soils.  

It is possible that compilers will use different tiers to prepare estimates for mineral soils, organic soils, biochar 

amendments and soil inorganic C, depending on the availability of resources. Thus, stock changes are discussed 

separately for organic carbon in mineral and organic soils and for inorganic C pools (Tier 3 only). Generalised 

decision trees in Figures 2.4 and 2.5 can be used to assist inventory compilers in determining the appropriate tier 

for estimating stock changes for mineral and organic soil C, respectively. 
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Figure 2.4 Generic decision tree for identification of appropriate tier to estimate 

changes in carbon stocks in mineral soils by land-use category. 
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Figure 2.5 Generic decision tree for identification of appropriate tier to estimate 

changes in carbon stocks in organic soils by land-use category  
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Tier 1 –  Default Method 

Mineral soils  

For mineral soils, the stock change factor method is based on changes in soil C stocks (∆𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙) over a finite 

period of time of 20 years (Equation 2.25). The change in organic C stock in mineral soil (𝑆𝑂𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙) is computed 

by calculating the organic C stock remaining after a management change relative to the organic C stock in a 

reference condition and summing this change over all climate zones, soil types and management practices included 

in the inventory. The soil organic C stock present under the reference condition for the Tier 1 method is defined 

as that in non-degraded, unimproved lands under native vegetation (Table 2.3). The following assumptions are 

made: 

(i) Over time, soil organic C stock reaches a spatially-averaged, stable value specific to the soil, climate, 

land-use and management practices; and  

(ii) Soil organic C stock change during the transition to a new equilibrium SOC occurs in a linear fashion 

over a period of 20 years. 

Assumption (i), that under a given set of climate and management conditions soils tend towards an equilibrium 

organic C stock, is widely accepted.  Although, soil organic C stock changes in response to management changes 

may often be best described by a curvilinear function, assumption (ii) greatly simplifies the Tier 1 methodology 

and provides a good approximation over a multi-year inventory period, where changes in management and land-

use conversions are occurring throughout the inventory period.  
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Using the default method, changes in mineral soil organic C stocks are computed over an inventory time period.  

Inventory time periods will likely be established based on the years in which activity data are collected, such as 

1990, 1995, 2000, 2005 and 2010, which would correspond to inventory time periods of 1990-1995, 1995-2000, 

2000-2005, 2005-2010. For each inventory time period, the soil organic C stocks are estimated for the first (SOC0-T) 

and last year (SOC0) based on multiplying the reference C stocks by stock change factors. Annual rates of carbon 

stock change are estimated as the difference in stocks at two points in time divided by the time dependence of the 

stock change factors.  

EQUATION 2.25 

ANNUAL CHANGE IN ORGANIC CARBON STOCKS IN MINERAL SOILS 

0 (0 )( )T

Mineral

SOC SOC
C

D


   

 
, , , , , , , , , ,

, ,

     c s i c s i c s i c s iMineral REF LU MG I c s i

c s i

SOC SOC F F F A  

(Note: T is used in place of D in the ∆𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙  equation if T is ≥ 20 years, see note below 

associated with the parameter 𝐷) 

Where: 

MineralC  = annual change in organic C stocks in mineral soils, tonnes C yr-1 

0SOC  = mineral soil organic C stock (SOCMineral) in the last year of an inventory time period, tonnes 

C 

(0 )TSOC 
 = mineral soil organic C stock (SOCMineral) at the beginning of the inventory time period, 

tonnes C 

T  = number of years over a single inventory time period, yr  

D  = Time dependence of mineral soil organic C stock change factors which is the default time 

period for transition between equilibrium SOC values, yr. Commonly 20 years, but depends 

on assumptions made in computing the factors FLU, FMG and FI.  If T exceeds D, use the value 

for T to obtain an annual rate of change over the inventory time period (0-T years).   

c  = represents the climate zones included in the inventory 

s = represents the soil types included in the inventory 

i = represents the set of management systems included in the inventory. 

MineralSOC  = total mineral soil organic C stock at a defined time, tonnes C 

, ,c s iREFSOC  = the soil organic C stock for mineral soils in the reference condition, tonnes C ha-1 (Table 

2.3) 

, ,c s iLUF  = stock change factor for mineral soil organic C land-use systems or sub-systems for a 

particular land-use, dimensionless  

 [Note: FND is substituted for FLU in forest soil organic C stock calculations to estimate the 

influence of natural disturbance regimes (see Chapter 4, Section 4.2.3 for more discussion)]. 

, ,c s iMGF  = stock change factor for mineral soil organic C for management regime, dimensionless 

, ,c s iIF  = stock change factor for mineral soil organic C for the input of organic amendments, 

dimensionless 

, ,c s iA  = land area of the stratum being estimated, ha 

[Note: All land in the stratum should have common biophysical conditions (i.e., climate and 

soil type) and management history over the inventory time period to be treated together for 

analytical purposes.] 
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Inventory calculations are based on land areas that are stratified by climate regions (see Chapter 3 Annex 3A.5, 

for default classification of climate), and default soils types as shown in Table 2.3 (see Chapter 3, Annex 3A.5, for 

default classification of soils). The stock change factors are very broadly defined and include: 1) a land-use factor 

(FLU) that reflects C stock changes associated with type of land use, 2) a management factor (FMG) representing 

the principal management practice specific to the land-use sector (e.g., different tillage practices in cropland), and 

3) an input factor (FI) representing different levels of C input to soil. As mentioned above, FND is substituted for 

FLU in Forest Land to account for the influence of natural disturbance regimes (see Chapter 4, Section 4.2.3 for 

more discussion). The stock change factors are provided in the soil C sections of the land-use chapters. Each of 

these factors represents the change over a specified number of years (D), which can vary across sectors, but is 

typically invariant within sectors (e.g., 20 years for the cropland systems). In some inventories, the time period for 

inventory (T years) may exceed D, and under those cases, an annual rate of change in C stock may be obtained by 

dividing the product of [(SOC0 – SOC(0 –T)) ● A] by T, instead of D. See the soil C sections in the land-use chapters 

for detailed step-by-step guidance on the application of this method. 

When applying the stock change factor method using Equation 2.25, the type of land-use and management activity 

data has a direct influence on the formulation of the equation (See Box 2.1). Formulation A is based on activity 

data collected with Approach 1, while Formulation B is based on activity data collected with Approaches 2 or 3 

(Box 2.1). See Chapter 3 for additional discussion on the approaches for activity data collection. 

Special consideration is needed if using Approach 1 activity data (see Chapter 3) as the basis for estimating land-

use and management effects on soil C stocks, using Equation 2.25. Approach 1 data do not track individual land 

transitions, and so SOC stock changes are computed for inventory time periods equivalent to D years, or as close 

as possible to D, which is 20 years in the Tier 1 method. For example, Cropland may be converted from full tillage 

to no-till management between 1990 and 1995, and Formulation A (see Box 2.1) would estimate a gain in soil C 

for that inventory time period. However, assuming that the same parcel of land remains in no-till between 1995 

and 2000, no additional gain in C would be computed (i.e., the stock for 1995 would be based on no-till 

management and it would not differ from the stock in 2000 (SOC0), which is also based on no-till management). 

If using the default approach, there would be an error in this estimation because the change in soil C stocks occurs 

over 20 years (i.e., D = 20 years). Therefore, SOC(0 –T) is estimated for the most distant time that is used in the 

inventory calculations up to D years before the last year in the inventory time periods (SOC0). For example, 

assuming D is 20 years and the inventory is based on activity data from 1990, 1995, 2000, 2005 and 2010, SOC(0 

–T) will be computed for 1990 to estimate the change in soil organic C for each of the other years, (i.e., 1995, 2000, 

2005 and 2010). The year for estimating SOC(0 –T) in this example will not change until activity data are gathered 

at 2011 or later (e.g., computing the C stock change for 2011 would be based on the most distant year up to, but 

not exceeding D, which in this example would be 1995).  

If transition matrices are available (i.e., Approach 2 or 3 activity data), the changes can be estimated between each 

successive year. From the example above, some no-till land may be returned to full tillage management between 

1995 and 2000. In this case, the gain in C storage between 1990 and 1995 for the land base returned to full tillage 

would need to be discounted between 1995 and 2000.  Further, no additional change in the C stocks would be 

necessary for land returned to full tillage after 2000 (assuming tillage management remained the same).  Only land 

remaining in no-till would continue to gain C up to 2010 (i.e., assuming D is 20 years). Hence, inventories using 

transition matrices from Approach 2 and 3 activity data will need to be more careful in dealing with the time 

periods over which gains or losses of SOC are computed.  See Box 2.2 for additional details.  The application of 

the soil C estimation approach is much simpler if only using aggregated statistics with Approach 1 activity data. 

However, it is good practice for countries to use transition matrices from Approach 2 and 3 activity data if that 

information is available because the more detailed statistics will provide an improved estimate of annual changes 

in soil organic C stocks. 

There may be some cases in which activity data are collected over time spans longer than the time dependence of 

the stock change factors (D), such as every 30 years with a D of 20. For those cases, the annual stock changes can 

be estimated directly between each successive year of activity data collection (e.g., 1990, 2020 and 2050) without 

over- or under-estimating the annual change rate, as long as T is substituted for D in Equation 2.25. 

 

 

 

 

 

 

 



 Chapter 2: Generic Methodologies Applicable to Multiple Land-Use Categories 

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 2.35 

TABLE 2.3 (UPDATED) 

DEFAULT REFERENCE CONDITION SOIL ORGANIC CARBON STOCKS (SOCREF) FOR MINERAL SOILS (TONNES C HA-1 IN 0-30 

CM DEPTH) 1, 2 

IPCC Climate Zone 5 

IPCC soil class 6 

High activity clay 

soils (HAC) 7 

Low activity clay 

soils (LAC) 8 

Sandy soils 

(SAN) 9 

Polar Moist/Dry (Px - undiff)13 59 ± 41% (24) NA 27 ± 67% (18) 

Boreal Moist/Dry (Bx - undiff)13 63 ± 18% (35) NA 10 ± 90% 4 

Cool temperate dry (C2) 43 ± 8% (177) 33 ± 90% 3 13 ± 33% (10) 

Cool temperate moist (C1) 81 ± 5% (334) 76 ± 51% (6) 51 ± 13% (126) 

Warm temperate dry (W2) 24 ± 5% (781) 19 ± 16% (41) 10 ± 5% (338) 

Warm temperate moist (W1) 64 ± 5% (489) 55 ± 8% (183) 36 ± 23% (39) 

Tropical dry (T4) 21 ± 5% (554) 19 ± 10% (135) 9 ± 9% (164) 

Tropical moist (T3) 40 ± 7% (226) 38 ± 5% (326) 27 ± 12% (76) 

Tropical wet (T2) 60 ± 8% (137) 52 ± 6% (271) 46 ± 20% (43) 

Tropical montane (T1) 51 ± 10% (114) 44 ± 11% (84) 52 ± 34% (11) 

 
Spodic soils 

(POD) 10 

Volcanic soils 

(VOL) 11 

Wetland soils 

(WET) 12 

Polar Moist/Dry (Px - undiff)13 NO NA NA 

Boreal Moist/Dry (Bx - undiff)13 117 ± 90% 3 20 ± 90% 4 116 ± 65% (6) 

Cool temperate dry (C2) NO 20 ± 90% 4 87 ± 90% 3 

Cool temperate moist (C1) 128 ± 14% (45) 136 ± 14% (28) 128 ± 13% (42) 

Warm temperate dry (W2) NO 84 ± 65% (10) 74 ± 17% (49) 

Warm temperate moist (W1) 143 ± 30% (9) 138 ± 12% (42) 135 ± 28% (28) 

Tropical dry (T4) NA 50 ± 90% 4 22 ± 17% (32) 

Tropical moist (T3) NA 70 ± 90% 4 68 ± 17% (55) 

Tropical wet (T2) NA 77 ± 27% (14) 49 ± 19% (33) 

Tropical montane (T1) NA 96 ± 31% (10) 82 ± 50% (12) 

Note: Data are derived from Batjes (2010) and Batjes (2011) unless otherwise noted through the use of superscripts. 
1 NA denotes that soil categories the soil category may occur in a climate zone, but no data was available.  NO denotes that the soil type 

does not normally occur within a climate zone.   2 All values are presented in the format of the mean for the soil by climate combination ± 
the 95% confidence limit expressed as a percentage of the mean (that is ± 1.96 * standard error /mean *100).  Values in parentheses are the 

number of soils included in the derivation of mean and standard error values for each combination of soil and climate types.  3 Indicates 

where no data were available from Batjes (2011) but values were derived for the 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories and have been used in the table.  No values of n were available.  A nominal error estimate of ±90% of the mean was assigned 

as per the 2006 IPCC Guidelines.  4 Indicates where no data were available either from Batjes (2011) or in the 2006 IPCC Guidelines for 
National Greenhouse Gas Inventories.  Mean values present the default values used in the 1996 IPCC Guidelines. No values of n were 

available.   A nominal error estimate of ±90% of the mean was assigned as per the 2006 IPCC Guidelines.  5 Climate classes are defined 

according to (IPCC 2006, p. 3.39) using elevation, mean annual temperature, mean annual precipitation, mean annual precipitation to 
potential evapotranspiration ratio and frost occurrence.  6 Soil classes are inferred from the FAO-1990/WRB-2006 classification in 

accordance with IPCC (2006, p. 3.40 - 3.41).  7 Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils 

dominated by 2:1 silicate clay minerals (in the World Reference Base for Soil Resources (WRB) classification: Leptosols, Vertisols, 
Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Calcisols, Gypsisols, Umbrisols, Cambisols, Regosols; 

in USDA classification: Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).   8 Soils with low activity clay (LAC) minerals 

are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminium oxides (in WRB classification: Acrisols, 
Lixisols, Nitisols, Ferralsols, Durisols; in USDA classification: Ultisols, Oxisols, acidic Alfisols).  9 Soils (regardless of taxonomic 

classification) having > 70% sand and < 8% clay (in WRB classification: Arenosols; in USDA classification: Psamments).  10 Soils 

exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols).  11 Soils derived from volcanic 
ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols).  12 Soils with restricted drainage 

leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).  13 The 

Boreal dry and Boreal moist zones and the Polar dry and Polar moist zones were not differentiated.  Results presented represent the SOC30 

stocks for the undifferentiated (undiff.) Boreal (Bx) and Polar (Px) classes. 
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BOX 2.1 (UPDATED) 

ALTERNATIVE FORMULATIONS OF EQUATION 2.25 FOR APPROACH 1 ACTIVITY DATA VERSUS APPROACH 2 OR 

3 ACTIVITY DATA WITH TRANSITION MATRICES 

Two alternative formulations are possible for Equation 2.25 depending on the Approach used to 

collect activity data, including 

Formulation A (Approach 1 for Activity Data Collection) 
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Formulation B (Approaches 2 and 3 for Activity Data Collection) 
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Where: 

p = a parcel of land representing an individual unit of area over which the inventory calculations are 

performed.  

See the description of other terms under the Equation 2.25. 

Activity data may only be available using Approach 1 for data collection (Chapter 3).  These data 

provide the total area at two points in time for climate, soil and land-use/management systems, 

without quantification of the specific transitions in land use and management over the inventory time 

period (i.e., only the aggregate or net change is known, not the gross changes in activity).  With 

Approach 1 activity data, mineral C stock changes are computed using formulation A of Equation 

2.25.  In contrast, activity data may be collected based on surveys, remote sensing imagery or other 

data providing not only the total areas for each land management system, but also the specific 

transitions in land use and management over time on individual parcels of land.  These are considered 

Approach 2 and 3 activity data in Chapter 3, and soil C stock changes are computed using 

formulation B of Equation 2.25.  Formulation B contains a summation by land parcel (i.e., "p" 

represents land parcels in formulation B rather than the set of management systems “i”) that allows 

the inventory compiler to compute the changes in C stocks on a land parcel by land parcel basis. 

 

BOX 2.2 (UPDATED) 

COMPARISON BETWEEN USE OF APPROACH 1 AGGREGATE STATISTICS AND APPROACH 2 OR 3 ACTIVITY DATA 

WITH TRANSITION MATRICES 

This box examines the application of Equation 2.25 to calculate ∆𝐶𝑚𝑖𝑛𝑒𝑟𝑎𝑙 . Assume a country where 

a fraction of the land is subjected to land-use changes, as shown in the following table, where each 

line represents one land unit with an area of 1 Mha (F = Forest Land; C = Cropland; G = Grassland).  

Where a land-use change occurs, it is assumed to occur in the year following the previous inventory 

year (e.g. for land unit 1, the conversion from F to C occurred at the start of 1991 such that for the 

five years from the start of 1991 to the end of the 1995 inventory year the land was under land-use 

C) 
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BOX 2.2 (UPDATED) (CONTINUED) 

COMPARISON BETWEEN USE OF APPROACH 1 AGGREGATE STATISTICS AND APPROACH 2 OR 3 ACTIVITY 

DATA WITH TRANSITION MATRICES 

Land Unit ID 1990 1995 2000 2005 2010 2015 2020 

1 F C C C C C C 

2 F C C C G G G 

3 G C C C C G G 

4 G G F F F F F 

5 C C C C G G G 

6 C C G G G C C 

 
 

For simplicity, it is assumed that the country has a single soil type, with a SOCREF (0-30 cm soil 

C stock under native forest vegetation) value of 77 tonnes C ha-1. Values for FLU are 1.00, 1.05 

and 0.92 for F, G and C, respectively. FMG and FI are assumed to be equal to 1. The time 

dependence of the stock change factors (D) is 20 years. Finally, the soil C stock is assumed to 

be at equilibrium in 1990 (i.e., no changes in land-use occurred during the 20 years prior to 

1990).  When using Approach 1 activity data (i.e., aggregate statistical data), annual changes in 

C stocks are computed for every inventory year following Equation 2.25 above. The following 

table shows the results of calculations1: 

 1990 1995 2000 2005 2010 2015 2020 

F (Mha) 2 0 1 1 1 1 1 

G (Mha) 2 1 1 1 3 3 3 

C (Mha) 2 5 4 4 2 2 2 

SOC0 (Mt C) 457.4 435.1 441.2 441.2 461.2 461.2 461.2 

SOC(0-T) (Mt C) 457.4 457.4 457.4 457.4 457.4 435.1 441.2 

∆C
Mineral

 (Mt C yr-1) 0.0 -1.1 -0.8 -0.8 0.2 1.3 1.0 

 

  

If Approach 2 or 3 data are used in which land-use changes are explicitly known, C stocks can 

be computed taking into account historical changes for every individual land unit. The total C 

stocks for the sum of all units is compared with the most immediate previous inventory year, 

rather than with the inventory of 20 years before to estimate annual changes in C stocks: 

 1990 1995 2000 2005 2010 2015 2020 

SOC0 (Mt C) for unit 1 77.0 75.5 73.9 72.4 70.8 70.8 70.8 

SOC0 (Mt C) for unit 2 77.0 75.5 73.9 72.4 74.5 76.6 78.7 

SOC0 (Mt C) for unit 3 80.9 78.3 75.8 73.3 70.8 73.3 75.8 

SOC0 (Mt C) for unit 4 80.9 80.9 79.9 78.9 78.0 77.0 77.0 

SOC0 (Mt C) for unit 5 70.8 70.8 70.8 70.8 73.3 75.8 78.3 

SOC0 (Mt C) for unit 6 70.8 70.8 73.3 75.8 78.3 76.5 74.6 

SOC0 (Mt C) 457.4 451.8 447.8 443.7 445.8 450.1 455.4 

SOC(0-T) (Mt C) 457.4 457.4 451.8 447.8 443.7 445.8 450.1 

∆C
Mineral

 (Mt C yr-1) 0.0 -1.1 -0.8 -0.8 0.4 0.9 1.0 
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BOX 2.2 (UPDATED) (CONTINUED) 

COMPARISON BETWEEN USE OF APPROACH 1 AGGREGATE STATISTICS AND APPROACH 2 OR 3 ACTIVITY DATA 

WITH TRANSITION MATRICES 

Both methods yield different estimates of C stocks, and use of Approach 2 or 3 data with land 

transition matrices would be more accurate than use of Approach 1 aggregate statistics. However, 

estimates of annual changes of C stocks would not differ greatly, as shown in this example. The 

effect of underlying data approaches on the estimates differ more when there are multiple changes 

in land-use on the same piece of land (as in land units 2, 3 and 6 in the example). It is noteworthy 

that Approach 1, 2 and 3 activity data produce the same changes in C stocks if the systems reach a 

new equilibrium, which occurs with no change in land-use and management for a 20-year time 

period using the Tier 1 method.  Consequently, no C stock increases or losses are inadvertently lost 

when applying the methods for Approach 1, 2 or 3 activity data, but the temporal dynamics do vary 

somewhat as demonstrated above. A spreadsheet is available with the full set of calculations: 

Vol4_Ch2_Spreadsheet_Box_2.2_Calculations.xlsx. 

Organic soils  

No refinement. See Chapter 2, Section 2.2 of the 2013 Wetlands Supplement. 

Soil  inorganic C 

No refinement. 

Tier 2 Methods 

Mineral soils  

A Tier 2 method is an extension of the Tier 1 method that allows an inventory to incorporate country-specific data. 

It is good practice for countries to use a Tier 2 method, if possible, even if they are only able to better specify 

certain components of the Tier 1 method. For example, a compiler may only have data to derive country-specific 

reference C stocks, which would then be used with default stock change factors to estimate changes in soil organic 

C stocks for mineral soils. 

Country-specific data can be used to improve four components when applying the Tier 1 equations for estimating 

stock changes in mineral soils. The components include a) derivation of region or country-specific stock change 

factors, b) reference condition C stocks, c) specification of management systems, and/or d) classification of climate 

and soil categories (e.g., Ogle et al., 2003; VandenBygaart et al., 2004; Tate et al., 2005). Inventory compilers can 

choose to derive specific values for all of these components, or any subset, which would be combined with default 

values provided in the Tier 1 method to complete the inventory calculations using Equation 2.25. Also, the Tier 2 

method uses the same procedural steps for calculations as provided for Tier 1.  

1) Defining management systems. Although the same management systems may be used in a Tier 2 inventory as 

found in the Tier 1 method, the default systems can be disaggregated into a finer categorisation that better 

represents management impacts on soil organic C stocks in a particular country based on empirical data (i.e., stock 

change factors vary significantly for the proposed management systems).  Such an undertaking, however, is only 

possible if there is sufficient detail in the underlying data to classify the land area into the finer, more detailed set 

of management systems. 

2) Climate regions and soil types. Countries that have detailed soil classifications and climatic data have the option 

of developing country-specific classifications. Moreover, it is considered good practice to specify better climate 

regions and soil types during the development of a Tier 2 inventory if the new classification improves the 

specification of reference C stocks and/or stock change factors. In practice, reference C stocks and/or stock change 

factors should differ significantly among the proposed climate regions and soil types based on an empirical analysis. 

Note that specifying new climate regions and/or soil types requires the derivation of country-specific reference C 

stocks and stock change factors. The default reference soil C stocks and stock change factors are only appropriate 

for inventories using the default climate and soil types. 

3) Reference C stocks. Deriving country-specific reference condition soil C stocks (SOCREF) is another possibility 

for improving an inventory using a Tier 2 method (Bernoux et al. 2002), which will likely produce more accurate 

and representative values. Country-specific stocks can be estimated from soil measurements, for example, as part 

of a country’s soil survey. It is important that reliable taxonomic descriptions be used to group soils into categories. 

Three additional points require consideration when deriving the country-specific values, including possible 

specification of country-specific soil categories and climate regions (i.e., instead of using the IPCC default 

classification), choice of reference condition, and choice of depth increment over which the stocks are estimated. 
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Stocks are computed by multiplying the proportion of organic C (i.e., %C divided by 100) by the depth increment 

(default is 30 cm), bulk density, and the proportion of coarse-fragment free soil (i.e., < 2mm fragments) in the 

depth increment (Ogle et al. 2003).  The coarse fragment-free proportion is on a mass basis (i.e., mass of coarse 

fragment-free soil/total mass of the soil). If the soil C reference condition differs from that used in Table 2.3 or the 

soil depth used differs from 30 cm, then appropriate country specific soil C stocks for the reference condition and 

stock change factors must be derived. For developing a Tier 2 method, it would also be possible to define reference 

SOC stocks and SOC stock change factors using an equivalent mass approach (see Box 2.2b) rather than an 

approach based on a fixed depth. 

The soil reference condition is the land-use/cover category (or condition within a land-use/cover category) that is 

used for evaluating the relative effect of land-use change on the amount of soil C storage (e.g., relative difference 

in soil C storage between a reference condition, such as native lands, and another land use, such as cropland, 

forming the basis for FLU in Equation 2.25). It is likely that many countries will use the Tier 1 default soil reference 

condition in a Tier 2 method. However, another land use or condition can be selected to define the reference 

condition, which is good practice if it allows for a more accurate assessment of soil C stock changes.  The same 

reference condition should be used for each climate zone and soil type, regardless of the land use. The soil C stock 

associated with the reference condition is then multiplied by land use, input and management factors to estimate 

the stocks at the beginning and last year in an inventory time period (See Equation 2.25). 

Another consideration in deriving country-specific reference soil C stocks is the possibility of estimating C stocks 

to a different depth in the soil. Default soil C stocks given in Table 2.3 are based on the amount of soil organic C 

in the top 30 cm of a soil profile. A different depth can be selected and used for Tier 2 methods if all appropriate 

data are available. Consideration should be given to the introduction of bias (positive or negative) that may arise 

in response to the depth selected. For example, where depth is set to 20 cm and cultivation mixes soils to a 

depth >20 cm, an apparent difference in SOC stock between cultivated and uncultivated soils may be observed for 

the 20cm depth that is not representative of the change in SOC stocks to the depth over which mixing occurs in 

the cultivated soil. It is good practice to derive reference condition soil C stocks to the depth at which land use and 

management impact soil C stocks, but this will require that the data are available or could be acquired to the 

selected depth. Any change in the depth for reference condition soil C stocks will require derivation of new stock 

change factors (e.g. FLU, FMG and FI see Equation 2.25) consistent with the depth selected because the defaults are 

based on impacts to a 30 cm depth.   

It is possible to use a soil C model to derive steady state soil C stocks indicative of the soil reference condition for 

the various combinations of soil type and climate that exist within a country. However, this would require sufficient 

testing of the model used to provide evidence that the model is adequate for this purpose (See Section 2.5.2 for 

more information). Further information related to soil sampling strategies and how to derive soil reference C stocks 

can be found in Batjes (2011), as well as in a range of soil sampling and analysis texts (e.g. Carter & Gregorich 

2008; de Gruijter et al. 2006) 

4) Stock change factors. An important advancement for a Tier 2 method is the estimation of country-specific stock 

change factors (FLU, FMG and FI). The derivation of country-specific factors can be accomplished using 

experimental/measurement data and computer model simulation. In practice, deriving stock change factors 

involves estimating a response ratio for each study or observation (i.e., the C stocks in different input or 

management classes are divided by the value for the nominal practice, respectively). 

Optimally, stock change factors are based on experimental/measurement data in the country or surrounding region, 

by estimating the response ratios from each study and then analysing those values using an appropriate statistical 

technique (e.g., Ogle et al. 2003 and 2004; VandenBygaart et al. 2004). Studies may be found in published 

literature, reports and other sources, or inventory compilers may choose to conduct new experiments.  Regardless 

of the data source, it is good practice that the plots being compared have similar histories and management as well 

as similar topographic position, soil physical properties and be located in close proximity.  Studies should provide 

soil C stocks (i.e., mass per unit area to a specified depth) or the information needed to calculate soil C stocks (i.e., 

percent organic carbon together with bulk density; proportion of rock in soil, which is often measured as the greater 

than 2mm fraction and by definition contains negligible soil organic C). If percent organic matter is available 

instead of percent organic carbon, a conversion factor of 0.58 can be used to estimate the C content. Moreover, it 

is good practice that the measurements of soil C stocks are taken on an equivalent mass basis (e.g., Ellert et al. 

2001; Gifford & Roderick, 2003). In order to use this method, the inventory compiler will need to determine a 

depth to measure the C stock for the nominal land use or practice, such as native lands or conventional tillage. This 

depth will need to be consistent with the depth for the reference C stocks. The soil C stock for the land-use or 

management change is then measured to a depth with the equivalent mass of soil.  Box 2.2b provides further 

information on issues associated with conducting an inventory on an equivalent mass basis. 

Another option for deriving country-specific values is to simulate stock change factors from advanced models 

(Bhatti et al., 2001). To demonstrate the use of advanced models, simulated stock change factors can be compared 

to with measured changes in C stocks from experiments. It is good practice to provide the results of model 
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evaluation, citing published papers in the literature and/or placing the results in the inventory report. This approach 

is considered a Tier 2 method because it relies on the stock change factor concept and the C estimation method 

elaborated in the Tier 1 method.   

Derivation of country-specific management factors (FMG) and input factors (FI), either with empirical data or 

advanced models, will need to be consistent with the management system classification.  If more systems are 

specified for the inventory, unique factors will need to be derived representing the finer categories for a particular 

land use.   

Another consideration in deriving country-specific stock change factors is their associated time dependence (D in 

Equation 2.25), which determines the number of years over which the majority of a soil C stock change occurs, 

following a management change.  It is possible to use the default time dependence (D) for the land-use sector (e.g., 

20 years for cropland), but the dependence can be changed if sufficient data are available to justify a different time 

period. In addition, the method is designed to use the same time dependence (D) for all stock change factors as 

presented in Equation 2.25. If different periods are selected for FLU, FMG and FI, it will be necessary to compute 

the influence of land use, management and inputs separately and divide the associated stock change dependence. 

This can be accomplished by modifying Equation 2.25 so that SOC at time T and 0-T is computed individually for 

each of the stock change factors (i.e., SOC is computed with FLU only, then computed with FMG, and finally 

computed with FI). The differences are computed for the stocks associated with land use, management, and input, 

dividing by their respective D values, and then the changes are summed.  

Changes in soil C stocks normally occur in a non-linear fashion, and it is possible to further develop the time 

dependence of stock change factors to reflect this pattern. For changes in land use or management that cause a 

decrease in soil C content, the rate of change is highest during the first few years, and progressively declines with 

time. In contrast, when soil C is increasing due to land-use or management change, the rate of accumulation tends 

to follow a sigmoidal curve, with rates of change being slow at the beginning, then increasing and finally 

decreasing with time. If historical changes in land-use or management practices are explicitly tracked by re-

surveying the same locations (i.e., Approach 2 or 3 activity data, see Chapter 3), it may be possible to implement 

a Tier 2 method that incorporates the non-linearity of changes in soil C stock.  

BOX 2.2A (NEW) 

USING EQUIVALENT MASS METHODS TO DERIVE MINERAL SOIL ORGANIC CARBON STOCK CHANGE FACTORS 

Soil carbon stock estimates may be improved when deriving country-specific factors for FLU and FMG, by 

expressing carbon stocks on a soil-mass equivalent basis rather than a soil-volume equivalent (i.e. fixed depth) 

basis. This is because the soil mass to a certain soil depth changes in response to altered management practices 

associated with land use change (e.g. uprooting forest vegetation, land levelling, and rain compaction due to 

the disappearance of the cover of tree canopy). In addition, soil bulk density may be affected differently by 

particular management practices within a given land use (e.g. tillage and machinery traffic within cropping 

systems or the extent of compaction induced by different animal at stocking rates within pasture systems). 

Where the soil bulk density changes due to land use and/or management, the comparison of the soil carbon 

stocks between the cropland, settlements, grassland, wetlands, or forest land to the same depth introduces 

changes to soil carbon stocks as a direct consequence of changes in soil bulk density (Ellert & Bettany 1995).  

With a management induced change in soil bulk density, it is possible to calculate a change in soil carbon stock 

to a fixed depth in the absence of any change in soil carbon content.  Therefore, it is more robust to calculate 

soil carbon stock change on an equivalent mass basis rather than on a fixed-depth basis (Toriyama et al. 2011; 

Bruun et al. 2013; Halvorson et al. 2016; Hu et al., 2016). The equivalent mass approach has more rigorous 

comparability when the bulk density between cropland, grassland, wetland, settlements and forest land is 

markedly different even if the site is within close proximity.  It is important to realise that comprehensive data 

of soil carbon concentration and soil bulk density would be required to derive stock change factors across all 

land uses.  The changing mass of organic carbon itself will affect the equivalent soil mass and therefore 

equivalent mass basis is not appropriate for organic soils.  There are proposals for methods based on only 

equivalent mass of the mineral soil portion (McBratney & Minasny 2010) that would reduce the effect of 

changing soil organic mass distorting the equivalent soil mass.  Adopting an equivalent-mass based carbon 

stock inventory requires thorough consideration of the challenges. 

The impact of biochar C amendments on mineral soils can also be estimated with a Tier 2 method for mineral soils 

using Equation 2.25A and adding this estimate to the result in Equation 2.25.7 

                                                           
7 Biochar is a solid carbonised product from thermochemical conversion through pyrolysis (heating with limited air). The term 

biochar is used herein only to refer to materials that have been produced under process conditions in which relatively easily 

mineralisable organic materials are converted to more persistent forms by heating to above 350 °C with limited air through a 
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EQUATION 2.25A 

ANNUAL CHANGE IN BIOCHAR CARBON STOCK IN MINERAL SOILS RECEIVING BIOCHAR 

ADDITIONS 

 
1

• •


  p p p

n

Mineral TOT C perm

p

BC BC F F  

Where: 

MineralBC  = the total change in carbon stocks of mineral soils associated with biochar amendment, tonnes 

sequestered C yr-1 

pTOTBC  = the mass of biochar incorporated into mineral soil during the inventory year for each 

biochar production type p  , tonnes biochar dry matter yr-1 

pCF  = the organic carbon content of biochar for each production type p , tonnes C tonne-1 biochar 

dry matter 

ppermF  = fraction of biochar carbon for each production type p  remaining (unmineralised) after 100 

years, tonnes sequestered C tonne-1 biochar C 

n  = the number of different production types of biochar 

Country-specific values the C content of the forms of biochar included in the inventory (
pCF in units of tonnes C 

tonne-1 biochar on a dry mass basis) can be measured directly from representative samples of biochar. Country-

specific values may also be based on published data on carbon content of biochar produced using the same 

feedstock and process conditions as the biochar that is applied to soils in the country.  

The fraction of biochar C remaining after 100 years is defined by the parameter 
ppermF . It is not possible to measure 

this value directly due to the time scales involved. So, this parameter is estimated from other data. The elemental 

composition of biochar, specifically the ratio of hydrogen to organic carbon (H/Corg) or ratio of oxygen to organic 

carbon (O/Corg), has been shown to correlate non-linearly with biochar residence time (Spokas 2010; Lehmann et 

al. 2015). Therefore, country-specific Tier 2 estimates of 
ppermF  can be based on H/Corg or O/Corg measured directly 

from representative samples of biochar, or from published data for biochar produced using similar process 

conditions as the biochar that is applied to soils in the country. This parameter can also be derived from the biochar 

elemental composition using published equations relating this composition to mean residence time or half-life (for 

example H/Corg, Lehmann et al. 2015; or O/Corg, Spokas 2010), and extrapolated to the permanence time frame 

assuming one-, two-, or three-pool exponential decay (Zimmerman 2010; Herath et al. 2015; Lehmann et al. 2015). 

A justification should be provided if a permanence time frame other than 100 years is used. 

Since the impact of biochar amendments is a separate calculation and summed with the result from Equation 2.25 

in the Tier 2 method, it is essential that biochar C is not included as an organic amendment in the estimates of 

MineralSOC  in Equation 2.25. 

                                                           
gasification or pyrolysis process. This guidance does not deal with pyrolytic organic materials that result from wild fires or 

open fires, and is only applicable for biochar added to mineral soils. 
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BOX 2.2B (NEW) 

GHG EMISSION SOURCES WITH BIOCHAR PRODUCTION 

Biochar production involves emissions from several different sectors and source categories. All 

GHG emissions and removals are reported in a greenhouse gas inventory, but estimation and 

reporting is done based on sources in which the activity occurs. The guidance in this section is 

addressing C stock changes associated with the end-product use of biochar amendments to mineral 

soils.  However, other emissions do occur along the biochar feedstock supply chains that are 

estimated in other source categories.  For example, the harvesting and use of forest wood biomass 

for biochar production would be part of reported C stock changes in Forest Land Remaining Forest 

Land (Volume 4).  Moreover, biomass may be grown specifically as a feedstock and the C stock 

changes are estimated and reported under the appropriate source categories for land use associated 

with feedstock production (Volume 4).  For plant residues and manures, their utilisation as feedstock 

reduces input of organic amendments to soil and thereby affects soil C stocks in cropland and 

grassland, and possibly other land uses receiving manure amendments (Volume 4).  For waste 

materials, their utilisation as feedstock reduces input to waste streams and is addressed in the 

calculation of emissions from waste management (Volume 5). There may also be use of fossil fuels 

in the harvesting, transport and pyrolysis of the feedstock and a potential release of other non-CO2 

greenhouse gases during the heating process that would be included in the energy sector (Volume 

2). 

Organic soils  

No refinement. See Chapter 2, Section 2.2 of the 2013 Wetlands Supplement. 

Soil  inorganic C 

No refinement. 

Tier 3: Advanced estimation systems  

Tier 3 approaches for soil C involve the development of an advanced estimation system that will typically better 

capture annual variability in fluxes, unlike Tier 1 and 2 approaches that mostly assume a constant annual change 

in C stocks over an inventory time period based on a stock change factor. Essentially, Tiers 1 and 2 represent land-

use and management impacts on soil C stocks as a linear shift from one equilibrium state to another. To understand 

the implications better, it is important to note that soil C stocks typically do not exist in an absolute equilibrium 

state or change in a linear manner through a transition period, given that many of the driving variables affecting 

the stocks are dynamic, periodically changing at shorter time scales before a new “near” equilibrium is reached. 

Tier 3 approaches can address this non-linearity using more advanced models than Tiers 1 and 2 methods, and/or 

by developing a measurement-based inventory with a monitoring network. In addition, Tier 3 inventories are 

capable of capturing longer-term legacy effects of land use and management. In contrast, Tiers 1 and 2 approaches 

typically only address the most recent influence of land use and management, such as the last 20 years for mineral 

C stocks. See Section 2.5 (Generic Guidance for Tier 3 methods) for additional discussion on Tier 3 methods 

beyond the text given below. 

Mineral soils  

Model-based approaches can use mechanistic simulation models that capture the underlying processes driving 

carbon gains and losses from soils in a quantitative framework, such as the influence of land use and management 

on processes controlling carbon input resulting from plant production and litter fall as well as microbial 

decomposition (e.g., McGill, 1996; Smith et al., 1997b; Smith et al., 2000; Falloon and Smith, 2002; Tate et al., 

2005; Campbell&Paustian, 2015). Note that Tier 3 methods provide the only current opportunity to explicitly 

estimate the impact of soil erosion on C fluxes (Box 2.2d). In addition, Tier 3 model-based approaches may 

represent C transfers between biomass, dead biomass and soils, which are advantageous for ensuring conservation 

of mass in predictions of C stock changes in these pools relative to CO2 removals and emissions to the atmosphere. 

Tier 3 modelling approaches are capable of addressing the influence of land use and management with a dynamic 

representation of environmental conditions that affect the processes controlling soil C stocks, such as weather, 

edaphic characteristics, and other variables. The impact of land use and management on soil C stocks can vary as 

environmental conditions change, and such changes are not captured in lower Tiers, which may create biases in 

those results. Tier 3 methods can also include lateral flows of C associated with erosion and deposition (See Box 

2.2c). Consequently, Tier 3 approaches are capable of providing a more accurate estimation of C stock changes 

associated with land-use and management activity if the modelling approach has been calibrated to the range of 

environmental conditions, soil properties and management practices to which the model will subsequently be 

applied (See Section 2.5 for more information).     
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For Tier 3 approaches, a set of benchmark sites will be needed to evaluate model results. Ideally, a series of 

permanent, benchmark monitoring sites would be established with statistically replicated design, capturing the 

major climatic regions, soil types, and management systems as well as system changes, and would allow for 

repeated measurements of soil organic C stocks over time (Smith, 2004a).  Monitoring is based on re-sampling 

plots every 3 to 5 years or each decade; shorter sampling frequencies are not likely to produce significant 

differences due to small annual changes in C stocks relative to the large total amount of C in a soil (IPCC, 2000; 

Smith, 2004b).  

BOX 2.2C (NEW) 

REPRESENTING THE IMPACT OF SOIL EROSION AND DEPOSITION ON SOIL CARBON STOCK CHANGES 

Soil erosion and/or deposition can have marked effect on measured carbon stocks (Chappell et al. 

2016).  Soil carbon stock changes due to soil erosion/deposition are not considered to be embedded 

in factors for land-use change or land management.  In practice, it is difficult to determine whether 

soil erosion/deposition effects are or are not included in stock change factors derived from empirical 

data.  Different land use changes and subsequent management practices could result in different 

extents of soil movement. For example, land-use change from forest or grassland to cropland, or 

land management change from no-till to full tillage are typically associated with increased soil 

movement.  The amounts of soil erosion or deposition are rarely measured or documented in datasets 

that have quantified soil carbon stock changes.   

One option to include the effects of soil erosion and deposition is using well-tested models that 

capture these dynamics with required input data to make estimates of the effect of past 

erosion/deposition on soil carbon stocks (Van Oost et al. 2005; Causarano et al. 2007).  However, 

use of such models also requires having empirical data on erosion/deposition effects on carbon 

stocks for evaluation of the model predictions. Another option is to consistently apply a rationale 

that identifies measured data of soil carbon stock changes that are affected by erosion/deposition for 

the development of Tier 2 or 3 methods, developing factors related to erosion/deposition impacts, 

and then applying these factors in areas affected by erosion/deposition.  

In addition to model-based approaches, Tier 3 methods afford the opportunity to develop a measurement-based 

inventory using a similar monitoring network as needed for model evaluation. However, measurement networks, 

which serve as the basis for a complete inventory, will have a considerably larger sampling density to minimise 

uncertainty, and to represent all management systems and associated land-use changes, across all climatic regions 

and major soil types (Sleutel et al., 2003; Lettens et al., 2004). Measurement networks can be based on soil 

sampling at benchmark sites or flux tower networks. Flux towers, such as those using eddy covariance systems 

(Baldocchi et al., 2001), constitute a unique case in that they measure the net exchange of CO2 between the 

atmosphere and land surface. Thus, with respect to changes in C stocks for the soil pool, flux tower measurement 

networks are subject to the following caveats: 1) towers need to occur at a sufficient density to represent fluxes 

for the entire country; 2) flux estimates need to be attributed to individual land-use sectors and specific land-use 

and management activities; and 3) CO2 fluxes need to be further attributed to individual pools including stock 

changes in soils (also biomass and dead organic matter). Additional considerations about soil measurements are 

given in the previous section on Tier 2 methods for mineral soils (See stock change factor discussion).  

It is important to note that measurement-based inventories represent full C estimation approaches, addressing all 

influences on soil C stocks. Partial estimation of only land-use and management effects may be difficult, however. 

Examples in Box 2.2d provide illustrations of Tier 3 methods for estimating change in mineral soil C stocks, 

including information such as type of data required, brief description of the models and methods that are used to 

apply the models. For Tier 3 methods, it is important to calibrate and test models against field measurements that 

reflect the variability in climate, soil type and land use over which the model will be applied (See Section 2.5.2 

for more information). Application of the equivalent mass approach may be possible for calculating soil C stocks 

with Tier 3 models, and is discussed in Box 2.2e. 
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BOX 2.2D  (NEW) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

Four examples of Tier 3 model applications for soil organic C stock changes are elaborated in this 

section based on government reporting to the UNFCCC by the Australia, Finland, Japan and United 

States. 

Australia 

Australia has implemented a Tier 3 inventory approach based on the use of the FullCAM model 

(Richards 2001; Richards & Evans 2004) to estimate management induced changes in the stock of 

organic carbon held in the 0-30 cm soil depth layer over time.  Australian lands included in the 

inventory were allocated to forest land, cropland, grassland, deforested land, forest land converted 

to cropland and grassland, grassland converted to forest land, and land with sparse woody vegetation 

based on national land use mapping (ABARES 2016) and remote sensing protocols (Caccetta et al. 

2012)  Detailed presentations of the soil carbon accounting processes under all land uses can be 

found in the National Inventory Reports (NIR) (http://www.environment.gov.au/climate-

change/greenhouse-gas-measurement/publications/national-inventory-report-2015).  Here a 

summary is provided of the Tier 3 approach as applied to soil organic carbon stocks for cropland 

and grassland. 

The FullCAM model simulates soil carbon stock change in 25m x 25m areas across Australia.  This 

size was selected as it represented the finest scale to which the remote sensing process (Caccetta et 

al. 2012; Tupek et al. 2016) can detect land use change and quantify movement of lands between 

the various classes included in the inventory.  The data requirements and processes used to quantify 

the impact of management on Australia’s 0-30 cm stock of soil organic carbon can be summarised 

as follows: 

1) Spatially explicit daily and monthly climatic data (average temperature, total rainfall and total 

pan evaporation) are extracted from the Australian Bureau of Meteorology database and then 

interpolated using thin plate smoothing splines according to (Kesteven & Lansberg 2004).  

Additionally, spatially explicit estimates of soil clay content and water holding capacity are 

extracted from the Soil and Landscape Grid of Australia 

(www.clw.csiro.au/aclep/soilandlandscapegrid/).  These data represent required inputs the 

modelling described in steps 4 and 5. 

2) The initial 0-30 cm total soil organic carbon stock is defined using a national map derived by 

Viscarra Rossel et al. (2014).  This total stock is then allocated to three measurable organic 

carbon fractions (particulate, humus and resistant forms) that provide estimates for the 

respective stocks of resistant plant material, humus and inert carbon required to initialize the 

FullCAM model (Baldock et al. 2013; Skjemstad et al. 2004; Viscarra Rossel & Hicks 2015).   

3) The types of crops and pastures grown, the applied management practices (e.g. tillage and 

residue management) and their relative allocations within defined land areas are calculated 

using national agricultural statistics derived from censuses conducted every five years 

(http://www.abs.gov.au/Agriculture).  

4) For the bulk of Australian crops and pastures, total growth is defined by the availability of water 

received as rainfall.  Thus, a plant growth model applying species specific transpiration 

efficiency terms to the amount of water made available to growing plants is used to estimate 

above ground dry matter production.  This production is then used along with plant species 

specific harvest indices (Unkovich et al. 2010) and root:shoot ratios to define the mass of carbon 

entering the soil and/or deposited on the soil surface for each monthly time step within the 

FullCAM simulation model.  Within irrigated systems, plant growth attains defined plant 

specific maximum values each year. 

5) The FullCAM model is then initialized and run on a monthly time step.  During each step, 

decomposition of decomposable and resistant plant materials and humus pools of C occurs 

according to first order decay equations. The values of the decomposition rate constants 

associated with the resistant plant material and humus pools of carbon within the model were 

calibrated to Australian conditions to the corresponding measured stocks of soil carbon fractions 
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BOX 2.2D (NEW) (CONTINUED) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

5) (continued) of soil temperature  and water content on decomposition is modelled through the 

application of decomposition rate constant modifiers as done in the Rothamsted Carbon Model 

(RothC) soil carbon model (Jenkinson 1990). 

The impact of management on soil carbon stocks is quantified by running the described modelling 

process forward from 1970 under two scenarios.  In both scenarios, the same relative spatial 

allocation of regimes (combinations of crop or pasture species and management practice) is used 

from 1970 to 1990.  From 1990 onwards, the relative spatial allocation of regimes is held constant 

at 1990 values in the first scenario.  For the second scenario, the regimes are varied from 1991 

onwards to reflect the temporal variations in regimes defined within the available data.  The first 

scenario thus estimates the soil carbon stock that would have been attained with no change in 

management from that present in 1990; while the second scenario estimates the soil carbon stock 

attained when management changes over time are accounted for.  The net impact of management 

since 1990 is then calculated as the difference in the soil organic carbon stock between the two 

scenarios. 

Finland 

Finland uses Yasso07 soil carbon model as a Tier 3 method to report carbon stock changes on forest 

and agricultural lands as well as in the cases of land use change (Statistics Finland 2017). Yasso07 

is based on a few explicit assumptions on soil carbon cycling and these assumptions form a 

conceptual model further formulated into mathematical equations (Tuomi et al. 2011b; US EPA 

2017). The model has four state variables based on the solubility of the organic material (acid-, 

water-, ethanol- and non-soluble and in addition, there is a humus pool that has the lowest decay 

rate.  

The model is used in the NGHGI to generate annual C stock change rates per hectare based on 

regional estimates of organic matter input (forest and crop statistics) and annual climate parameters. 

Litter input is given in the four solubility fractions based on laboratory measurements. Organic 

matter decays in the five model fractions driven by temperature and precipitation. The resulting C 

stock change rates are applied on the respective land areas to produce regional estimates of C stock 

change. The model is used consistently across different land use categories so that e.g. the initial C 

allocation to different model compartments in forest land converted to cropland is based on the 

results of the simulation of forest soil remaining forest soil. 

Model parameters rely on a large global database of measurements of litter decay, wood decay and 

soil carbon and all parameter values have been estimated using Markov chain Monte Carlo method. 

Alternative details in the model structure have been evaluated using Bayesian criteria (Tuomi et al. 

2011a). The results of Yasso07 model are characterized by statistical probability distributions that 

represent uncertainty about the parameter values. The Yasso07 approach makes it possible and easy 

to add new data to the database and develop the model continuously (model-data-fusion). The model 

has been extensively tested against independent data on forest land (Dalsgaard et al. 2016; Lehtonen 

et al. 2016; Rantakari et al. 2012; Tupek et al. 2016) and also on cropland (Karhu et al. 2012). 

Yasso07 is a standard component of Max Planck Institute Earth System Model (Goll et al. 2017) 

and the model is used for UNFCCC reporting in several countries (e.g. Austria, Benin, Czech 

Republic, Estonia, Ireland, Finland, Latvia, Norway, Romania and Switzerland), see Hernandez et 

al. (2017). The model is widely used because it is simple, transparent, verifiable, freely available 

and easy to apply. For more information, consult http://en.ilmatieteenlaitos.fi/yasso. 
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BOX 2.2D (NEW) (CONTINUED) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

Japan 

Japan uses a Tier 3 method to estimate soil organic C stock changes in agriculture land (cropland 

and managed grassland) based on RothC. RothC model is a soil carbon dynamic model validated by 

using long-term field experiments (Coleman & Jenkinson 1996). In order to apply the model to 

Japanese agricultural condition, the model was tested against long-term experimental data sets in 

Japanese agricultural lands. It was found that the original model could apply for non-volcanic upland 

soils without any modification or calibration (Shirato & Taniyama 2003), however, the model 

required modification for Andosols and paddy soils by taking unique mechanisms of soil C dynamics 

in these soils into account. For Andosols, the decomposition rate constant of the HUM (humified 

organic matter) pool of RothC was reduced because the presence of Al-humus complexes enhances 

its stability and resistance to decomposition (Shirato et al. 2004). For paddy soils, the decomposition 

rate constants of all four active C pools was reduced on the basis of differences in organic matter 

decomposition rates between upland and paddy (submerged in the rice growing season) soil 

conditions (Shirato & Yokozawa 2005). Model performance was verified by comparing the model 

output with measured soil C stock data under various climate condition, soil types and land uses. 

The model is applied at the country scale (Yagasaki & Shirato 2014) using weather data (monthly 

average temperature, precipitation, and open-pan evaporation), soil property data (soil clay content, 

depth of surface soil, carbon content at the starting year, and bulk density), land use data and other 

activity data (carbon input from crop residue and organic manure) and calculated at each standard 

mesh (100 x 100m). The weather, soil property and land use data are available as spatially explicit 

data set, while carbon input from crop residue and organic manure are calculated by statistical data 

and survey data available based on public administration boundary basis. The all obtained data are 

allocated to each standard mesh and then run the model.  

In the NGHGI, the model is used to generate average C stock change rates per hectare in each 

prefecture and in each sub-category (rice field, upland crop fields, orchards and managed grassland). 

This is because the land use data used for the model estimation (grid-based data set) and used for 

the official land classification in the NGHGI (statistical data) are not consistent very much and so 

Japan put its priority using a consistent land area data among every estimate relating to agriculture 

land in AFOLU sector. This is one of the key challenges of the model application to the NGHGI and 

the development of a standard spatially explicit land use data set is needed for the further 

improvement of estimations. 

United States of America 

The United States uses a Tier 3 method based on the DayCent Ecosystem Model to estimate soil C 

stock changes in cropland and grassland (Ogle et al. 2010, US EPA 2017).  DayCent is a process-

based model that simulated soil organic matter dynamics using a three-pool structure originally 

developed for the Century Model (Parton et al. 1998; Parton et al. 1987). Model testing and 

parameterisation of DayCent has been conducted across a wide range of cropland and grassland sites 

globally. For the inventory, the model is applied using land use data that are compiled through a 

national survey, National Resources Inventory (NRI) (Nusser et al. 1998; Nusser & Goebel 1997).  

The NRI has a two-stage sample with recorded history, starting in 1979, for approximately 400,000 

survey locations that are cropland or grassland throughout the conterminous United States. Each 

survey location that is identified as cropland also has the specific crop rotation histories that were 

grown by the farmer.  Daily weather and soils data are needed to drive the model, and this 

information is based on national datasets. Remote sensing data is used to inform production 

estimates based on MODIS Enhanced Vegetation Index products.  Other data are also incorporated 

into the analysis, such as N fertilization rate data compiled through surveys.   
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BOX 2.2D (NEW) (CONTINUED) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

One of the key challenges in developing a Tier 3 method is to robustly address uncertainties.  

Compilers in the United States have addressed uncertainties in model inputs (e.g., fertilization rates, 

tillage practices and organic amendments), model structure and parameterization, and propagate 

uncertainty through the model application using an Approach 2 method (i.e., Monte Carlo Analysis) 

(Ogle et al. 2010).  Model structure and parameterization is addressed using an empirically-based 

method in which observed experimental data are compared to simulation results, and predictive 

ability of the model is quantified using statistical methods (Ogle et al. 2007).  These experimental 

observations are independent from the data that are used to parameterise the model. The resulting 

statistical equation is applied to adjust for biases in model results, if needed, and address the 

precision of the model C stock changes. The major advantage of the Tier 3 method is that the results 

are much more precise than Tier 1 and 2 methods, with uncertainty ranging from ±60% in the Tier 

1 method to about ±20% for the Tier 3 method (US-EPA 2017).  The improved precision is due to 

the process-based framework in the DayCent model that incorporates more drivers of soil C stock 

changes than lower Tier methods.  However, without adequate activity data or a model with 

sufficient prediction capability, a Tier 3 method could produce less precise results than lower-tier 

methods. 

 

BOX 2.2E (NEW) 

CONSIDERATION OF EQUIVALENT MASS METHODS WITHIN TIER 3 MODELLING APPROACHES 

Process models that are used to estimate carbon stock changes over time, such as Century (Parton et 

al. 1987) and RothC (Coleman & Jenkinson 1996) can also be affected by changing soil bulk density 

by the nature of the carbon stock data used for model parameterisation.  These types of models 

simulate the mass balance of organic carbon over time to a defined soil depth (e.g., 30 cm or an 

alternative).  The models require initialisation at which point an initial carbon stock is determined 

along with an initial soil mass in some cases (although the soil mass is rarely determined explicitly, 

it is implicit in the model application).  The models therefore use an equivalent soil mass approach 

to simulate changes in carbon stocks since the estimated carbon stocks are unaffected by concurrent 

soil bulk density changes. If the models are parameterised to carbon stocks on an equivalent mass 

basis, then the carbon stock changes estimated by the parametrised model, and for a factor derived 

from those modelled estimates, will be for soil carbon change on an equivalent mass basis. However, 

the carbon stock change calculated from carbon stock measurements for a fixed depth is the net 

effect of the effect of soil bulk density changes on carbon stocks and the effect of biochemical 

processes on carbon stocks. Therefore, when parameterised using fixed-depth carbon stock data, the 

model will be estimating the net effect of these processes, so the modelled carbon stock estimates 

only will be appropriate for the fixed depth and cannot address changes in mass of the soil over time. 

Careful consideration of the effects of model assumptions and choice of data used for model 

parametrisation and testing is required to understand and properly report the basis of the carbon 

stock changes that are estimated directly or indirectly by a model based on parameterisation with 

data from fixed depths. 

Tier 3 methods can be used to model the loss of biochar C over time after its application to mineral soils and to 

account for GHG sources and sinks not captured in Tier 2, to address changes to N2O or CH4 fluxes from soils8, 

to estimate changes to net primary production (and associated C inputs to soil organic C pool), the mechanisms 

and effects underlying interactions with soil, climate and other environmental variables. Although positive priming 

of labile soil organic matter is not expected to have a significant impact in the long term (Annex 2A.2), negative 

priming leading to an increase in soil organic carbon stocks could have a substantial impact in soils amended with 

biochar (Woolf et al. 2012). Similarly, to the extent that there are reductions in net emissions of N2O and CH4 

from soil and increases in plant growth, there could be a larger impact of biochar additions on reducing greenhouse 

gas emissions (Gaunt & Lehmann 2008; Woolf et al. 2010; Hammond et al. 2011). It is also important to recognise 

                                                           
8 Impacts of biochar amendments on N2O are estimated in the methods for soil N2O emissions (Chapter 11), and impacts on 

CH4 emissions are estimated from specific land uses in the inventory, such as Rice Cultivation (Chapter 5) and Wetlands 

(Chapter 7).  
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that the dynamic nature of biochar decomposition is important because its net impact on soil C stocks and GHG 

emissions varies with time, which can be better addressed with a Tier 3 model. 

Examples of advanced modelling approaches include representing the dynamic impact of biochar decomposition 

over long time scales (Lenton & Vaughan 2009), and process-based modelling using biochar-specific LCA models 

(e.g. Roberts et al. 2010; Hammond et al. 2011; Shackley et al. 2012; Sparrevik et al. 2013).  There are also 

applications that have focused on soil greenhouse gas emission balances, together with modelling of 

decomposition rates (H/Corg ratio; Lehmann et al. 2015) and priming (Woolf & Lehmann, 2012; Wang et al. 2016). 

In addition, models have been used to simulate nitrous oxide reductions (Cayuela et al. 2013, 2014) as a function 

of H/Corg ratio (Cayuela et al. 2015) and feedbacks to primary plant productivity (Jeffery et al. 2011, 2015) and 

associated impacts on SOC stocks (Whitman et al. 2010, 2011). 

Organic soils  

No Refinement. See Chapter 2 of the 2013 Wetlands Supplement. 

Soil  inorganic C 

No Refinement.  

2.4 NON-CO2 EMISSIONS 

There are significant emissions of non-greenhouse gases from biomass burning, livestock and manure management, 

or soils. N2O emissions from soils are covered in Chapter 11, where guidance is given on methods that can be 

applied nationally (i.e., irrespective of land-use types) if a country chooses to use national scale activity data. The 

guidance on CH4 and N2O emissions from livestock and manure are addressed only in Chapter 10 because 

emissions do not depend on land characteristics. A generic approach to estimating greenhouse gas emissions from 

fire (both CO2 and non-CO2 gases) is described below, with land-use specific enhancements given in the Forest 

Land, Grassland and Cropland chapters. It is good practice to check for complete coverage of CO2 and non-CO2 

emissions due to losses in carbon stocks and pools to avoid omissions or double counting. 

Emissions from fire include not only CO2, but also other greenhouse gases, or precursors of greenhouse gases, that 

originate from incomplete combustion of the fuel. These include carbon monoxide (CO), methane (CH4), non-

methane volatile organic compounds (NMVOC) and nitrogen (e.g., N2O, NOx) species (Levine, 1994). In the 1996 

IPCC Guidelines and GPG2000, non-CO2 greenhouse gas emissions from fire in savannas and burning of crop 

residues were addressed along with emissions from Forest Land and Grassland conversion. The methodology 

differed somewhat by vegetation type, and fires in Forest Land were not included. In the GPG-LULUCF, emissions 

(CO2 and non-CO2) from fires were addressed, particularly in the chapter covering Forest Land (losses of carbon 

resulting from disturbances). In the Cropland and Grassland chapters, only non-CO2 emissions were considered, 

with the assumption that the CO2 emissions would be counterbalanced by CO2 removals from the subsequent re-

growth of the vegetation within one year. This assumption implies maintenance of soil fertility – an assumption 

which countries may ignore if they have evidence of fertility decline due to fire. In Forest Land, there is generally 

a lack of synchrony (non-equivalence of CO2 emissions and removals in the year of reporting).   

These Guidelines provide a more generic approach for estimating emissions from fire. Fire is treated as a 

disturbance that affects not only the biomass (in particular, above-ground), but also the dead organic matter (litter 

and dead wood). The term `biomass burning` is widely used and is retained in these Guidelines but acknowledging 

that fuel components other than live biomass are often very significant, especially in forest systems. For Cropland 

and Grassland having little woody vegetation, reference is usually made to biomass burning, since biomass is the 

main pool affected by the fire. 

Countries should apply the following principles when estimating greenhouse gas emissions resulting from fires in 

Forest Land, Cropland and Grassland: 

 Coverage of reporting: Emissions (CO2 and non- CO2) need to be reported for all fires (prescribed fires and 

wildfires) on managed lands (the exception is CO2 from Grassland, as discussed below). Where there is a land-

use change, any greenhouse gas emission from fire should be reported under the new land-use category 

(transitional category). Emissions from wildfires (and escaped prescribed fires) that occur on unmanaged lands 

do not need to be reported, unless those lands are followed by a land-use change (i.e., become managed land). 

 Fire as a management tool (prescribed burning): greenhouse gas emissions from the area burnt are reported, 

and if the fire affects unmanaged land, greenhouse gas emissions should also be reported if the fire is followed 

by a land-use change. 

 Equivalence (synchrony) of CO2 emissions and removals: CO2 net emissions should be reported where the 

CO2 emissions and removals for the biomass pool are not equivalent in the inventory year. For grassland 
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biomass burning and burning of agriculture residues, the assumption of equivalence is generally reasonable. 

However, woody vegetation may also burn in these land categories, and greenhouse gas emissions from those 

sources should be reported using a higher Tier method. Further, in many parts of the world, grazing is the 

predominant land use in Forest Land that are regularly burnt (e.g., grazed woodlands and savannas), and care 

must be taken before assuming synchrony in such systems. For Forest Land, synchrony is unlikely if 

significant woody biomass is killed (i.e., losses represent several years of growth and C accumulation), and 

the net emissions should be reported. Examples include: clearing of native forest and conversion to agriculture 

and/or plantations and wildfires in Forest Land.  

 Fuels available for combustion: Factors that reduce the amount of fuels available for combustion (e.g., from 

grazing, decay, removal of biofuels, livestock feed, etc.) should be accounted for. A mass balance approach 

should be adopted to account for residues, to avoid underestimation or double counting (refer to Section 2.3.2).  

 Annual reporting: despite the large inherent spatial and temporal variability of fire (in particular that from 

wildfires), countries should estimate and report greenhouse gas emissions from fire on an annual basis.      

These Guidelines provide a comprehensive approach for estimating carbon stock changes and non-CO2 emissions 

resulting from fire in the Forest Land (including those resulting from forest conversion), and non-CO2 emissions 

in the Cropland and Grassland. Non-CO2 emissions are addressed for the following five types of burning: (1) 

grassland burning (which includes perennial woody shrubland and savanna burning); (2) agricultural residues 

burning; (3) burning of litter, understory and harvest residues in Forest Land, (4) burning following forest clearing 

and conversion to agriculture; and (5) other types of burning (including those resulting from wildfires). Direct 

emissions of CO2 are also addressed for items (3) and (4) and (5). Since estimating emissions in these different 

categories have many elements in common, this section provides a generic approach to estimate CO2 and non-CO2 

emissions from fire, to avoid repetition in specific land-use sections that address emissions from fire in these 

Guidelines.  

Prescribed burning of savannas is included under the grassland biomass burning section (Chapter 6, Grassland, 

Section 6.3.4). It is important to avoid double counting when estimating greenhouse gas emissions from savannas 

that have a vegetation physiognomy characteristic of Forest Land. An example of this is the cerradão (dense 

woodland) formation in Brazil which, although being a type of savanna, is included under Forest Land, due to its 

biophysical characteristics.   

In addition to the greenhouse gas emissions from combustion, fires may lead to the creation of an inert carbon 

stock (charcoal or char). Post-fire residues comprise unburned and partially burnt components, as well as a small 

amount of char that due to its chemical nature is highly resistant to decomposition. The knowledge of the rates of 

char formation under contrasting burning conditions and subsequent turnover rates is currently too limited (Forbes 

et al., 2006; Preston and Schmidt, 2006) to allow development of a reliable methodology for inventory purposes, 

and hence is not included in these Guidelines. A technical basis for further methodological development is included 

in Appendix 1. 

Additionally, although emissions of NMVOC also occur as a result of fire, they are not addressed in the present 

Guidelines due to the paucity of the data and size of uncertainties in many of the key parameters needed for the 

estimation, which prevent the development of reliable emission estimates.  

METHOD DESCRIPTION 

Each relevant section in these Guidelines includes a three-tiered approach to address CO2 (where applicable) and 

non-CO2 greenhouse gas emissions from fire. The choice of Tier can be made following the steps in the decision 

tree presented in Figure 2.6. Under the Tier 1 approach, the formulation presented in Equation 2.27 can be applied 

to estimate CO2 and non-CO2 emissions from fire, using the default data provided in this chapter and in the relevant 

land-use sections of these Guidelines. Higher Tiers involve a more refined application of Equation 2.27. 

Since Tier 1 methodology adopts a simplified approach to estimating the dead organic matter pool (see Section 

2.3.2), certain assumptions must be made when estimating net greenhouse gas emissions from fire in those systems 

(e.g. Forest Land, and Forest Land converted to another land use), where dead organic matter can be a major 

component of the fuel burnt. Emissions of CO2 from dead organic matter are assumed to be zero in forests that are 

burnt, but not killed by fire. If the fire is of sufficient intensity to kill a portion of the forest stand, under Tier 1 

methodology, the C contained in the killed biomass is assumed to be immediately released to the atmosphere. This 

Tier 1 simplification may result in an overestimation of actual emissions in the year of the fire, if the amount of 

biomass carbon killed by the fire is greater than the amount of dead wood and litter carbon consumed by the fire.  

Non-CO2 greenhouse gas emissions are estimated for all fire situations. Under Tier 1, non-CO2 emissions are best 

estimated using the actual fuel consumption provided in Table 2.7, and appropriate emission factors (Table 2.8) 

(i.e., not including newly killed biomass as a component of the fuel consumed). Clearly, if fire in forests contributes 

significantly to net greenhouse gas emissions, countries are encouraged to develop a more complete methodology 
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(higher tiers) which includes the dynamics of dead organic matter and improves the estimates of direct and post-

fire emissions. 

For Forest Land converted to other land uses, organic matter burnt is derived from both newly felled vegetation 

and existing dead organic matter, and CO2 emissions should be reported.  In this situation, estimates of total fuel 

consumed (Table 2.6) can be used to estimate emissions of CO2 and non- greenhouse gases using Equation 2.27. 

Care must be taken, however, to ensure that dead organic matter carbon losses during the land-use conversion are 

not double counted in Equations 2.27 (as losses from burning) and Equation 2.23 (as losses from decay). 

A generic methodology to estimate the emissions of individual greenhouse gases for any type of fire is summarised 

in Equation 2.27. 

EQUATION 2.27 

ESTIMATION OF GREENHOUSE GAS EMISSIONS FROM FIRE 

310    fire B f efL A M C G  

Where: 

fireL  = amount of greenhouse gas emissions from fire, tonnes of each GHG e.g., CH4, N2O, etc. 

A  = area burnt, ha  

BM  = mass of fuel available for combustion, tonnes ha-1. This includes biomass, ground litter and 

dead wood. When Tier 1 methods are used then litter and dead wood pools are assumed zero, 

except where there is a land-use change (see Section 2.3.2.2). 

fC  = combustion factor, dimensionless (default values in Table 2.6) 

efG  = emission factor, g kg-1 dry matter burnt (default values in Table 2.5) 

Note. Where data for MB and Cf are not available, a default value for the amount of fuel actually burnt (the product 

of MB and Cf) can be used (Table 2.4) under Tier 1 methodology.  

For CO2 emissions, Equation 2.27 relates to Equation 2.14, which estimates the annual amount of live biomass 

loss from any type of disturbance.  

The amount of fuel that can be burnt is given by the area burnt and the density of fuel present on that area. The 

fuel density can include biomass, dead wood and litter, which vary as a function of the type, age and condition of 

the vegetation. The type of fire also affects the amount of fuel available for combustion. For example, fuel available 

for low-intensity ground fires in forests will be largely restricted to litter and dead organic matter on the surface, 

while a higher-intensity ‘crown fire’ can also consume substantial amounts of tree biomass.   

The combustion factor is a measure of the proportion of the fuel that is actually combusted, which varies as a 

function of the size and architecture of the fuel load (i.e., a smaller proportion of large, coarse fuel such as tree 

stems will be burnt compared to fine fuels, such as grass leaves), the moisture content of the fuel and the type of 

fire (i.e., intensity and rate of spread which is markedly affected by climatic variability and regional differences as 

reflected in Table 2.4). Finally, the emission factor gives the amount of a particular greenhouse gas emitted per 

unit of dry matter combusted, which can vary as a function of the carbon content of the biomass and the 

completeness of combustion. For species with high N concentrations, NOx and N2O emissions from fire can vary 

as a function of the N content of the fuel. A comprehensive review of emission factors was conducted by Andreae 

and Merlet (2001) and is summarised in Table 2.5. 

Tier 2 methods employ the same general approach as Tier 1 but make use of more refined country-derived emission 

factors and/or more refined estimates of fuel densities and combustion factors than those provided in the default 

tables. Tier 3 methods are more comprehensive and include considerations of the dynamics of fuels (biomass and 

dead organic matter). 
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Figure 2.6 Generic decision tree for identification of appropriate tier to estimate 

greenhouse gas emissions from fire in a land-use category 
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TABLE 2.4 (UPDATED) 

FUEL (DEAD ORGANIC MATTER PLUS LIVE BIOMASS) BIOMASS CONSUMPTION VALUES (TONNES DRY MATTER HA-1) FOR 

FIRES IN A RANGE OF VEGETATION TYPES 

(To be used in Equation 2.27, to estimate the product of quantities ‘MB • Cf’, i.e., an absolute amount) 

Vegetation type Subcategory Mean SE References 

Primary tropical forest (slash 

and burn) 

Primary tropical forest 83.9 25.8 7, 15, 66, 3, 16, 17, 45 

Primary open tropical forest 163.6 52.1 21,  

Primary tropical moist forest 160.4 11.8 37, 73 

Primary tropical dry forest - - 66 

All primary tropical forests 119.6 50.7  

Secondary tropical forest 

(slash and burn) 

Young secondary tropical forest (3-5 yrs) 8.1 - 61 

Intermediate secondary tropical forest (6-10 

yrs) 
41.1 27.4 61, 35 

Advanced secondary tropical forest (14-17 

yrs) 
46.4 8.0 61, 73 

All secondary tropical forests 42.2 23.6 66, 30 

All Tertiary tropical forest 54.1 - 66, 30 

Boreal forest 

Wildfire (general) 52.8 48.4 2, 33, 66 

Crown fire 25.1 7.9 11, 43, 66, 41, 63, 64 

Surface fire 21.6 25.1 43, 69, 66, 63, 64, 1 

Post logging slash burn 69.6 44.8 49, 40, 66, 18 

Land clearing fire 87.5 35.0 10, 67 

All boreal forest 41.0 36.5 43, 45, 69, 47 

Eucalypt forests 

Wildfire 53.0 53.6 66, 32, 9 

Prescribed fire – (surface) 16.0 13.7 66, 72, 54, 60, 9 

Post logging slash burn 168.4 
168.

8 
25, 58, 46 

Felled, wood removed, and burned (land-

clearing fire) 
132.6 - 62, 9 

All Eucalypt forests 69.4 100.

8 
 

Other temperate forests 

Wildfire 19.8 6.3 32, 66 

Post logging slash burn 77.5 65.0 55, 19, 14, 27, 66 

Felled and burned (land-clearing fire) 48.4 62.7 53, 24, 71 

All “other” temperate forests 50.4 53.7 43, 56 

Shrublands 

Shrubland (general) 26.7 4.2 43 

Calluna heath 11.5 4.3 26, 39 

Sagebrush 5.7 3.8 66 

Fynbos 12.9 0.1 70, 66 

All Shrublands 14.3 9.0  
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TABLE 2.4 (UPDATED) (CONTINUED) 

FUEL (DEAD ORGANIC MATTER PLUS LIVE BIOMASS) BIOMASS CONSUMPTION VALUES (TONNES  DRY MATTER HA-1) FOR 

FIRES IN A RANGE OF VEGETATION TYPES 

(To be used in Equation 2.27, to estimate the product of quantities ‘MB • Cf’, i.e., an absolute amount) 

Vegetation type Subcategory Mea

n 
SE References 

Savanna woodlands (early dry 

season burns)* 

Savanna woodland 2.5 - 28 

Savanna parkland 2.7 - 57 

All savanna woodlands (early dry season burns) 2.6 0.1  

Savanna woodlands  (mid/late 

dry season burns)* 

Savanna woodland 3.3 - 57 

Savanna parkland 4.0 1.1 57, 6, 51 

Tropical savanna 6 1.8 52, 73 

Other savanna woodlands 5.3 1.7 59, 57, 31 

All savanna woodlands (mid/late dry season burns)* 4.6 1.5  

Savanna Grasslands/ Pastures 

(early dry season burns)* 

Tropical/sub-tropical grassland  2.1 - 28 

Grassland - - 48 

All savanna grasslands (early dry season burns)* 2.1 -  

Savanna Grasslands/ Pastures 

(mid/late dry season burns)* 

Tropical/sub-tropical grassland  5.2 1.7 9, 73, 12, 57 

Grassland 4.1 3.1 43, 9 

Tropical pasture~ 23.7 11.8 4, 23, 38, 66 

Savanna 7.0 2.7 42, 50, 6, 45, 13, 65 

All savanna grasslands (mid/late dry season burns)* 10.0 10.1  

Other vegetation types 
Peatland 41 1.4 68, 33 

Tundra 10 - 33 

Agricultural residues (post-

harvest field burning) 

MB = AGR(T) x FracBrunt(T) 

 

See Equation 11.6 in 

Chapter 11, Volume 4 

for AGR(T) calculation 

* Surface layer combustion only 

 ~ Derived from slashed tropical forest (includes unburned woody material) 

a For sugarcane, data refer to burning before harvest of the crop. 

b Expert assessment by authors. 
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TABLE 2.5 

EMISSION FACTORS (g kg-1 DRY MATTER BURNT) FOR VARIOUS TYPES OF BURNING. VALUES ARE MEANS ± SD AND ARE 

BASED ON THE COMPREHENSIVE REVIEW BY ANDREAE AND MERLET (2001) 

(To be used as quantity ‘Gef’ in Equation 2.27) 

Category CO2 CO CH4 N2O NOX 

Savanna and grassland 1613 

± 95 

65 

± 20 

2.3 

± 0.9 

0.21 

± 0.10 

3.9 

± 2.4 

Agricultural residues 1515 

± 177 

92 

± 84 

2.7 0.07 2.5 

± 1.0 

Tropical forest 1580 

± 90 

104 

± 20 

6.8 

± 2.0 

0.20 1.6 

± 0.7 

Extra tropical forest 1569 

± 131 

107 

± 37 

4.7 

± 1.9 

0.26 

±0.07 

3.0 

± 1.4 

Biofuel burning 1550 

± 95 

78 

± 31 

6.1 

± 2.2 

0.06 1.1 

± 0.6 

Note: The “extra tropical forest’ category includes all other forest types. 

Note: For combustion of non-woody biomass in Grassland and Cropland, CO2 emissions do not need to be estimated and reported, because 

it is assumed that annual CO2 removals (through growth) and emissions (whether by decay or fire) by biomass are in balance (see earlier 

discussion on synchrony in Section 2.4. 
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TABLE 2.6 (UPDATED) 

COMBUSTION FACTOR VALUES (PROPORTION OF PREFIRE FUEL BIOMASS CONSUMED) FOR FIRES IN A RANGE OF 

VEGETATION TYPES 

(Values in column ‘mean’ are to be used for quantity Cf in Equation 2.27) 

Vegetation type Subcategory Mean SD References 

Primary tropical forest 

(slash and burn) 

Primary tropical forest 0.32 0.12 
7, 8, 15, 56, 66, 3, 16, 

53, 17, 45,  

Primary open tropical forest 0.45 0.09 21 

Primary tropical moist forest 0.50 0.03 37, 73 

Primary tropical dry forest - - 66 

All primary tropical forests 0.36 0.13  

Secondary tropical forest 

(slash and burn) 

Young secondary tropical forest (3-

5 yrs) 
0.46 - 61 

Intermediate secondary tropical 

forest (6-10 yrs) 
0.67 0.21 61, 35 

Advanced secondary tropical forest 

(14-17 yrs) 
0.50 0.10 61, 73 

All secondary tropical forests 0.55 0.06 56, 66, 34, 30 

All tertiary tropical forest 0.59 - 66, 30 

Boreal forest 

Wildfire (general) 0.40 0.06 33 

Crown fire 0.43 0.21 66, 41, 64, 63 

surface fire 0.15 0.08 64, 63 

Post logging slash burn 0.33 0.13 49, 40, 18 

Land clearing fire 0.59 - 67 

All boreal forest 0.34 0.17 45, 47 

Eucalyptus forests 

Wildfire - -  

Prescribed fire – (surface) 0.61 0.11 72, 54, 60, 9 

Post logging slash burn 0.68 0.14 25, 58, 46 

Felled and burned (land-clearing 

fire) 
0.49 - 62 

All Eucalyptus forests 0.63 0.13  

Other temperate forests 

Post logging slash burn 0.62 0.12 55, 19, 27, 14 

Felled and burned (land-clearing 

fire) 
0.51 - 53, 24, 71 

All “other” temperate forests 0.45 0.16 53, 56 
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TABLE 2.6 (UPDATED) (CONTINUED) 

COMBUSTION FACTOR VALUES (PROPORTION OF PREFIRE FUEL BIOMASS CONSUMED) FOR FIRES IN A RANGE OF 

VEGETATION TYPES 

(Values in column ‘mean’ are to be used for quantity Cf in Equation 2.27) 

Vegetation type Subcategory Mean SD References 

Shrublands 

Shrubland (general) 0.95 - 44 

Calluna heath 0.71 0.30 26, 56, 39 

Fynbos 0.61 0.16 70, 44 

All shrublands 0.72 0.25  

Savanna woodlands (early 

dry season burns)* 

Savanna woodland 0.22 - 28 

Savanna parkland 0.73 - 57 

Other savanna woodlands 0.37 0.19 22, 29 

All savanna woodlands (early dry season burns) 0.40 0.22  

Savanna woodlands  

(mid/late dry season 

burns)* 

Savanna woodland 0.72 - 66, 57 

Savanna parkland 0.82 0.07 57, 6, 51 

Tropical savanna 0.73 0.04 52, 73, 66, 12 

Other savanna woodlands 0.68 0.19 22, 29, 44, 31, 57 

All savanna woodlands (mid/late dry season burns)* 0.74 0.14  

Savanna Grasslands/ 

Pastures (early dry season 

burns)* 

Tropical/sub-tropical grassland  0.74 - 28 

Grassland - - 48 

All savanna grasslands (early dry season burns)* 0.74 -  

Savanna Grasslands/ 

Pastures (mid/late dry 

season burns)* 

Tropical/sub-tropical grassland  0.92 0.11 44, 73, 66, 12, 57 

Tropical pasture~ 0.35 0.21 4, 23, 38, 66 

Savanna 0.86 0.12 
53, 5, 56, 42, 50, 6, 45, 

13, 44, 65, 66 

All savanna grasslands (mid/late dry season burns)* 0.77 0.26  

Other vegetation types 
Peatland 0.50 - 20, 44 

Tropical Wetlands 0.70 - 44 

Agricultural residues 

(Post-harvest field 

burning) 

Wheat residues 0.90 - see Note b 

Maize residues 0.80 - see Note b 

Rice residues 0.80 - see Note b 

Sugarcane a 0.80 - see Note b 

Other Crops 0.85 - see Note b 

* Surface layer combustion only;   ~ Derived from slashed tropical forest (includes unburned woody material);   a For sugarcane, data 

refer to burning before harvest of the crop;   b Expert assessment by authors. 
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2.5 ADDITIONAL GENERIC GUIDANCE FOR TIER 

3 METHODS 

Tier 3 inventories are advanced systems using measurements and/or modelling, with the goal of improving the 

estimation of greenhouse gas (GHG) emissions and removals, beyond what is possible with Tier 1 or 2 methods.   

In this section, guidelines are elaborated that provide a sound scientific basis for the development of Tier 3 

Inventories in the AFOLU sector. These guidelines do not limit the selection of Tier 3 sampling schemes or 

modelling methods but provide general guidance to assist the inventory developer in their implementation. 

AFOLU inventory compilers are advised to read this section in conjunction with general guidance for Tier 3 

methods relevant to all sectors found in Volume 1, Chapter 6. 

2.5.1 Measurement-based Tier 3 inventories 

Inventories can be based on direct measurements from which emissions and removals of carbon are estimated. 

Purely measurement-based inventories, e.g., based on repeated measurements using a national forest inventory or 

similar estimation methods can produce carbon stock change estimates but still rely on appropriate statistical 

models, such as allometric models or volume and wood density functions. Inventories using measurement-based 

methods also need to select appropriate statistical sampling estimators to produce a national inventory from the 

plot estimates. Moreover, inventory plot remeasurements will typically require additional data or methods to arrive 

at estimates of GHG emissions from disturbance events, in particular for non-CO2 GHG. Measurement of non-

CO2 greenhouse gas emissions is possible, but because of the high spatial and temporal variability, Tier 3 methods 

for estimating non-CO2 emissions typically use a combination of models (see Section 2.5.2) and measurements. 

Many countries using a measurement-based Tier 3 method will already have well established national inventories. 

Typically, these inventories have been established for purposes other than collecting data for estimating carbon 

stock changes and non-CO2 emissions (e.g., National Forest Inventories for timber resource assessments or soil 

resource mapping for agricultural planning). In general, the following six steps should be considered when 

implementing a measurement-based Tier 3 inventory.  

Step 1.   Develop a sa mpling  scheme,  including sa m ple unit  (plot)  design and 

measurements to  be col lected.   

Sampling schemes can be developed using a variety of methods such as simple random, stratified random, 

systematic or model-based sampling. When designing a sampling scheme, countries often also consider factors 

such as spatial variability and temporal dynamics of carbon stocks, key environmental variables (e.g., climate) and 

management systems (e.g., harvested forest land, grazed grassland).  

When using a repeated measurement design, the timing of re-measurement may be influenced by the rate of change 

experienced. For example, re-measurement periods in boreal and some temperate regions, where trees grow slowly 

and DOM pools change little in single years, can be longer than in environments where carbon dynamics are more 

rapid. When implementing a measurement-based Tier 3 inventory, the inventory compiler should take into 

consideration that it will not be possible to estimate emissions and removals using the stock-difference method 

until a minimum of two measurement cycles have been conducted (often 10 years or longer in total).  

Some sampling schemes do not include re-sampling of the same sites (e.g., temporary inventory plot designs). 

Such designs may limit the statistical power of the analysis when estimating change, and therefore lead to greater 

uncertainty in estimates of carbon stock change. Repeated measurement designs with permanent plot locations 

typically provide a better basis for estimating carbon stock changes or emissions. The utility of permanent plots is 

often greater if they are accurately georeferenced to facilitate the use of spatial auxiliary variables, such as from 

remote sensing (GFOI, 2016). 

For some carbon pools, such as soil carbon, litter and woody debris, it is not necessarily possible to remeasure the 

same material through time (i.e., if taking a soil core, that soil has been removed from the site and cannot be 

remeasured, unlike measuring the same trees through time). However, multiple samples can be taken at each time 

step to capture local site scale heterogeneity in the carbon stock and detect changes over time with each re-sampling 

of a site (Ellert et al., 2002, Conant et al., 2003). Where countries use direct measurement methods for soil C, the 

sampling design needs to ensure that a sufficient number of samples are taken at each measurement time for 

estimating stock change (Spencer et al., 2011).  

Inventory and plot designs should consider the practicality of implementation given country circumstances (e.g., 

terrain, access, safety, vegetation type). The types and number of measurements will depend on the plot design, 

the underlying population of carbon pools to be reported and the data requirements of methods adopted to estimate 

carbon stocks and stock changes from the plot data.  
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It is good practice to develop a methodology handbook (e.g., Canadian Forest Service, 2008; US Forest Service, 

2006) explaining the entire sampling scheme as part of Step 1. This handbook can be useful for those involved 

with the measurements, laboratory analyses and other aspects of the process, as well as possibly providing 

supporting material for documentation purposes. The handbook should document the plot design, in particular 

how plots are to be located and, in the case of repeated measurement designs, re-located for future measurements 

(Vidal et al., 2016). 

Step 2.  Se lect  sa mple si tes.   

Specific sampling sites will be located based on sampling design. It is good practice to have an appropriate process 

in place for selecting alternative sites in case it is not possible to sample some original locations.  In a repeated 

measurement design, the sites will become a monitoring network that is periodically re-sampled. 

Determining sampling locations will likely involve the use of a geographic information system. A geographic 

database may include information on land use and land-use changes (i.e., activity data) as well as a variety of 

environmental and management data, such as climate, soils, land use, and livestock operations, depending on the 

source category and stratification. If key geographic data are not available at the national scale, or are spatially 

inconsistent, the inventory developer may either 1) re-evaluate the design and stratification (if used) in Step 1 and 

possibly modify the sampling design or 2) re-develop the geographic data to meet the inventory requirements. 

Normally the sampling intensity should be the same within a stratum but not necessarily between strata. However, 

where the stratification is based on land use and is updated for each inventory, changes in land use between 

measurement periods can complicate the estimation of changes in carbon stocks over time. As such, it is good 

practice to use stratification methods that do not lead to bias or time-series inconsistencies due to changes in land 

use. 

Sampling may require coordination among different national ministries, provincial or state governments, corporate 

and private land owners. Establishing relationships among these stakeholders can be undertaken before collecting 

initial samples. Informing stakeholders about ongoing monitoring may also be helpful and lead to greater success 

in implementing monitoring programs. 

Step 3.  Col lect  init ial  samples .   

Once the plot locations have been determined, a measurement team can visit those locations, establish plots and 

collect initial measurements and samples. It is helpful to take geographic coordinates of plot locations or sample 

points with a global positioning system (GPS) to help relocate them later, noting that GPS readings are often not 

accurate enough to relocate the exact plot location, especially under dense forest canopies.  As such, if repeated 

measurements are planned, it is good practice to permanently mark the location for ease of finding and re-sampling 

the site in the future.  Where possible these markers should not be visible to the land owner (e.g., utility ball 

markers that can be buried in the soil and re-located precisely over time).  

It is good practice to take relevant measurements and notes of the environmental conditions and management at 

the site. This will confirm that the conditions were consistent with the design of the sampling scheme, and also 

may be used in data analysis (Step 5). If a stratified sampling approach is used, and it becomes apparent that many 

or most sites are not consistent with the expected environmental conditions and management systems, it is good 

practice to repeat Step 1, re-evaluating and possibly modifying the sampling scheme based on the new information. 

Step 4.  Re-sa mple the monitor ing network on a periodic basis.   

For repeated measurement designs, sampling sites will be periodically re-sampled with the time between re-

measurement dependant on the rate of stock changes or the variability in emissions, the resources available for the 

monitoring program, and the design of the sampling scheme. It is good practice to avoid any impact of 

measurement techniques on C stocks and their dynamics (i.e. no destructive sampling) where permanent sample 

plots are used. 

If destructive sampling is involved, such as removing a soil core or dead organic matter sample, it is good practice 

to re-sample at the same site but not at the exact location in which the sample was removed during the past. 

Destructive sampling the exact location is likely to create bias in the measurements. Such biases would 

compromise the monitoring and produce results that are not representative of national trends. When destructive 

sampling of trees is undertaken, for example to develop or validate allometric equations, the samples are usually 

taken from locations or species that are considered representative of the trees in the plots.  

Step 5.  Analyse data and determine carbon stock changes/non -CO 2  emiss ions,  and 

infer national emissions  and removal  est imates and their  uncertainty .  

A well-designed sampling scheme will provide an unbiased estimate and variance for the measured quantities (See 

Volume I, Chapter 3 for more information).  The overall result of the statistical analysis will be estimates of carbon 

stock changes or measurements of emissions from which the national emission and removal estimates can be 

derived.  
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To derive estimates of carbon stock changes or emissions from measurements collected on the plots typically 

requires the use of models that relate these measurements to carbon stocks. The types of models and the uncertainty 

associated with them vary depending on measurements taken and the carbon pools being estimated.  Examples of 

these models include allometric equations for estimating tree and deadwood biomass, root:shoot ratios for 

estimating belowground biomass (Mokany et al., 2006) and the use of spectral signatures to estimate soil carbon 

(Baldock et al., 2013).  

When estimating uncertainty for carbon stock changes and/or emissions it is good practice to include all relevant 

sources of uncertainty, including the sampling scheme, plot measurements and model parameters and structure 

and laboratory processing methods (see discussion for each source category later in this volume in addition to the 

uncertainty chapter in Volume 1). Overall uncertainty can be reduced by increasing the sampling intensity, using 

additional strata or covariates to explain more of the variance or improving the models. Model uncertainty may 

be relatively small, at least in situations with well-developed models calibrated for national situations, or relatively 

large where global models are applied. 

To obtain national estimates of carbon stock changes or emission of non-CO2 greenhouse gases, it may be 

necessary to interpolate or extrapolate measurements using spatial statistical analyses and models that take into 

consideration environmental conditions, management and other activity data. Such models are necessary because 

of the expense and difficulty in obtaining a sufficient sampling intensity to infer C stock changes or emissions 

directly from the survey sample. For example, CH4 and N2O emissions from forest fires are typically inferred from 

data on the area burnt, and fuel consumption estimates derived from specific case studies. In a similar fashion, soil 

N2O emissions could be readily estimated using chambers, but this can be very expensive to establish a network 

with the sampling intensity needed to provide national emission estimates based solely on measurements without 

use of models for extrapolation. Alternatively, compilers may use a model-based approach in these cases, which 

is informed by the limited sample of C stock or emission measurements (See Section 2.1.2). 

It is good practice to analyse emissions relative to environmental conditions in addition to the contribution of 

various management practices to those trends. Interpretation of the patterns will be useful in evaluating possibilities 

for future mitigation. 

Step 6.  Report ing  and Documentat ion.  

It is good practice to assemble inventory results in a systematic and transparent manner for reporting purposes.   

Documentation typically includes a description of the sampling scheme and statistical methods, sampling schedule 

(including re-sampling), stock change and emissions estimates and the interpretation of emission trends (e.g., 

contributions of management activities). In addition, QA/QC should be completed and documented in the report. 

For details on QA/QC, reporting and documentation, see the section dealing with the specific source category later 

in this volume, as well as information provided in Volume 1, Chapter 6. 

When developing/collating documentation for reporting Tier 3 measurement-based methods it is good practice to: 

 describe the sampling design and/or measurements; 

 describe any changes in the design or measurements through time and how these changes are addressed to 

ensure time series consistency in carbon stocks or emissions; 

 describe the models used to calculate carbon stock changes and non-CO2 emissions from the measurements, 

including the uncertainty;  

 describe how area estimates are derived from the survey, such as a national forest inventory, and harmonized 

with land representation data for other land-uses; 

 discuss the influence of time periods between measurement cycles on estimated C stock changes or emission 

estimates, and how this impact is incorporated into the uncertainty analysis; and  

 document, if applicable, how Tier 3 measurement methods are applied consistently with Tier 2 or Tier 3 

model-based methods to prevent errors of omission or commission in reported carbon stock changes or 

emissions for the entire spatial and temporal domain of the country. 
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TABLE 2.6A (NEW) 

EXAMPLES OF DOCUMENTATION TO ASSEMBLE IN SUPPORT OF TRANSPARENT REPORTING OF TIER 3 MEASUREMENT 

BASED INVENTORIES 

Step 1.  Develop sampling scheme, including sample size 

and design and measurements to be collected. 

A description of the sampling scheme including size and 

design and measurements to be collected 

Reason for adopting the selected sampling scheme  

Step 2.  Select sample sites. Description of the process for selecting sample sites and 

processes for dealing with exclusions/replacements 

Step 3.  Collect initial samples.   Sample collection and quality assurance / quality control 

protocols. 

Step 4.  Re-sample the monitoring network on a periodic 

basis.   

Description of re-sampling strategy and reasoning for 

adopted resampling period  

Step 5.  Analyse data and determine carbon stock changes 

and other sources of emissions, and infer national 

emissions and removals estimates and measures of 

uncertainty.   

Data processing and quality assurance / quality control 

protocols including how adopted re-sampling period is 

handled when making carbon stock change estimates and 

their associated uncertainty. 

Step 6.  Reporting and Documentation All of the above material summarised into a report for 

third party review. 

2.5.2 Model-based Tier 3 inventories 

Model-based Tier 3 inventories are developed using empirical (e.g. forest growth curves that represent carbon 

stock increase with tree age.), process-based (e.g. model representation of underlying physiological, biophysical, 

and management processes that drive carbon dynamics in ecosystems), hybrid (e.g. the development of forest 

growth curves from empirical data combined with a process model calibrated from research data on dead organic 

matter dynamics) and/or other types of models. Just as Tier 3 measurement-based methods typically also require 

models to estimate carbon stock changes (see Section 2.1.1), Tier 3 model-based inventories require measurements 

to calibrate and validate the models used to estimate carbon stock changes. 

It is unlikely that one single model will be suitable for estimating emissions and removals for all carbon pools and 

non-CO2 gases across all land uses, land-use changes and management actions. Therefore, inventory compilers 

will need to select a suite of different models to develop estimates of interest. In many cases existing models need 

to be adapted, coupled and/or integrated to provide a complete estimate of emissions and removals in the source 

categories of interest.  

When selecting a model, it is important to consider how it will be used and interact with other models. This is 

particularly important when using Tier 3 mass-balance models in combination with Tier 1 or 2 emissions factors 

(e.g. if different soil carbon models or methods are used for different land-uses, how will the carbon pools be 

transferred between them in the case of land-use change). If changes in modelling methods within the reporting 

time series occur adequate steps should be taken to ensure time series consistency.  

Models may be run individually for different land uses and carbon pools and the results combined or brought 

together in a single framework using coupling and integration techniques. Individual model simulations are 

typically used where multiple agencies are responsible for developing different parts of the inventory (e.g., the 

forest agency responsible for forest lands, the agriculture agency responsible for cropland and grassland). 

Coupling different models is a convenient strategy for addressing effects with different time and space scales. In 

contrast, model integration links different modelling approaches to elucidate the complex dimension of time and 

space dynamics (Panichelli & Gnansounou, 2015), helping ensure consistency in land representation, carbon pools 

and input variables (Brack et al., 2006). Integration frameworks can also help organize data and estimation methods 

at any level of methodological complexity and facilitate the systematic progression from simpler to more complex 

methods (GFOI, 2016).  

In all cases, models used in Tier 3 methods ensure higher accuracy only when they are correctly implemented and 

capable of representing the population of interest. In general, the following seven steps are used to correctly 

implement a Tier 3 model-based inventory (see also Figure 1, Volume 1, Chapter 6, Section 2.4).  

Step 1.  Model se lect ion or development  

Inventory compilers can choose from a wide range of model types depending on reporting needs, data availability 

and capacity. As part of model selection or development, it is good practice to consider if the model/s:  

 adequately represent the range of land uses, ecosystems and management practices in the region or country; 
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 allow for the quantification of uncertainty; 

 reduce uncertainty relative to other available methods (e.g., Tier 1 methods) or estimates are improved in other 

ways (e.g., more complete coverage of carbon pools or lands); 

 can be run and maintained in an operational context with available time and resources (e.g., input data is 

readily available, staff have sufficient experience and knowledge, suitable compute infrastructure is available); 

 produce outputs that can be used for reporting emissions and removals by relevant land-use categories; 

 produce time-series consistent results; 

 are compatible with other existing models used in the inventory; and 

 are well documented and tested. 

Multiple models will likely be selected as potentially suitable as part of Step 1. These models can then be tested 

prior to implementation using steps 2 and 3 below. Therefore, before moving to Step 2, at least a sub-set of the 

input data required to run the model should be collected or collated, including input variables (such as forest 

species or type, climate, soil characteristics), and any existing parameters and data required for further model 

calibration and evaluation. In some cases, input data may be a limiting factor in model selection or development, 

requiring some models to be discarded or modified to accommodate the available activity and/or environmental 

data.  

Step 2.  Model Calibrat ion  

Model calibration (i.e. parameterisation) is the process of selecting or adjusting model parameters to obtain results 

that best represent the processes of interest in the region (and time period) for which the model will be applied. 

The model calibration procedure readies a model for its further use in analyses. For example, replacing default 

growth curves with those specific to the tree species or site conditions to which the model will be applied or 

replacing climate averages with regional climate data are examples of model parameterisation.  

Calibration data should represent the population.  In practice, this does not mean that all environmental conditions 

are covered, but that the calibration data includes a range of the conditions existing the country that is 

representative of national circumstances. 

Model sensitivity analyses may be used to determine the most important parameters for calibration.  In a sensitivity 

analysis, parameter values are varied through a series of simulations to determine the associated change in model 

output. The parameters are ranked from most to least sensitive based on the level of change in model output.  Some 

techniques also incorporate measurements into the sensitivity analysis (Sobol, 2001). The most sensitive 

parameters are typically calibrated to improve the agreement between modelled and measured carbon stocks, stock 

changes or non-CO2 greenhouse gas emissions.  

There are multiple methods for calibrating models. Simpler empirical models (e.g., empirical forest growth models 

based on forest age or site indices) are commonly developed by fitting functions to data on carbon stocks or stock 

changes using standard statistical methods and software. More advanced models (e.g., hybrid or process-based 

models) typically have numerous, interrelated parameters. For these models calibration is often completed using 

parameter optimisation methods that vary the model parameters within known ranges to best match known results 

(e.g., carbon stocks). There are several methods for doing this, including generic algorithms, machine learning and 

Bayesian. The methods may also be used to propagate error through the inventory analysis (e.g., Hararuk et al., 

2017).   

In all cases it is good practice to document the calibration procedure and results.   

Re-calibration of the model or modifications to the structure may be necessary if the model does not capture 

general trends or there are large systematic biases. Full evaluation of the model is described in Step 3.  See Box 

2.2f for examples of model calibration. 
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BOX 2.2F (NEW) 

AN EXAMPLE OF MODEL CALIBRATION, EVALUATION AND IMPROVEMENT THROUGH DATA ASSIMILATION 

The development of Canada’s Carbon Budget Model for the Canadian Forest Sector started in 1989 

and is continually being improved through new data collection, analysis and model enhancements. 

As part of this process, Shaw et al., (2014) assessed CBM-CFS3’s ability to predict ecosystem 

carbon stocks in independent plots established as part of Canada’s national forest inventory (NFI). 

The study demonstrated close agreement in the predictions of total ecosystem carbon stocks (within 

1percent) but found some compensating errors (bias) in specific pools, ecozones, and plots with 

different tree species. 

To further improve the CBM-CFS3 performance in Canadian forest ecosystems, a Bayesian Markov 

Chain Monte Carlo (MCMC) technique was used to calibrate 45 model parameters by assimilating 

carbon stocks of six deadwood and soil carbon pools estimated from 635 plots from Canada’s 

National Forest Inventory (Hararuk et al., 2017). These plots were randomly split into two groups; 

calibration (n = 326), used to calibrate the parameters, and validation (n = 309), used to evaluate the 

performance of the model with calibrated parameters. 

Calibration led to most improvement in the simulation of carbon stocks in small and fine woody 

debris, reducing RMSE by 54.3 percent, followed by the snag stems (RMSE reduced by 23.2 

percent), and coarse woody debris (13 percent). Twenty of the 45 parameters were well constrained 

by the available data. The calibrated parameters resulted in increased rates of carbon cycling in fine 

and coarse woody debris and the soil organic layer, distinct carbon dynamics in hardwood and 

softwood dominated stands, and increased temperature sensitivity of the carbon contained in the 

mineral soil.  

While parameter calibration considerably improved the simulation of the small and fine woody 

debris and snags stem pools, model representation of the branch snag, coarse woody debris, soil 

organic layer, and mineral soil pools were not substantially improved. This indicated the need for 

the inclusion of additional processes in carbon dynamics simulation or a change in the modelling 

paradigm. Model improvements may be achieved by including a lignin effect on deadwood decay 

and by including the effects of tree species, soil types, and mosses (see Box 2.2g) in the CBM-CFS3. 

Further data assimilation analyses are ongoing. 

Step 3.  Evaluat ion of  Model Behaviour    

Once the model has been calibrated, it should be evaluated to demonstrate that the model effectively simulates 

measured trends for the source category of interest.  Evaluation can also support the justification for selecting, 

developing or possibly improving a particular model for the inventory analysis.   

It is good practice to use measurements independent of those used for model calibration when evaluating model 

behaviour and to confirm that the model is capable of estimating emissions and removals in the source categories 

of interest (Falloon and Smith, 2002; Prisley and Mortimer, 2004). In practice, this is typically achieved by setting 

aside a subset of data collected for model calibration to be used exclusively for model evaluation. Comparisons 

between model output and independent measurements can be made using statistical tests and/or graphically.  In 

addition to evaluation with independent data, other evaluation checks may be useful, including: 

 range checks to show that estimates of carbon stocks and changes in all pools do not exceed pre-defined 

expected limits; 

 in models that track both stocks and flows between carbon pools and the atmosphere, that mass-balance is 

been maintained through all simulations; 

 use of other statistical methods for assessing model behaviour, such as resampling methods (e.g., 

bootstrapping); and 

 assessment of the sensitivity of various parameters in the model (sensitivity analysis). 

It is good practice to ensure that the model responds appropriately to variations in activity data and environmental 

conditions occurring in the spatial and temporal domain where the model will be applied. Re-calibration of the 

model or modifications to the structure (i.e., algorithms) may be necessary if the model does not capture general 

trends or there are large systematic biases. In some cases, a new model may be selected or developed based on this 

evaluation. Evaluation results are an important component of the reporting documentation. See Box 2.2g for 

examples of model evaluation and improvement. 
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BOX 2.2G (NEW) 

EXAMPLE OF MODEL EVALUATION AND IMPROVEMENT 

Finland 

The sample sizes in soil carbon inventories are usually not adequate for national level soil carbon 

stock change assessment with few exceptions (e.g., Sweden, and Germany, see Gamfeldt et al., 2014 

and Grüneberg et al., 2014). As such, most countries use soil carbon models to estimate carbon stock 

changes then evaluate the results using repeated soil inventories. In general, it has been shown that 

models can estimate soil carbon stock change in the same magnitude as that measured, but 

uncertainties of both measurements and model estimates are often higher than actual measurements 

(Ortiz et al., 2009; Rantakari et al., 2012). This makes the evaluation of model outputs challenging.  

Two soils carbon models are commonly used in Finland: Yasso07 and ROMULv. An evaluation of 

the performance of these models against forest soil carbon stock measurements was undertaken by 

Lehtonen et al. (2016). Both models require estimates of carbon input from vegetation. Litter input 

from trees was estimated using litter production rates from research sites and stem volume maps 

from the National Forest Inventory. Inputs from understorey vegetation were estimated using new 

biomass models.  

To evaluate the models, both were applied across Finland and run until steady state was achieved; 

thereafter, measured soil carbon stocks were compared with model estimates. The evaluation showed 

that the role of understorey litter input was underestimated by Yasso07, especially in northern 

Finland, and the inclusion of soil water holding capacity in the ROMULv model improved 

predictions, especially in southern Finland. Simulations and measurements indicated that models 

using only litter quality and quantity and weather data underestimate soil carbon stock in southern 

Finland, and this underestimation is due to omission of the impact of droughts on the decomposition 

of organic layers. The model evaluation results imply improving estimates of understorey litter 

production in the northern latitudes would be an area for improvement in greenhouse gas inventories 

(Lehtonen et al., 2016). 

Canada 

An evaluation of CBM-CFS3 ability to predict ecosystem carbon stock estimates derived from an 

entirely independent data set from the initial establishment of Canada’s new National Forest 

Inventory (Gillis et al., 2005) was undertaken (Stinson et al., 2016). Estimates of aboveground 

biomass, dead organic matter and soil carbon stocks from up to 696 ground plots were compared to 

model-derived estimates (Shaw et al., 2014). Model simulations for each ground plot used only the 

type of input data available to the NFCMARS for the NIR in 2010.None of the model’s default 

parameters were altered. Ecosystem total C stocks estimated by CBM-CFS3 were unbiased (mean 

difference = 1.9 Mg ha−1, p = 0.397), and significantly correlated (r = 0.54, p > 0.001) with ground 

plot-based estimates. Although the overall C stock estimates were within 1 percent of the observed 

values, detailed analyses also revealed compensating biases specific to pools, ecozones or leading 

species.  Contribution to ecosystem total C stocks error from soil was large, and from deadwood and 

aboveground biomass small. Results for percent error in the aboveground biomass (7.5 percent) and 

deadwood (30.8 percent) pools compared favourably to the GPG-LULUCF standards of 8 percent 

and 30 percent, respectively. Further details are provided in Shaw et al. (2014). 

Subsequent analyses assessed the reasons for the consistent under prediction of organic carbon 

stocks in low productivity boreal sites, in which mosses can contribute 30 percent or more of total 

ecosystem Net Primary Production (Bona et al., 2013). Although mosses are not a carbon stock that 

is included in the IPCC pools, it is increasingly evident that omitting them will result in significant 

under prediction of both carbon stocks and fluxes in forest ecosystems with high moss cover. Bona 

et al. (2016) estimated that in poorly drained upland black spruce forests of boreal Canada as much 

as 31–49 percent of the total carbon stocks are potentially contributed by mosses alone. A new moss 

module was developed and added to the CBM-CFS3 and off-line comparisons indicate that 

representing moss carbon stocks and inputs will reduce bias in organic carbon stock estimates (Bona 

et al., 2016). 

Step 4.  Col lect  and col late require model data inputs   

Models require specific input data to estimate greenhouse gas emissions and removals associated with a source 

category. These inputs may range from weather and soils data to livestock numbers, forest types, natural 

disturbances or cropping management practices. While much of this data may have been collected as part of the 

model selection process (Step 1), additional data may need to be collected prior to full implementation. For 
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example, the climate data used in model selection may have only been for specific points, while for implementation 

the model will require the data spatially over large areas. In these cases, the new spatial input data may need to be 

developed to implement the model at the desired spatio-temporal scale.   

Step 5.  Model Implementation  

The major consideration when implementing the model is to obtain enough computing resources and personnel 

time to prepare the input data, conduct the model simulations, and analyse the results. In some cases, limitations 

in computing resources may constrain the complexity and range of spatial or temporal resolution that can be used 

in implementing the model at the national scale (i.e. simulating at finer spatial and temporal scales will require 

greater computing resources). An initial analysis of computing needs should be explored during model selection 

and development (Step 1). It may be possible to increase the efficiency of this process using programming scripts, 

re-coding parts of the model and adjusting the spatial and temporal extent and resolution of the simulations. It may 

also be possible to implement the model on computing resources that are outside the agency (e.g. cloud-based 

computing). 

Step 6.  Assess uncertainty  

Uncertainty analysis should not be confused with sensitivity analysis. Uncertainty analysis determines the 

probabilities of a range of estimates that can be used to derive confidence intervals for the estimates, and to develop 

plans to further reduce uncertainties. Sensitivity analysis is conducted to determine the relative change in model 

output given changes in model input values, which can be informative for model calibration (See Step 3). 

In many Tier 3 models, Monte Carlo analyses can be used to simulate the uncertainty arising from the large number 

of possible parameters in the systems.  Empirical analyses may also be an option to quantify uncertainty in model 

structure and parameterization based on an evaluation of model prediction error for sites with known inputs (See 

Box 2.2h). In general, uncertainties are quantified at national scales on annual time steps for reporting but may 

also be estimated at finer spatial and temporal scales. However, it may not be feasible or sensible to apply full 

Monte Carlo simulations to, for example, every spatial unit in a country. Given the computing resource and time 

requirements, it may also not be necessary to repeat a full Monte Carlo analysis every year. For example, in the 

case where only the activity data time series has been updated, but no other material changes to the inventory have 

been made, uncertainty estimates can be extrapolated to the additional years in the time series. A smaller test may 

also be run to demonstrate there has been no material change in uncertainty.  

BOX 2.2H (NEW) 

EXAMPLES OF QUANTIFICATION OF MODEL UNCERTAINTY 

This box is provided for information purposes and for the presentation of examples of quantification 

of uncertainties in Tier 3 modelling approaches. 

Canada 

Both uncertainty and sensitivity analyses were conducted on Canada’s CBM-CFS3 integration 

framework (Metsaranta et al., 2017) and uncertainty analysis results are summarized below. 

A wide range of factors that contribute to the uncertainty in the model estimates were varied using 

Monte-Carlo simulations using the entire national system. These factors include the processes used 

to initialize dead organic matter and soil carbon pools, biomass increment data (a multiplier with a 

range of ±50 percent was applied to net biomass increment), activity data (wildfire (±10 percent), 

insects (±25 percent), and harvest (range varies by jurisdiction)), selection of stands during the 

allocation of natural disturbances to affected stands, and parameters defining litter input and dead 

organic matter pool dynamics. Parameter ranges for 32 biomass turnover and dead organic matter 

carbon modelling parameters were obtained from the literature and used as minimum and maximum 

values of triangular distributions (with mode set to the CBM-CFS3 default value). All parameter 

values and input data were varied independently, because the correlation structure among parameters 

could not be estimated. 

Input data for Canada’s 230 million ha of managed forest are contained in 20 CBM-CFS3 databases, 

each representing a specific region in Canada. Monte Carlo simulations for each of  
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BOX 2.2H (NEW) (CONTINUED) 

EXAMPLES OF QUANTIFICATION OF MODEL UNCERTAINTY 

these 20 databases were conducted independently and the sample size for national totals was 

increased by summing random combinations of the 100 Monte Carlo runs from the 20 projects to 

generate 1000 randomly recombined estimates of national totals. The approximated 95 percent 

confidence interval (CI) was defined from the 2.5th and 97.5th percentiles of these national 

estimates. 

Under the assumptions of this analysis, the 95 percent confidence interval width averaged 32.2 Tg 

C·year−1 (+16.6 and –15.6 Tg C·year−1) for net biome production (total stock changes) relative to an 

overall simulation median of –0.8 Tg C·year−1 from 1990 to 2014. The largest sources of uncertainty 

were related to factors determining biomass increment and the parameters used to model soil and 

dead organic matter carbon dynamics. Some of these processes also vary in their intrinsic degree of 

predictability (Luo et al., 2015), and some factors causing large contributions to uncertainty may 

prove difficult to reduce (e.g., fine root turnover and its spatial and temporal variations). 

United States of America 

Uncertainty analysis for agricultural soil carbon and N2O emissions have been conducted for the US 

greenhouse gas inventory (Ogle et al. 2010; Del Grosso et al. 2010; US EPA, 2017). A Tier 3 method 

is applied to generate emissions estimates with application of the DayCent ecosystem model. This 

process-based model simulates plant production, soil organic matter formation, nutrient cycling, 

water flows, and temperature regimes (Parton et al. 1998). Uncertainty is quantified through a 

combination of Monte Carlo simulations, an empirical analysis of model prediction error, and 

propagation of variance associated with the land representation survey data. 

The inventory is compiled by simulating plant production and soil processes based on land use 

histories at about 400,000 locations that are part of a national survey, the National Resources 

Inventory (NRI) (Nusser et al. 1998, Nusser and Goebel 1997). The major input uncertainties in the 

Tier 3 model application are associated with fertilization and tillage management and are quantified 

in probability distribution functions (PDFs), representing the likelihood of different fertilization 

rates, tillage practices and manure amendments. The model is applied using a Monte Carlo Analysis 

in a series of 100 simulations for each NRI survey locations based on random draws from the PDFs. 

In turn, the analysis produces 100 estimates of soil C stock changes and N2O emissions for each 

survey location. 

Model prediction error, including bias and precision, is quantified in statistical models with an 

empirical analysis based on a comparison of model output to measured observations of soil C stocks 

and N2O emissions from experimental sites (Ogle et al. 2007).  The model inputs are mostly known 

for the DayCent model simulations of the experimental sites and so the primary sources of 

uncertainty that are quantified in this analysis are associated with model structure and 

parameterisation, in addition to the variance in measured observations. Moreover, the experimental 

sites are independent from model calibration allowing for an independent evaluation of model 

prediction error. The resulting empirical model is applied to the DayCent model output to adjust for 

biases, to the extent needed, and to quantify precision in model results. 

In a final step, variance associated with the NRI is derived based on the standard variance estimator 

for a stratified two-stage sample design (Särndal et al. 1992) and propagated through calculations to 

estimate national totals for the inventory (Ogle et al. 2010). The largest source of uncertainty in the 

analysis is associated with model structure and parameterization, as quantified in the empirical 

analysis.  This source accounts for more than 80 percent of the total uncertainty in soil carbon stock 

change and N2O emission estimates at the national scale, highlighting the importance of further 

improving the model to reduce uncertainty. 

Step 7.  Verif icat ion of  inventory est imates  with independent data    

NGHGI estimates from Tier 3 models can be difficult to verify because alternative measurements often do not 

exist at the national scale. This is not unique to the AFOLU sector. There may however, be opportunities to verify 

component estimates against independent data.  For example, model derived estimates of crop yield, or timber 

harvest can be compared against independent data such as crop or timber production statistics. Such comparisons 

require a good understanding of the methods used for both the Tier 3 and the comparative estimates, to avoid 

interpreting possible discrepancies as an indicator of problems in the Tier 3 model, when the discrepancy is in fact 

due to methodological differences. 
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Another useful step in verification of inventory estimates is to compare current estimates against those in the 

inventory submissions of prior years. Changes in time series estimates that are not consistent with changes in 

activity or other input data should be examined and understood as these could be indicative of a variety of problems, 

including errors in data processing. Developing quality assurance/quality control (QA/QC) procedures that 

document the changes in estimates attributed to each change in input data, model parameters, or other 

methodological changes can assist inventory compilers in the verification of inventory estimates. 

Verification of inventory estimates can also be based on measurements from a monitoring network or from 

research sites that were not used to calibrate model parameters or evaluate model behaviour. The network would 

be similar in principle to a series of sites that are used for a measurement-based inventory. However, the 

uncertainty of the estimates (output) from a model-based approach does not depend directly on the sample size 

and therefore the sampling need not be as dense. In some cases, verification may demonstrate that the model-based 

estimation system is inappropriate due to large and unexplainable differences between model results and the 

measured trends from the monitoring network. Problems may stem from one of three possibilities: errors in the 

implementation step, poor input data, or an inappropriate model. Implementation problems typically arise from 

computer programming or data input errors, while model inputs may generate erroneous results if these data are 

not representative of management activity or environmental conditions. In these cases, it is good practice for the 

inventory compiler to return to either Steps 2 or 5 depending on the issue. It seems less likely that the model would 

be inappropriate if Step 2 was deemed reasonable. However, if this is the case, it is good practice to return to the 

model selection/development phase (Step 1) or to further refine the existing model.   

In addition to verifying inventory estimates, independent data may also be used to check areas estimates for land-

use and land use change including  

 that land area is conserved over time;  

 changes between land-use types are logical in terms of the type, frequency and time periods between changes, 

defined by the country;  

 consistency between input data (e.g. area to be disturbed by disturbance type X) and model simulation results 

(e.g., area actually disturbed in the model by disturbance type X). 

Step 8.  Report ing  and Documentat ion   

It is good practice to assemble inventory results in a systematic and transparent manner for reporting purposes. 

Documentation of model-based Tier 3 inventory systems should include those items listed in Table 2.6b. For 

further details on QA/QC, reporting and documentation, see the sections dealing with the specific source categories 

later in this volume, as well as information provided in Volume 1, Chapter 6. 

TABLE 2.6B (NEW) 

EXAMPLES OF DOCUMENTATION TO ASSEMBLE IN SUPPORT OF TRANSPARENT REPORTING OF TIER 3 MODEL-BASED 

INVENTORIES 

Step 1 – Model selection or development  A description of the model 

 Reason for choosing or designing the model demonstrating 

applicability  

 Discussion of any likely consequences if the model is used outside 

the domain that the model is parameterised to simulate. 

Step 2 - Model calibration   Description of the process undertaken to calibrate the model and 

documentation of the data sources informing the manual or 

automated calibration. 

Step 3 – Evaluate model behaviour   Results of the analysis verifying model behaviour using independent 

measurements to confirm that the model is capable of estimating 

carbon stocks, stock changes and/or emissions and removals in the 

source/sink categories of interest. The sources of independent data 

should also be documented. 

Step 5 - Implement the model  Overview of procedures that are used to apply the model. 

Step 6 - Quantify uncertainties  Description of the approach taken to estimate uncertainty in the 

model outputs.   

Step 7 - Verification of inventory estimates  Summary of the verification results for the inventory. 

Step 8 – Reporting and Documentation  Information on QA/QC steps 
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2.6 INTER-ANNUAL VARIABILITY 

In the AFOLU sector, the management of land is used as the best approximation of human influence and thus, 

estimates of emissions and removals on managed land are used as a proxy for anthropogenic emissions and 

removals on the basis that the preponderance of anthropogenic effects occurs on managed lands (see Vol. 4 Chapter 

1). This allows for consistency, comparability, and transparency in estimation. Referred to as the Managed Land 

Proxy (MLP), this approach is currently recognised by the IPCC as the only universally applicable approach to 

estimating anthropogenic emissions and removals in the AFOLU sector (IPCC 2006, IPCC 2010). However, it is 

also recognised that the estimated emissions and removals on managed lands can represent a combination of both 

anthropogenic (direct and indirect) and natural effects (Vol. 4 Chapter 1 p1.5; IPCC 2010; see Fig. 2.6A).  

Some of the emissions and removals from managed land are characterised by high interannual variability. 

Interannual variability (IAV) refers to the variability in the annual emissions and removals (E/R) estimates between 

years within a time series. In the AFOLU sector, the application of the MLP means that IAV can be caused by 

both anthropogenic and natural causes. The three main causes of IAV in GHG emissions and removals in the 

AFOLU sector are (1) natural disturbances (such as wildfires, insects, windthrow, and ice storms), which can cause 

large immediate and delayed emissions and kill trees; (2) climate variability (e.g. temperature, precipitation, and 

drought), which affects photosynthesis and respiration (Ciais et al. 2005; Aragão et al. 2018); and, (3) variation in 

the rate of human activities, including land use (such as forest harvesting), and land-use change (Stinson et al. 

2011; Pilli et al. 2016; Kurz et al. 2018).  

In some countries IAV in emissions from natural disturbances can be larger than the IAV of emissions caused by 

human activities such as forest management. For example, IAV in Canada’s 1990 to 2016 time series of annual 

emission and removals due to natural disturbances is much larger than the IAV in the emissions and removals on 

the remaining managed forest land (Figure 2.6C). The NGHGIs for Portugal (Figure 6-32 of Portugal’s NIR 2018 

(Portuguese Environmental Agency 2018)) and Australia (Table 6.21 of Australia’s NIR 2016 Volume 2 

(Commonwealth of Australia 2018)) are two other examples of time series with high IAV. In some countries, the 

areas burned by wildfires can vary by two orders of magnitude between years (Stinson et al. 2011; Miller et al. 

2012; Genet et al. 2018). In other countries, the majority of IAV may be due to human activities.  

When the MLP is used and the IAV in emissions and removals due to natural disturbances is large, it is difficult 

to gain a quantitative understanding of the role of human activities compared to the impacts of natural effects. In 

such situations, disaggregating9 MLP emissions and removals into those that are considered to result from human 

activities and those understood to result from natural effects may provide increased understanding of the emissions 

and removals that are due to human activities such as, land use (including harvesting) and land-use change. In this 

way, disaggregation can contribute to improved understanding of the trends in emission and removals due to 

human activities and mitigation actions that are taken to reduce anthropogenic emissions and preserve and enhance 

carbon stocks.  

Disaggregating emissions and removals according to anthropogenic and natural effects has been recognised as a 

scientific challenge (Canadell et al. 2007; Vetter et al. 2008; IPCC 2010; Kurz 2010; Smith 2010; Brando et al. 

2014; Henttonen et al. 2017). It is not yet possible to fully and accurately separate emissions and removals 

associated with human activity from those associated with natural effects. The last IPCC Expert Meeting Report 

on this topic encouraged further development of scientific methods (IPCC 2010).  

Recognizing that some but not all countries may choose to address emissions and removals from natural 

disturbances on managed land outside the inventory process, this guidance is provided as an option that may be 

used by countries that choose to disaggregate their reported MLP emissions and removals (i.e. all emissions and 

removals on managed land) into those that are considered to result from human activities and those that are 

considered to result from natural disturbances. These supplementary approaches may be of interest to countries 

with AFOLU sector emissions where IAV due to natural effects is large. The section first addresses definitional 

issues, followed by a description of whether or not different methodological approaches used to estimate C stock 

changes quantify the IAV of emissions and removals. A generic approach to report on disaggregation of the 

contribution of natural disturbances in reporting on total emissions and removals on managed lands is then 

provided, along with country-specific examples of methodological approaches to disaggregating anthropogenic 

effects and natural disturbances on managed lands. 

 

 

                                                           
9 Disaggregating means that an estimate is separated into its component parts. 
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2.6.1 Definitional issues 

2.6.1.1 DIRECT AND INDIRECT HUMAN EFFECTS,  AND NATURAL 

EFFECTS  

Anthropogenic (i.e., direct and indirect human) effects and natural effects are described in Vol. 4 Chapter 1. Figure 

2.6a summarizes the main factors that cause these effects and their occurrences in managed and unmanaged lands. 

The specific effects included in estimates reported in NGHGIs depend on the estimation method and data used, 

which differ in approach and complexity among countries (see Table 2.6c). Describing how the various effects are 

reflected in the estimates of emissions and removals, based on the estimation method and data used, increases the 

transparency of the NGHGI and its understanding by the scientific and policy communities (Grassi et al. 2018, 

section 2.6.2). Useful information may include definition and spatial maps of managed land, information on areas 

of forest being harvested and those subject to other management, and information on the main determinants of the 

GHG fluxes (e.g., forest age structure, harvested volumes, harvest cycle). 

Figure 2.6a: Conceptual illustration of how various anthropogenic (direct and 

indirect) and natural factors affect land-related GHG emissions and 

removals in managed and unmanaged lands  (Source: Grassi et al. 

(2018)).  

 

Direct human-induced effects of any management activity on emissions or removals, by definition, only occur on 

managed lands. Indirect human-induced effects (i.e., the second order impacts of human activities on emissions or 

removals mediated through environmental change) and natural effects can occur on both unmanaged and managed 

lands. The “anthropogenic GHG emissions and removals by sinks are defined as all those occurring on ‘managed 

land’” (Vol. 4, Ch. 1). The natural effects “tend to average out over time and space” (Vol. 4, Ch. 1), provided 

that there are no trends in disturbance rates, such as increased annual area burned as a result of climate change. 

Nonetheless, their IAV in emissions and removals can have an important impact on annual NGHGIs. Depending 

on the estimation method and data used, GHG estimates for managed land may capture all or only some of this 

IAV (see Section 2.6.2).  

The IPCC describes the MLP as a method to approximate estimates of anthropogenic emissions and removals, but 

this proxy estimate also contains emissions and removals resulting from natural disturbances (IPCC 2006; IPCC 

2010). This section introduces an approach that countries can apply on a voluntary basis within the MLP in order 

to indicate those emissions and removals considered to result from human activity, and those that are understood 

to result from natural disturbances. This is achieved by disaggregating the estimated emissions and removals due 

to natural disturbances (ND E/R) within the estimated total MLP emissions and removals. This remaining 

aggregate of emissions and removals associated with human activity might still include some effects of IAV of 

natural disturbances and other natural effects on anthropogenic emissions and removals. 

2.6.1.2 NATURAL DISTURBANCES  

Disturbances, in particular wildfires, can contribute to large IAV in emissions. The number, frequency and 

intensity of fire events are strongly controlled by climate and weather, fuels, ignition sources, and human activities. 

High temperatures, past levels of fire suppression, and persistent drought events are key drivers of forest fires, for 

Managed land Unmanaged land

Direct-human induced effects

• Land use change

• Harvest and other management

Indirect-human induced effects
•Climate change induced change in temperature, 

precipitation, length of growing season 

•Atmospheric CO2 fertilisation and N deposition, 

impact of air pollution 

•Changes in natural disturbances regime

Natural effects
•Natural interannual variability

•Natural disturbances
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instance in the Western US (Westerling 2016), in the Amazon region (Morton et al. 2013) or in Indonesia (Schimel 

et al. 2015). However, land use and land-use change such as deforestation and peatland drainage can influence the 

likelihood and impacts of fire (Page & Hooijer 2016). In the Brazilian Cerrado, severe drought events explain the 

loss of almost 30 percent of aboveground woody biomass (de Miranda et al. 2014). Other natural disturbances 

with large IAV include storm damage (Yamashita et al. 2002; Lindner et al. 2010). Insects tend to follow outbreak 

cycles, thus causing more long-term trends that contribute to interdecadal rather than interannual variations (Kurz 

et al. 2008; Hicke et al. 2012). However, like IAV, the inter-decadal variability can also make it difficult to identify 

trends in emissions and removals that result from human activities. 

Definit ion of  natural disturbances  

Natural disturbances in the context of the AFOLU sector are non-anthropogenic events or non-anthropogenic 

circumstances that cause significant emissions and are beyond the control of, and not materially influenced by a 

country. These include wildfires, insect and disease infestations, extreme weather events and/or geological 

disturbances, beyond the control of, and not materially influenced by a country. Natural disturbances exclude 

human activities such as harvesting, prescribed burning and fires associated with activities such as slash and burn.10  

Non-anthropogenic events refer to non-human induced events (e.g. fire initiated by lightening, damage by wind 

storms), non-anthropogenic circumstances refer to non-human induced conditions that exacerbate these 

disturbances (e.g., fire occurring during particularly harsh conditions like strong winds, high temperature, drought, 

etc.). For information on how to document that disturbances are beyond the control of and not materially influenced 

by the country, see Section 2.6.4 below.  

The methodological guidance provided in this section is aimed at disaggregating emissions and removals in 

ecosystems where natural disturbances cause large IAV in emissions within the MLP and where subsequent 

removals occur over a multi-year period of time. Therefore, this methodological guidance is applicable to natural 

disturbances in forests, and in woody grassland, undrained wetlands or undrained peatlands, but not in other land 

categories where human actions materially determine and/or deeply influence the conditions and circumstances 

associated with significant emissions by disturbances (such in drained peatlands and in cropland).  

Balance of  emiss ions and subsequent removals  

A fundamental assumption under the MLP is that carbon emissions and removals associated with natural effects 

will average out over space and time (see also Volume 4, Chapter 1). Therefore, consistent with this assumption, 

the CO2 emissions (from above and below ground biomass, dead organic matter and soil carbon) from areas 

affected by natural disturbances are expected to be balanced by subsequent removals across the landscape at some 

future point in time. This expectation has no established time limit because the time to balance depends on the 

types of ecosystems affected by disturbances and their rates of regrowth.  

At stand level, changes in growing conditions could affect this expectation, in particular if environmental 

conditions contribute to regeneration failure of stands that were affected by natural disturbances, e.g. landslides 

and erosion after wildfire, making it more difficult to achieve the balance. Conversely, if environmental changes 

contribute to increased growth rates or reduced mortality rates, then the balance will be achieved faster.  In the 

case of repeated disturbances on the same area, the time to reach balance for that area may increase. 

2.6.2 Relationship between different methodological 

approaches and the representation of emissions and 

removals from interannual variability 

The choice of estimation method and data affects the extent to which the IAV of different drivers is reflected in 

reported estimates (see Table 2.6c). Countries can apply different estimation methods to report their emissions and 

removals capturing the anthropogenic components with different temporal resolution and disaggregation of 

variables (annual to periodic, averaged or disaggregated by drivers). Table 2.6c provides information on how the 

choice of estimation method affects whether or not factors contributing to IAV of reported emissions and removals 

are captured in NGHGIs. This table may help countries in understanding and describing how the various effects 

are reflected in the estimates of emissions and removals, therefore increasing the understanding of NGHGIs by the 

scientific and policy communities. 

                                                           
10 Information on natural disturbance definitions and approaches applied in the Kyoto Protocol accounting can be found in 

IPCC. (2014) In: 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, eds. 

T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda & T. G. Troxler, IPCC, Switzerland. 
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TABLE 2.6C (NEW) 

GENERAL GUIDANCE ON WHETHER OR NOT THE ESTIMATION METHOD IS ABLE TO DISTINGUISH BETWEEN THE IMPACT 

OF THE INDIVIDUAL DRIVERS BELOW ON THE INTERANNUAL VARIABILITY OF REPORTED ANNUAL EMISSION AND 

REMOVAL ESTIMATES  - NOTE THAT SOME EXCEPTIONS MAY OCCUR, DEPENDING ON THE DATA USED 

  Drivers 

Method  Direct Human  Indirect 

Human  

Natural climate 

variability   

Natural 

Disturbances  

Stock Difference11  

Periodic measurements (multi-year) 

No  No  No  No 

Stock Difference12  

Annual measurements 

Yes  Yes  Yes  Yes 

Gai

n- 

Loss
13 

L
iv

e 
b

io
m

as
s 

p
o
o

ls
 Biomass growth 

based on Emission 

Factors or empirical 

yield tables  

Yes  No  No  Yes   

Growth based on 

process (or hybrid) 

model  

Yes  Yes  Yes  Yes  

D
ea

d
 a

n
d

 s
o

il
 o

rg
an

ic
 m

at
te

r 
p
o

o
ls

 Dead and soil 

organic matter 

dynamics based on 

Emission Factors  

Yes  No  No  No  

Dead and soil 

organic matter 

dynamics with 

constant climate 

Yes  No  No  Yes  

Dead and soil 

organic matter 

dynamics with 

variable climate 

Yes  Yes  Yes  Yes  

The Stock Difference method calculates net emissions/removals (E/R) as the difference in estimated C stocks for 

relevant pools measured at two points in time. Average annual net E/R can be calculated by dividing the C stock 

difference of a period by the number of years between the two observations. Periodic stock assessments without 

auxiliary data therefore do not allow the quantification of the IAV of emissions and removals and its relation to 

the various drivers.  

With annual measurements of ecosystem carbon stocks, e.g. via subsets of annual plot measurements in a 

continuous forest inventory, the quantification of IAV of emissions and removals becomes possible. Periodic or 

annual subsets of inventories can by themselves not detect IAV unless auxiliary data – such as area annually burned, 

harvest rates or other specific plot-level measurements on the timing of tree mortality – are used to inform about 

IAV (Röhling et al. 2016). For non-CO2 emissions (e.g., CH4 and N2O from fires), auxiliary data on the type of 

disturbance that caused carbon losses would be required when the stock difference method is used.  

The Gain-Loss method requires annual data on forest management, land-use change and natural disturbances and 

when these are available it can provide estimates of the IAV of net emissions. Depending on the estimation 

methodology and the data sets used, it may capture some or all of the impacts of drivers of the IAV of annual 

emissions and removals. A Gain-Loss approach utilising yield tables or constant emission factors (EF) will be 

insensitive to natural climate variability and, therefore, will only be able to distinguish between the direct human 

impact and natural disturbance impacts on IAV of emissions and removals. Gain-Loss methods that utilise climate-

sensitive growth and mortality models (Richards & Evans 2004; Waterworth et al. 2007; Hember et al. 2018), or 

                                                           
11 Forest inventories with multi-year period remeasurement and no auxiliary data cannot detect IAV. In some cases, periodic 

measurements on permanent sample plots are augmented with additional annual data thus increasing the ability to estimate 

IAV. 

12 Forest inventories with annual remeasurements for the same plots can detect IAV but are rarely implemented. 

13 The assumption for the Gain-Loss method is that activity data such as harvest, land-use change, and natural disturbances are 

available annually. 



 Chapter 2: Generic Methodologies Applicable to Multiple Land-Use Categories 

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 2.71 

climate sensitive models of dead and soil organic matter dynamics (see Figure 6 in Liski et al. (2006)) can, in 

addition, estimate the indirect human and natural climate variability impacts on the IAV of emissions and removals.  

2.6.3 Optional approach for reporting of emissions and 

removals from Natural Disturbances 

It is good practice for countries to apply the MLP and to estimate and report all emissions and removals that occur 

on managed lands. This section describes a generic approach for use by countries that choose to report on the 

further disaggregation of emissions and subsequent removals from natural disturbances from the total emissions 

and removals estimated using the MLP. As discussed above, disturbances may have a natural and an anthropogenic 

component. This reporting guidance aims to assist countries choosing to report on the disaggregation of emissions 

and subsequent removals associated with human activity and those associated with natural disturbances within the 

total emissions and subsequent removals estimates of the MLP. 

The elements of a generic approach are provided below, followed by examples of how the approach has been 

implemented to date:  

1. Quantification of the total emissions and removals from Managed Lands (consistent with MLP) 

Estimate total E/R consistent with the MLP. Guidance provided by the IPCC for each relevant land category 

applies for the estimation of associated emissions and subsequent removals due to regrowth within the MLP. 

This is the total MLP flux, i.e. the first order approximation of the anthropogenic emissions and removals, 

which also includes emissions and subsequent removals from areas that are identified as subject to natural 

disturbances. 

2. Reporting on the country-specific approach to applying the definition of natural disturbances 

Consistent with the generic definition of natural disturbances provided in section 2.6.1.2, countries describe 

their approach when applying the definition of natural disturbances consistently over time. The country 

description includes the types of disturbances for which the disaggregation of emissions and subsequent 

removals is implemented. The description also explains how the country excludes from natural disturbances 

the impacts of human activities, e.g., salvage logging, prescribed burning, slash and burn and deforestation. 

3. Identification of emissions and removals due to natural disturbances 

The emissions and subsequent removals associated with natural disturbances are identified by applying the ND 

definition to either the individual (stand-level) disturbed areas or the total (landscape-level) emissions from all 

disturbances in the year14. In identifying those emissions and removals, it is good practice to avoid the inclusion 

of emissions and removals that are materially affected by human actions15.  Both approaches provide for the: 

(i) Identification of the lands and area of land affected by each disturbance, as well as a description of the 

methods and criteria applied. 

(ii) For those lands, estimation of the emissions and subsequent removals associated with natural 

disturbances only (e.g. salvage logging emissions and associated subsequent removals are not included), 

as well as a description of the methods and criteria applied. 

If a country chooses to disaggregate ND emissions and removals, then it is good practice to disaggregate as 

anthropogenic the emissions and subsequent removals associated with management activities occurring on land 

affected by natural disturbances, including salvage logging and deforestation. Consequently, subsequent 

removals are disaggregated between human activities and natural disturbances, proportionally to the C stock 

losses these activities have caused, until the CO2 emissions from natural disturbances are balanced by removals.  

For example, if salvage logging follows wildfire, and the wildfire caused instant emissions of 20 t CO2 per 

hectare and subsequent salvage logging caused an additional 40 t CO2, then 20 t CO2 of subsequent removals 

are disaggregated as natural disturbances, and all remaining removals are disaggregated as anthropogenic 

effects.  This could be implemented sequentially (i.e. the first 20 t CO2 removals are disaggregated as due to 

natural causes, and all subsequent removals to anthropogenic causes) or in parallel (i.e. in this example, for 

every tonne of CO2 removal, one third is disaggregated as due to natural causes, and the remaining two thirds 

to anthropogenic causes). In both cases, once natural emissions are balanced by removals disaggregated as 

natural causes, the remaining removals are considered anthropogenic.   

                                                           
14 Methodological guidance on quantification of associated emissions and removals are given in the chapters with general 

guidance (Chapter 2 and 3) as well in the category-specific chapters (Chapter 4 and 6)". 

15 Noting that a portion of the emissions and removals considered to be associated with natural disturbances may be affected 

by human actions. 
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Disaggregation of CO2 removals following natural disturbances can be implemented at the landscape level by 

apportioning these based on, for instance, the proportion of area disturbed of total forest area and the proportion 

of C stock lost of total C stock. For example, if in a year X in a country Y, Z ha of forest land is subject to 

wildfires, representing 0.1percent of the total forest area and 25percent of the total carbon stock present in the 

burned area is lost; the percentage of total CO2 removals in the entire forest land apportioned to natural 

disturbances in this example is 0.025percent (i.e., 0.1percent*25percent) for year X. If the emissions from 

natural disturbances in year X were 25 Mt CO2, then the removals in subsequent years are considered natural 

until the sum of the removals equals that amount. 

Although the different approaches above (i.e., sequential or parallel disaggregation of removals subsequent to 

natural disturbances, stand vs. landscape level) affect the annual disaggregation, as long as the expectation of 

the balance between emissions from natural disturbances and the subsequent removals is fulfilled (see Section 

6.2.1.2), and as long as emissions and subsequent removals are treated consistently, in the long term the totals 

are the same. Furthermore, in all cases it is good practice to report information on assumptions and methods 

implemented to disaggregate subsequent CO2 removals. 

When land-use change (e.g., forest land converted to cropland) follows a natural disturbance (e.g., wildfire), 

then emissions associated with land-use changes after natural disturbances as well as the emissions from the 

prior natural disturbance, are considered to be anthropogenic emissions. If regrowth occurs on that land, then 

any subsequent removals are also considered anthropogenic.  

4. Disaggregation of the MLP 

The natural disturbance component is subtracted from the total estimate of MLP emissions and removals, 

yielding an estimate of the emissions and removals associated with human activity on managed land. Both 

components are estimated and reported as part of the total MLP emissions and removals. In countries where 

natural disturbance contributes large IAV to E/R, the component of the MLP emissions and removals identified 

as associated with human activity is expected to have a lower IAV than the MLP emissions and removals 

because the variability resulting from natural disturbances has been disaggregated. 

Given the expectation of the balance described above (Section 2.6.1.2), when emissions from natural 

disturbances are disaggregated, it is good practice that subsequent removals are also disaggregated until the 

balance has been reached. In this case, it is also good practice to disaggregate to the natural disturbance 

component those removals in each inventory year that are contributed by lands that were affected by natural 

disturbances prior to the start of the time series. In many ecosystems it may take decades for removals following 

natural disturbances to balance emissions from the disturbances. If it is not possible to estimate directly the 

amount of emissions that need to be balanced, for example if natural disturbances occurred before the reporting 

period, the time when the balance is expected can be approximated based on the estimated length (years) of 

the recovery period (see example in Box 2.2j). This ensures a consistent application of the balance principle 

throughout the time series.  

In addition to CO2 emissions, natural disturbances may cause non-CO2 emissions, e.g. wildfires cause N2O and 

CH4 emissions. While CO2 emissions are assumed to average out across time because of vegetation regrowth 

after disturbance, non-CO2 emissions are not taken up by vegetation and therefore there is no expectation that 

these emissions will be balanced by removals because the biological, chemical and physical processes that 

result in the complete decay of CH4 and N2O in the atmosphere are not captured in existing IPCC inventory 

methods. 

Examples of methodological approaches that have been developed are presented for Australia (Box 2.2i), Canada 

(Box 2.2j) and for an EU country (Box 2.2k). 
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BOX 2.2I (NEW) 

AUSTRALIAN APPROACH TO ESTIMATING INTERANNUAL VARIABILITY DUE TO NATURAL DISTURBANCES 

This box is for information only and neither adds guidance nor overrules guidance provided. 

In Australia, all lands are considered managed lands. All areas and carbon stock changes on managed 

land from anthropogenic and ‘natural disturbances’16 are reported, consistent with the MLP. ‘Natural 

disturbance’ emissions and removals are considered to be caused by non-anthropogenic events and 

circumstances beyond the control of, and not materially influenced by, human activity despite 

extensive efforts by emergency management organizations to prevent, manage and control such 

events. 

Both initial carbon losses and subsequent recoveries in carbon stocks are modelled as part of the 

disturbance event, and carbon stocks are spatially tracked until pre-disturbance levels are reached to 

ensure completeness and balance in reporting. Most Australian wildfires are not stand-replacing and 

carbon stocks typically recover after 11 years (Roxburgh et al. 2015). Estimates are prepared using 

a process (hybrid) model with DOM/SOM dynamics with variable climate (FullCAM).  

‘Natural disturbances’ are defined as occurring in a year which is an outlier (exceeding the 95percent 

probability level) in the series of annual carbon stock losses due to wildfire at the national level and, 

spatially, as fires in those regions (States) experiencing abnormal fire activity in that year. (A full 

description of the method to identify outliers can be found in Volume 2 of Australia’s NIR 2016 - 

Section 6.4.1.3) 

‘Natural disturbance’ emissions and removals are modelled on a spatial basis and, consistent with 

the MLP, included in reporting after averaging out initial carbon stock losses and subsequent 

recovery17. This leaves the trend in carbon stock changes as the dominant result of human activity 

(e.g. from prescribed burning, normal seasonal wildfires – see “B” in Figure 2.6B).   

The approach ensures that Australia’s modelled implementation of the MLP is comparable with 

estimates generated using other methods, such as Tier 3 stock-difference approaches, that tend to 

average out IAV due to natural causes over space (scaling from plots to region) and time (averaging 

between periodic re-measurements). All carbon stock changes on managed land from anthropogenic 

and natural disturbances are transparently reported in Australia’s NIR. 

 

Figure 2.6b: Example of the disaggregation of wildfire emissions in Australia into ‘natural 

disturbance’ emissions and removals and the emissions and removals from fires due to human 

activity. 

 

                                                           
16 References to ‘natural disturbances’ in this box refer to the natural ‘background’ of greenhouse gas emissions and removals 

by sinks described in 2006 IPCC Guidelines Vol 4, page 1.5: (Managed land proxy) “Finally, while local and short-term 

variability in emissions and removals due to natural causes can be substantial (e.g. emissions from fire – footnote 1), the 

natural ‘background’ of greenhouse gas emissions and removals by sinks tends to average out over time and space.” 

17 2006 IPCC Guidelines Vol 4, page 1.5: (Managed land proxy) “Finally, while local and short-term variability in emissions 

and removals due to natural causes can be substantial (e.g. emissions from fire – footnote 1), the natural ‘background’ of 
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BOX 2.2J (NEW) 

CANADA’S APPROACH TO ESTIMATING  INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES 

This box is for information only and neither adds guidance nor overrules guidance provided. 

In the 2017 National GHG Inventory Report18 Canada revised its reporting approach to increase the 

transparency of the reporting of anthropogenic emissions and removals on Forest Land remaining 

Forest Land (FL-FL). The new approach disaggregated the emissions and subsequent removals on 

managed lands affected by natural disturbances from those on the remaining lands subject to forest 

management. The concept of the MLP was maintained: the sum of these two emission and removal 

components are identical to the total emissions and removals for FL-FL under the MLP. Canada’s 

2018 National GHG Inventory Report19 further refined the approach. The methods are described in 

detail by (Kurz et al. 2018) and are summarized here. 

Canada defined natural disturbances as all stand-replacing wildfires and all disturbances of other 

natural causes (insects, windthrow etc.) that result in more than 20 percent tree mortality (biomass) 

in affected stands. The threshold of 20 percent was selected because large areas of forests are affected 

by insects that cause low levels of mortality and/or growth reductions. Disturbances with impacts 

below this threshold are considered part of the natural, small-scale forest mortality that affect stand 

dynamics such as self-thinning. 

For all areas affected by stand-replacing fire disturbances, annual CO2 and non-CO2 GHG emissions 

and subsequent CO2 removals are summarized in the natural disturbance land category for several 

decades following the fire event.  The time at which stands affected by natural disturbances transition 

back to the category of lands affected by forest management varies across Canada and is determined 

by the age at which stands are eligible for harvest, typically 60 to 90 years. For other natural 

disturbances that cause more than 20 percent biomass mortality, E/R are summarised in the natural 

disturbance category until the pre-disturbance biomass values are reached. For the 1990 to 2016 time 

series, stands regenerating following wildfire that are younger than the age at which stands are 

eligible for harvest is summarised in the natural disturbance category: removals that occur after 1989 

in stands that have been affected by stand-replacing wildfires prior to 1990 are therefore contributing 

to balancing emissions from wildfires that occurred since 1990. The 56 Mha of managed forest 

affected by wildfire disturbances prior to 1990 contribute in 1990 estimated removals of 64 Mt CO2e 

yr-1. From 1990 to 1994 these cumulative annual removals are larger than the emissions from 

wildfires since 1990, making the lands subject to natural disturbances net sinks  (Kurz et al. 2018). 

This approach contributes to balanced reporting as otherwise only removals from stands affected by 

natural disturbances after 1990 would appear in the natural disturbance component. 

The disaggregation of fluxes improves the estimate of human impacts: reported emissions and 

removals without natural disturbances showed clear temporal trends that are correlated with changes 

in the rates of human activities such as rates of clear-cut harvesting (Figure 2.6C). In areas strongly 

affected by the Mountain Pine Beetle outbreak (Kurz et al. 2008) the trend in emissions reported for 

lands affected by forest management is still somewhat influenced by the impacts of the beetle 

because that area is decreasing  (Kurz et al. 2018).  The high IAV resulting primarily from fires is 

reported separately (Table 6.5 in Canada’s NIR 2018). Further methodological details are provided 

in Canada’s NIR 2018, Sections 6.3.1 and in Annex 3.5.2.3 and in (Kurz et al. 2018). 

 

                                                           
greenhouse gas emissions and removals by sinks tends to average out over time and space. This leaves the greenhouse gas 

emission and removals from managed lands as the dominant result of human activity.” 

18 http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/can-

2017-nir-13apr17.zip 

19 https://unfccc.int/documents/65715 
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BOX 2.2J (NEW) (CONTINUED) 

CANADA’S APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES  

 

Figure 2.6c: Example of the disaggregation of Canada’s FL-FL emissions and removals into those 

occurring on lands dominated by natural disturbance impacts and those occurring in the remaining 

managed forest (A). Note the high IAV in the natural disturbance fluxes (up to 250 Mt CO2e/yr) (B) 

on the area affected by natural disturbances (primarily wildfires) and the low IAV of fluxes on the 

remaining managed forest area (C) which are correlated with forest management activities (e.g. 

primarily area of forest harvest). Fluxes in panel C are shown without (solid line) and with (dashed 

line) the emissions from harvested wood products. Data from Canada’s 2018 NIR and figure from 

(Kurz et al. 2018)).   
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BOX 2.2K (NEW) 

APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES BASED ON THE EU 

LEGISLATION20 

This box is for information only and neither adds guidance nor overrules guidance provided. This 

example demonstrates a methodological approach that has not yet been implemented. 

Forests of example country Z21 are prone to wildfires that in years with extreme weather conditions 

(e.g. drought, especially if combined with strong winds) may cause large emissions from biomass 

burning and cause high IAV in the net CO2 balance. Although, the country recognizes that most of 

its wildfires are human-induced either intentionally, e.g. pyromaniacs, or unintentionally, e.g. 

campfires, fireworks, cigarettes or other causes, some have natural causes. Consequently, emissions 

from wildfires have both an anthropogenic and a natural component. 

 

Figure 2.6d: Time series of managed forest land total GHG net emission (anthropogenic + natural 

disturbance (ND) and area burned. Blue bars (left Y-axis) represent annual total net GHG emission 

(Gg CO2e) from managed forest land net sink. The dashed red line (right Y-axis) represents the 

annual area burned (kha). 

To disaggregate the natural component of emissions and removals from wildfires, the country uses 

its national definition of natural disturbances: Natural Disturbances are those wildfires that are non-

anthropogenic events or non-anthropogenic circumstances that cause significant emissions in 

forests and are beyond the control of, and not materially influenced by, the Country’s land use and 

management practices. These practices exclude salvage logging and prescribed burning.  

All wildfires are considered not materially influenced by the country’s land use and management 

practices since the use of fire is forbidden in any forest land and the country has an advanced national 

fire management system for fire prevention, fire monitoring and fire suppression in all land uses, 

including forest land.  

To identify wildfires that cause significant emissions and are beyond the control of the country’s 

fire management system and are therefore considered natural disturbances, the country looks for 

statistical outliers that fall outside the 95 percent confidence interval of the variability of the 

historical time series of the annual GHG emissions from wildfires22. To do so, the distribution of 

emissions from wildfires is established, and it is assumed that all values within the normal  

 

                                                           
20 The presented methodology is based on the EU Regulation 2018/841 

21 Data for this example are derived from the Italian GHG inventory 

22 Such time series do not include emissions from salvage logging nor emissions from wildfires that are followed by a 

deforestation event. The time series can start before the base year of the country and may include all years for which data are 

available. For this example, the time series starts in 1971. 
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BOX 2.2K (NEW) (CONTINUED)  

APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES BASED ON THE EU 

LEGISLATION 

distribution are exclusively associated with the anthropogenic component23, any outlier value, in the 

upper tail, is considered as the signal of a disturbance event that is unlikely to have been generated 

by anthropogenic causes alone and therefore includes a natural component. 

In practice, first a historical time series of annual emissions24 from wildfires is constructed starting 

from 1971, i.e., the base year (1990) of the NGHGI of the country minus 20 years. Then, using an 

iterative process, outliers (if any) that are larger than the mean plus two times 25  the standard 

deviation are removed from the time series in successive iterations, until an outlier-free normal 

distribution is obtained.  

The resulting time series, as well as its mean (referred to below as the background level of 

anthropogenic emissions from wildfires) and two times its standard deviation (referred to below as 

the margin) excludes all outliers. Based on these statistics, natural disturbances are those that occur 

in years when the total immediate emissions from wildfires are larger than the background level plus 

the margin and emissions from these natural disturbances are quantified as the amount exceeding 

the background level. This amount is disaggregated from the anthropogenic component.  

To establish the balance between immediate CO2 emissions (F) and total subsequent CO2 removals26 

(R) due to natural disturbances, and to avoid introducing artificial trends to the time series, the 

country also estimates and reports removals occurring from land disturbed in the X years prior to 

the inventory year, where X27 is the length of the period that is needed for forest vegetation (by 

relevant forest types and site types) to recover the pre-disturbance C stock. The CO2 removals are 

quantified under the assumption that forest vegetation fully recovers within X years after wildfires. 

This assumption is based on the current legislation that forbids conversion of burnt forests to other 

land uses and that prescribes post-fire management activities aimed at rehabilitating the pre-fire 

forest vegetation. Consequently, the average amount of subsequent annual removals (Rannual) to be 

disaggregated for X years of a past ND event28 is equivalent to 
𝐹

𝑋
 and ∑ 𝑅𝑎𝑛𝑛𝑢𝑎𝑙 = 𝑅 = 𝐹𝑋

0  (where 0 

is the year in which the natural disturbances occur and X the time needed for C stocks to recover to 

their pre-disturbance level). 

 

                                                           
23 The average value of this distribution is the so -called background level of emissions associated with disturbances and it is 

considered anthropogenic. 

24 The country includes the emissions of fire events only, delayed emissions associated with the decay of biomass that was 

killed during the fire are not considered 

25 This is an approximation of Student’s t value for data series with number of data >= 30. 

26 Calculated directly from the biomass net increment (ΔCG of IPCC equation 2.7) 

27 For this example, X has been estimated to be 20 years for the entire country’s territory. 

28 This means that in any year Y of the NGHGI the amount of CO2 removals to be disaggregated is equivalent to the 

∑ (
𝐹

𝑋
)
(𝑌−𝑋)

𝑌
𝑌−𝑋  (where (

𝐹

𝑋
)
(𝑌−𝑋)

 are the annual CO= removals occurring on all lands disturbed in the period Y-X that have 

not yet achieved their pre-disturbance level of C stocks.) 
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APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES BASED ON THE EU 

LEGISLATION 

 

Figure 2.6e: Time series of managed forest land GHG net emissions and removals (Gg CO2e). Blue 

bars (net sink) represent annual anthropogenic GHG net emissions (Gg CO2e) from managed forest 

land; red bars (source and green line (sink)) disaggregated GHG emissions and subsequent CO2 

removals from natural disturbances in managed forest land, respectively. The coefficient of variation 

of the time series is 0.184.  

2.6.4 Reporting the contribution of natural disturbances 

and anthropogenic effects to the emissions and 

removals for managed lands 

Voluntary disaggregation of the total of emissions and removals in the MLP into those that are associated with 

human effects and those due to natural disturbances may provide a clearer picture of the impact of management 

activities. It is understood that a complete separation of the direct human impacts from natural impacts is, at this 

time, not possible due to limitations of scientific methods (IPCC 2010) but disaggregating the emissions and 

subsequent removals that are associated with natural disturbances on managed lands may be a helpful first step. 

The MLP total is the sum of all emissions and removals on managed land. Box 2.2l describes a possible approach 

to reporting the total E/R from MLP plus the two components from: 

1. Natural disturbances; 

2. Anthropogenic activities (direct and indirect human effects). 

The first component includes emissions from natural disturbances and subsequent net removals from regrowth. 

Emissions may include delayed emissions from dead organic matter that was added by the disturbance to the 

already existing dead organic matter pools.  

The second component includes emissions and removals directly and indirectly associated with human activity 

calculated as the difference between MLP total emissions and removals minus those associated with natural 

disturbances.  

In those cases where natural disturbance fluxes are large compared to the anthropogenic component of the MLP, 

the optional disaggregation of estimates of the emissions and removals associated with natural disturbances can 

identify the estimated trends of the emissions and removals on managed land associated with human activity, as 

demonstrated in recent NGHGI reports (e.g., Boxes 2.2I, 2.2J). 
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Transparency:  

For those countries that choose to identify, quantify and report disaggregated natural disturbance emissions and 

subsequent removals, it is good practice to document disaggregated emissions and removals in the MLP, and the 

approaches, assumptions and methods used.  

It is good practice to document the following: 

 Consistency of the country approach with the generic definition of natural disturbances provided in Section 

2.6.1.2, if any.  

 The types of natural disturbances for which emissions and subsequent removals are identified, quantified and 

disaggregated within MLP reporting. 

 How the requirements associated with the above definition of natural disturbances are met, including that the 

identified ND events are “non-anthropogenic events or non-anthropogenic circumstances”, which can be 

demonstrated by providing information to show that the disturbances were “not materially influenced by, and 

beyond the control of, a country”.  

 How the emissions and removals that are materially influenced by human actions are excluded from the natural 

disturbances component. 

The demonstration that natural disturbances were “not materially influenced by, and beyond the control of, a 

country” is based on scientific reasoning or evidence and documentation on practicable efforts to prevent, manage 

or control the occurrences that led to the natural disturbances. Such evidence and practicable efforts may include 

but are not limited to: 

 Studies showing the prevalent direct cause of fires in a given region, forest type and climate zone; information 

on weather conditions related to the disturbance events or to the cumulative affected areas; 

 Application of preventative measures or modifying factors related to the occurrence or propagation of the 

disturbances that may reduce the likelihood and/or magnitude of the disturbances occurring; 

 Efforts to manage or control the disturbances when they occur, to the extent possible.  

It is good practice to document the methods used to identify, quantify and disaggregate the impact of ND on GHG 

emissions and removals, including information on:  

 How the method is consistent with the expectation that the CO2 emissions from areas affected by natural 

disturbance will be balanced by subsequent removals.  

 The methods by which GHG fluxes are disaggregated from total MLP fluxes.  

 For lands subject to ND, documentation on how subsequent land use and land-use change, if any, is identified 

and how GHG fluxes previously disaggregated as associated with natural disturbances are re-assigned to the 

anthropogenic component following land-use change.  

Documentation on the manner in which emissions associated with human activities that occur after the natural 

disturbance event (such as salvage logging and site rehabilitation or other activities that do not cause a land-use to 

change), and subsequent removals, are estimated and disaggregated. 
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BOX 2.2L (NEW) 

EXAMPLE OF THE TABLE FORMAT THAT COULD BE USED FOR VOLUNTARY DISAGGREGATION OF TOTAL 

ESTIMATED FLUXES ON MANAGED LANDS INTO ANTHROPOGENIC AND NATURAL DISTURBANCE COMPONENTS  

 

 Land-use category e.g. Forest land remaining forest land  

Years   

Start 

year† … … … Inventory year 

Total Area under the MLP (kha)      

Carbon stock change  

Gains      

Losses      

Net      

non-CO2 emissions Emissions      

Net E/R plus non-CO2 Total*      

       

Annual area of natural disturbances (kha)29      

Area subject to natural disturbances (kha)30      

Carbon stock change 

Gains      

Losses      

Net      

non-CO2 emissions Emissions      

Net E/R plus non-CO2 Total       

      

Remaining area of managed land (kha)      

Carbon stock change 

Gains      

Losses      

Net      

non-CO2 emissions Emissions      

Net E/R plus non-CO2 Total #      

† This is the first year in the inventory time series, e.g. 1990. 

* This is the total MLP estimate of net emissions and removals, i.e. the first order approximation of the anthropogenic 

emissions and removals 

# This is the optional disaggregated estimate of the anthropogenic emissions and removals 

 

  

                                                           
29 The area of natural disturbance in the year it first occurs. 

30 The cumulative area which has been subject to natural disturbances up to and including the current inventory year, minus the 

area of natural disturbances on which past CO2 emissions are considered to be balanced by subsequent removals since the 

occurrence of the natural disturbance. In the cumulative area totals, areas affected multiple times are included only once. 
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Annex 2A.1 Default Mineral Soil Reference C Stocks  

Data presented in Table 2.3 were derived from Batjes (2011) and Batjes (2010) unless no values were available 

for particular combinations of IPCC Climate Zones and IPCC soil types. Where no values were available, values 

were taken from the 2006 IPCC Guidelines for National Greenhouse Gas or the 1996 IPCC Guidelines.  

Reference C Stocks for the mineral soils C method were derived for IPCC climate zones (IPCC 2006 p. 3.39)  and 

IPCC soil classes (IPCC 2006 pp. 3.40-3.41). Soil data are from the ISRIC-WISE database (10250 profiles) 

complimented with 1900 additional geo-referenced profiles from under represented temperate and boreal sites.  

Data from all soils were screened and where organic carbon contents were determined using the Walkley Black 

analysis, values were adjusted based on a conversion factor of 1.3 to estimate corresponding values that would 

have been obtained by dry combustion analysis.  Profiles were collected between 1925 and 2010 with two-thirds 

of the pedons sampled between 1955 and 1995. Profiles were classified as “cultivated or disturbed” vs 

“(semi)natural”. Only profiles flagged as being under native vegetation (classified as “(semi)natural”) were 

included (a total of 5560 profiles equating to approximately 1.6 times that used in the 2006 IPCC Guidelines). The 

profiles also had a better geographical distribution across the globe compared to those use to derive reference 

carbon stock values within the 2006 IPCC Guidelines.    

The following equation was used to compute SOC stocks: 

EQUATION 2A.1.1 

ESTIMATION OF SOIL ORGANIC CARBON STOCKS 

 
1

1
k

d i i i i

i

T P D S


      
 

Where:  

dT  = total amount of organic carbon over depth, d, (in kg m−2) 

i  = bulk density of layer i (Mg m−3)  

iP  = the proportion of organic carbon in layer i (g C Kg−1) 

iD  =  thickness of the layer (m) 

iS  = volume of the fraction of fragments >2 mm   

Gaps in bulk density and coarse fragment >2mm content data were filled using pedo(taxo)-transfer functions 

presented by Batjes et al. (2007) on the basis of soil type, soil textural class and soil depth.  IPCC Tier 1 methods 

consider changes in 0-30 cm soil depth layer; however, best-estimates were also derived for 0-50 and 0-100 cm 

soil depth layers.    
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Annex 2A.2 Additional Information for the Estimation of Soil 

Carbon Stock Change from Biochar Amendments 

to Mineral Soils Using Tier 2 and 3 Methods  

Thermochemical Conversion Technologies  
For the purpose of this methodology, biochar is defined as a solid material generated by heating biomass to a 

temperature in excess of 350 °C under conditions of controlled and limited oxidant concentrations to prevent 

combustion. These processes can be classified as either pyrolysis (in which oxidants are excluded), or gasification 

(in which oxidant concentrations are low enough to generate syngas).  

Torrefaction and hydrothermal carbonisation (also called liquefaction) are not included because they do not 

generate solid products that are significantly more persistent in soil than the original organic feedstock material 

(Libra et al. 2011; Kammann et al. 2012). Both of these processes typically utilise temperatures below 350°C, 

with torrefaction operating under dry feedstock conditions in ambient pressure, while hydrothermal carbonisation 

uses pressurised wet aqueous slurries. In contrast, pyrolysis operates at temperatures at 350°C and above (typically 

but not always below 700°C) under variable times, and gasification utilises temperatures between 500 and 1500°C 

and typically short times (Boateng et al. 2015), both in dry conditions.  Dry conditions are defined here in terms 

of the feedstock moisture, whereby feedstocks can have moisture up to 20percent after pre-drying; in comparison, 

wet slurries typically have liquid water contents above 80percent. 

Priming of native soil  organic carbon by biochar amendments  
Mineralisation of native soil organic carbon is on average reduced by 4 percent (95 percent CI = -8.1–0.8percent) 

after biochar additions to soil (Wang et al. 2015). Similar to laboratory trials (Kuzyakov et al. 2014), field trials 

also show reductions in mineralisation of native soil organic carbon close to a decade after biochar additions (Weng 

et al. 2017) as well as in biochar-rich soils after several millennia (Liang et al. 2010). Known mechanisms that 

would cause an increase in mineralisation involve co-metabolism (Whitman et al. 2015) that operates over the 

short term by supplying easily mineralisable organic matter as a source of energy to metabolise native organic 

matter (Zimmerman et al. 2011). Conservatively, we assume no effect of biochar on existing soil organic matter 

in the long term.   

Nitrous oxide emissions from soil  after biochar amendments  
Meta-analyses have found that nitrous oxide emissions are on average reduced between 54 percent (Cayuela et al. 

2014), 38 percent (Borchard et al. 2018), 32 percent (Liu et al. 2018) to 0 percent (Verhoeven et al. 2017) after 

addition of biochar to soil. Any reductions in nitrous oxide emissions due to biochar additions typically decline 

over several years after application (Fungo et al. 2017). Furthermore, assessments of nitrous oxide emissions 

several years after biochar additions are indicative of long-term emission reductions although at lower rates, since 

changes in biochar properties occur slowly over long periods of time (decades and centuries) compared to changes 

observed during the initial days to years (Nguyen et al. 2008).  

High-N feedstocks generate biochar with some microbially available N (Wang et al. 2012) and can lead to short-

term (days to weeks) increases in total nitrous oxide emissions if produced at lower temperatures (< 600 °C) 

(Cayuela et al. 2013). However, charring consistently reduces nitrous oxide emissions originating from the 

nitrogen in nitrogen-rich organic materials (Rose et al. 2016), as easily mineralisable amino-groups are converted 

to polyaromatic nitrogen-carbon structures (Knicker 2007).  

Due to limiting evidence demonstrating the long-term persistence of soil nitrous oxide emission reductions, it is 

conservatively assumed that biochar does not reduce nitrous oxide emissions from soil in the Tier 1 method.  

However, any bioavailable N additions associated with biochar amendments should be included in the calculations 

of direct and indirect soil nitrous oxide emissions (Volume 4, Chapter 11) as part of organic N inputs. This 

approach will be conservative in terms of the influence of biochar on greenhouse gas emissions for the Tier 1 

method. 

Biochar Amendments to Organic Soils  
No methods are provided in this guidance for estimating the impact of amending organic soils with biochar.  

Compilers may be able to develop a Tier 3 method for estimating the impact of biochar C amendments to organic 

soils, but it is important to recognise that the dynamics may be different, particularly with respect to priming. Few 

studies have investigated the impact of priming by biochar on organic soils. However, one study that has 

investigated priming of organic horizons in a forest soil found substantial losses of soil C over a ten-year period 

with charcoal additions (Wardle et al. 2008). Wardle et al. (2008) did not use isotopes and were therefore unable 

to attribute these losses unequivocally to the organic soil C or to the charcoal. Nor was their study able to determine 

the extent to which enhanced mass loss of organic soil carbon was due to mineralisation, or was due to vertical 

transport of the C into the soil column as dissolved or colloidal organic carbon (Lehmann & Sohi 2008). 

Nonetheless, the Wardle et al. (2008) study did indicate the possibility that priming of soil organic matter 

decomposition by biochar may lead to a net loss of soil C in organic soils.   
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2 GENERIC METHODOLOGIES APPLICABLE 

TO MULTIPLE LAND USE CATEGORIES 

2.1 INTRODUCTION  

No refinement 

2.2 INVENTORY FRAMEWORK  

This section outlines a systematic approach for estimating carbon stock changes (and associated emissions and 

removals of carbon dioxide (CO2) from biomass, dead organic matter, and soils, as well as for estimating non-CO2 

greenhouse gas emissions from fire. General equations representing the level of land-use categories and strata are 

followed by a short description of processes with more detailed equations for carbon stock changes in specific 

pools by land-use category. Principles for estimating non-CO2 emissions and common equations are then given. 

Specific, operational equations to estimate emissions and removals by processes within a pool and by category, 

which directly correspond to worksheet calculations, are provided in Sections 2.3 and 2.4.   

2.2.1 Overview of carbon stock change estimation 

The emissions and removals of CO2 for the AFOLU Sector, based on changes in ecosystem C stocks, are estimated 

for each land-use category (including both land remaining in a land-use category as well as land converted to 

another land use). Carbon stock changes are summarized by Equation 2.1. 

EQUATION 2.1 

ANNUAL CARBON STOCK CHANGES FOR THE AFOLU SECTOR ESTIMATED AS THE SUM OF 

CHANGES IN ALL LAND-USE CATEGORIES 

OLSLWLGLCLFLAFOLU CCCCCCC   

Where: 

AFOLUC  = Total annual carbon stock change in the AFOLU sector; tonnes C yr-1 

Indices denote the following land-use categories: 

AFOLU = Agriculture, Forestry and Other Land Use 

FL = Forest Land 

CL = Cropland 

GL = Grassland 

WL = Wetlands 

SL = Settlements 

OL = Other Land 

For each land-use category, carbon stock changes are estimated for all strata or subdivisions of land area (e.g., 

climate zone, ecotype, soil type, management regime etc., see Chapter 3) chosen for a land-use category (Equation 

2.2).  Carbon stock changes within a stratum are estimated by considering carbon cycle processes between the five 

carbon pools, as defined in Table 1.1 in Chapter 1. The generalized flowchart of the carbon cycle (Figure 2.1) 

shows all five pools and associated fluxes including inputs to and outputs from the system, as well as all possible 

transfers between the pools. Overall, carbon stock changes within a stratum are estimated by adding up changes 

in all pools as in Equation 2.3.  Further, carbon stock changes in soil may be disaggregated as to changes in C 

stocks in mineral soils and emissions from organic soils. Harvested wood products (HWP) are also included as an 

additional pool. 
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EQUATION 2.2 

ANNUAL CARBON STOCK CHANGES FOR A LAND-USE CATEGORY AS A SUM OF CHANGES IN EACH 

STRATUM WITHIN THE CATEGORY 


i

LULU I
CC  

Where: 

LUC  = carbon stock changes for a land-use (LU) category as defined in Equation 2.1. 

i = denotes a specific stratum or subdivision within the land-use category (by any combination 

of species, climatic zone, ecotype, management regime etc., see Chapter 3), i = 1 to n.  

EQUATION 2.3 

ANNUAL CARBON STOCK CHANGES FOR A STRATUM OF A LAND-USE CATEGORY AS A SUM OF 

CHANGES IN ALL POOLS 

iLU AB BB DW LI SO HWPC C C C C C C         

Where: 

iLUC  = carbon stock changes for a stratum of a land-use category 

Subscripts denote the following carbon pools: 

AB = above-ground biomass 

BB = below-ground biomass 

DW = deadwood 

LI = litter 

SO = soils 

HWP = harvested wood products 

Estimating changes in carbon pools and fluxes depends on data and model availability, as well as resources and 

capacity to collect and analyse additional information (See Chapter 1, Section 1.3.3 on key category analysis).  

Table 1.1 in Chapter 1 outlines which pools are relevant for each land-use category for Tier 1 methods, including 

cross references to reporting tables.  Depending on country circumstances and which tiers are chosen, stock 

changes may not be estimated for all pools shown in Equation 2.3.  Because of limitations to deriving default data 

sets to support estimation of some stock changes, Tier 1 methods include several simplifying assumptions: 

 change in below-ground biomass C stocks are assumed to be zero under Tier 1 (under Tier 2, country-specific 

data on ratios of below-ground to above-ground biomass can be used to estimate below-ground stock changes); 

 under Tier 1, dead wood and litter pools are often lumped together as ‘dead organic matter’ (see discussion 

below); and 

 dead organic matter stocks are assumed to be zero for non-forest land-use categories under Tier 1. For Forest 

Land converted to another land use, default values for estimating dead organic matter carbon stocks are 

provided in Tier 1.  

The carbon cycle includes changes in carbon stocks due to both continuous processes (i.e., growth, decay) and 

discrete events (i.e., disturbances like harvest, fire, insect outbreaks, land-use change and other events). Continuous 

processes can affect carbon stocks in all areas in each year, while discrete events (i.e., disturbances) cause 

emissions and redistribute ecosystem carbon in specific areas (i.e., where the disturbance occurs) and in the year 

of the event.  

Disturbances may also have long-lasting effects, such as decay of wind-blown or burnt trees. For practicality, Tier 

1 methods assume that all post-disturbance emissions (less removal of harvested wood products) are estimated as 

part of the disturbance event, i.e., in the year of the disturbance. For example, rather than estimating the decay of 

dead organic matter left after a disturbance over a period of several years, all post-disturbance emissions are 

estimated in the year of the event.   
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Figure 2.1(unchanged) Generalized carbon cycle of terrestrial AFOLU ecosystems showing the 

flows of carbon into and out of the system as well as between the five C 

pools within the system.  

 

Under Tier 1, it is assumed that the average transfer rate into dead organic matter (dead wood and litter) is equal 

to the average transfer rate out of dead organic matter, so that the net stock change is zero. This assumption means 

that dead organic matter (dead wood and litter) carbon stocks need not be quantified under Tier 1 for land areas 

that remain in a land-use category2. The rationale for this approach is that dead organic matter stocks, particularly 

dead wood, are highly variable and site-specific, depending on forest type and age, disturbance history and 

management. In addition, data on coarse woody debris decomposition rates are scarce and thus it was deemed that 

globally applicable default factors and uncertainty estimates cannot be developed. Countries experiencing 

significant changes in forest types or disturbance or management regimes in their forests are encouraged to develop 

domestic data to estimate the impact from these changes using Tier 2 or 3 methodologies and to report the resulting 

carbon stock changes and non-CO2 emissions and removals.  

All estimates of changes in carbon stocks, i.e., growth, internal transfers and emissions, are in units of carbon to 

make all calculations consistent. Data on biomass stocks, increments, harvests, etc. can initially be in units of dry 

matter that need to be converted to tonnes of carbon for all subsequent calculations. There are two fundamentally 

different and equally valid approaches to estimating stock changes: 1) the process-based approach, which estimates 

the net balance of additions to and removals from a carbon stock; and 2) the stock-based approach, which estimates 

the difference in carbon stocks at two points in time. 

Annual carbon stock changes in any pool can be estimated using the process-based approach in Equation 2.4 which 

sets out the Gain-Loss Method that can be applied to all carbon gains or losses. Gains can be attributed to growth 

(increase of biomass) and to transfer of carbon from another pool (e.g., transfer of carbon from the live biomass 

carbon pool to the dead organic matter pool due to harvest or natural disturbances). Gains are always marked with 

a positive (+) sign. Losses can be attributed to transfers of carbon from one pool to another (e.g., the carbon in the 

                                                           
2 Emissions from litter C stocks are accounted for under Tier 1 for forest conversion to other land-use. 

Litter

Dead wood

Above-ground

biomass

Below-ground

biomass

Soil organic

matter

Harvested

wood products

Increase of carbon

stocks due to growth

Carbon fluxes due to

discrete events, i.e., 

from harvest residues 

and natural disturbance

Carbon fluxes due

to continuous 

processes, i.e.

decomposition

Transfer of carbon

between pools



Volume 4: Agriculture, Forestry and Other Land Use 

2.10 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

slash during a harvesting operation is a loss from the above-ground biomass pool), or emissions due to decay, 

harvest, burning, etc. Losses are always marked with a negative (-) sign. 

EQUATION 2.4 

ANNUAL CARBON STOCK CHANGE IN A GIVEN POOL AS A FUNCTION OF GAINS AND LOSSES 

(GAIN-LOSS METHOD)  

LG CCC   

Where: 

C  = annual carbon stock change in the pool, tonnes C yr-1 

GC    = annual gain of carbon, tonnes C yr-1 

LC    = annual loss of carbon, tonnes C yr-1 

Note that CO2 removals are transfers from the atmosphere to a pool, whereas CO2 emissions are transfers from a 

pool to the atmosphere. Not all transfers involve emissions or removals, since any transfer from one pool to another 

is a loss from the donor pool but is a gain of equal amount to the receiving pool. For example, a transfer from the 

above-ground biomass pool to the dead wood pool is a loss from the above-ground biomass pool and a gain of 

equal size for the dead wood pool, which does not necessarily result in immediate CO2 emission to the atmosphere 

(depending on the Tier used).  

The method used in Equation 2.4 is called the Gain-Loss Method, because it includes all processes that bring about 

changes in a pool. An alternative stock-based approach is termed the Stock-Difference Method, which can be used 

where carbon stocks in relevant pools are measured at two points in time to assess carbon stock changes, as 

represented in Equation 2.5.  

EQUATION 2.5 

CARBON STOCK CHANGE IN A GIVEN POOL AS AN ANNUAL AVERAGE DIFFERENCE BETWEEN 

ESTIMATES AT TWO POINTS IN TIME (STOCK-DIFFERENCE METHOD) 

2 1

2 1

( )

( )

t tC C
C

t t


 


 

Where: 

C  = annual carbon stock change in the pool, tonnes C yr-1 

1t
C  = carbon stock in the pool at time 1t , tonnes C 

2t
C  = carbon stock in the pool at time 2t , tonnes C 

If the C stock changes are estimated on a per hectare basis, then the value is multiplied by the total area within 

each stratum to obtain the total stock change estimate for the pool.  In some cases, the activity data may be in the 

form of country totals (e.g., harvested wood) in which case the stock change estimates for that pool are estimated 

directly from the activity data after applying appropriate factors to convert to units of C mass. When using the 

Stock-Difference Method for a specific land-use category, it is important to ensure that the area of land in that 

category at times t1 and t2 is identical, to avoid confounding stock change estimates with area changes. 

The process method lends itself to modelling approaches using coefficients derived from empirical research data. 

These will smooth out inter-annual variability to a greater extent than the stock change method which relies on the 

difference of stock estimates at two points in time. Both methods are valid so long as they are capable of 

representing actual disturbances as well as continuously varying trends and can be verified by comparison with 

actual measurements. 

2.2.2 Overview of non-CO2 emission estimation  

Non-CO2 emissions are derived from a variety of sources, including emissions from soils, livestock and manure, 

and from combustion of biomass, dead wood and litter.  In contrast to the way CO2 emissions are estimated from 

biomass stock changes, the estimate of non-CO2 greenhouse gases usually involves an emission rate from a source 
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directly to the atmosphere.  The rate (Equation 2.6) is generally determined by an emission factor for a specific 

gas (e.g., CH4, N2O) and source category and an area (e.g., for soil or area burnt), population (e.g., for livestock) 

or mass (e.g., for biomass or manure) that defines the emission source.   

EQUATION 2.6 

NON-CO2 EMISSIONS TO THE ATMOSPHERE 

EFAEmission   

Where: 

Emission = non-CO2 emissions, tonnes of the non-CO2 gas  

A  = activity data relating to the emission source (can be area, animal numbers or mass 

unit, depending on the source type) 

EF  = emission factor for a specific gas and source category, tonnes per unit of A 

Many of the emissions of non-CO2 greenhouse gases are either associated with a specific land use (e.g., CH4 

emissions from rice) or are typically estimated from national-level aggregate data (e.g., CH4 emissions from 

livestock and N2O emissions from managed soils). Where an emission source is associated with a single land use, 

the methodology for that emission is described in the chapter for that specific land-use category (e.g., methane 

from rice in Chapter 5 on Cropland). Emissions that are generally based on aggregated data are dealt with in 

separate chapters (e.g., Chapter 10 on livestock-related emissions, and Chapter 11 on N2O emissions from managed 

soils and CO2 emissions from liming and urea applications). This chapter describes only methods to estimate non-

CO2 (and CO2) emissions from biomass combustion, which can occur in several different land-use categories. 

BOX 2.0A (NEW) 

CONSISTENCY BETWEEN AFOLU PROJECTS OR ACTIVITIES AND IPCC INVENTORY GUIDELINES 

The information presented in this Box is for information purposes only 

IPCC guidelines have been designed for national GHG inventories (NGHGI). They are, however, 

often applied, in conjunction with other guidance, to estimate GHG emissions and removals for 

different situations than those in a NGHGI. These different situations include scales (i.e. to any sub-

aggregation of land), time resolution (i.e., on a non-annual basis), length of time series (i.e., for a 

limited period) and/or for selected carbon pools. Using IPCC guidelines for estimating emissions 

and removals from sub-aggregations - i.e. projects and activities – can help countries maintain 

consistency with the NGHGI. However, projects and activities can introduce additional complexities 

including, but not limited to, system boundaries, double-counting, leakage, and attribution. 

Moreover, projects and activities may use different definitions, sources of data, data and methods 

compared to those used for the NGHGI, including different Approaches for land representation and 

methodological Tiers, impacting the consistency between the two. These need to be considered when 

applying the IPCC Guidelines outside of a NGHGI (IPCC, 2015), particularly when there is a need 

for consistency and comparability. 

Thus, when using IPCC guidelines for projects and activities the following steps should be 

considered:  

i) Define the spatial boundaries of the territory impacted by the activity; 

ii) Identify the land-use categories and subcategories of the NGHGI impacted by the activity. 

iii) Identify pools and gases impacted by the activity; 

iv) Identify the time frame (temporal boundaries) of the activity and ensure full reporting of 

any legacy emissions and removals associated with it3; 

v) Develop estimates by applying methods consistent with IPCC guidance, so ensuring 

consistency among the results of activities and the trends of times series of relevant NGHGI 

categories. 

 

                                                           
3 To deal with the limited time frame of reducing deforestation and forest degradation mitigation activities, reporting methods 

provided by the GFOI apply the stock difference approach to estimate the net difference between two long-term average C 
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BOX 2.0A (NEW) (CONTINUED) 

CONSISTENCY BETWEEN AFOLU PROJECTS OR ACTIVITIES AND IPCC INVENTORY GUIDELINES  

For example, 1) Reducing Emissions from deforestation and forest degradation and the role of 

conservation, sustainable management of forests and enhancement of forest carbon stocks in 

developing countries (REDD-plus) activities could be identified in the NGHGI as IPCC categories, 

subcategories, or sums of categories or sub-categories (GFOI, 2016), and relevant IPCC methods 

applied consistently; 2) The Australian Government has developed a framework as part of the 

Emissions Reduction Fund 4 for ensuring consistency in emissions estimation between AFOLU 

project-level mitigation activities and Australia's NGHGI. This framework includes integrity 

standards 5  to ensure emissions estimation methods are consistent with IPCC guidelines, and 

consequently estimated GHG reductions are consistent with trends of times series of relevant 

NGHGI categories. 

Emissions and removals estimates for activities are likely to apply Approach 2 or 3 and Tier 2 or 3 

methods because of the need to prepare GHG estimates that are more disaggregated per activity, e.g. 

organic farming vs traditional farming or coppice vs high-stand, and per population, e.g. by livestock 

sub-populations, crop types and forest types. Moreover, stratification of NGHGI 

categories/subcategories into subdivisions helps avoid double counting of emissions and removals 

from a single category that is impacted by more than an activity.  

Stratification also supports transparency among activity report and NGHGI estimates when the 

activity does not correspond to an entire NGHGI category. In many cases, activities and projects 

require tracking of land where they occur through time, e.g. no tillage. In such cases, Approach 3 

for land representation is required since it is the only approach that provides the spatially explicit 

information (either wall-to-wall or from sampling) across time needed to track activities and drivers, 

and to support estimation of GHG emissions or removals with higher accuracy. Where activities are 

known to lead to permanent changes or the activity includes management practices that determine 

temporary changes in the land cover, Approach 2 methods may provide sufficient information to 

prepare accurate estimates. 

Where activity and project data have been collected and analysed consistently with good practice, 

they can be used in the NGHGI either for deriving activity data and/or emission factors, or any other 

ancillary data used for preparing GHG estimates for the land subject to the activity, or for calibrating 

the model used in the NGHGI for the same land and/or verifying the outputs of such model. Where 

data have inconsistencies with those collected for the NGHGI, iterations and cross-checks between 

NGHGI experts and experts involved in the monitoring of the activity should be done until 

improvements applied to the activity and/or the NGHGI estimates enable consistency. When using 

data collected from activities and projects for improving or evaluating information and estimates 

reported in the NGHGI, it is important to: 

i) Define and report the reference conditions (e.g. climate, soil, management system) for 

which the data from the activity or project are valid and how it could be used in the NGHGI 

compilation; 

ii) Determine if the activity or emissions factor data in the project are representative of the 

national average and, if not, apply methods that ensure the NGHGI is not biased by them, 

e.g. limiting the use of the data to the land subject to the activity or project only and 

modifying the data used in the NGHGI to prevent bias 

iii) Define and report the level of variability (heterogeneity) of the data; 

iv) Ensure the data is available and consistently applied for the entire time series. 

 

 

                                                           
stocks at a single point in time (i.e. by assuming instantaneous oxidation). This is to allow a complete reporting of total net 

C stock changes associated with the activities, including lagged emissions and removals. 

4 http://www.environment.gov.au/climate-change/government/emissions-reduction-fund/publications 

5 http://www.environment.gov.au/climate-change/emissions-reduction-fund/publications/erf-methods-development 
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2.2.3 Conversion of C stock changes to CO2 emissions 

For reporting purposes, changes in C stock categories (that involve transfers to the atmosphere) can be converted 

to units of CO2 emissions by multiplying the C stock change by -44/12. In cases where a significant amount of the 

carbon stock change is through emissions of CO and CH4, then these non-CO2 carbon emissions should be 

subtracted from the estimated CO2 emissions or removals using methods provided for the estimation of these gases. 

In making these estimates, inventory compilers should assess each category to ensure that this carbon is not already 

covered by the assumptions and approximations made in estimating CO2 emissions. 

It should also be noted that not every stock change corresponds to an emission. The conversion to CO2 from C, is 

based on the ratio of molecular weights (44/12). The change of sign (-) is due to the convention that increases in 

C stocks, i.e. positive (+) stock changes, represent a removal (or ‘negative’ emission) from the atmosphere, while 

decreases in C stocks, i.e. negative (-) stock changes, represent a positive emission to the atmosphere 

2.3 GENERIC METHODS FOR CO2 EMISSIONS 

AND REMOVALS  

No refinement. 

2.3.1 Change in biomass carbon stocks (above-ground 

biomass and below-ground biomass) 

No refinement. 

2.3.1.1 LAND REMAINING IN A LAND-USE CATEGORY  

No refinement. 

2.3.1.2 LAND CONVERTED TO A NEW LAND-USE CATEGORY  

No refinement. 

2.3.1.3 ADDITIONAL GENERIC GUIDANCE FOR TIER 2  METHODS 

A.  USING ALLOMETRIC MODELS FOR BIOMASS ESTIMATION 

This section provides new guidance to inventory compilers on the use of allometric models (see Box 2.0b for 

definitions) for quantifying volume, biomass and carbon stocks in land uses containing vegetation. Allometric 

models can be used with country specific data to estimate carbon stocks at the Tier 2 level. Allometric models may 

also form part of more sophisticated Tier 3 approaches including measurement-based inventories and model-based 

inventories.   

Allometric models quantify the relationships between certain size variables of organisms. Allometric models6 can 

be used to estimate volume, biomass or carbon stocks of individuals, vegetation or forest stands. Allometric models 

have been developed for a wide range of species, habitats, regions and environmental conditions (e.g. documented 

in the GlobAllomeTree database (http://www.globallometree.org/; Schepaschenko et al, 2017). Allometric models 

used for forest tree species are commonly estimated from individual trees through destructive sampling from a 

population using a sampling design that provides accurate and representative data. As destructive sampling is 

usually costly and labour intensive or ecologically sensitive, it makes sense to utilize existing allometric models 

when valid under the respective conditions as outlined below (in the section on the use of allometric models). 

                                                           
6  The term “allometric equation” is also used when referencing to the mathematical descriptions of allometric models and 

relationships. When the parameters are estimated from sample data and/or uncertainty is involved, “model” is the correct 

term. Although allometric models are used to predict the values of a variable, for practical reasons in the context of these 

guidelines the term estimates is also used. 

http://www.globallometree.org/


Volume 4: Agriculture, Forestry and Other Land Use 

2.14 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

BOX 2.0B (NEW) 

ALLOMETRIC DEFINITIONS 

Allometry: The term allometry refers to the proportional relationship between the relative 

dimensional relationships or growth rates of two size variables and therefore allometric relations 

allow that one variable can be used to predict the corresponding value of another variable. For 

example, tree diameter at breast height (DBH) can be used to estimate tree volume or total tree 

biomass. Allometry can also describe the change of one part of an organism in relation to the change 

of its body size, either in the same organism (while growing over time), in populations (e.g., tree 

stands), or between species (e.g. different tree species). These changes follow rules, so the change 

in proportion between two variables of an organism can be described mathematically. 

 Allometric model: An allometric model is a formula that quantitatively describes an allometric 

relationship. The basic form is an equation: y=f(x) where y and x are the dependent and independent 

variables. Often the equation is in the form of y = a*x^b + c, where a, b and c are parameters (please 

note: “c” is not identical to the statistical error term “ε”). If “x” is equal to zero (e.g., if height is 

below breast height when using DBH to estimate tree biomass), then “y” is equal to the parameter 

“c”, noting that biologically “y” is always a positive number. Parameter “a” is the value of y if x is 1 

and describes the initial ratio between x and y . The parameter “b” is also called an “allometric parameter” 

or “allometric constant” and gives the proportionality between the relative increases of “x” and “y” 

(Fabrika und Pretzsch 2013; Picard et al. 2012). The general form of an allometric model, without 

intercept (i.e. when “c” = 0), is also often represented in its logarithmic transformation as a linear 

relationship, log(y) = log(a) + b*log(x) or ln(y) = ln(a) + b*ln(x). Other mathematical functions have 

also been adopted to describe allometric relationships.  

This basic model can be augmented by additional terms that include e.g. tree height as a second 

predictor variable (e.g. Ketterings et al. 2001). Models are usually provided with a residual error 

term (e.g., y = f(x) + ε), set in the model fitting against the sample data; to consider the residual 

error, calculated for each model, can be used to assess the uncertainty related to use of the selected 

model in the estimation process. 

The use of  a l lo metric models  

The choice of appropriate allometric models should be based on several criteria including the availability of 

country-specific data, the meta-data about the allometric models, the coincidence of data with the models’ domain 

of validity according to the meta-data, and the appropriateness of the allometric model by comparing the estimates 

to ones obtained with the Tier 1 method (Figure 2.2a). The accuracy of the models may be lower than e.g. available 

default factors or Biomass Emission Factors (BEFs), so it is good practice to choose the method with the higher 

accuracy. When applying an allometric model for predicting the biomass of a given species or at a given site, data 

on required variables must be available as e.g. from national forest inventories (Tomppo et al. 2010, Vidal et al. 

2016). For woody plant species, these variables commonly include DBH and height, and to lesser extent crown 

variables such as crown length or crown width. For shrubs or smaller trees and understorey vegetation, diameters 

nearer to the ground or shoot length may be used, among other variables. Carbon fractions and basic wood density 

may also be required for some models. Individual tree estimates can then be aggregated up to provide volume, 

biomass or carbon stock estimates at higher spatial scales (e.g. by plot, region or nation-wide). Tree-level estimates 

may refer to the whole tree, or individual components like above-ground and below-ground parts, stem, branches 

and/or foliage. Allometric models may be used within a specified forest stratum, to estimate above-ground and 

below-ground biomass estimation from direct measurements e.g. forest inventory plots. Allometric models may 

also be used for non-woody plant biomass estimates. Data collection programmes are often designed to collect the 

data specifically for this purpose.   

Allometries are influenced by an individual’s growing conditions and size classes, so in each case the allometric 

models developed will have a limited domain of validity. When selecting an appropriate allometric model, check 

the associated metadata supplied. Conditions such as: 

 Ecoregion, geographic range, environmental factors (e.g., ecosystem, climatic or soil types), 

 Representativeness of the model in consideration of individual size range and sampled population,  

 Plant components estimated (e.g., above-ground, below-ground, stem, branches, foliage), 

 Species functional traits (e.g., wood density and tree architecture), 

 Land or crop management practices, current and historic, 

file:///C:/Users/brandona/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/2PMZVLLJ/Definitions.docx%23_ENREF_2
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should be assessed for their suitability (Henry et al. 2011; Rock 2007; Vieilledent et al. 2012) as well as sample 

size and accuracy assessment. The use of existing allometric models beyond the range they were developed for 

may result in a lack of accuracy (e.g. Mugasha et al 2016; Nam et al, 2016), depending on the degree to which 

external variables control the partitioning of biomass among components and the geometric relationships of the 

species. The applicability of a model can also be tested using a representative data set (e.g. Paul et al, 2016; Perez-

Cruzado et al, 2015; Youkhana et al 2017). The accuracy of the allometric model should be assessed by evaluating 

the related statistical indicators. 

Figure 2.2a Generic decision tree for the identification of appropriate allometric 

models to estimate volume, biomass or carbon stocks  
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Generalized and site or species-specific allometric models have been developed for use in different circumstances. 

While species-specific models will give more accurate estimates for the respective tree species (all other aspects 

being the same as the ones for which the model was developed) (Henry et al. 2011), generalized models may be 
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better suited in regions with a very large diversity of tree species, where models are lacking for a large proportion 

of species. The use of species-specific models however is encouraged for the species for which specific models 

and appropriate input data are available. For natural forests, which may contain many different species, application 

of species-specific allometric models may be impractical; in this case, a model specific for the ecosystem type can 

be used (Krisnawati et al, 2012). When species-specific or ecosystem-specific models are not available, regionally 

relevant allometric models can be applied (Chave et al., 2004). Generic models developed based on a large number 

of sample trees across landscapes tend to be more reliable than locally developed models if these are based on only 

a small number of individuals (Chave et al 2005; Chave et al 2014; Paul et al, 2016).  

Stand leve l  models and their equat ions  

When individual or species specific allometric models for biomass or carbon stocks are not appropriate, stand level 

allometric models, which may include canopy height, basal area and community age as predictor variables, may 

be applicable to estimate biomass parameters. Stand-level allometric models using canopy height estimate carbon 

stocks per unit area based on the assumption that canopy height is directly proportional to biomass (Mascaro et al, 

2011; Saatchi et al, 2011). Information on canopy height can be predicted from ground-based inventory or by 

remote sensing such as airborne Light Detection and Ranging (LiDAR), polarimetric interferometry SAR or 

airborne imagery. Auxiliary information such as digital elevation models are necessary to predict canopy height 

from airborne and satellite-borne imagery because only canopy surface elevation can be predicted from them. The 

accuracy of carbon stock estimation from canopy height depends on the number of field measurement plots used 

to estimate the relationship between canopy height and carbon stocks. Basal area is an important parameter to 

understand stand characteristics and it is used in the model to estimate stand volume or stand biomass. Basal area 

is estimated easily in the field using simple equipment. When basal area is used in the stand-level model to estimate 

biomass or carbon stocks, mean tree height is also needed in the model (Lang et al, 2016; Mensah et al, 2016). The 

stand-level allometric model estimated from community age estimates carbon stocks per unit area by assuming 

that community biomass increases monotonically as the forest ages, and then drawing a saturation curve for 

community age (Inoue et al, 2010). It is applicable where land use is rotated at fixed intervals, so that a mosaic of 

communities of different ages exists. 

Tier 3 methods  

The hierarchical tier structure implies that use of higher tiers (Tier 2 or Tier 3) usually results in an increased 

accuracy of the method and/or emissions factor and other parameters used in the estimation of the emissions and 

removals. Tier 3 approaches for biomass carbon stock change estimation allow for a variety of methods, including 

measurement-based forest inventories. Measurement-based Tier 3 inventories require detailed national forest 

inventories containing data on growing stock, and, ideally, repeated measurements from which periodic increments 

can be estimated. In some circumstances these data are used directly in empirical models while in other cases they 

are supplemented with allometric models (for example, Chambers et al. (2001) and Baker et al. (2004) for the 

Amazon; Seiler et al. (2014) for tropical forest of Bolivia, Jenkins et al. (2004) and Kurz and Apps (2006) for 

North America; and Zianis et al. (2005) for Europe, Paul et al. (2016) for Australia, Luo et al. (2014) for China, 

Youkhana et al 2017 for tropical grasses), calibrated to national circumstances that allow for direct estimation of 

biomass increment or growth. Model-based Tier 3 inventories build on model-specific input data and may contain 

allometric models as empirical model components. Additional information related to the use of higher Tier 

methods can be found in Section 2.5. 

Uncerta inty  

Sources of uncertainty when using allometric models include:  

1. Model-related uncertainty, i.e. the uncertainty related to the model used, stemming from the estimation of the 

parameters of this model and residual variability around model; 

2. Sampling variability and measurement errors in input data (see volume 1, chapter 3, section 3.1.6 for 

additional information); 

3. The uncertainty of transferring the model to trees not used for estimation of the parameters (lack of 

representativeness) (see volume 1, chapter 3, section 3.1.6 for additional information). 

Magnitudes of the effects of the first and second sources should be reported with the model, the latter can be 

reduced by careful selection of models.  

Recalculat ions  

Recalculations of C stocks may be necessary, if new and/or better data or methodology becomes available. When 

BEF’s are replaced with parameters that are estimated using allometries, recalculations across the time series will 

be required. The replacement of generalised models with species-specific models also may require recalculations. 

It should be noted that allometry can change over time (Lopez-Serrano et al. 2005), for example, if the thinning 

regime in a plantation forest is changed. This may influence the ratio of crown biomass / DBH and, over time, the 

trees in this plantation may show different allometric relationships at two distant points in time. An updated 
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allometric model would therefore be required in order to reflect the impact of the changes. In this case, to ensure 

time series consistency, apply the guidance provided in Volume 1 Chapter 5 and in Volume 4, Chapter 4 in relation 

to the Forest Land category  

New technolog ies  

Remotely sensed data from airborne or terrestrial platforms can be useful sources of information for deriving 

variables relevant for constructing and validating allometric models. They can improve measurements of height, 

volume and crown dimensions of individual trees that are difficult to collect with traditional ground-based 

approaches, particularly in dense and complex canopies. They can underpin a new generation of allometric models 

which have tree height and crown size as explanatory variables (Jucker et al, 2017). Of particular potential is 

terrestrial laser scanning, offering a means to collect data on tree volume in a non-destructive manner (see Box 

2.0c). 

BOX 2.0C (NEW) 

NEW TECHNOLOGY: TERRESTRIAL LASER SCANNING 

Terrestrial laser scanning is a ground-based active remote sensing technique which can be used to 

derive 3D vegetation structure, and compute key variables such as tree height, stem diameter, crown 

dimensions and tree volume for above-ground biomass predictions and to develop and validate 

allometric models (Calders et al., 2015). These under-canopy terrestrial laser systems emit millions 

of laser pulses that reflect off solid objects such as trunks, branches and leaves and form 3D point 

clouds. Individual trees can be segmented from plot-scale point cloud data and individual tree point 

clouds can then be used to reconstruct the woody elements of a tree.  

Terrestrial laser scanning provides non-destructive and highly detailed measurements independent 

of the size and shape of a tree that are otherwise only available from destructive methods (Disney et 

al., 2018). Aboveground biomass calculated from the point cloud data is independent of allometry 

and with quantifiable accuracy. Many trees can be sampled and measured in an efficient manner and 

can provide most of the fundamental data needed to develop new or test the usefulness of existing 

allometric models for NGHGIs. Terrestrial laser scanning has proven useful for large and complex 

tropical trees (Gonzalez de Tanago et al., 2018). Terrestrial laser scanners cannot measure 

belowground or look inside trees, i.e. they do not provide information on wood density or whether 

a tree is hollow. 

B.  USING ABOVEGROUND BIOMASS DENSITY MAP CONSTRUCTED FROM 

REMOTELY SENSED DATA FOR BIOMASS ESTIMATION 

Biomass density maps are wall-to-wall, polygon- or pixel-based predictions of above-ground biomass for woody 

plants and trees. 

Consideration when developing bio mass densi ty maps  

Biomass density maps are constructed by combining remotely sensed data (see Box 2.0d) and field observations. 

They have been developed at national scales (e.g., Avitabile et al., 2012) as well as for continental to global scales 

(e.g., Baccini et al., 2012; Saatchi et al., 2011, Avitabile et al., 2016). The characteristics and usefulness of biomass 

density maps for NGHGIs depend on multiple factors: 

1. The definitions for forest and aboveground woody biomass used to produce the map and how this definition 

relates to the one used in the NGHGI. 

2. The type of remotely sensed data sources in terms of spatial resolution, temporal coverage and the degree to 

which the signal responds to aboveground biomass (sensitivity). The response depends on the type and 

biomass ranges of the woody plants. Different remote sensing technologies have varying abilities for 

predicting biomass for different types of woody plants (i.e. boreal versus tropics) and combining remotely 

sensed data from multiple sources can increase sensitivity and the resulting accuracy of biomass density 

predictions. 

3. The method used to construct the map. Such methods can range from simple interpolation of field estimates 

of biomass density using spatial covariates to more complex modelling of above-ground woody biomass using 

field estimates and observed remotely sensed signals.  

4. The availability and reliability of biomass estimates obtained from field data needed to produce and validate 

the biomass density map. Combining co-located remotely sensed data and field observations can be 

challenging because of the size and shape of the primary elements (i.e. field plot size and shape versus 

geometric resolution of remotely sensed data), the timing of their acquisition, accuracy of geolocations, and 
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differences in the variables and parameters that are measured and estimated in the field and predicted from 

the remotely sensed data.  

5. The degree to which map uncertainty is characterized and the manner in which it is used to assess bias and 

precision for large area estimates in support of NGHGIs (see Volume IV, Chapter 3). 

BOX 2.0D (NEW) 

REMOTE SENSING TECHNOLOGIES 

Optical, Synthetic Aperture Radar (SAR) and Light Detection and Ranging (Lidar) sensors are 

available currently as remote sensing data sources for producing biomass density maps. Data from 

optical satellite sensors are classified into three types on the basis of their spatial resolution; coarse 

resolution data with a pixel size greater than about 250 m (e.g., MODIS), medium resolution data 

with a pixel size of 10-80 m (e.g., Landsat and Sentinel 1 and 2), and fine resolution data with a 

pixel size smaller than 10 m (e.g., Rapideye or SPOT and ALOS-2).  

SAR and LiDAR are active sensors available as air borne and space borne instruments whose derived 

metrics are used to predict height, volume or biomass of woody plants and trees. SAR emits 

microwave pulses obliquely and measures attributes of the pulses that are reflected back from the 

Earth’s surface towards the sensor. In forest land, emitted pulses reflect from the ground, or canopy 

or trunk of woody plants and trees. Using the strength of the signal of the reflected pulses, volume 

or biomass of woody plants and trees can be predicted as demonstrated for satellite data from ALOS-

PALSAR and Sentinel 1 (Santoro and Cartus, 2018). LiDAR emits laser pulses and measures the 

traveling time from the sensor to the target which can be converted to distance. When the LiDAR 

emitter is aimed at woody plants and trees, these laser pulses can be reflected by the woody 

components, the leaves within the canopy, or the ground surface. Using the difference of a laser 

pulse reflected from canopy and ground surface, the height, volume or biomass of woody plants and 

trees can be predicted (Næsset 1997a,b, Lim et al 2003). Starting in 2019, a series of targeted space-

based missions will improve the capabilities for forest biomass predictions from LiDAR (e.g. GEDI, 

ICESAT-2) and SAR (e.g. BIOMASS, NISAR), that might be found useful for national purposes 

(Herold et al. 2019). 

Besides mapping biomass density, there are evolving approaches that monitor changes in biomass density through 

time directly from remotely sensed data (Baccini et al., 2017). Such approaches require consistent measurements 

and estimates, and such consistency can be challenging when different satellite data sources and different ways of 

processing and analysing the data are used. In principle, the direct prediction of wall-to-wall biomass change has 

the advantage of including all detectable change events, including those occurring in forest remaining forest (i.e., 

forest degradation and regrowth) which are not considered when a single biomass map is combined with activity 

data characterizing land use change. However, the sensitivity of the remotely sensed data to subtle biomass changes 

needs to be carefully evaluated. The mapped biomass change might also not distinguish between anthropogenic or 

natural causes and not fully characterize all components of the carbon emissions. For example, some carbon loss 

may have accumulated as dead organic matter (e.g., dead wood or litter), and additional data are usually required 

to estimate the fate of that initial biomass (e.g., burned, left on site, and removed from the site). 

Because above-ground woody biomass is the variable predicted from remotely sensed data, additional information 

such as country-specific data for root-to-shoot ratios are needed to estimate carbon stocks in other pools.  

Guidance  on the  use  of  bio mass  density maps for nat ional GHG inventories  

Biomass density maps can be used to enhance the stratification of ground carbon inventories, to improve the 

estimation of carbon emissions by increasing data density in under-sampled or inaccessible areas, and as an 

independent data source for verification purposes (provided that the field data were not used to predict the biomass 

density maps used for stratification).  

Use of biomass maps for the estimation of carbon emissions at Tier 2 and Tier 3 levels can be achieved in several 

ways: 

1. Combination with activity data where a biomass density map provides the base to estimate emission factors. 

Such analyses require consistency among the activity data and biomass maps concerning definitions, 

geolocation, and spatial and temporal data characteristics. The use of regionally aggregated emission factor 

analysis (i.e., using average estimates for different forest types, or change trajectories) helps to reduce inherent 

pixel-level uncertainties in biomass map data for national-scale estimations. Countries have used such an 

approach to increase data density in areas under-sampled by ground inventories (see Box 2.0e).  

2. Estimate biomass change directly from multi-temporal biomass density maps. Such an approach would 

provide an assessment of carbon stock changes in above-ground biomass from land use change and, in 
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particular, it would also include changes within forests remaining forests such as degradation and regrowth, 

management and harvest, and natural disturbances. Such analysis requires consistent and well-calibrated 

biomass density maps using ground and remotely sensed data to accurately estimate biomass changes; a 

quality requirement that has so far not been achieved for the NGHGIs at this stage. Improvements in both the 

field estimates of biomass change and remote sensing technologies and analysis in the coming years can lead 

to such approaches becoming more efficient and accurate for NGHGI purposes. 

3. Biomass density maps can be integrated with remote sensing-assisted, time-series of land change and/or with 

Tier 3 models to localize emissions estimates. This way the biomass map data can be linked to land and carbon 

evolution over time that better reflect the complexity of forest-related carbon fluxes. Critical for this type of 

application is the consistency among the various data sources and models concerning definitions (forest, 

biomass pools), and, spatial and temporal data characteristics. Map unit uncertainties in biomass maps 

propagate to larger area estimates and can lead to substantial uncertainties in national emissions estimation if 

not properly considered.  

The application of such approaches requires maps well-calibrated for national circumstances. Many available 

large-area biomass maps, such as global biomass maps, might not be consistent with national definitions of forest 

and/or biomass pools, and often exhibit large systematic errors in the estimation of carbon stock and changes for 

national and local assessments (Avitabile et al., 2016). Since countries may have national products, including 

biomass maps, large-area biomass maps can be useful for the purpose of independent comparison and verification. 

Depending on how a map is produced and how it is used to enhance NGHGIs, additional metadata on the applied 

models and procedures used to produce the map, such as for example the covariance matrix of model parameters 

of a model that was used to generate the map (see Volume 1, Chapter 6, section 6.1.4.2), may be required for 

characterization and reporting of uncertainty in a fully compliant way, particularly for application to country-

specific circumstances. 

BOX 2.0E (NEW) 

USING A BIOMASS MAP FOR GHG ESTIMATION: AN EXAMPLE FROM THE BRAZILIAN AMAZON  

Brazil is applying a methodology for estimating forest biomass combining data from airborne 

LiDAR, satellite remote sensing and forest inventories. The aim for using the biomass map for the 

NGHGI is to provide coverage over the whole Amazon where the availability and quality of ground 

data varies. Deforestation and associated land use change in the Amazon are heterogeneous and 

patchy. Related estimates of carbon emissions carry some level of uncertainty unless this spatial 

variability in both types of change and biomass variability is captured.  

The methodology to estimate the biomass was based on 1,000 LiDAR transects randomly distributed 

across 3.5 million km2 of the Amazon forests. Aboveground biomass is estimated at three different 

levels. At field plot level (first level), the data are used to validate the biomass estimated by LiDAR 

(second level) by adopting and using the models and data provided by Chave et al 2014 and Longo 

et al 2016. A total of 407 field plots were used for this validation. At the third level the biomass was 

estimated by extrapolating the biomass to the Brazilian Amazon Biome by the use of MODIS 

vegetation index, Shuttle Radar Topography Mission data, precipitation data from the Tropical 

Rainfall Measuring Mission and Synthetic Aperture Radar data of the Phased Array type L-band 

Synthetic Aperture Radar, soil and vegetation maps. A nonparametric regression method (Random 

Forest) is used for correlating the above ground biomass within the LiDAR transects to a list of 

variables, and then used for the extrapolation of the biomass to the region. The coefficient of 

determination and the root mean squared error between the third level extrapolated biomass data and 

the LiDAR data were R2=0.7485 and RMSE=27.18 MgCha-1, respectively. In this process, the 

SRTM elevation data were the most important variable for the biomass extrapolation process, 

followed by the TRMM precipitation data and Enhanced Vegetation Index data. The estimated 

biomass map uncertainty is calculated by propagating the uncertainties through the different levels 

of biomass estimation, i.e., field plots, LiDAR and satellite (Longo et al 2016). This process allows 

us to obtain total uncertainty estimates for each pixel in the final biomass map. 
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2.3.2 Change in carbon stocks in dead organic matter 

No refinement in Introduction. 

2.3.2.1 LAND REMAINING IN A LAND-USE CATEGORY  

The Tier 1 assumption for both dead wood and litter pools (see table 1.1 for definitions) for all land-use categories 

is that their stocks are not changing over time if the land remains within the same land-use category. Thus, the 

carbon in biomass killed during a disturbance or management event (less removal of harvested wood products) is 

assumed to be released entirely to the atmosphere in the year of the event. This is equivalent to the assumption 

that the carbon in non-merchantable and non-commercial components that are transferred to dead organic matter 

is equal to the amount of carbon released from dead organic matter to the atmosphere through decomposition and 

oxidation. Countries can use higher tier methods to estimate the carbon dynamics of dead organic matter. This 

section describes estimation methods if Tier 2 (or 3) methods are used. 

Countries that use Tier 1 methods to estimate dead organic matter (DOM) pools in land remaining in the same 

land-use category, report zero changes in carbon stocks or carbon emissions from those pools. Following this rule, 

CO2 emissions resulting from the combustion of dead organic matter during fire are not reported, nor are the 

increases in dead organic matter carbon stocks in the years following fire. However, emissions of non-CO2 gases 

from burning of DOM pools are reported.  Tier 2 methods for estimation of carbon stock changes in DOM pools 

calculate the changes in dead wood and litter carbon pools (Equation 2.17). Two methods can be used: either track 

inputs and outputs (the Gain-Loss Method, Equation 2.18) or estimate the difference in DOM pools at two points 

in time (Stock-Difference Method, Equation 2.19). These estimates require either detailed inventories that include 

repeated measurements of dead wood and litter pools, or models that simulate dead wood and litter dynamics. It 

is good practice to ensure that such models are tested against field measurements and are documented. Figure 2.3 

provides the decision tree for identification of the appropriate tier to estimate changes in carbon stocks in dead 

organic matter.  

BOX 2.0E (NEW) (CONTINUED) 

USING A BIOMASS MAP FOR GHG ESTIMATION: AN EXAMPLE FROM THE BRAZILIAN AMAZON  

 

Biomass map of the Amazon biome in Brazil (Ometto et al. 2018) 
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Figure 2.3 Generic decision tree for identification of appropriate tier to estimate 

changes in carbon stocks in dead organic matter for a land-use 

category  

Start

Are data on managed area and DOM 

stocks at two periods of time available 

to estimate  changes in C stocks?

Collect data for Tier 2 method (Gain-

Loss Method or Stock Difference 

Method²)

Use the data for Tier 2 method (Stock-

Difference Method) or Tier 3 Method

Use the data for Tier 2 method (Gain-

Loss Method) or Tier 3

                        
             Are data on manged 

area and annual transfer into and  out of 
DOM stocks available?

                              

Yes

No

Yes

Yes

Box 3:Tier 2 and 3

Box 2:Tier 2 and 3

Are changes in C stocks in DOM a key 

category¹?

No

No
Assume that the dead organic 

matter stock is in equilibrium 

Box 1:Tier 1

Note:

1: See Volume 1 Chapter 4 "Methodological  Choice  and Identification of key Categories” (noting Section 4.1.2 on limited resources), 

for discussion of  key categories and use of decision trees

2: The two methods are defined in Equations 2.18 and 2.19, respectively.

Equation 2.17 summarizes the calculation to estimate the annual changes in carbon stock in DOM pools: 

EQUATION 2.17 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD ORGANIC MATTER 

LTDWDOM CCC   

Where: 

∆C
DOM

 = annual change in carbon stocks in dead organic matter (includes dead wood and litter), tonnes C 

yr-1 
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∆C
DW

 = change in carbon stocks in dead wood, tonnes C yr-1 

∆C
LT

 = change in carbon stocks in litter, tonnes C yr-1  

The changes in carbon stocks in the dead wood and litter pools for an area remaining in a land-use category 

between inventories can be estimated using two methods, described in Equation 2.18 and Equation 2.19. The same 

equation is used for dead wood and litter pools, but their values are calculated separately.  

EQUATION 2.18 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD WOOD OR LITTER (GAIN-LOSS METHOD) 

{( ) }DOM in outC A DOM DOM CF      

Where:  

DOMC  = annual change in carbon stocks in the dead wood/litter pool, tonnes C yr-1  

A  = area of managed land, ha  

inDOM  = average annual transfer of biomass into the dead wood/litter pool due to annual processes 

and disturbances, tonnes d.m. ha-1 yr-1 (see next Section for further details). 

outDOM  = average annual decay and disturbance carbon loss out of dead wood or litter pool, tonnes 

d.m. ha-1 yr-1 

CF  = carbon fraction of dry matter, tonne C (tonne d.m.)-1 

The net balance of DOM pools specified in Equation 2.18, requires the estimation of both the inputs and outputs 

from annual processes (litterfall and decomposition) and the inputs and losses associated with disturbances. In 

practice, therefore, Tier 2 and Tier 3 approaches require estimates of the transfer and decay rates as well as activity 

data on harvesting and disturbances and their impacts on DOM pool dynamics. Note that the biomass inputs into 

DOM pools used in Equation 2.18 are a subset of the biomass losses estimated in Equation 2.7. The biomass losses 

in Equation 2.7 contain additional biomass that is removed from the site through harvest or lost to the atmosphere, 

in the case of fire. 

The method chosen depends on available data and will likely be coordinated with the method chosen for biomass 

carbon stocks. Transfers into and out of a dead wood or litter pool for Equation 2.18 may be difficult to estimate. 

The stock difference method described in Equation 2.19 can be used by countries with forest inventory data that 

include DOM pool information, other survey data sampled according to the principles set out in Annex 3A.3 

(Sampling) in Chapter 3, and/or models that simulate dead wood and litter dynamics. 

When the gain – loss method is chosen, inventory measurements may provide estimates for DOM stocks. 

Alternatively, relevant information on transfers out of the litter and dead wood pools through decomposition can 

be found in the literature. Care must be taken not to confound decomposition flow “rates” and decomposition 

“rate-constants” (e.g., k’s) when DOMout is estimated. DOMout using the second approach is the product of the 

rate-constant describing the proportion lost per year and the stock of DOM (e.g., DOMout = k *DOM). One should 

be aware that decomposition rate-constants describe total losses and not just those via respiration. The fate of 

leached and fragmented carbon is not well understood; much of the material is likely respired but whether this is 

slower or faster than the source material is highly variable. Negative exponential decay models are commonly used 

to determine the decomposition rate-constants that characterize the volume, mass, or density loss in dead wood 

and litter over time (Cook et al. 2016, Harmon et al. 2000, Russell et al. 2014). While models to predict volume, 

biomass, or density loss are relatively simple, the decomposition rate-constants may vary substantially. The 

decomposition of dead wood and litter mass is driven by many factors including: woodiness (i.e., wood and bark 

versus foliage); position (i.e., standing versus downed dead wood); species of the material decomposing; state of 

decomposition (i.e., fresh versus highly decomposed) and decomposers present (e.g., the presence of termites 

and/or soil biota); climate under the canopy (for example condition by openness of the canopy) (Lavelle et al., 

1993; Hattenschwiler et al., 2005, Harmon et al. 2011, García‐Palacios et al., 2013, Russell et al., 2014, Filser et 

al. 2016, Chertov et al. 2017, Hu et al., 2017, Kornarnov et al. 2017), among others. Having specific information 

on these attributes will help to assign a specific decomposition constant to a particular DOM stock (Rock et al. 

2008). 
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EQUATION 2.19 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD WOOD OR LITTER (STOCK-DIFFERENCE 

METHOD) 

CF
T

DOMDOM
AC

tt

DOM 






 


)(
12

 

Where: 

DOMC  = annual change in carbon stocks in dead wood or litter, tonnes C yr-1  

A  = area of managed land, ha 

1t
DOM  = dead wood/litter stock at time t1 for managed land, tonnes d.m. ha-1 

2t
DOM  = dead wood/litter stock at time t2 for managed land, tonnes d.m. ha-1 

T = (t2 – t1) = time period between time of the second stock estimate and the first stock estimate, yr 

CF  = carbon fraction of dry matter (default for litter = 0.37 (Smith & Heath 2002), default for 

dead wood (temperate species) = 0.5 tonne C (tonne d.m.)-1 

Note that whenever the stock change method is used (e.g., in Equation 2.19), the area used in the carbon stock 

calculations at times t1 and t2 must be identical. If the area is not identical then changes in area will confound the 

estimates of carbon stocks and stock changes. It is good practice to use the area at the end of the inventory period 

(t2) to define the area of land remaining in the land-use category. The stock changes on all areas that change land-

use category between t1 and t2 are estimated in the new land-use category, as described in the sections on land 

converted to a new land category.   

INPUT OF BIOMASS TO DEAD ORGANIC MATTER 

Whenever a tree is felled, non-merchantable and non-commercial components (such as tops, branches, leaves, 

roots, and non-commercial trees) are left on the ground and transferred to dead organic matter pools. In addition, 

annual mortality can add substantial amounts of dead wood to that pool. For Tier 1 methods, the assumption is 

that the carbon contained in all biomass components that are transferred to dead organic matter pools will be 

released in the year of the transfer, whether from annual processes (litterfall and tree mortality), land management 

activities, fuelwood gathering, or disturbances. For estimation procedures based on higher Tiers, it is necessary to 

estimate the amount of biomass carbon that is transferred to dead organic matter. The quantity of biomass 

transferred to DOM is estimated using Equation 2.20. 

EQUATION 2.20 

ANNUAL CARBON IN BIOMASS TRANSFERRED TO DEAD ORGANIC MATTER 

{ ( )}in mortality slash disturbance BLolDOM L L L f     

Where:  

inDOM  = total carbon in biomass transferred to dead organic matter, tonnes C yr-1 

mortalityL  = annual biomass carbon transfer to DOM due to mortality, tonnes C yr-1 (See Equation 2.21) 

slashL  = annual biomass carbon transfer to DOM as slash, tonnes C yr-1 (See Equations 2.22) 

disturbanceL  = annual biomass carbon loss resulting from disturbances, tonnes C yr-1 (See Equation 2.14) 

BLolf  = fraction of biomass left to decay on the ground (transferred to dead organic matter) from loss 

due to disturbance.  As shown in Table 2.1, the disturbance losses from the biomass pool are 

partitioned into the fractions that are added to dead wood (cell B in Table 2.1) and to litter (cell 

C), are released to the atmosphere in the case of fire (cell F) and, if salvage follows the 

disturbance, transferred to HWP (cell E). 

Note: If root biomass increments are counted in Equation 2.10, then root biomass losses must also be counted in 

Equations 2.20, and 2.22. 
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Examples of the terms on the right-hand side of Equation 2.20 are obtained as follows:  

Transfers to dead organic matter from mortali ty,  L m o r t a l i t y  
Mortality is caused by competition during stand development, age, diseases, and other processes that are not 

included as disturbances. Mortality cannot be neglected when using higher Tier estimation methods. In extensively 

managed stands without periodic partial cuts, mortality from competition during the stem exclusion phase, may 

represent 30-50 percent of total productivity of a stand during its lifetime. In regularly tended stands, additions to 

the dead organic matter pool from mortality may be negligible because partial cuts extract forest biomass that 

would otherwise be lost to mortality and transferred to dead organic matter pools. Available data for increment 

will normally report net annual increment, which is defined as net of losses from mortality. Since in this text, net 

annual growth is used as a basis to estimate biomass gains, mortality must not be subtracted again as a loss from 

biomass pools. Mortality must, however, be counted as an addition to the dead wood pool for Tier 2 and Tier 3 

methods.  

The equation for estimating mortality is provided in Equation 2.21: 

EQUATION 2.21 

ANNUAL BIOMASS CARBON LOSS DUE TO MORTALITY 

  )( mCFGAL Wmortality  

Where: 

mortalityL  = annual biomass carbon transfer to DOM due to mortality, tonnes C yr-1 

A  = area of land remaining in the same land use, ha 

WG  = above-ground biomass growth, tonnes d.m. ha-1 yr-1 (see Equation 2.10) 

CF  = carbon fraction of dry matter, tonne C (tonne d.m.)-1 

m  = mortality rate expressed as a fraction of above-ground biomass growth  

When data on mortality rates are expressed as proportion of growing stock volume, then the term Gw in Equation 

2.21 should be replaced with growing stock volume to estimate annual transfer to DOM pools from mortality. 

Mortality rates differ between stages of stand development and are highest during the stem exclusion phase of 

stand development. They also differ with stocking level, forest type, management intensity and disturbance history. 

Thus, providing default values for an entire climatic zone is not justified because the variation within a zone will 

be much larger than the variation between zones. 

Annual carbon transfer to slash,  L s l a s h  

This involves estimating the quantity of slash left after wood removal or fuelwood removal and transfer of biomass 

from total annual carbon loss due to wood harvest (Equation 2.12). The estimate for logging slash is given in 

Equation 2.22 and which is derived from Equation 2.12 as explained below: 

EQUATION 2.22 

ANNUAL CARBON TRANSFER TO SLASH 

   (1 )slash RL H BCEF R H D CF          

Where:  

slashL  = annual biomass carbon transfer to DOM as slash, tonnes C yr-1, including dead roots, tonnes 

C yr-1 

H  = annual wood harvest (wood or fuelwood removal), m3 yr-1 

RBCEF  = biomass conversion and expansion factors applicable to wood removals, which transform 

merchantable volume of wood removal into above-ground biomass removals, tonnes biomass 

removal (m3 of removals)-1. If BCEFR values are not available and if BEF and Density values 

are separately estimated then the following conversion can be used:   

R RBCEF BEF D   
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o D  is basic wood density, tonnes d.m. m-3 

o Biomass Expansion Factors ( RBEF ) expand merchantable wood removals to 

total aboveground biomass volume to account for non-merchantable components 

of the tree, stand and forest. BEFR is dimensionless.  

R  = ratio of below-ground biomass to above-ground biomass, in tonne d.m. below-ground 

biomass (tonne d.m. above-ground biomass)-1. R must be set to zero if root biomass 

increment is not included in Equation 2.10 (Tier 1) 

CF  = carbon fraction of dry matter, tonne C (tonne d.m.)-1  

Fuelwood gathering that involves the removal of live tree parts does not generate any additional input of biomass 

to dead organic matter pools and is not further addressed here. 

Inventories using higher Tier methods can also estimate the amount of logging slash remaining after harvest by 

defining the proportion of above-ground biomass that is left after harvest (enter these proportions in cells B and 

C of Table 2.2 for harvest disturbance) and by using the approach defined in Equation 2.14. In this approach, 

activity data for the area harvested would also be required.  

2.3.2.2 LAND CONVERSION TO A NEW LAND-USE CATEGORY  

The reporting convention is that all carbon stock changes and non-CO2 greenhouse gas emissions associated with 

a land-use change be reported in the new land-use category. For example, in the case of conversion of Forest Land 

to Cropland, both the carbon stock changes associated with the clearing of the forest as well as any subsequent 

carbon stock changes that result from the conversion are reported under the Cropland category. 

The Tier 1 assumption is that DOM pools in non-forest land categories after the conversion are zero, i.e., they 

contain no carbon. The Tier 1 assumption for land converted from forest to another land-use category is that all 

DOM carbon losses occur in the year of land-use conversion. Conversely, conversion to Forest Land results in 

build-up of litter and dead wood carbon pools starting from zero carbon in those pools. DOM carbon gains on land 

converted to forest occur linearly, starting from zero, over a transition period (default assumption is 20 years). This 

default period may be appropriate for litter carbon stocks, but in temperate and boreal regions it is probably too 

short for dead wood carbon stocks. Countries that use higher Tier methods can accommodate longer transition 

periods by subdividing the remaining category to accommodate strata that are in the later stages of transition.  

The estimation of carbon stock changes during transition periods following land-use conversion requires that 

annual cohorts of the area subject to land-use change be tracked for the duration of the transition period. For 

example, DOM stocks are assumed to increase for 20 years after conversion to Forest Land. After 20 years, the 

area converted enters the category Forest Land Remaining Forest Land, and no further DOM changes are assumed, 

if a Tier 1 approach is applied. Under Tier 2 and 3, the period of conversion can be varied depending on vegetation 

and other factors that determine the time required for litter and dead wood pools to reach steady state. 

Higher Tier estimation methods can use non-zero estimates of litter and dead wood pools in the appropriate land-

use categories or subcategories. For example, settlements and agro-forestry systems can contain some litter and 

dead wood pools, but because management, site conditions, and many other factors influence the pool sizes, no 

global default values can be provided here. Higher Tier methods may also estimate the details of dead organic 

matter inputs and outputs associated with the land-use change. 

The conceptual approach to estimating changes in carbon stocks in dead wood and litter pools is to estimate the 

difference in C stocks in the old and new land-use categories and to apply this change in the year of the conversion 

(carbon losses), or to distribute it uniformly over the length of the transition period (carbon gains) Equation 2.23: 

EQUATION 2.23 

ANNUAL CHANGE IN CARBON STOCKS IN DEAD WOOD AND LITTER DUE TO LAND CONVERSION 

on

onon
DOM

T

ACC
C




)(
 

Where: 

DOMC = annual change in carbon stocks in dead wood or litter, tonnes C yr-1 

oC  = dead wood/litter stock, under the old land-use category, tonnes C ha-1 
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nC  = dead wood/litter stock, under the new land-use category, tonnes C ha-1 

onA  = area undergoing conversion from old to new land-use category, ha 

onT  = time period of the transition from old to new land-use category, yr. The Tier 1 default is 20 years 

for carbon stock increases and 1 year for carbon losses. 

Inventories using a Tier 1 method assume that all carbon contained in biomass killed during a land-use conversion 

event (less harvested products that are removed) is emitted directly to the atmosphere and none is added to dead 

wood and litter pools. Tier 1 methods also assume that dead wood and litter pool carbon losses occur entirely in 

the year of the transition.  

Countries using higher Tier methods can modify Co in Equation 2.23 by first accounting for the immediate effects 

of the land-use conversion in the year of the event. In this case, they would add to Co the carbon from biomass 

killed and transferred to the dead wood and litter pools and remove from Co any carbon released from dead wood 

and litter pools, e.g., during slash burning. In that case Co in Equation 2.23 would represent the dead wood or litter 

carbon stocks immediately after the land-use conversion. Co will transit to Cn over the transition period, using 

linear or more complex dynamics. A disturbance matrix (Table 2.1) can be defined to account for the pool 

transitions and releases during the land-use conversion, including the additions and removals to Co. 

Countries using a Tier 1 approach can apply the Tier 1 default carbon stock estimates for litter, and if available 

dead wood pools, provided in Table 2.2, but should recognize that these are broad-scale estimates with 

considerable uncertainty when applied at the country level. Table 2.2 is incomplete because of the paucity of 

published data. A review of the literature has identified several problems. The IPCC definitions of dead organic 

matter carbon stocks include litter and dead wood. The litter pool contains all litter plus fine woody debris up to a 

diameter limit of 10 cm (see Chapter 1, Table 1.1). Published litter data generally do not include the fine woody 

debris component, so the litter values in Table 2.2 are incomplete.  

There are numerous published studies of coarse woody debris (Harmon and Hua, 1991; Karjalainen and 

Kuuluvainen, 2002) and a few review papers (e.g., Harmon et al., 1986), and but to date only two studies are found 

to provide regional dead wood carbon pool estimates that are based on sample plot data.  Krankina et al. (2002) 

included several regions in Russia and reported coarse woody debris (> 10 cm diameter) estimates of 2 to 7 Mg C 

ha-1. Cooms et al. (2002) reported regional carbon pools based on a statistical sample design for a small region in 

New Zealand. Regional compilations for Canada (Shaw et al., 2005) provide estimates of litter carbon pools based 

on a compilation of statistically non-representative sample plots, but do not include estimates of dead wood pools. 

Review papers such as Harmon et al. (1986) compile a number of estimates from the literature. For example, their 

Table 5 lists a range of coarse woody debris values for temperate deciduous forests of 11 – 38 Mg dry matter ha-1 

and for temperate coniferous forests of 10 – 511 Mg dry matter ha-1. It is, however, statistically invalid to calculate 

a mean from these compilations as they are not representative samples of the dead wood pools in a region. 

While it is the intent of these IPCC Guidelines to provide default values for all variables used in Tier 1 

methodologies, it is currently not feasible to provide estimates of regional defaults values for litter (including fine 

woody debris < 10 cm diameter) and dead wood (> 10 cm diameter) carbon stocks. Litter pool estimates (excluding 

fine woody debris) are provided in Table 2.2. Tier 1 methodology only requires the estimates in Table 2.2 for lands 

converted from Forest Land to any other land-use category (carbon losses) and for lands converted to Forest Land 

(carbon gains). Tier 1 methods assume that litter and dead wood pools are zero in all non-forest categories and 

therefore transitions between non-forest categories involve no carbon stock changes in these two pools. 
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TABLE 2.2 (UPDATED) 

TIRE 1 DEFAULT VALUES FOR LITTER AND DEAD WOOD CARBON STOCKS 

Climate 1 

Forest type 

Broadleaf deciduous Needleleaf evergreen All vegetation types References2 

Litter carbon stocks (tonnes C ha-1) 

Mean Min/Max Mean Min/Max Mean Min/Max  

Boreal coniferous 

forest 
19.1 4.0-38.7 40.3 4.0-117.4 31.4 4.0-117.4 

93, 98, 99, 

100, 101 

Boreal tundra 

woodland 
29.3 23.7-33.7 67.4 23.7-85.1 49.5 23.7-85.1 100, 101 

Polar n.a n.a n.a n.a n.a n.a n.a. 

Subtropical desert n.a n.a n.a n.a n.a n.a n.a. 

Subtropical humid 

forest 
5.6 4.4-8.1 6.8 4.7-11.6 8.7 1.2-24.0 

6, 7, 44, 93, 

98, 99, 103 

Subtropical 

mountain system 
n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Subtropical steppe n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Temperate 

continental forest 
23.9 4.6-64.4 66.3 6.0-279.1 47.8 4.6-279.1 

93, 98, 99, 

100, 101 

Temperate desert n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Temperate 

mountain system 
3.4 n.a. 3.9 n.a. 3.7 3.4-3.9 98 

Temperate oceanic 

forest 
n.a. n.a. n.a. n.a. 2.9 n.a. 15 

Temperate steppe 36.9 7.6-98.8 26.4 7.1-43.0 28.7 3.8-98.8 
97, 98, 100, 

101 

Tropical dry forest n.a. n.a. n.a. n.a. 2.4 2.1-2.7 11 

Tropical moist 

forest 
4.3 2.0-9.0 14.8 n.a. 5.9 1.9-14.8 21, 93, 98 

Tropical mountain 

system 
n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Tropical rainforest 2.5 n.a. 4.7 n.a. 4.8 2.1-16.4 
11, 26, 35, 89, 

93, 99 

Climate 
Dead wood carbon stocks (tonnes C ha-1) 

Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Boreal coniferous 

forest 
16.4 2.3-50.7 22.2 4.1-76.5 19.7 2.3-76.5 

46, 54, 55, 56, 

59, 62, 63, 70, 

81, 87, 88, 93 

Boreal tundra 

woodland 
5.7 n.a. 1.3 0.5-2.4 3.1 0.5-6.1 5, 70 

Polar n.a n.a 26.2 n.a. 26.2 n.a. 70 

Subtropical desert n.a n.a 64.4 
14.4-

134.5 
64.4 

14.4-

134.5 
40 

Subtropical humid 

forest 
4.1 2.5-7.5 10.9 3.5-32.8 13.2 0.2-43.8 

6,7,44, 46, 68, 

93 

Subtropical 

mountain system 
n.a. n.a. 11.8 7.2-16.3 11.8 7.2-16.3 77 
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TABLE 2.2 (UPDATED) (CONTINUED) 

TIRE 1 DEFAULT VALUES FOR LITTER AND DEAD WOOD CARBON STOCKS 

Climate 1 

Forest type  

Broadleaf deciduous Needleleaf evergreen All vegetation types References2 

Dead wood carbon stocks (tonnes C ha-1) 

Mean  Min/Max Mean  Min/Max Mean  Min/Max   

Subtropical steppe n.a. n.a. 6.8 6.0-7.7 6.8 6.0-7.7 27 

Temperate 

continental forest 
23.6 1.6-150.0 22.1 2.1-59.5 23.0 1.6-150.0 

1, 2, 23, 28, 36, 

37, 46, 54, 55, 

64, 70, 80, 83, 

87, 92, 93, 

95,110 

Temperate desert n.a. n.a. 10.5 n.a. 10.5 n.a. 22 

Temperate 

mountain system 
21.2 2.8-80.6 48.1 1.7-181.8 37.6 1.7-181.8 

3, 9, 10, 12, 13, 

17, 25, 29, 30, 

31, 33, 34, 39, 

41, 50, 57, 58, 

60, 67, 68, 69, 

71, 75, 76, 78, 

82, 84, 90, 91, 

105, 109 

Temperate oceanic 

forest 
40.5 2.8-95.0 24.3 n.a. 36.8 2.8-95.0 

15, 16, 24, 32, 

52, 61, 85, 86 

Temperate steppe 26.2  9.7-50.0 8.0  n.a 21.7 8.0 -50.0 4, 70, 83, 98 

Tropical dry forest 16.0 14.7-17.3 n.a. n.a. 9.0 1.3-17.3 11, 20 

Tropical moist 

forest 
8.4 1.2-21.2 3.4 n.a. 8.0 1.2-21.2 

19, 20, 21, 38, 

4893, 96, 107 

Tropical mountain 

system 
3.3 n.a. n.a. n.a. 3.3 n.a. 20 

Tropical rainforest 17.7 0.9-218.9 1.9 n.a. 14.8 0.6-218.9 

11, 14, 18, 26, 

35, 42, 43, 45, 

46, 47, 49, 51, 

53, 65, 66, 72, 

73, 74, 79, 89, 

93, 94, 104, 

105, 107, 108 
1 FAO. 2012. Forest Resources Assessment Working Paper 179. 
2References:  1Canada NFI, 2006; 2Alban and Perala, 1992; 3Arthur and Fahey, 1992; 4Barney and Fahey, 1992; 5Barney and Van Cleve, 

1973; 6Beets et al. 2011; 7Beets et al. 2014; 8Beets, 1980; 9Bingham and Sawyer Jr., 1988; 10Blackwell et al., 1992; 11FRA2015, Brazil; 

12Brown and See, 1981; 13Busing, 1998; 14Chambers et al., 2000; 15FRA2015, Chile; 16Christensen, 1977; 17Clark et al., 1998; 
18Cochrane et al., 1999; 19Collins, 1981; 20Delaney et al., 1998; 21FRA2015, Ecuador; 22Fahey, 1983; 23Falinski, 1978; 24Frangi et al., 

1997; 25Franklin et al., 1984; 26FRA2015, French Guyana; 27Fule and Covington, 1994; 28Goodburn and Lorimer, 1998; 29Gore and 

Patterson, III, 1986; 30Gosz, 1980; 31Grahom and Cromack, 1982; 32Green and Peterken, 1998; 33Grier, 1978; 34Grier et al., 1981; 

35FRA2015, Guyana; 36Hale et al., 1999; 37Harmon and Chen, 1991; 38Harmon et al., 1995; 39Harmon et al., 1986; 40Harmon et al., 

1987; 41Harmon, 1980; 42Higucki and Biot, 1995; 43Hofer et al., 1996; 44Holdaway et al., 2017; 45Hughes et al., 2000; 46Japanese NFI, 

2018; 47John, 1973; 48Jordan, 1989; 49Kauffman and Uhl, 1990; 50Keenan et al., 1993; 51Kira, 1978; 52Kirby et al., 1998; 53Klinge, 
1973; 54Krankina et al., 1999; 55Krankina, Unpublished; 56Lamas and Fries, 1994; 57Lambert et al., 1980; 58Lang, 1985; 59Lee et al., 

1997; 60Lesica et al., 1990; 61Levett et al., 1985; 62Linder and Ostlund, 1992; 63Linder et al. 1997; 64MacMillan, 1981; 65Martinelli et 

al., 1988; 66Martius, 1997; 67McCarthy and Bailey, 1994; 68McMinn and Hardt, 1996; 69Muller and Liu, 1991; 70Canada NFI, 2018b; 
71Nicholas and White, 1984; 72Proctor et al. 1983; 73Revilla, 1987; 74Robertson and Daniel, 1989; 75Robertson and Bowser, 1999; 

76Roskoski, 1980; 77Sackett, 1980; 78Sackett, 1979; 79Saldarriaga et al., 1988; 80Shifley et al., 1997; 81Sippola, 1998; 82Sollins, 1982; 
83Spetich et al., 1999; 84Spies et al., 1988; 85Stewart and Burrows, 1994; 86Stokland, ; 87Storozhenko, 1997; 88Sturtevant et al., 1997; 

89FRA2015, Suriname; 90Taylor and Fonda, 1990; 91Tritton 1980; 92Tyrrell and Crow, 1994; 93Ugawa et al., 2012; 94Uhl et al., 1988; 

95van Hees and Clerkx, 1999; 96Zhou et al.,; 97FRA2015, Argentina; 98Domke et al., 2016; 99Japan NFI, 2018; 100Canada NFI, 2018; 
101Canada NFI, 2018a; 102Shaw et al. 2005; 103Beets et al., 2012; 104Klinge et al., 1975; 105Kaufman et al., 1988; 106Nicholas and 

White, 1985; 107Revilla, 1986; 108Revilla, 1988; 109Sollins et al., 1980; 110Lang and Forman, 1978 

n.a. denotes ‘not available’ 
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2.3.3 Change in carbon stocks in soils  

Although both organic and inorganic forms of C are found in soils, land use and management typically has a larger 

impact on organic C stocks. Consequently, the methods provided in these guidelines focus mostly on soil organic 

C. Overall, the influence of land use and management on soil organic C is dramatically different in a mineral 

versus an organic soil type. Organic (e.g., peat and muck) soils have a minimum of 12 percent organic C by mass 

(see Chapter 3 Annex 3A.5, for the specific criteria on organic soil classification), and develop under poorly 

drained conditions of wetlands (Brady & Weil 1999). All other soils are classified as mineral soil types, and 

typically have relatively low amounts of organic matter, occurring under moderate to well drained conditions, and 

predominate in most ecosystems except wetlands. Discussion about land-use and management influences on these 

contrasting soil types is provided in the next two sections. 

MINERAL SOILS 

Mineral soils contain an organic carbon pool that is influenced by land-use and management activities. Land use 

can have a large effect on the size of this pool through activities such as conversion of native Grassland and Forest 

Land to Cropland, where 20-40 percent of the original soil C stocks can be lost (Mann 1986; Davidson & 

Ackerman 1993; Ogle et al. 2005). Within a land-use type, a variety of management practices can also have a 

significant impact on soil organic C storage, particularly in Cropland and Grassland (e.g., Paustian et al. 1997; 

Conant et al. 2001; Ogle et al. 2004 and 2005).  In principle, soil organic C stocks can change with management 

or disturbance if the net balance between C inputs and C losses from soil is altered. Management activities 

influence organic C inputs through changes in plant production (such as fertilisation or irrigation to enhance crop 

growth), direct additions of C in organic amendments, and the amount of carbon left after biomass removal 

activities, such as crop harvest, timber harvest, fire, or grazing. Decomposition largely controls C outputs and can 

be influenced by changes in moisture and temperature regimes as well as the level of soil disturbance resulting 

from the management activity. Other factors also influence decomposition, such as climate and edaphic 

characteristics. Specific effects of different land-use conversions and management regimes are discussed in the 

land-use specific chapters (Chapters 4 to 9). 

Land-use change and management activity can also influence soil organic C storage by changing erosion rates and 

subsequent loss of C from a site; some eroded C decomposes in transport and CO2 is returned to the atmosphere, 

while the remainder is deposited in another location. The net effect of changing soil erosion through land 

management is highly uncertain, however, because an unknown portion of eroded C is stored in buried sediments 

of wetlands, lakes, river deltas and coastal zones (Smith et al. 2001). 

ORGANIC SOILS 

No refinement. See Chapter 2, Sections 2.2 and 2.3 of the 2013 Wetlands Supplement. 

2.3.3.1 SOIL ORGANIC C  ESTIMATION METHODS (LAND REMAINING 

IN A LAND-USE CATEGORY AND LAND CONVERSION TO A NEW 

LAND USE) 

Soil C inventories include estimates of soil organic C stock changes for mineral soils and CO2 emissions from 

organic soils due to enhanced microbial decomposition caused by drainage and associated management activity. 

In addition, inventories can address C stock changes for soil inorganic C pools (e.g., calcareous grassland that 

become acidified over time) if sufficient information is available to use a Tier 3 approach. The equation for 

estimating the total change in soil C stocks is given in Equation 2.24: 

EQUATION 2.24 (UPDATED) 

ANNUAL CHANGE IN CARBON STOCKS IN SOILS 

    Soils Mineral Organic InorganicC C L C  

Where: 

SoilsC  = annual change in carbon stocks in soils, tonnes C yr-1  

MineralC  = annual change in organic carbon stocks in mineral soils, tonnes C yr-1 

OrganicL  = annual loss of carbon from drained organic soils, tonnes C yr-1 
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 InorganicC  = annual change in inorganic carbon stocks from soils, tonnes C yr-1 (assumed to be 0 unless 

using a Tier 3 approach) 

For Tier 1 methods, soil organic C stocks for mineral soils are computed to a default depth of 30 cm because 

default reference soil organic C stocks (SOCREF – see Equation 2.25 and Table 2.3) and stock change factors (e.g. 

FLU, FMG and FI see Equation 2.25) are based on a 30 cm depth. In addition, the reference condition is defined as 

that present in native lands (i.e. non-degraded, unimproved lands under native vegetation) for the default reference 

soil organic C stocks (SOCREF). For Tier 2, a different reference condition and depth can be used as described in 

the section on Tier 2 methods. Residue/litter C stocks are not included in Tier 1 because they are addressed by 

estimating dead organic matter stocks (see section 2.3.2). Inventories can also estimate the change in mineral soil 

organic C stock due to biochar amendments to soils (Tier 2 and Tier 3 only). Stock changes in organic soils are 

based on emission factors that represent the annual loss of organic C throughout the profile due to drainage and 

associated management activity.  

No Tier 1 or 2 methods are provided for estimating the change in soil inorganic C stocks (∆𝐶𝐼𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐) due to 

limited scientific data for derivation of stock change factors; thus, the net flux for inorganic C stocks is assumed 

to be zero. Tier 3 methods could be developed to estimate changes in the stock of inorganic carbon in mineral or 

organic soils.  

It is possible that compilers will use different tiers to prepare estimates for mineral soils, organic soils, biochar 

amendments and soil inorganic C, depending on the availability of resources. Thus, stock changes are discussed 

separately for organic carbon in mineral and organic soils and for inorganic C pools (Tier 3 only). Generalised 

decision trees in Figures 2.4 and 2.5 can be used to assist inventory compilers in determining the appropriate tier 

for estimating stock changes for mineral and organic soil C, respectively. 
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Figure 2.4 Generic decision tree for identification of appropriate tier to estimate 

changes in carbon stocks in mineral soils by land-use category. 
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Figure 2.5 Generic decision tree for identification of appropriate tier to estimate 

changes in carbon stocks in organic soils by land-use category  
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Tier 1 –  Default Method 

Mineral soils  

For mineral soils, the stock change factor method is based on changes in soil C stocks (∆𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙) over a finite 

period of time of 20 years (Equation 2.25). The change in organic C stock in mineral soil (𝑆𝑂𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙) is computed 

by calculating the organic C stock remaining after a management change relative to the organic C stock in a 

reference condition and summing this change over all climate zones, soil types and management practices included 

in the inventory. The soil organic C stock present under the reference condition for the Tier 1 method is defined 

as that in non-degraded, unimproved lands under native vegetation (Table 2.3). The following assumptions are 

made: 

(i) Over time, soil organic C stock reaches a spatially-averaged, stable value specific to the soil, climate, 

land-use and management practices; and  

(ii) Soil organic C stock change during the transition to a new equilibrium SOC occurs in a linear fashion 

over a period of 20 years. 

Assumption (i), that under a given set of climate and management conditions soils tend towards an equilibrium 

organic C stock, is widely accepted.  Although, soil organic C stock changes in response to management changes 

may often be best described by a curvilinear function, assumption (ii) greatly simplifies the Tier 1 methodology 

and provides a good approximation over a multi-year inventory period, where changes in management and land-

use conversions are occurring throughout the inventory period.  
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Using the default method, changes in mineral soil organic C stocks are computed over an inventory time period.  

Inventory time periods will likely be established based on the years in which activity data are collected, such as 

1990, 1995, 2000, 2005 and 2010, which would correspond to inventory time periods of 1990-1995, 1995-2000, 

2000-2005, 2005-2010. For each inventory time period, the soil organic C stocks are estimated for the first (SOC0-T) 

and last year (SOC0) based on multiplying the reference C stocks by stock change factors. Annual rates of carbon 

stock change are estimated as the difference in stocks at two points in time divided by the time dependence of the 

stock change factors.  

EQUATION 2.25 

ANNUAL CHANGE IN ORGANIC CARBON STOCKS IN MINERAL SOILS 

0 (0 )( )T

Mineral

SOC SOC
C

D


   

 
, , , , , , , , , ,

, ,

     c s i c s i c s i c s iMineral REF LU MG I c s i

c s i

SOC SOC F F F A  

(Note: T is used in place of D in the ∆𝐶𝑀𝑖𝑛𝑒𝑟𝑎𝑙  equation if T is ≥ 20 years, see note below 

associated with the parameter 𝐷) 

Where: 

MineralC  = annual change in organic C stocks in mineral soils, tonnes C yr-1 

0SOC  = mineral soil organic C stock (SOCMineral) in the last year of an inventory time period, tonnes 

C 

(0 )TSOC 
 = mineral soil organic C stock (SOCMineral) at the beginning of the inventory time period, 

tonnes C 

T  = number of years over a single inventory time period, yr  

D  = Time dependence of mineral soil organic C stock change factors which is the default time 

period for transition between equilibrium SOC values, yr. Commonly 20 years, but depends 

on assumptions made in computing the factors FLU, FMG and FI.  If T exceeds D, use the value 

for T to obtain an annual rate of change over the inventory time period (0-T years).   

c  = represents the climate zones included in the inventory 

s = represents the soil types included in the inventory 

i = represents the set of management systems included in the inventory. 

MineralSOC  = total mineral soil organic C stock at a defined time, tonnes C 

, ,c s iREFSOC  = the soil organic C stock for mineral soils in the reference condition, tonnes C ha-1 (Table 

2.3) 

, ,c s iLUF  = stock change factor for mineral soil organic C land-use systems or sub-systems for a 

particular land-use, dimensionless  

 [Note: FND is substituted for FLU in forest soil organic C stock calculations to estimate the 

influence of natural disturbance regimes (see Chapter 4, Section 4.2.3 for more discussion)]. 

, ,c s iMGF  = stock change factor for mineral soil organic C for management regime, dimensionless 

, ,c s iIF  = stock change factor for mineral soil organic C for the input of organic amendments, 

dimensionless 

, ,c s iA  = land area of the stratum being estimated, ha 

[Note: All land in the stratum should have common biophysical conditions (i.e., climate and 

soil type) and management history over the inventory time period to be treated together for 

analytical purposes.] 
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Inventory calculations are based on land areas that are stratified by climate regions (see Chapter 3 Annex 3A.5, 

for default classification of climate), and default soils types as shown in Table 2.3 (see Chapter 3, Annex 3A.5, for 

default classification of soils). The stock change factors are very broadly defined and include: 1) a land-use factor 

(FLU) that reflects C stock changes associated with type of land use, 2) a management factor (FMG) representing 

the principal management practice specific to the land-use sector (e.g., different tillage practices in cropland), and 

3) an input factor (FI) representing different levels of C input to soil. As mentioned above, FND is substituted for 

FLU in Forest Land to account for the influence of natural disturbance regimes (see Chapter 4, Section 4.2.3 for 

more discussion). The stock change factors are provided in the soil C sections of the land-use chapters. Each of 

these factors represents the change over a specified number of years (D), which can vary across sectors, but is 

typically invariant within sectors (e.g., 20 years for the cropland systems). In some inventories, the time period for 

inventory (T years) may exceed D, and under those cases, an annual rate of change in C stock may be obtained by 

dividing the product of [(SOC0 – SOC(0 –T)) ● A] by T, instead of D. See the soil C sections in the land-use chapters 

for detailed step-by-step guidance on the application of this method. 

When applying the stock change factor method using Equation 2.25, the type of land-use and management activity 

data has a direct influence on the formulation of the equation (See Box 2.1). Formulation A is based on activity 

data collected with Approach 1, while Formulation B is based on activity data collected with Approaches 2 or 3 

(Box 2.1). See Chapter 3 for additional discussion on the approaches for activity data collection. 

Special consideration is needed if using Approach 1 activity data (see Chapter 3) as the basis for estimating land-

use and management effects on soil C stocks, using Equation 2.25. Approach 1 data do not track individual land 

transitions, and so SOC stock changes are computed for inventory time periods equivalent to D years, or as close 

as possible to D, which is 20 years in the Tier 1 method. For example, Cropland may be converted from full tillage 

to no-till management between 1990 and 1995, and Formulation A (see Box 2.1) would estimate a gain in soil C 

for that inventory time period. However, assuming that the same parcel of land remains in no-till between 1995 

and 2000, no additional gain in C would be computed (i.e., the stock for 1995 would be based on no-till 

management and it would not differ from the stock in 2000 (SOC0), which is also based on no-till management). 

If using the default approach, there would be an error in this estimation because the change in soil C stocks occurs 

over 20 years (i.e., D = 20 years). Therefore, SOC(0 –T) is estimated for the most distant time that is used in the 

inventory calculations up to D years before the last year in the inventory time periods (SOC0). For example, 

assuming D is 20 years and the inventory is based on activity data from 1990, 1995, 2000, 2005 and 2010, SOC(0 

–T) will be computed for 1990 to estimate the change in soil organic C for each of the other years, (i.e., 1995, 2000, 

2005 and 2010). The year for estimating SOC(0 –T) in this example will not change until activity data are gathered 

at 2011 or later (e.g., computing the C stock change for 2011 would be based on the most distant year up to, but 

not exceeding D, which in this example would be 1995).  

If transition matrices are available (i.e., Approach 2 or 3 activity data), the changes can be estimated between each 

successive year. From the example above, some no-till land may be returned to full tillage management between 

1995 and 2000. In this case, the gain in C storage between 1990 and 1995 for the land base returned to full tillage 

would need to be discounted between 1995 and 2000.  Further, no additional change in the C stocks would be 

necessary for land returned to full tillage after 2000 (assuming tillage management remained the same).  Only land 

remaining in no-till would continue to gain C up to 2010 (i.e., assuming D is 20 years). Hence, inventories using 

transition matrices from Approach 2 and 3 activity data will need to be more careful in dealing with the time 

periods over which gains or losses of SOC are computed.  See Box 2.2 for additional details.  The application of 

the soil C estimation approach is much simpler if only using aggregated statistics with Approach 1 activity data. 

However, it is good practice for countries to use transition matrices from Approach 2 and 3 activity data if that 

information is available because the more detailed statistics will provide an improved estimate of annual changes 

in soil organic C stocks. 

There may be some cases in which activity data are collected over time spans longer than the time dependence of 

the stock change factors (D), such as every 30 years with a D of 20. For those cases, the annual stock changes can 

be estimated directly between each successive year of activity data collection (e.g., 1990, 2020 and 2050) without 

over- or under-estimating the annual change rate, as long as T is substituted for D in Equation 2.25. 
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TABLE 2.3 (UPDATED) 

DEFAULT REFERENCE CONDITION SOIL ORGANIC CARBON STOCKS (SOCREF) FOR MINERAL SOILS (TONNES C HA-1 IN 0-30 

CM DEPTH) 1, 2 

IPCC Climate Zone 5 

IPCC soil class 6 

High activity clay 

soils (HAC) 7 

Low activity clay 

soils (LAC) 8 

Sandy soils 

(SAN) 9 

Polar Moist/Dry (Px - undiff)13 59 ± 41% (24) NA 27 ± 67% (18) 

Boreal Moist/Dry (Bx - undiff)13 63 ± 18% (35) NA 10 ± 90% 4 

Cool temperate dry (C2) 43 ± 8% (177) 33 ± 90% 3 13 ± 33% (10) 

Cool temperate moist (C1) 81 ± 5% (334) 76 ± 51% (6) 51 ± 13% (126) 

Warm temperate dry (W2) 24 ± 5% (781) 19 ± 16% (41) 10 ± 5% (338) 

Warm temperate moist (W1) 64 ± 5% (489) 55 ± 8% (183) 36 ± 23% (39) 

Tropical dry (T4) 21 ± 5% (554) 19 ± 10% (135) 9 ± 9% (164) 

Tropical moist (T3) 40 ± 7% (226) 38 ± 5% (326) 27 ± 12% (76) 

Tropical wet (T2) 60 ± 8% (137) 52 ± 6% (271) 46 ± 20% (43) 

Tropical montane (T1) 51 ± 10% (114) 44 ± 11% (84) 52 ± 34% (11) 

 
Spodic soils 

(POD) 10 

Volcanic soils 

(VOL) 11 

Wetland soils 

(WET) 12 

Polar Moist/Dry (Px - undiff)13 NO NA NA 

Boreal Moist/Dry (Bx - undiff)13 117 ± 90% 3 20 ± 90% 4 116 ± 65% (6) 

Cool temperate dry (C2) NO 20 ± 90% 4 87 ± 90% 3 

Cool temperate moist (C1) 128 ± 14% (45) 136 ± 14% (28) 128 ± 13% (42) 

Warm temperate dry (W2) NO 84 ± 65% (10) 74 ± 17% (49) 

Warm temperate moist (W1) 143 ± 30% (9) 138 ± 12% (42) 135 ± 28% (28) 

Tropical dry (T4) NA 50 ± 90% 4 22 ± 17% (32) 

Tropical moist (T3) NA 70 ± 90% 4 68 ± 17% (55) 

Tropical wet (T2) NA 77 ± 27% (14) 49 ± 19% (33) 

Tropical montane (T1) NA 96 ± 31% (10) 82 ± 50% (12) 

Note: Data are derived from Batjes (2010) and Batjes (2011) unless otherwise noted through the use of superscripts. 
1 NA denotes that soil categories the soil category may occur in a climate zone, but no data was available.  NO denotes that the soil type 

does not normally occur within a climate zone.   2 All values are presented in the format of the mean for the soil by climate combination ± 
the 95% confidence limit expressed as a percentage of the mean (that is ± 1.96 * standard error /mean *100).  Values in parentheses are the 

number of soils included in the derivation of mean and standard error values for each combination of soil and climate types.  3 Indicates 

where no data were available from Batjes (2011) but values were derived for the 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories and have been used in the table.  No values of n were available.  A nominal error estimate of ±90% of the mean was assigned 

as per the 2006 IPCC Guidelines.  4 Indicates where no data were available either from Batjes (2011) or in the 2006 IPCC Guidelines for 
National Greenhouse Gas Inventories.  Mean values present the default values used in the 1996 IPCC Guidelines. No values of n were 

available.   A nominal error estimate of ±90% of the mean was assigned as per the 2006 IPCC Guidelines.  5 Climate classes are defined 

according to (IPCC 2006, p. 3.39) using elevation, mean annual temperature, mean annual precipitation, mean annual precipitation to 
potential evapotranspiration ratio and frost occurrence.  6 Soil classes are inferred from the FAO-1990/WRB-2006 classification in 

accordance with IPCC (2006, p. 3.40 - 3.41).  7 Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils 

dominated by 2:1 silicate clay minerals (in the World Reference Base for Soil Resources (WRB) classification: Leptosols, Vertisols, 
Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Calcisols, Gypsisols, Umbrisols, Cambisols, Regosols; 

in USDA classification: Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).   8 Soils with low activity clay (LAC) minerals 

are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminium oxides (in WRB classification: Acrisols, 
Lixisols, Nitisols, Ferralsols, Durisols; in USDA classification: Ultisols, Oxisols, acidic Alfisols).  9 Soils (regardless of taxonomic 

classification) having > 70% sand and < 8% clay (in WRB classification: Arenosols; in USDA classification: Psamments).  10 Soils 

exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols).  11 Soils derived from volcanic 
ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols).  12 Soils with restricted drainage 

leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).  13 The 

Boreal dry and Boreal moist zones and the Polar dry and Polar moist zones were not differentiated.  Results presented represent the SOC30 

stocks for the undifferentiated (undiff.) Boreal (Bx) and Polar (Px) classes. 
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BOX 2.1 (UPDATED) 

ALTERNATIVE FORMULATIONS OF EQUATION 2.25 FOR APPROACH 1 ACTIVITY DATA VERSUS APPROACH 2 OR 

3 ACTIVITY DATA WITH TRANSITION MATRICES 

Two alternative formulations are possible for Equation 2.25 depending on the Approach used to 

collect activity data, including 

Formulation A (Approach 1 for Activity Data Collection) 
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Formulation B (Approaches 2 and 3 for Activity Data Collection) 
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Where: 

p = a parcel of land representing an individual unit of area over which the inventory calculations are 

performed.  

See the description of other terms under the Equation 2.25. 

Activity data may only be available using Approach 1 for data collection (Chapter 3).  These data 

provide the total area at two points in time for climate, soil and land-use/management systems, 

without quantification of the specific transitions in land use and management over the inventory time 

period (i.e., only the aggregate or net change is known, not the gross changes in activity).  With 

Approach 1 activity data, mineral C stock changes are computed using formulation A of Equation 

2.25.  In contrast, activity data may be collected based on surveys, remote sensing imagery or other 

data providing not only the total areas for each land management system, but also the specific 

transitions in land use and management over time on individual parcels of land.  These are considered 

Approach 2 and 3 activity data in Chapter 3, and soil C stock changes are computed using 

formulation B of Equation 2.25.  Formulation B contains a summation by land parcel (i.e., "p" 

represents land parcels in formulation B rather than the set of management systems “i”) that allows 

the inventory compiler to compute the changes in C stocks on a land parcel by land parcel basis. 

 

BOX 2.2 (UPDATED) 

COMPARISON BETWEEN USE OF APPROACH 1 AGGREGATE STATISTICS AND APPROACH 2 OR 3 ACTIVITY DATA 

WITH TRANSITION MATRICES 

This box examines the application of Equation 2.25 to calculate ∆𝐶𝑚𝑖𝑛𝑒𝑟𝑎𝑙 . Assume a country where 

a fraction of the land is subjected to land-use changes, as shown in the following table, where each 

line represents one land unit with an area of 1 Mha (F = Forest Land; C = Cropland; G = Grassland).  

Where a land-use change occurs, it is assumed to occur in the year following the previous inventory 

year (e.g. for land unit 1, the conversion from F to C occurred at the start of 1991 such that for the 

five years from the start of 1991 to the end of the 1995 inventory year the land was under land-use 

C) 
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BOX 2.2 (UPDATED) (CONTINUED) 

COMPARISON BETWEEN USE OF APPROACH 1 AGGREGATE STATISTICS AND APPROACH 2 OR 3 ACTIVITY 

DATA WITH TRANSITION MATRICES 

Land Unit ID 1990 1995 2000 2005 2010 2015 2020 

1 F C C C C C C 

2 F C C C G G G 

3 G C C C C G G 

4 G G F F F F F 

5 C C C C G G G 

6 C C G G G C C 

 
 

For simplicity, it is assumed that the country has a single soil type, with a SOCREF (0-30 cm soil 

C stock under native forest vegetation) value of 77 tonnes C ha-1. Values for FLU are 1.00, 1.05 

and 0.92 for F, G and C, respectively. FMG and FI are assumed to be equal to 1. The time 

dependence of the stock change factors (D) is 20 years. Finally, the soil C stock is assumed to 

be at equilibrium in 1990 (i.e., no changes in land-use occurred during the 20 years prior to 

1990).  When using Approach 1 activity data (i.e., aggregate statistical data), annual changes in 

C stocks are computed for every inventory year following Equation 2.25 above. The following 

table shows the results of calculations1: 

 1990 1995 2000 2005 2010 2015 2020 

F (Mha) 2 0 1 1 1 1 1 

G (Mha) 2 1 1 1 3 3 3 

C (Mha) 2 5 4 4 2 2 2 

SOC0 (Mt C) 457.4 435.1 441.2 441.2 461.2 461.2 461.2 

SOC(0-T) (Mt C) 457.4 457.4 457.4 457.4 457.4 435.1 441.2 

∆C
Mineral

 (Mt C yr-1) 0.0 -1.1 -0.8 -0.8 0.2 1.3 1.0 

 

  

If Approach 2 or 3 data are used in which land-use changes are explicitly known, C stocks can 

be computed taking into account historical changes for every individual land unit. The total C 

stocks for the sum of all units is compared with the most immediate previous inventory year, 

rather than with the inventory of 20 years before to estimate annual changes in C stocks: 

 1990 1995 2000 2005 2010 2015 2020 

SOC0 (Mt C) for unit 1 77.0 75.5 73.9 72.4 70.8 70.8 70.8 

SOC0 (Mt C) for unit 2 77.0 75.5 73.9 72.4 74.5 76.6 78.7 

SOC0 (Mt C) for unit 3 80.9 78.3 75.8 73.3 70.8 73.3 75.8 

SOC0 (Mt C) for unit 4 80.9 80.9 79.9 78.9 78.0 77.0 77.0 

SOC0 (Mt C) for unit 5 70.8 70.8 70.8 70.8 73.3 75.8 78.3 

SOC0 (Mt C) for unit 6 70.8 70.8 73.3 75.8 78.3 76.5 74.6 

SOC0 (Mt C) 457.4 451.8 447.8 443.7 445.8 450.1 455.4 

SOC(0-T) (Mt C) 457.4 457.4 451.8 447.8 443.7 445.8 450.1 

∆C
Mineral

 (Mt C yr-1) 0.0 -1.1 -0.8 -0.8 0.4 0.9 1.0 
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BOX 2.2 (UPDATED) (CONTINUED) 

COMPARISON BETWEEN USE OF APPROACH 1 AGGREGATE STATISTICS AND APPROACH 2 OR 3 ACTIVITY DATA 

WITH TRANSITION MATRICES 

Both methods yield different estimates of C stocks, and use of Approach 2 or 3 data with land 

transition matrices would be more accurate than use of Approach 1 aggregate statistics. However, 

estimates of annual changes of C stocks would not differ greatly, as shown in this example. The 

effect of underlying data approaches on the estimates differ more when there are multiple changes 

in land-use on the same piece of land (as in land units 2, 3 and 6 in the example). It is noteworthy 

that Approach 1, 2 and 3 activity data produce the same changes in C stocks if the systems reach a 

new equilibrium, which occurs with no change in land-use and management for a 20-year time 

period using the Tier 1 method.  Consequently, no C stock increases or losses are inadvertently lost 

when applying the methods for Approach 1, 2 or 3 activity data, but the temporal dynamics do vary 

somewhat as demonstrated above. A spreadsheet is available with the full set of calculations: 

Vol4_Ch2_Spreadsheet_Box_2.2_Calculations.xlsx. 

Organic soils  

No refinement. See Chapter 2, Section 2.2 of the 2013 Wetlands Supplement. 

Soil  inorganic C 

No refinement. 

Tier 2 Methods 

Mineral soils  

A Tier 2 method is an extension of the Tier 1 method that allows an inventory to incorporate country-specific data. 

It is good practice for countries to use a Tier 2 method, if possible, even if they are only able to better specify 

certain components of the Tier 1 method. For example, a compiler may only have data to derive country-specific 

reference C stocks, which would then be used with default stock change factors to estimate changes in soil organic 

C stocks for mineral soils. 

Country-specific data can be used to improve four components when applying the Tier 1 equations for estimating 

stock changes in mineral soils. The components include a) derivation of region or country-specific stock change 

factors, b) reference condition C stocks, c) specification of management systems, and/or d) classification of climate 

and soil categories (e.g., Ogle et al., 2003; VandenBygaart et al., 2004; Tate et al., 2005). Inventory compilers can 

choose to derive specific values for all of these components, or any subset, which would be combined with default 

values provided in the Tier 1 method to complete the inventory calculations using Equation 2.25. Also, the Tier 2 

method uses the same procedural steps for calculations as provided for Tier 1.  

1) Defining management systems. Although the same management systems may be used in a Tier 2 inventory as 

found in the Tier 1 method, the default systems can be disaggregated into a finer categorisation that better 

represents management impacts on soil organic C stocks in a particular country based on empirical data (i.e., stock 

change factors vary significantly for the proposed management systems).  Such an undertaking, however, is only 

possible if there is sufficient detail in the underlying data to classify the land area into the finer, more detailed set 

of management systems. 

2) Climate regions and soil types. Countries that have detailed soil classifications and climatic data have the option 

of developing country-specific classifications. Moreover, it is considered good practice to specify better climate 

regions and soil types during the development of a Tier 2 inventory if the new classification improves the 

specification of reference C stocks and/or stock change factors. In practice, reference C stocks and/or stock change 

factors should differ significantly among the proposed climate regions and soil types based on an empirical analysis. 

Note that specifying new climate regions and/or soil types requires the derivation of country-specific reference C 

stocks and stock change factors. The default reference soil C stocks and stock change factors are only appropriate 

for inventories using the default climate and soil types. 

3) Reference C stocks. Deriving country-specific reference condition soil C stocks (SOCREF) is another possibility 

for improving an inventory using a Tier 2 method (Bernoux et al. 2002), which will likely produce more accurate 

and representative values. Country-specific stocks can be estimated from soil measurements, for example, as part 

of a country’s soil survey. It is important that reliable taxonomic descriptions be used to group soils into categories. 

Three additional points require consideration when deriving the country-specific values, including possible 

specification of country-specific soil categories and climate regions (i.e., instead of using the IPCC default 

classification), choice of reference condition, and choice of depth increment over which the stocks are estimated. 
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Stocks are computed by multiplying the proportion of organic C (i.e., %C divided by 100) by the depth increment 

(default is 30 cm), bulk density, and the proportion of coarse-fragment free soil (i.e., < 2mm fragments) in the 

depth increment (Ogle et al. 2003).  The coarse fragment-free proportion is on a mass basis (i.e., mass of coarse 

fragment-free soil/total mass of the soil). If the soil C reference condition differs from that used in Table 2.3 or the 

soil depth used differs from 30 cm, then appropriate country specific soil C stocks for the reference condition and 

stock change factors must be derived. For developing a Tier 2 method, it would also be possible to define reference 

SOC stocks and SOC stock change factors using an equivalent mass approach (see Box 2.2b) rather than an 

approach based on a fixed depth. 

The soil reference condition is the land-use/cover category (or condition within a land-use/cover category) that is 

used for evaluating the relative effect of land-use change on the amount of soil C storage (e.g., relative difference 

in soil C storage between a reference condition, such as native lands, and another land use, such as cropland, 

forming the basis for FLU in Equation 2.25). It is likely that many countries will use the Tier 1 default soil reference 

condition in a Tier 2 method. However, another land use or condition can be selected to define the reference 

condition, which is good practice if it allows for a more accurate assessment of soil C stock changes.  The same 

reference condition should be used for each climate zone and soil type, regardless of the land use. The soil C stock 

associated with the reference condition is then multiplied by land use, input and management factors to estimate 

the stocks at the beginning and last year in an inventory time period (See Equation 2.25). 

Another consideration in deriving country-specific reference soil C stocks is the possibility of estimating C stocks 

to a different depth in the soil. Default soil C stocks given in Table 2.3 are based on the amount of soil organic C 

in the top 30 cm of a soil profile. A different depth can be selected and used for Tier 2 methods if all appropriate 

data are available. Consideration should be given to the introduction of bias (positive or negative) that may arise 

in response to the depth selected. For example, where depth is set to 20 cm and cultivation mixes soils to a 

depth >20 cm, an apparent difference in SOC stock between cultivated and uncultivated soils may be observed for 

the 20cm depth that is not representative of the change in SOC stocks to the depth over which mixing occurs in 

the cultivated soil. It is good practice to derive reference condition soil C stocks to the depth at which land use and 

management impact soil C stocks, but this will require that the data are available or could be acquired to the 

selected depth. Any change in the depth for reference condition soil C stocks will require derivation of new stock 

change factors (e.g. FLU, FMG and FI see Equation 2.25) consistent with the depth selected because the defaults are 

based on impacts to a 30 cm depth.   

It is possible to use a soil C model to derive steady state soil C stocks indicative of the soil reference condition for 

the various combinations of soil type and climate that exist within a country. However, this would require sufficient 

testing of the model used to provide evidence that the model is adequate for this purpose (See Section 2.5.2 for 

more information). Further information related to soil sampling strategies and how to derive soil reference C stocks 

can be found in Batjes (2011), as well as in a range of soil sampling and analysis texts (e.g. Carter & Gregorich 

2008; de Gruijter et al. 2006) 

4) Stock change factors. An important advancement for a Tier 2 method is the estimation of country-specific stock 

change factors (FLU, FMG and FI). The derivation of country-specific factors can be accomplished using 

experimental/measurement data and computer model simulation. In practice, deriving stock change factors 

involves estimating a response ratio for each study or observation (i.e., the C stocks in different input or 

management classes are divided by the value for the nominal practice, respectively). 

Optimally, stock change factors are based on experimental/measurement data in the country or surrounding region, 

by estimating the response ratios from each study and then analysing those values using an appropriate statistical 

technique (e.g., Ogle et al. 2003 and 2004; VandenBygaart et al. 2004). Studies may be found in published 

literature, reports and other sources, or inventory compilers may choose to conduct new experiments.  Regardless 

of the data source, it is good practice that the plots being compared have similar histories and management as well 

as similar topographic position, soil physical properties and be located in close proximity.  Studies should provide 

soil C stocks (i.e., mass per unit area to a specified depth) or the information needed to calculate soil C stocks (i.e., 

percent organic carbon together with bulk density; proportion of rock in soil, which is often measured as the greater 

than 2mm fraction and by definition contains negligible soil organic C). If percent organic matter is available 

instead of percent organic carbon, a conversion factor of 0.58 can be used to estimate the C content. Moreover, it 

is good practice that the measurements of soil C stocks are taken on an equivalent mass basis (e.g., Ellert et al. 

2001; Gifford & Roderick, 2003). In order to use this method, the inventory compiler will need to determine a 

depth to measure the C stock for the nominal land use or practice, such as native lands or conventional tillage. This 

depth will need to be consistent with the depth for the reference C stocks. The soil C stock for the land-use or 

management change is then measured to a depth with the equivalent mass of soil.  Box 2.2b provides further 

information on issues associated with conducting an inventory on an equivalent mass basis. 

Another option for deriving country-specific values is to simulate stock change factors from advanced models 

(Bhatti et al., 2001). To demonstrate the use of advanced models, simulated stock change factors can be compared 

to with measured changes in C stocks from experiments. It is good practice to provide the results of model 
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evaluation, citing published papers in the literature and/or placing the results in the inventory report. This approach 

is considered a Tier 2 method because it relies on the stock change factor concept and the C estimation method 

elaborated in the Tier 1 method.   

Derivation of country-specific management factors (FMG) and input factors (FI), either with empirical data or 

advanced models, will need to be consistent with the management system classification.  If more systems are 

specified for the inventory, unique factors will need to be derived representing the finer categories for a particular 

land use.   

Another consideration in deriving country-specific stock change factors is their associated time dependence (D in 

Equation 2.25), which determines the number of years over which the majority of a soil C stock change occurs, 

following a management change.  It is possible to use the default time dependence (D) for the land-use sector (e.g., 

20 years for cropland), but the dependence can be changed if sufficient data are available to justify a different time 

period. In addition, the method is designed to use the same time dependence (D) for all stock change factors as 

presented in Equation 2.25. If different periods are selected for FLU, FMG and FI, it will be necessary to compute 

the influence of land use, management and inputs separately and divide the associated stock change dependence. 

This can be accomplished by modifying Equation 2.25 so that SOC at time T and 0-T is computed individually for 

each of the stock change factors (i.e., SOC is computed with FLU only, then computed with FMG, and finally 

computed with FI). The differences are computed for the stocks associated with land use, management, and input, 

dividing by their respective D values, and then the changes are summed.  

Changes in soil C stocks normally occur in a non-linear fashion, and it is possible to further develop the time 

dependence of stock change factors to reflect this pattern. For changes in land use or management that cause a 

decrease in soil C content, the rate of change is highest during the first few years, and progressively declines with 

time. In contrast, when soil C is increasing due to land-use or management change, the rate of accumulation tends 

to follow a sigmoidal curve, with rates of change being slow at the beginning, then increasing and finally 

decreasing with time. If historical changes in land-use or management practices are explicitly tracked by re-

surveying the same locations (i.e., Approach 2 or 3 activity data, see Chapter 3), it may be possible to implement 

a Tier 2 method that incorporates the non-linearity of changes in soil C stock.  

BOX 2.2A (NEW) 

USING EQUIVALENT MASS METHODS TO DERIVE MINERAL SOIL ORGANIC CARBON STOCK CHANGE FACTORS 

Soil carbon stock estimates may be improved when deriving country-specific factors for FLU and FMG, by 

expressing carbon stocks on a soil-mass equivalent basis rather than a soil-volume equivalent (i.e. fixed depth) 

basis. This is because the soil mass to a certain soil depth changes in response to altered management practices 

associated with land use change (e.g. uprooting forest vegetation, land levelling, and rain compaction due to 

the disappearance of the cover of tree canopy). In addition, soil bulk density may be affected differently by 

particular management practices within a given land use (e.g. tillage and machinery traffic within cropping 

systems or the extent of compaction induced by different animal at stocking rates within pasture systems). 

Where the soil bulk density changes due to land use and/or management, the comparison of the soil carbon 

stocks between the cropland, settlements, grassland, wetlands, or forest land to the same depth introduces 

changes to soil carbon stocks as a direct consequence of changes in soil bulk density (Ellert & Bettany 1995).  

With a management induced change in soil bulk density, it is possible to calculate a change in soil carbon stock 

to a fixed depth in the absence of any change in soil carbon content.  Therefore, it is more robust to calculate 

soil carbon stock change on an equivalent mass basis rather than on a fixed-depth basis (Toriyama et al. 2011; 

Bruun et al. 2013; Halvorson et al. 2016; Hu et al., 2016). The equivalent mass approach has more rigorous 

comparability when the bulk density between cropland, grassland, wetland, settlements and forest land is 

markedly different even if the site is within close proximity.  It is important to realise that comprehensive data 

of soil carbon concentration and soil bulk density would be required to derive stock change factors across all 

land uses.  The changing mass of organic carbon itself will affect the equivalent soil mass and therefore 

equivalent mass basis is not appropriate for organic soils.  There are proposals for methods based on only 

equivalent mass of the mineral soil portion (McBratney & Minasny 2010) that would reduce the effect of 

changing soil organic mass distorting the equivalent soil mass.  Adopting an equivalent-mass based carbon 

stock inventory requires thorough consideration of the challenges. 

The impact of biochar C amendments on mineral soils can also be estimated with a Tier 2 method for mineral soils 

using Equation 2.25A and adding this estimate to the result in Equation 2.25.7 

                                                           
7 Biochar is a solid carbonised product from thermochemical conversion through pyrolysis (heating with limited air). The term 

biochar is used herein only to refer to materials that have been produced under process conditions in which relatively easily 

mineralisable organic materials are converted to more persistent forms by heating to above 350 °C with limited air through a 
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EQUATION 2.25A 

ANNUAL CHANGE IN BIOCHAR CARBON STOCK IN MINERAL SOILS RECEIVING BIOCHAR 

ADDITIONS 

 
1

• •
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Where: 

MineralBC  = the total change in carbon stocks of mineral soils associated with biochar amendment, tonnes 

sequestered C yr-1 

pTOTBC  = the mass of biochar incorporated into mineral soil during the inventory year for each 

biochar production type p  , tonnes biochar dry matter yr-1 

pCF  = the organic carbon content of biochar for each production type p , tonnes C tonne-1 biochar 

dry matter 

ppermF  = fraction of biochar carbon for each production type p  remaining (unmineralised) after 100 

years, tonnes sequestered C tonne-1 biochar C 

n  = the number of different production types of biochar 

Country-specific values the C content of the forms of biochar included in the inventory (
pCF in units of tonnes C 

tonne-1 biochar on a dry mass basis) can be measured directly from representative samples of biochar. Country-

specific values may also be based on published data on carbon content of biochar produced using the same 

feedstock and process conditions as the biochar that is applied to soils in the country.  

The fraction of biochar C remaining after 100 years is defined by the parameter 
ppermF . It is not possible to measure 

this value directly due to the time scales involved. So, this parameter is estimated from other data. The elemental 

composition of biochar, specifically the ratio of hydrogen to organic carbon (H/Corg) or ratio of oxygen to organic 

carbon (O/Corg), has been shown to correlate non-linearly with biochar residence time (Spokas 2010; Lehmann et 

al. 2015). Therefore, country-specific Tier 2 estimates of 
ppermF  can be based on H/Corg or O/Corg measured directly 

from representative samples of biochar, or from published data for biochar produced using similar process 

conditions as the biochar that is applied to soils in the country. This parameter can also be derived from the biochar 

elemental composition using published equations relating this composition to mean residence time or half-life (for 

example H/Corg, Lehmann et al. 2015; or O/Corg, Spokas 2010), and extrapolated to the permanence time frame 

assuming one-, two-, or three-pool exponential decay (Zimmerman 2010; Herath et al. 2015; Lehmann et al. 2015). 

A justification should be provided if a permanence time frame other than 100 years is used. 

Since the impact of biochar amendments is a separate calculation and summed with the result from Equation 2.25 

in the Tier 2 method, it is essential that biochar C is not included as an organic amendment in the estimates of 

MineralSOC  in Equation 2.25. 

                                                           
gasification or pyrolysis process. This guidance does not deal with pyrolytic organic materials that result from wild fires or 

open fires, and is only applicable for biochar added to mineral soils. 
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BOX 2.2B (NEW) 

GHG EMISSION SOURCES WITH BIOCHAR PRODUCTION 

Biochar production involves emissions from several different sectors and source categories. All 

GHG emissions and removals are reported in a greenhouse gas inventory, but estimation and 

reporting is done based on sources in which the activity occurs. The guidance in this section is 

addressing C stock changes associated with the end-product use of biochar amendments to mineral 

soils.  However, other emissions do occur along the biochar feedstock supply chains that are 

estimated in other source categories.  For example, the harvesting and use of forest wood biomass 

for biochar production would be part of reported C stock changes in Forest Land Remaining Forest 

Land (Volume 4).  Moreover, biomass may be grown specifically as a feedstock and the C stock 

changes are estimated and reported under the appropriate source categories for land use associated 

with feedstock production (Volume 4).  For plant residues and manures, their utilisation as feedstock 

reduces input of organic amendments to soil and thereby affects soil C stocks in cropland and 

grassland, and possibly other land uses receiving manure amendments (Volume 4).  For waste 

materials, their utilisation as feedstock reduces input to waste streams and is addressed in the 

calculation of emissions from waste management (Volume 5). There may also be use of fossil fuels 

in the harvesting, transport and pyrolysis of the feedstock and a potential release of other non-CO2 

greenhouse gases during the heating process that would be included in the energy sector (Volume 

2). 

Organic soils  

No refinement. See Chapter 2, Section 2.2 of the 2013 Wetlands Supplement. 

Soil  inorganic C 

No refinement. 

Tier 3: Advanced estimation systems  

Tier 3 approaches for soil C involve the development of an advanced estimation system that will typically better 

capture annual variability in fluxes, unlike Tier 1 and 2 approaches that mostly assume a constant annual change 

in C stocks over an inventory time period based on a stock change factor. Essentially, Tiers 1 and 2 represent land-

use and management impacts on soil C stocks as a linear shift from one equilibrium state to another. To understand 

the implications better, it is important to note that soil C stocks typically do not exist in an absolute equilibrium 

state or change in a linear manner through a transition period, given that many of the driving variables affecting 

the stocks are dynamic, periodically changing at shorter time scales before a new “near” equilibrium is reached. 

Tier 3 approaches can address this non-linearity using more advanced models than Tiers 1 and 2 methods, and/or 

by developing a measurement-based inventory with a monitoring network. In addition, Tier 3 inventories are 

capable of capturing longer-term legacy effects of land use and management. In contrast, Tiers 1 and 2 approaches 

typically only address the most recent influence of land use and management, such as the last 20 years for mineral 

C stocks. See Section 2.5 (Generic Guidance for Tier 3 methods) for additional discussion on Tier 3 methods 

beyond the text given below. 

Mineral soils  

Model-based approaches can use mechanistic simulation models that capture the underlying processes driving 

carbon gains and losses from soils in a quantitative framework, such as the influence of land use and management 

on processes controlling carbon input resulting from plant production and litter fall as well as microbial 

decomposition (e.g., McGill, 1996; Smith et al., 1997b; Smith et al., 2000; Falloon and Smith, 2002; Tate et al., 

2005; Campbell&Paustian, 2015). Note that Tier 3 methods provide the only current opportunity to explicitly 

estimate the impact of soil erosion on C fluxes (Box 2.2d). In addition, Tier 3 model-based approaches may 

represent C transfers between biomass, dead biomass and soils, which are advantageous for ensuring conservation 

of mass in predictions of C stock changes in these pools relative to CO2 removals and emissions to the atmosphere. 

Tier 3 modelling approaches are capable of addressing the influence of land use and management with a dynamic 

representation of environmental conditions that affect the processes controlling soil C stocks, such as weather, 

edaphic characteristics, and other variables. The impact of land use and management on soil C stocks can vary as 

environmental conditions change, and such changes are not captured in lower Tiers, which may create biases in 

those results. Tier 3 methods can also include lateral flows of C associated with erosion and deposition (See Box 

2.2c). Consequently, Tier 3 approaches are capable of providing a more accurate estimation of C stock changes 

associated with land-use and management activity if the modelling approach has been calibrated to the range of 

environmental conditions, soil properties and management practices to which the model will subsequently be 

applied (See Section 2.5 for more information).     
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For Tier 3 approaches, a set of benchmark sites will be needed to evaluate model results. Ideally, a series of 

permanent, benchmark monitoring sites would be established with statistically replicated design, capturing the 

major climatic regions, soil types, and management systems as well as system changes, and would allow for 

repeated measurements of soil organic C stocks over time (Smith, 2004a).  Monitoring is based on re-sampling 

plots every 3 to 5 years or each decade; shorter sampling frequencies are not likely to produce significant 

differences due to small annual changes in C stocks relative to the large total amount of C in a soil (IPCC, 2000; 

Smith, 2004b).  

BOX 2.2C (NEW) 

REPRESENTING THE IMPACT OF SOIL EROSION AND DEPOSITION ON SOIL CARBON STOCK CHANGES 

Soil erosion and/or deposition can have marked effect on measured carbon stocks (Chappell et al. 

2016).  Soil carbon stock changes due to soil erosion/deposition are not considered to be embedded 

in factors for land-use change or land management.  In practice, it is difficult to determine whether 

soil erosion/deposition effects are or are not included in stock change factors derived from empirical 

data.  Different land use changes and subsequent management practices could result in different 

extents of soil movement. For example, land-use change from forest or grassland to cropland, or 

land management change from no-till to full tillage are typically associated with increased soil 

movement.  The amounts of soil erosion or deposition are rarely measured or documented in datasets 

that have quantified soil carbon stock changes.   

One option to include the effects of soil erosion and deposition is using well-tested models that 

capture these dynamics with required input data to make estimates of the effect of past 

erosion/deposition on soil carbon stocks (Van Oost et al. 2005; Causarano et al. 2007).  However, 

use of such models also requires having empirical data on erosion/deposition effects on carbon 

stocks for evaluation of the model predictions. Another option is to consistently apply a rationale 

that identifies measured data of soil carbon stock changes that are affected by erosion/deposition for 

the development of Tier 2 or 3 methods, developing factors related to erosion/deposition impacts, 

and then applying these factors in areas affected by erosion/deposition.  

In addition to model-based approaches, Tier 3 methods afford the opportunity to develop a measurement-based 

inventory using a similar monitoring network as needed for model evaluation. However, measurement networks, 

which serve as the basis for a complete inventory, will have a considerably larger sampling density to minimise 

uncertainty, and to represent all management systems and associated land-use changes, across all climatic regions 

and major soil types (Sleutel et al., 2003; Lettens et al., 2004). Measurement networks can be based on soil 

sampling at benchmark sites or flux tower networks. Flux towers, such as those using eddy covariance systems 

(Baldocchi et al., 2001), constitute a unique case in that they measure the net exchange of CO2 between the 

atmosphere and land surface. Thus, with respect to changes in C stocks for the soil pool, flux tower measurement 

networks are subject to the following caveats: 1) towers need to occur at a sufficient density to represent fluxes 

for the entire country; 2) flux estimates need to be attributed to individual land-use sectors and specific land-use 

and management activities; and 3) CO2 fluxes need to be further attributed to individual pools including stock 

changes in soils (also biomass and dead organic matter). Additional considerations about soil measurements are 

given in the previous section on Tier 2 methods for mineral soils (See stock change factor discussion).  

It is important to note that measurement-based inventories represent full C estimation approaches, addressing all 

influences on soil C stocks. Partial estimation of only land-use and management effects may be difficult, however. 

Examples in Box 2.2d provide illustrations of Tier 3 methods for estimating change in mineral soil C stocks, 

including information such as type of data required, brief description of the models and methods that are used to 

apply the models. For Tier 3 methods, it is important to calibrate and test models against field measurements that 

reflect the variability in climate, soil type and land use over which the model will be applied (See Section 2.5.2 

for more information). Application of the equivalent mass approach may be possible for calculating soil C stocks 

with Tier 3 models, and is discussed in Box 2.2e. 
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BOX 2.2D  (NEW) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

Four examples of Tier 3 model applications for soil organic C stock changes are elaborated in this 

section based on government reporting to the UNFCCC by the Australia, Finland, Japan and United 

States. 

Australia 

Australia has implemented a Tier 3 inventory approach based on the use of the FullCAM model 

(Richards 2001; Richards & Evans 2004) to estimate management induced changes in the stock of 

organic carbon held in the 0-30 cm soil depth layer over time.  Australian lands included in the 

inventory were allocated to forest land, cropland, grassland, deforested land, forest land converted 

to cropland and grassland, grassland converted to forest land, and land with sparse woody vegetation 

based on national land use mapping (ABARES 2016) and remote sensing protocols (Caccetta et al. 

2012)  Detailed presentations of the soil carbon accounting processes under all land uses can be 

found in the National Inventory Reports (NIR) (http://www.environment.gov.au/climate-

change/greenhouse-gas-measurement/publications/national-inventory-report-2015).  Here a 

summary is provided of the Tier 3 approach as applied to soil organic carbon stocks for cropland 

and grassland. 

The FullCAM model simulates soil carbon stock change in 25m x 25m areas across Australia.  This 

size was selected as it represented the finest scale to which the remote sensing process (Caccetta et 

al. 2012; Tupek et al. 2016) can detect land use change and quantify movement of lands between 

the various classes included in the inventory.  The data requirements and processes used to quantify 

the impact of management on Australia’s 0-30 cm stock of soil organic carbon can be summarised 

as follows: 

1) Spatially explicit daily and monthly climatic data (average temperature, total rainfall and total 

pan evaporation) are extracted from the Australian Bureau of Meteorology database and then 

interpolated using thin plate smoothing splines according to (Kesteven & Lansberg 2004).  

Additionally, spatially explicit estimates of soil clay content and water holding capacity are 

extracted from the Soil and Landscape Grid of Australia 

(www.clw.csiro.au/aclep/soilandlandscapegrid/).  These data represent required inputs the 

modelling described in steps 4 and 5. 

2) The initial 0-30 cm total soil organic carbon stock is defined using a national map derived by 

Viscarra Rossel et al. (2014).  This total stock is then allocated to three measurable organic 

carbon fractions (particulate, humus and resistant forms) that provide estimates for the 

respective stocks of resistant plant material, humus and inert carbon required to initialize the 

FullCAM model (Baldock et al. 2013; Skjemstad et al. 2004; Viscarra Rossel & Hicks 2015).   

3) The types of crops and pastures grown, the applied management practices (e.g. tillage and 

residue management) and their relative allocations within defined land areas are calculated 

using national agricultural statistics derived from censuses conducted every five years 

(http://www.abs.gov.au/Agriculture).  

4) For the bulk of Australian crops and pastures, total growth is defined by the availability of water 

received as rainfall.  Thus, a plant growth model applying species specific transpiration 

efficiency terms to the amount of water made available to growing plants is used to estimate 

above ground dry matter production.  This production is then used along with plant species 

specific harvest indices (Unkovich et al. 2010) and root:shoot ratios to define the mass of carbon 

entering the soil and/or deposited on the soil surface for each monthly time step within the 

FullCAM simulation model.  Within irrigated systems, plant growth attains defined plant 

specific maximum values each year. 

5) The FullCAM model is then initialized and run on a monthly time step.  During each step, 

decomposition of decomposable and resistant plant materials and humus pools of C occurs 

according to first order decay equations. The values of the decomposition rate constants 

associated with the resistant plant material and humus pools of carbon within the model were 

calibrated to Australian conditions to the corresponding measured stocks of soil carbon fractions 
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BOX 2.2D (NEW) (CONTINUED) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

5) (continued) of soil temperature  and water content on decomposition is modelled through the 

application of decomposition rate constant modifiers as done in the Rothamsted Carbon Model 

(RothC) soil carbon model (Jenkinson 1990). 

The impact of management on soil carbon stocks is quantified by running the described modelling 

process forward from 1970 under two scenarios.  In both scenarios, the same relative spatial 

allocation of regimes (combinations of crop or pasture species and management practice) is used 

from 1970 to 1990.  From 1990 onwards, the relative spatial allocation of regimes is held constant 

at 1990 values in the first scenario.  For the second scenario, the regimes are varied from 1991 

onwards to reflect the temporal variations in regimes defined within the available data.  The first 

scenario thus estimates the soil carbon stock that would have been attained with no change in 

management from that present in 1990; while the second scenario estimates the soil carbon stock 

attained when management changes over time are accounted for.  The net impact of management 

since 1990 is then calculated as the difference in the soil organic carbon stock between the two 

scenarios. 

Finland 

Finland uses Yasso07 soil carbon model as a Tier 3 method to report carbon stock changes on forest 

and agricultural lands as well as in the cases of land use change (Statistics Finland 2017). Yasso07 

is based on a few explicit assumptions on soil carbon cycling and these assumptions form a 

conceptual model further formulated into mathematical equations (Tuomi et al. 2011b; US EPA 

2017). The model has four state variables based on the solubility of the organic material (acid-, 

water-, ethanol- and non-soluble and in addition, there is a humus pool that has the lowest decay 

rate.  

The model is used in the NGHGI to generate annual C stock change rates per hectare based on 

regional estimates of organic matter input (forest and crop statistics) and annual climate parameters. 

Litter input is given in the four solubility fractions based on laboratory measurements. Organic 

matter decays in the five model fractions driven by temperature and precipitation. The resulting C 

stock change rates are applied on the respective land areas to produce regional estimates of C stock 

change. The model is used consistently across different land use categories so that e.g. the initial C 

allocation to different model compartments in forest land converted to cropland is based on the 

results of the simulation of forest soil remaining forest soil. 

Model parameters rely on a large global database of measurements of litter decay, wood decay and 

soil carbon and all parameter values have been estimated using Markov chain Monte Carlo method. 

Alternative details in the model structure have been evaluated using Bayesian criteria (Tuomi et al. 

2011a). The results of Yasso07 model are characterized by statistical probability distributions that 

represent uncertainty about the parameter values. The Yasso07 approach makes it possible and easy 

to add new data to the database and develop the model continuously (model-data-fusion). The model 

has been extensively tested against independent data on forest land (Dalsgaard et al. 2016; Lehtonen 

et al. 2016; Rantakari et al. 2012; Tupek et al. 2016) and also on cropland (Karhu et al. 2012). 

Yasso07 is a standard component of Max Planck Institute Earth System Model (Goll et al. 2017) 

and the model is used for UNFCCC reporting in several countries (e.g. Austria, Benin, Czech 

Republic, Estonia, Ireland, Finland, Latvia, Norway, Romania and Switzerland), see Hernandez et 

al. (2017). The model is widely used because it is simple, transparent, verifiable, freely available 

and easy to apply. For more information, consult http://en.ilmatieteenlaitos.fi/yasso. 
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BOX 2.2D (NEW) (CONTINUED) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

Japan 

Japan uses a Tier 3 method to estimate soil organic C stock changes in agriculture land (cropland 

and managed grassland) based on RothC. RothC model is a soil carbon dynamic model validated by 

using long-term field experiments (Coleman & Jenkinson 1996). In order to apply the model to 

Japanese agricultural condition, the model was tested against long-term experimental data sets in 

Japanese agricultural lands. It was found that the original model could apply for non-volcanic upland 

soils without any modification or calibration (Shirato & Taniyama 2003), however, the model 

required modification for Andosols and paddy soils by taking unique mechanisms of soil C dynamics 

in these soils into account. For Andosols, the decomposition rate constant of the HUM (humified 

organic matter) pool of RothC was reduced because the presence of Al-humus complexes enhances 

its stability and resistance to decomposition (Shirato et al. 2004). For paddy soils, the decomposition 

rate constants of all four active C pools was reduced on the basis of differences in organic matter 

decomposition rates between upland and paddy (submerged in the rice growing season) soil 

conditions (Shirato & Yokozawa 2005). Model performance was verified by comparing the model 

output with measured soil C stock data under various climate condition, soil types and land uses. 

The model is applied at the country scale (Yagasaki & Shirato 2014) using weather data (monthly 

average temperature, precipitation, and open-pan evaporation), soil property data (soil clay content, 

depth of surface soil, carbon content at the starting year, and bulk density), land use data and other 

activity data (carbon input from crop residue and organic manure) and calculated at each standard 

mesh (100 x 100m). The weather, soil property and land use data are available as spatially explicit 

data set, while carbon input from crop residue and organic manure are calculated by statistical data 

and survey data available based on public administration boundary basis. The all obtained data are 

allocated to each standard mesh and then run the model.  

In the NGHGI, the model is used to generate average C stock change rates per hectare in each 

prefecture and in each sub-category (rice field, upland crop fields, orchards and managed grassland). 

This is because the land use data used for the model estimation (grid-based data set) and used for 

the official land classification in the NGHGI (statistical data) are not consistent very much and so 

Japan put its priority using a consistent land area data among every estimate relating to agriculture 

land in AFOLU sector. This is one of the key challenges of the model application to the NGHGI and 

the development of a standard spatially explicit land use data set is needed for the further 

improvement of estimations. 

United States of America 

The United States uses a Tier 3 method based on the DayCent Ecosystem Model to estimate soil C 

stock changes in cropland and grassland (Ogle et al. 2010, US EPA 2017).  DayCent is a process-

based model that simulated soil organic matter dynamics using a three-pool structure originally 

developed for the Century Model (Parton et al. 1998; Parton et al. 1987). Model testing and 

parameterisation of DayCent has been conducted across a wide range of cropland and grassland sites 

globally. For the inventory, the model is applied using land use data that are compiled through a 

national survey, National Resources Inventory (NRI) (Nusser et al. 1998; Nusser & Goebel 1997).  

The NRI has a two-stage sample with recorded history, starting in 1979, for approximately 400,000 

survey locations that are cropland or grassland throughout the conterminous United States. Each 

survey location that is identified as cropland also has the specific crop rotation histories that were 

grown by the farmer.  Daily weather and soils data are needed to drive the model, and this 

information is based on national datasets. Remote sensing data is used to inform production 

estimates based on MODIS Enhanced Vegetation Index products.  Other data are also incorporated 

into the analysis, such as N fertilization rate data compiled through surveys.   
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BOX 2.2D (NEW) (CONTINUED) 

EXAMPLES OF TIER 3 MINERAL SOIL C STOCK CHANGE METHODS 

One of the key challenges in developing a Tier 3 method is to robustly address uncertainties.  

Compilers in the United States have addressed uncertainties in model inputs (e.g., fertilization rates, 

tillage practices and organic amendments), model structure and parameterization, and propagate 

uncertainty through the model application using an Approach 2 method (i.e., Monte Carlo Analysis) 

(Ogle et al. 2010).  Model structure and parameterization is addressed using an empirically-based 

method in which observed experimental data are compared to simulation results, and predictive 

ability of the model is quantified using statistical methods (Ogle et al. 2007).  These experimental 

observations are independent from the data that are used to parameterise the model. The resulting 

statistical equation is applied to adjust for biases in model results, if needed, and address the 

precision of the model C stock changes. The major advantage of the Tier 3 method is that the results 

are much more precise than Tier 1 and 2 methods, with uncertainty ranging from ±60% in the Tier 

1 method to about ±20% for the Tier 3 method (US-EPA 2017).  The improved precision is due to 

the process-based framework in the DayCent model that incorporates more drivers of soil C stock 

changes than lower Tier methods.  However, without adequate activity data or a model with 

sufficient prediction capability, a Tier 3 method could produce less precise results than lower-tier 

methods. 

 

BOX 2.2E (NEW) 

CONSIDERATION OF EQUIVALENT MASS METHODS WITHIN TIER 3 MODELLING APPROACHES 

Process models that are used to estimate carbon stock changes over time, such as Century (Parton et 

al. 1987) and RothC (Coleman & Jenkinson 1996) can also be affected by changing soil bulk density 

by the nature of the carbon stock data used for model parameterisation.  These types of models 

simulate the mass balance of organic carbon over time to a defined soil depth (e.g., 30 cm or an 

alternative).  The models require initialisation at which point an initial carbon stock is determined 

along with an initial soil mass in some cases (although the soil mass is rarely determined explicitly, 

it is implicit in the model application).  The models therefore use an equivalent soil mass approach 

to simulate changes in carbon stocks since the estimated carbon stocks are unaffected by concurrent 

soil bulk density changes. If the models are parameterised to carbon stocks on an equivalent mass 

basis, then the carbon stock changes estimated by the parametrised model, and for a factor derived 

from those modelled estimates, will be for soil carbon change on an equivalent mass basis. However, 

the carbon stock change calculated from carbon stock measurements for a fixed depth is the net 

effect of the effect of soil bulk density changes on carbon stocks and the effect of biochemical 

processes on carbon stocks. Therefore, when parameterised using fixed-depth carbon stock data, the 

model will be estimating the net effect of these processes, so the modelled carbon stock estimates 

only will be appropriate for the fixed depth and cannot address changes in mass of the soil over time. 

Careful consideration of the effects of model assumptions and choice of data used for model 

parametrisation and testing is required to understand and properly report the basis of the carbon 

stock changes that are estimated directly or indirectly by a model based on parameterisation with 

data from fixed depths. 

Tier 3 methods can be used to model the loss of biochar C over time after its application to mineral soils and to 

account for GHG sources and sinks not captured in Tier 2, to address changes to N2O or CH4 fluxes from soils8, 

to estimate changes to net primary production (and associated C inputs to soil organic C pool), the mechanisms 

and effects underlying interactions with soil, climate and other environmental variables. Although positive priming 

of labile soil organic matter is not expected to have a significant impact in the long term (Annex 2A.2), negative 

priming leading to an increase in soil organic carbon stocks could have a substantial impact in soils amended with 

biochar (Woolf et al. 2012). Similarly, to the extent that there are reductions in net emissions of N2O and CH4 

from soil and increases in plant growth, there could be a larger impact of biochar additions on reducing greenhouse 

gas emissions (Gaunt & Lehmann 2008; Woolf et al. 2010; Hammond et al. 2011). It is also important to recognise 

                                                           
8 Impacts of biochar amendments on N2O are estimated in the methods for soil N2O emissions (Chapter 11), and impacts on 

CH4 emissions are estimated from specific land uses in the inventory, such as Rice Cultivation (Chapter 5) and Wetlands 

(Chapter 7).  
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that the dynamic nature of biochar decomposition is important because its net impact on soil C stocks and GHG 

emissions varies with time, which can be better addressed with a Tier 3 model. 

Examples of advanced modelling approaches include representing the dynamic impact of biochar decomposition 

over long time scales (Lenton & Vaughan 2009), and process-based modelling using biochar-specific LCA models 

(e.g. Roberts et al. 2010; Hammond et al. 2011; Shackley et al. 2012; Sparrevik et al. 2013).  There are also 

applications that have focused on soil greenhouse gas emission balances, together with modelling of 

decomposition rates (H/Corg ratio; Lehmann et al. 2015) and priming (Woolf & Lehmann, 2012; Wang et al. 2016). 

In addition, models have been used to simulate nitrous oxide reductions (Cayuela et al. 2013, 2014) as a function 

of H/Corg ratio (Cayuela et al. 2015) and feedbacks to primary plant productivity (Jeffery et al. 2011, 2015) and 

associated impacts on SOC stocks (Whitman et al. 2010, 2011). 

Organic soils  

No Refinement. See Chapter 2 of the 2013 Wetlands Supplement. 

Soil  inorganic C 

No Refinement.  

2.4 NON-CO2 EMISSIONS 

There are significant emissions of non-greenhouse gases from biomass burning, livestock and manure management, 

or soils. N2O emissions from soils are covered in Chapter 11, where guidance is given on methods that can be 

applied nationally (i.e., irrespective of land-use types) if a country chooses to use national scale activity data. The 

guidance on CH4 and N2O emissions from livestock and manure are addressed only in Chapter 10 because 

emissions do not depend on land characteristics. A generic approach to estimating greenhouse gas emissions from 

fire (both CO2 and non-CO2 gases) is described below, with land-use specific enhancements given in the Forest 

Land, Grassland and Cropland chapters. It is good practice to check for complete coverage of CO2 and non-CO2 

emissions due to losses in carbon stocks and pools to avoid omissions or double counting. 

Emissions from fire include not only CO2, but also other greenhouse gases, or precursors of greenhouse gases, that 

originate from incomplete combustion of the fuel. These include carbon monoxide (CO), methane (CH4), non-

methane volatile organic compounds (NMVOC) and nitrogen (e.g., N2O, NOx) species (Levine, 1994). In the 1996 

IPCC Guidelines and GPG2000, non-CO2 greenhouse gas emissions from fire in savannas and burning of crop 

residues were addressed along with emissions from Forest Land and Grassland conversion. The methodology 

differed somewhat by vegetation type, and fires in Forest Land were not included. In the GPG-LULUCF, emissions 

(CO2 and non-CO2) from fires were addressed, particularly in the chapter covering Forest Land (losses of carbon 

resulting from disturbances). In the Cropland and Grassland chapters, only non-CO2 emissions were considered, 

with the assumption that the CO2 emissions would be counterbalanced by CO2 removals from the subsequent re-

growth of the vegetation within one year. This assumption implies maintenance of soil fertility – an assumption 

which countries may ignore if they have evidence of fertility decline due to fire. In Forest Land, there is generally 

a lack of synchrony (non-equivalence of CO2 emissions and removals in the year of reporting).   

These Guidelines provide a more generic approach for estimating emissions from fire. Fire is treated as a 

disturbance that affects not only the biomass (in particular, above-ground), but also the dead organic matter (litter 

and dead wood). The term `biomass burning` is widely used and is retained in these Guidelines but acknowledging 

that fuel components other than live biomass are often very significant, especially in forest systems. For Cropland 

and Grassland having little woody vegetation, reference is usually made to biomass burning, since biomass is the 

main pool affected by the fire. 

Countries should apply the following principles when estimating greenhouse gas emissions resulting from fires in 

Forest Land, Cropland and Grassland: 

 Coverage of reporting: Emissions (CO2 and non- CO2) need to be reported for all fires (prescribed fires and 

wildfires) on managed lands (the exception is CO2 from Grassland, as discussed below). Where there is a land-

use change, any greenhouse gas emission from fire should be reported under the new land-use category 

(transitional category). Emissions from wildfires (and escaped prescribed fires) that occur on unmanaged lands 

do not need to be reported, unless those lands are followed by a land-use change (i.e., become managed land). 

 Fire as a management tool (prescribed burning): greenhouse gas emissions from the area burnt are reported, 

and if the fire affects unmanaged land, greenhouse gas emissions should also be reported if the fire is followed 

by a land-use change. 

 Equivalence (synchrony) of CO2 emissions and removals: CO2 net emissions should be reported where the 

CO2 emissions and removals for the biomass pool are not equivalent in the inventory year. For grassland 
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biomass burning and burning of agriculture residues, the assumption of equivalence is generally reasonable. 

However, woody vegetation may also burn in these land categories, and greenhouse gas emissions from those 

sources should be reported using a higher Tier method. Further, in many parts of the world, grazing is the 

predominant land use in Forest Land that are regularly burnt (e.g., grazed woodlands and savannas), and care 

must be taken before assuming synchrony in such systems. For Forest Land, synchrony is unlikely if 

significant woody biomass is killed (i.e., losses represent several years of growth and C accumulation), and 

the net emissions should be reported. Examples include: clearing of native forest and conversion to agriculture 

and/or plantations and wildfires in Forest Land.  

 Fuels available for combustion: Factors that reduce the amount of fuels available for combustion (e.g., from 

grazing, decay, removal of biofuels, livestock feed, etc.) should be accounted for. A mass balance approach 

should be adopted to account for residues, to avoid underestimation or double counting (refer to Section 2.3.2).  

 Annual reporting: despite the large inherent spatial and temporal variability of fire (in particular that from 

wildfires), countries should estimate and report greenhouse gas emissions from fire on an annual basis.      

These Guidelines provide a comprehensive approach for estimating carbon stock changes and non-CO2 emissions 

resulting from fire in the Forest Land (including those resulting from forest conversion), and non-CO2 emissions 

in the Cropland and Grassland. Non-CO2 emissions are addressed for the following five types of burning: (1) 

grassland burning (which includes perennial woody shrubland and savanna burning); (2) agricultural residues 

burning; (3) burning of litter, understory and harvest residues in Forest Land, (4) burning following forest clearing 

and conversion to agriculture; and (5) other types of burning (including those resulting from wildfires). Direct 

emissions of CO2 are also addressed for items (3) and (4) and (5). Since estimating emissions in these different 

categories have many elements in common, this section provides a generic approach to estimate CO2 and non-CO2 

emissions from fire, to avoid repetition in specific land-use sections that address emissions from fire in these 

Guidelines.  

Prescribed burning of savannas is included under the grassland biomass burning section (Chapter 6, Grassland, 

Section 6.3.4). It is important to avoid double counting when estimating greenhouse gas emissions from savannas 

that have a vegetation physiognomy characteristic of Forest Land. An example of this is the cerradão (dense 

woodland) formation in Brazil which, although being a type of savanna, is included under Forest Land, due to its 

biophysical characteristics.   

In addition to the greenhouse gas emissions from combustion, fires may lead to the creation of an inert carbon 

stock (charcoal or char). Post-fire residues comprise unburned and partially burnt components, as well as a small 

amount of char that due to its chemical nature is highly resistant to decomposition. The knowledge of the rates of 

char formation under contrasting burning conditions and subsequent turnover rates is currently too limited (Forbes 

et al., 2006; Preston and Schmidt, 2006) to allow development of a reliable methodology for inventory purposes, 

and hence is not included in these Guidelines. A technical basis for further methodological development is included 

in Appendix 1. 

Additionally, although emissions of NMVOC also occur as a result of fire, they are not addressed in the present 

Guidelines due to the paucity of the data and size of uncertainties in many of the key parameters needed for the 

estimation, which prevent the development of reliable emission estimates.  

METHOD DESCRIPTION 

Each relevant section in these Guidelines includes a three-tiered approach to address CO2 (where applicable) and 

non-CO2 greenhouse gas emissions from fire. The choice of Tier can be made following the steps in the decision 

tree presented in Figure 2.6. Under the Tier 1 approach, the formulation presented in Equation 2.27 can be applied 

to estimate CO2 and non-CO2 emissions from fire, using the default data provided in this chapter and in the relevant 

land-use sections of these Guidelines. Higher Tiers involve a more refined application of Equation 2.27. 

Since Tier 1 methodology adopts a simplified approach to estimating the dead organic matter pool (see Section 

2.3.2), certain assumptions must be made when estimating net greenhouse gas emissions from fire in those systems 

(e.g. Forest Land, and Forest Land converted to another land use), where dead organic matter can be a major 

component of the fuel burnt. Emissions of CO2 from dead organic matter are assumed to be zero in forests that are 

burnt, but not killed by fire. If the fire is of sufficient intensity to kill a portion of the forest stand, under Tier 1 

methodology, the C contained in the killed biomass is assumed to be immediately released to the atmosphere. This 

Tier 1 simplification may result in an overestimation of actual emissions in the year of the fire, if the amount of 

biomass carbon killed by the fire is greater than the amount of dead wood and litter carbon consumed by the fire.  

Non-CO2 greenhouse gas emissions are estimated for all fire situations. Under Tier 1, non-CO2 emissions are best 

estimated using the actual fuel consumption provided in Table 2.7, and appropriate emission factors (Table 2.8) 

(i.e., not including newly killed biomass as a component of the fuel consumed). Clearly, if fire in forests contributes 

significantly to net greenhouse gas emissions, countries are encouraged to develop a more complete methodology 
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(higher tiers) which includes the dynamics of dead organic matter and improves the estimates of direct and post-

fire emissions. 

For Forest Land converted to other land uses, organic matter burnt is derived from both newly felled vegetation 

and existing dead organic matter, and CO2 emissions should be reported.  In this situation, estimates of total fuel 

consumed (Table 2.6) can be used to estimate emissions of CO2 and non- greenhouse gases using Equation 2.27. 

Care must be taken, however, to ensure that dead organic matter carbon losses during the land-use conversion are 

not double counted in Equations 2.27 (as losses from burning) and Equation 2.23 (as losses from decay). 

A generic methodology to estimate the emissions of individual greenhouse gases for any type of fire is summarised 

in Equation 2.27. 

EQUATION 2.27 

ESTIMATION OF GREENHOUSE GAS EMISSIONS FROM FIRE 

310    fire B f efL A M C G  

Where: 

fireL  = amount of greenhouse gas emissions from fire, tonnes of each GHG e.g., CH4, N2O, etc. 

A  = area burnt, ha  

BM  = mass of fuel available for combustion, tonnes ha-1. This includes biomass, ground litter and 

dead wood. When Tier 1 methods are used then litter and dead wood pools are assumed zero, 

except where there is a land-use change (see Section 2.3.2.2). 

fC  = combustion factor, dimensionless (default values in Table 2.6) 

efG  = emission factor, g kg-1 dry matter burnt (default values in Table 2.5) 

Note. Where data for MB and Cf are not available, a default value for the amount of fuel actually burnt (the product 

of MB and Cf) can be used (Table 2.4) under Tier 1 methodology.  

For CO2 emissions, Equation 2.27 relates to Equation 2.14, which estimates the annual amount of live biomass 

loss from any type of disturbance.  

The amount of fuel that can be burnt is given by the area burnt and the density of fuel present on that area. The 

fuel density can include biomass, dead wood and litter, which vary as a function of the type, age and condition of 

the vegetation. The type of fire also affects the amount of fuel available for combustion. For example, fuel available 

for low-intensity ground fires in forests will be largely restricted to litter and dead organic matter on the surface, 

while a higher-intensity ‘crown fire’ can also consume substantial amounts of tree biomass.   

The combustion factor is a measure of the proportion of the fuel that is actually combusted, which varies as a 

function of the size and architecture of the fuel load (i.e., a smaller proportion of large, coarse fuel such as tree 

stems will be burnt compared to fine fuels, such as grass leaves), the moisture content of the fuel and the type of 

fire (i.e., intensity and rate of spread which is markedly affected by climatic variability and regional differences as 

reflected in Table 2.4). Finally, the emission factor gives the amount of a particular greenhouse gas emitted per 

unit of dry matter combusted, which can vary as a function of the carbon content of the biomass and the 

completeness of combustion. For species with high N concentrations, NOx and N2O emissions from fire can vary 

as a function of the N content of the fuel. A comprehensive review of emission factors was conducted by Andreae 

and Merlet (2001) and is summarised in Table 2.5. 

Tier 2 methods employ the same general approach as Tier 1 but make use of more refined country-derived emission 

factors and/or more refined estimates of fuel densities and combustion factors than those provided in the default 

tables. Tier 3 methods are more comprehensive and include considerations of the dynamics of fuels (biomass and 

dead organic matter). 
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Figure 2.6 Generic decision tree for identification of appropriate tier to estimate 

greenhouse gas emissions from fire in a land-use category 

Start

Are detailed data
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TABLE 2.4 (UPDATED) 

FUEL (DEAD ORGANIC MATTER PLUS LIVE BIOMASS) BIOMASS CONSUMPTION VALUES (TONNES DRY MATTER HA-1) FOR 

FIRES IN A RANGE OF VEGETATION TYPES 

(To be used in Equation 2.27, to estimate the product of quantities ‘MB • Cf’, i.e., an absolute amount) 

Vegetation type Subcategory Mean SE References 

Primary tropical forest (slash 

and burn) 

Primary tropical forest 83.9 25.8 7, 15, 66, 3, 16, 17, 45 

Primary open tropical forest 163.6 52.1 21,  

Primary tropical moist forest 160.4 11.8 37, 73 

Primary tropical dry forest - - 66 

All primary tropical forests 119.6 50.7  

Secondary tropical forest 

(slash and burn) 

Young secondary tropical forest (3-5 yrs) 8.1 - 61 

Intermediate secondary tropical forest (6-10 

yrs) 
41.1 27.4 61, 35 

Advanced secondary tropical forest (14-17 

yrs) 
46.4 8.0 61, 73 

All secondary tropical forests 42.2 23.6 66, 30 

All Tertiary tropical forest 54.1 - 66, 30 

Boreal forest 

Wildfire (general) 52.8 48.4 2, 33, 66 

Crown fire 25.1 7.9 11, 43, 66, 41, 63, 64 

Surface fire 21.6 25.1 43, 69, 66, 63, 64, 1 

Post logging slash burn 69.6 44.8 49, 40, 66, 18 

Land clearing fire 87.5 35.0 10, 67 

All boreal forest 41.0 36.5 43, 45, 69, 47 

Eucalypt forests 

Wildfire 53.0 53.6 66, 32, 9 

Prescribed fire – (surface) 16.0 13.7 66, 72, 54, 60, 9 

Post logging slash burn 168.4 
168.

8 
25, 58, 46 

Felled, wood removed, and burned (land-

clearing fire) 
132.6 - 62, 9 

All Eucalypt forests 69.4 100.

8 
 

Other temperate forests 

Wildfire 19.8 6.3 32, 66 

Post logging slash burn 77.5 65.0 55, 19, 14, 27, 66 

Felled and burned (land-clearing fire) 48.4 62.7 53, 24, 71 

All “other” temperate forests 50.4 53.7 43, 56 

Shrublands 

Shrubland (general) 26.7 4.2 43 

Calluna heath 11.5 4.3 26, 39 

Sagebrush 5.7 3.8 66 

Fynbos 12.9 0.1 70, 66 

All Shrublands 14.3 9.0  
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TABLE 2.4 (UPDATED) (CONTINUED) 

FUEL (DEAD ORGANIC MATTER PLUS LIVE BIOMASS) BIOMASS CONSUMPTION VALUES (TONNES  DRY MATTER HA-1) FOR 

FIRES IN A RANGE OF VEGETATION TYPES 

(To be used in Equation 2.27, to estimate the product of quantities ‘MB • Cf’, i.e., an absolute amount) 

Vegetation type Subcategory Mea

n 
SE References 

Savanna woodlands (early dry 

season burns)* 

Savanna woodland 2.5 - 28 

Savanna parkland 2.7 - 57 

All savanna woodlands (early dry season burns) 2.6 0.1  

Savanna woodlands  (mid/late 

dry season burns)* 

Savanna woodland 3.3 - 57 

Savanna parkland 4.0 1.1 57, 6, 51 

Tropical savanna 6 1.8 52, 73 

Other savanna woodlands 5.3 1.7 59, 57, 31 

All savanna woodlands (mid/late dry season burns)* 4.6 1.5  

Savanna Grasslands/ Pastures 

(early dry season burns)* 

Tropical/sub-tropical grassland  2.1 - 28 

Grassland - - 48 

All savanna grasslands (early dry season burns)* 2.1 -  

Savanna Grasslands/ Pastures 

(mid/late dry season burns)* 

Tropical/sub-tropical grassland  5.2 1.7 9, 73, 12, 57 

Grassland 4.1 3.1 43, 9 

Tropical pasture~ 23.7 11.8 4, 23, 38, 66 

Savanna 7.0 2.7 42, 50, 6, 45, 13, 65 

All savanna grasslands (mid/late dry season burns)* 10.0 10.1  

Other vegetation types 
Peatland 41 1.4 68, 33 

Tundra 10 - 33 

Agricultural residues (post-

harvest field burning) 

MB = AGR(T) x FracBrunt(T) 

 

See Equation 11.6 in 

Chapter 11, Volume 4 

for AGR(T) calculation 

* Surface layer combustion only 

 ~ Derived from slashed tropical forest (includes unburned woody material) 

a For sugarcane, data refer to burning before harvest of the crop. 

b Expert assessment by authors. 
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TABLE 2.5 

EMISSION FACTORS (g kg-1 DRY MATTER BURNT) FOR VARIOUS TYPES OF BURNING. VALUES ARE MEANS ± SD AND ARE 

BASED ON THE COMPREHENSIVE REVIEW BY ANDREAE AND MERLET (2001) 

(To be used as quantity ‘Gef’ in Equation 2.27) 

Category CO2 CO CH4 N2O NOX 

Savanna and grassland 1613 

± 95 

65 

± 20 

2.3 

± 0.9 

0.21 

± 0.10 

3.9 

± 2.4 

Agricultural residues 1515 

± 177 

92 

± 84 

2.7 0.07 2.5 

± 1.0 

Tropical forest 1580 

± 90 

104 

± 20 

6.8 

± 2.0 

0.20 1.6 

± 0.7 

Extra tropical forest 1569 

± 131 

107 

± 37 

4.7 

± 1.9 

0.26 

±0.07 

3.0 

± 1.4 

Biofuel burning 1550 

± 95 

78 

± 31 

6.1 

± 2.2 

0.06 1.1 

± 0.6 

Note: The “extra tropical forest’ category includes all other forest types. 

Note: For combustion of non-woody biomass in Grassland and Cropland, CO2 emissions do not need to be estimated and reported, because 

it is assumed that annual CO2 removals (through growth) and emissions (whether by decay or fire) by biomass are in balance (see earlier 

discussion on synchrony in Section 2.4. 
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TABLE 2.6 (UPDATED) 

COMBUSTION FACTOR VALUES (PROPORTION OF PREFIRE FUEL BIOMASS CONSUMED) FOR FIRES IN A RANGE OF 

VEGETATION TYPES 

(Values in column ‘mean’ are to be used for quantity Cf in Equation 2.27) 

Vegetation type Subcategory Mean SD References 

Primary tropical forest 

(slash and burn) 

Primary tropical forest 0.32 0.12 
7, 8, 15, 56, 66, 3, 16, 

53, 17, 45,  

Primary open tropical forest 0.45 0.09 21 

Primary tropical moist forest 0.50 0.03 37, 73 

Primary tropical dry forest - - 66 

All primary tropical forests 0.36 0.13  

Secondary tropical forest 

(slash and burn) 

Young secondary tropical forest (3-

5 yrs) 
0.46 - 61 

Intermediate secondary tropical 

forest (6-10 yrs) 
0.67 0.21 61, 35 

Advanced secondary tropical forest 

(14-17 yrs) 
0.50 0.10 61, 73 

All secondary tropical forests 0.55 0.06 56, 66, 34, 30 

All tertiary tropical forest 0.59 - 66, 30 

Boreal forest 

Wildfire (general) 0.40 0.06 33 

Crown fire 0.43 0.21 66, 41, 64, 63 

surface fire 0.15 0.08 64, 63 

Post logging slash burn 0.33 0.13 49, 40, 18 

Land clearing fire 0.59 - 67 

All boreal forest 0.34 0.17 45, 47 

Eucalyptus forests 

Wildfire - -  

Prescribed fire – (surface) 0.61 0.11 72, 54, 60, 9 

Post logging slash burn 0.68 0.14 25, 58, 46 

Felled and burned (land-clearing 

fire) 
0.49 - 62 

All Eucalyptus forests 0.63 0.13  

Other temperate forests 

Post logging slash burn 0.62 0.12 55, 19, 27, 14 

Felled and burned (land-clearing 

fire) 
0.51 - 53, 24, 71 

All “other” temperate forests 0.45 0.16 53, 56 
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TABLE 2.6 (UPDATED) (CONTINUED) 

COMBUSTION FACTOR VALUES (PROPORTION OF PREFIRE FUEL BIOMASS CONSUMED) FOR FIRES IN A RANGE OF 

VEGETATION TYPES 

(Values in column ‘mean’ are to be used for quantity Cf in Equation 2.27) 

Vegetation type Subcategory Mean SD References 

Shrublands 

Shrubland (general) 0.95 - 44 

Calluna heath 0.71 0.30 26, 56, 39 

Fynbos 0.61 0.16 70, 44 

All shrublands 0.72 0.25  

Savanna woodlands (early 

dry season burns)* 

Savanna woodland 0.22 - 28 

Savanna parkland 0.73 - 57 

Other savanna woodlands 0.37 0.19 22, 29 

All savanna woodlands (early dry season burns) 0.40 0.22  

Savanna woodlands  

(mid/late dry season 

burns)* 

Savanna woodland 0.72 - 66, 57 

Savanna parkland 0.82 0.07 57, 6, 51 

Tropical savanna 0.73 0.04 52, 73, 66, 12 

Other savanna woodlands 0.68 0.19 22, 29, 44, 31, 57 

All savanna woodlands (mid/late dry season burns)* 0.74 0.14  

Savanna Grasslands/ 

Pastures (early dry season 

burns)* 

Tropical/sub-tropical grassland  0.74 - 28 

Grassland - - 48 

All savanna grasslands (early dry season burns)* 0.74 -  

Savanna Grasslands/ 

Pastures (mid/late dry 

season burns)* 

Tropical/sub-tropical grassland  0.92 0.11 44, 73, 66, 12, 57 

Tropical pasture~ 0.35 0.21 4, 23, 38, 66 

Savanna 0.86 0.12 
53, 5, 56, 42, 50, 6, 45, 

13, 44, 65, 66 

All savanna grasslands (mid/late dry season burns)* 0.77 0.26  

Other vegetation types 
Peatland 0.50 - 20, 44 

Tropical Wetlands 0.70 - 44 

Agricultural residues 

(Post-harvest field 

burning) 

Wheat residues 0.90 - see Note b 

Maize residues 0.80 - see Note b 

Rice residues 0.80 - see Note b 

Sugarcane a 0.80 - see Note b 

Other Crops 0.85 - see Note b 

* Surface layer combustion only;   ~ Derived from slashed tropical forest (includes unburned woody material);   a For sugarcane, data 

refer to burning before harvest of the crop;   b Expert assessment by authors. 
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2.5 ADDITIONAL GENERIC GUIDANCE FOR TIER 

3 METHODS 

Tier 3 inventories are advanced systems using measurements and/or modelling, with the goal of improving the 

estimation of greenhouse gas (GHG) emissions and removals, beyond what is possible with Tier 1 or 2 methods.   

In this section, guidelines are elaborated that provide a sound scientific basis for the development of Tier 3 

Inventories in the AFOLU sector. These guidelines do not limit the selection of Tier 3 sampling schemes or 

modelling methods but provide general guidance to assist the inventory developer in their implementation. 

AFOLU inventory compilers are advised to read this section in conjunction with general guidance for Tier 3 

methods relevant to all sectors found in Volume 1, Chapter 6. 

2.5.1 Measurement-based Tier 3 inventories 

Inventories can be based on direct measurements from which emissions and removals of carbon are estimated. 

Purely measurement-based inventories, e.g., based on repeated measurements using a national forest inventory or 

similar estimation methods can produce carbon stock change estimates but still rely on appropriate statistical 

models, such as allometric models or volume and wood density functions. Inventories using measurement-based 

methods also need to select appropriate statistical sampling estimators to produce a national inventory from the 

plot estimates. Moreover, inventory plot remeasurements will typically require additional data or methods to arrive 

at estimates of GHG emissions from disturbance events, in particular for non-CO2 GHG. Measurement of non-

CO2 greenhouse gas emissions is possible, but because of the high spatial and temporal variability, Tier 3 methods 

for estimating non-CO2 emissions typically use a combination of models (see Section 2.5.2) and measurements. 

Many countries using a measurement-based Tier 3 method will already have well established national inventories. 

Typically, these inventories have been established for purposes other than collecting data for estimating carbon 

stock changes and non-CO2 emissions (e.g., National Forest Inventories for timber resource assessments or soil 

resource mapping for agricultural planning). In general, the following six steps should be considered when 

implementing a measurement-based Tier 3 inventory.  

Step 1.   Develop a sa mpling  scheme,  including sa m ple unit  (plot)  design and 

measurements to  be col lected.   

Sampling schemes can be developed using a variety of methods such as simple random, stratified random, 

systematic or model-based sampling. When designing a sampling scheme, countries often also consider factors 

such as spatial variability and temporal dynamics of carbon stocks, key environmental variables (e.g., climate) and 

management systems (e.g., harvested forest land, grazed grassland).  

When using a repeated measurement design, the timing of re-measurement may be influenced by the rate of change 

experienced. For example, re-measurement periods in boreal and some temperate regions, where trees grow slowly 

and DOM pools change little in single years, can be longer than in environments where carbon dynamics are more 

rapid. When implementing a measurement-based Tier 3 inventory, the inventory compiler should take into 

consideration that it will not be possible to estimate emissions and removals using the stock-difference method 

until a minimum of two measurement cycles have been conducted (often 10 years or longer in total).  

Some sampling schemes do not include re-sampling of the same sites (e.g., temporary inventory plot designs). 

Such designs may limit the statistical power of the analysis when estimating change, and therefore lead to greater 

uncertainty in estimates of carbon stock change. Repeated measurement designs with permanent plot locations 

typically provide a better basis for estimating carbon stock changes or emissions. The utility of permanent plots is 

often greater if they are accurately georeferenced to facilitate the use of spatial auxiliary variables, such as from 

remote sensing (GFOI, 2016). 

For some carbon pools, such as soil carbon, litter and woody debris, it is not necessarily possible to remeasure the 

same material through time (i.e., if taking a soil core, that soil has been removed from the site and cannot be 

remeasured, unlike measuring the same trees through time). However, multiple samples can be taken at each time 

step to capture local site scale heterogeneity in the carbon stock and detect changes over time with each re-sampling 

of a site (Ellert et al., 2002, Conant et al., 2003). Where countries use direct measurement methods for soil C, the 

sampling design needs to ensure that a sufficient number of samples are taken at each measurement time for 

estimating stock change (Spencer et al., 2011).  

Inventory and plot designs should consider the practicality of implementation given country circumstances (e.g., 

terrain, access, safety, vegetation type). The types and number of measurements will depend on the plot design, 

the underlying population of carbon pools to be reported and the data requirements of methods adopted to estimate 

carbon stocks and stock changes from the plot data.  
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It is good practice to develop a methodology handbook (e.g., Canadian Forest Service, 2008; US Forest Service, 

2006) explaining the entire sampling scheme as part of Step 1. This handbook can be useful for those involved 

with the measurements, laboratory analyses and other aspects of the process, as well as possibly providing 

supporting material for documentation purposes. The handbook should document the plot design, in particular 

how plots are to be located and, in the case of repeated measurement designs, re-located for future measurements 

(Vidal et al., 2016). 

Step 2.  Se lect  sa mple si tes.   

Specific sampling sites will be located based on sampling design. It is good practice to have an appropriate process 

in place for selecting alternative sites in case it is not possible to sample some original locations.  In a repeated 

measurement design, the sites will become a monitoring network that is periodically re-sampled. 

Determining sampling locations will likely involve the use of a geographic information system. A geographic 

database may include information on land use and land-use changes (i.e., activity data) as well as a variety of 

environmental and management data, such as climate, soils, land use, and livestock operations, depending on the 

source category and stratification. If key geographic data are not available at the national scale, or are spatially 

inconsistent, the inventory developer may either 1) re-evaluate the design and stratification (if used) in Step 1 and 

possibly modify the sampling design or 2) re-develop the geographic data to meet the inventory requirements. 

Normally the sampling intensity should be the same within a stratum but not necessarily between strata. However, 

where the stratification is based on land use and is updated for each inventory, changes in land use between 

measurement periods can complicate the estimation of changes in carbon stocks over time. As such, it is good 

practice to use stratification methods that do not lead to bias or time-series inconsistencies due to changes in land 

use. 

Sampling may require coordination among different national ministries, provincial or state governments, corporate 

and private land owners. Establishing relationships among these stakeholders can be undertaken before collecting 

initial samples. Informing stakeholders about ongoing monitoring may also be helpful and lead to greater success 

in implementing monitoring programs. 

Step 3.  Col lect  init ial  samples .   

Once the plot locations have been determined, a measurement team can visit those locations, establish plots and 

collect initial measurements and samples. It is helpful to take geographic coordinates of plot locations or sample 

points with a global positioning system (GPS) to help relocate them later, noting that GPS readings are often not 

accurate enough to relocate the exact plot location, especially under dense forest canopies.  As such, if repeated 

measurements are planned, it is good practice to permanently mark the location for ease of finding and re-sampling 

the site in the future.  Where possible these markers should not be visible to the land owner (e.g., utility ball 

markers that can be buried in the soil and re-located precisely over time).  

It is good practice to take relevant measurements and notes of the environmental conditions and management at 

the site. This will confirm that the conditions were consistent with the design of the sampling scheme, and also 

may be used in data analysis (Step 5). If a stratified sampling approach is used, and it becomes apparent that many 

or most sites are not consistent with the expected environmental conditions and management systems, it is good 

practice to repeat Step 1, re-evaluating and possibly modifying the sampling scheme based on the new information. 

Step 4.  Re-sa mple the monitor ing network on a periodic basis.   

For repeated measurement designs, sampling sites will be periodically re-sampled with the time between re-

measurement dependant on the rate of stock changes or the variability in emissions, the resources available for the 

monitoring program, and the design of the sampling scheme. It is good practice to avoid any impact of 

measurement techniques on C stocks and their dynamics (i.e. no destructive sampling) where permanent sample 

plots are used. 

If destructive sampling is involved, such as removing a soil core or dead organic matter sample, it is good practice 

to re-sample at the same site but not at the exact location in which the sample was removed during the past. 

Destructive sampling the exact location is likely to create bias in the measurements. Such biases would 

compromise the monitoring and produce results that are not representative of national trends. When destructive 

sampling of trees is undertaken, for example to develop or validate allometric equations, the samples are usually 

taken from locations or species that are considered representative of the trees in the plots.  

Step 5.  Analyse data and determine carbon stock changes/non -CO 2  emiss ions,  and 

infer national emissions  and removal  est imates and their  uncertainty .  

A well-designed sampling scheme will provide an unbiased estimate and variance for the measured quantities (See 

Volume I, Chapter 3 for more information).  The overall result of the statistical analysis will be estimates of carbon 

stock changes or measurements of emissions from which the national emission and removal estimates can be 

derived.  
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To derive estimates of carbon stock changes or emissions from measurements collected on the plots typically 

requires the use of models that relate these measurements to carbon stocks. The types of models and the uncertainty 

associated with them vary depending on measurements taken and the carbon pools being estimated.  Examples of 

these models include allometric equations for estimating tree and deadwood biomass, root:shoot ratios for 

estimating belowground biomass (Mokany et al., 2006) and the use of spectral signatures to estimate soil carbon 

(Baldock et al., 2013).  

When estimating uncertainty for carbon stock changes and/or emissions it is good practice to include all relevant 

sources of uncertainty, including the sampling scheme, plot measurements and model parameters and structure 

and laboratory processing methods (see discussion for each source category later in this volume in addition to the 

uncertainty chapter in Volume 1). Overall uncertainty can be reduced by increasing the sampling intensity, using 

additional strata or covariates to explain more of the variance or improving the models. Model uncertainty may 

be relatively small, at least in situations with well-developed models calibrated for national situations, or relatively 

large where global models are applied. 

To obtain national estimates of carbon stock changes or emission of non-CO2 greenhouse gases, it may be 

necessary to interpolate or extrapolate measurements using spatial statistical analyses and models that take into 

consideration environmental conditions, management and other activity data. Such models are necessary because 

of the expense and difficulty in obtaining a sufficient sampling intensity to infer C stock changes or emissions 

directly from the survey sample. For example, CH4 and N2O emissions from forest fires are typically inferred from 

data on the area burnt, and fuel consumption estimates derived from specific case studies. In a similar fashion, soil 

N2O emissions could be readily estimated using chambers, but this can be very expensive to establish a network 

with the sampling intensity needed to provide national emission estimates based solely on measurements without 

use of models for extrapolation. Alternatively, compilers may use a model-based approach in these cases, which 

is informed by the limited sample of C stock or emission measurements (See Section 2.1.2). 

It is good practice to analyse emissions relative to environmental conditions in addition to the contribution of 

various management practices to those trends. Interpretation of the patterns will be useful in evaluating possibilities 

for future mitigation. 

Step 6.  Report ing  and Documentat ion.  

It is good practice to assemble inventory results in a systematic and transparent manner for reporting purposes.   

Documentation typically includes a description of the sampling scheme and statistical methods, sampling schedule 

(including re-sampling), stock change and emissions estimates and the interpretation of emission trends (e.g., 

contributions of management activities). In addition, QA/QC should be completed and documented in the report. 

For details on QA/QC, reporting and documentation, see the section dealing with the specific source category later 

in this volume, as well as information provided in Volume 1, Chapter 6. 

When developing/collating documentation for reporting Tier 3 measurement-based methods it is good practice to: 

 describe the sampling design and/or measurements; 

 describe any changes in the design or measurements through time and how these changes are addressed to 

ensure time series consistency in carbon stocks or emissions; 

 describe the models used to calculate carbon stock changes and non-CO2 emissions from the measurements, 

including the uncertainty;  

 describe how area estimates are derived from the survey, such as a national forest inventory, and harmonized 

with land representation data for other land-uses; 

 discuss the influence of time periods between measurement cycles on estimated C stock changes or emission 

estimates, and how this impact is incorporated into the uncertainty analysis; and  

 document, if applicable, how Tier 3 measurement methods are applied consistently with Tier 2 or Tier 3 

model-based methods to prevent errors of omission or commission in reported carbon stock changes or 

emissions for the entire spatial and temporal domain of the country. 
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TABLE 2.6A (NEW) 

EXAMPLES OF DOCUMENTATION TO ASSEMBLE IN SUPPORT OF TRANSPARENT REPORTING OF TIER 3 MEASUREMENT 

BASED INVENTORIES 

Step 1.  Develop sampling scheme, including sample size 

and design and measurements to be collected. 

A description of the sampling scheme including size and 

design and measurements to be collected 

Reason for adopting the selected sampling scheme  

Step 2.  Select sample sites. Description of the process for selecting sample sites and 

processes for dealing with exclusions/replacements 

Step 3.  Collect initial samples.   Sample collection and quality assurance / quality control 

protocols. 

Step 4.  Re-sample the monitoring network on a periodic 

basis.   

Description of re-sampling strategy and reasoning for 

adopted resampling period  

Step 5.  Analyse data and determine carbon stock changes 

and other sources of emissions, and infer national 

emissions and removals estimates and measures of 

uncertainty.   

Data processing and quality assurance / quality control 

protocols including how adopted re-sampling period is 

handled when making carbon stock change estimates and 

their associated uncertainty. 

Step 6.  Reporting and Documentation All of the above material summarised into a report for 

third party review. 

2.5.2 Model-based Tier 3 inventories 

Model-based Tier 3 inventories are developed using empirical (e.g. forest growth curves that represent carbon 

stock increase with tree age.), process-based (e.g. model representation of underlying physiological, biophysical, 

and management processes that drive carbon dynamics in ecosystems), hybrid (e.g. the development of forest 

growth curves from empirical data combined with a process model calibrated from research data on dead organic 

matter dynamics) and/or other types of models. Just as Tier 3 measurement-based methods typically also require 

models to estimate carbon stock changes (see Section 2.1.1), Tier 3 model-based inventories require measurements 

to calibrate and validate the models used to estimate carbon stock changes. 

It is unlikely that one single model will be suitable for estimating emissions and removals for all carbon pools and 

non-CO2 gases across all land uses, land-use changes and management actions. Therefore, inventory compilers 

will need to select a suite of different models to develop estimates of interest. In many cases existing models need 

to be adapted, coupled and/or integrated to provide a complete estimate of emissions and removals in the source 

categories of interest.  

When selecting a model, it is important to consider how it will be used and interact with other models. This is 

particularly important when using Tier 3 mass-balance models in combination with Tier 1 or 2 emissions factors 

(e.g. if different soil carbon models or methods are used for different land-uses, how will the carbon pools be 

transferred between them in the case of land-use change). If changes in modelling methods within the reporting 

time series occur adequate steps should be taken to ensure time series consistency.  

Models may be run individually for different land uses and carbon pools and the results combined or brought 

together in a single framework using coupling and integration techniques. Individual model simulations are 

typically used where multiple agencies are responsible for developing different parts of the inventory (e.g., the 

forest agency responsible for forest lands, the agriculture agency responsible for cropland and grassland). 

Coupling different models is a convenient strategy for addressing effects with different time and space scales. In 

contrast, model integration links different modelling approaches to elucidate the complex dimension of time and 

space dynamics (Panichelli & Gnansounou, 2015), helping ensure consistency in land representation, carbon pools 

and input variables (Brack et al., 2006). Integration frameworks can also help organize data and estimation methods 

at any level of methodological complexity and facilitate the systematic progression from simpler to more complex 

methods (GFOI, 2016).  

In all cases, models used in Tier 3 methods ensure higher accuracy only when they are correctly implemented and 

capable of representing the population of interest. In general, the following seven steps are used to correctly 

implement a Tier 3 model-based inventory (see also Figure 1, Volume 1, Chapter 6, Section 2.4).  

Step 1.  Model se lect ion or development  

Inventory compilers can choose from a wide range of model types depending on reporting needs, data availability 

and capacity. As part of model selection or development, it is good practice to consider if the model/s:  

 adequately represent the range of land uses, ecosystems and management practices in the region or country; 
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 allow for the quantification of uncertainty; 

 reduce uncertainty relative to other available methods (e.g., Tier 1 methods) or estimates are improved in other 

ways (e.g., more complete coverage of carbon pools or lands); 

 can be run and maintained in an operational context with available time and resources (e.g., input data is 

readily available, staff have sufficient experience and knowledge, suitable compute infrastructure is available); 

 produce outputs that can be used for reporting emissions and removals by relevant land-use categories; 

 produce time-series consistent results; 

 are compatible with other existing models used in the inventory; and 

 are well documented and tested. 

Multiple models will likely be selected as potentially suitable as part of Step 1. These models can then be tested 

prior to implementation using steps 2 and 3 below. Therefore, before moving to Step 2, at least a sub-set of the 

input data required to run the model should be collected or collated, including input variables (such as forest 

species or type, climate, soil characteristics), and any existing parameters and data required for further model 

calibration and evaluation. In some cases, input data may be a limiting factor in model selection or development, 

requiring some models to be discarded or modified to accommodate the available activity and/or environmental 

data.  

Step 2.  Model Calibrat ion  

Model calibration (i.e. parameterisation) is the process of selecting or adjusting model parameters to obtain results 

that best represent the processes of interest in the region (and time period) for which the model will be applied. 

The model calibration procedure readies a model for its further use in analyses. For example, replacing default 

growth curves with those specific to the tree species or site conditions to which the model will be applied or 

replacing climate averages with regional climate data are examples of model parameterisation.  

Calibration data should represent the population.  In practice, this does not mean that all environmental conditions 

are covered, but that the calibration data includes a range of the conditions existing the country that is 

representative of national circumstances. 

Model sensitivity analyses may be used to determine the most important parameters for calibration.  In a sensitivity 

analysis, parameter values are varied through a series of simulations to determine the associated change in model 

output. The parameters are ranked from most to least sensitive based on the level of change in model output.  Some 

techniques also incorporate measurements into the sensitivity analysis (Sobol, 2001). The most sensitive 

parameters are typically calibrated to improve the agreement between modelled and measured carbon stocks, stock 

changes or non-CO2 greenhouse gas emissions.  

There are multiple methods for calibrating models. Simpler empirical models (e.g., empirical forest growth models 

based on forest age or site indices) are commonly developed by fitting functions to data on carbon stocks or stock 

changes using standard statistical methods and software. More advanced models (e.g., hybrid or process-based 

models) typically have numerous, interrelated parameters. For these models calibration is often completed using 

parameter optimisation methods that vary the model parameters within known ranges to best match known results 

(e.g., carbon stocks). There are several methods for doing this, including generic algorithms, machine learning and 

Bayesian. The methods may also be used to propagate error through the inventory analysis (e.g., Hararuk et al., 

2017).   

In all cases it is good practice to document the calibration procedure and results.   

Re-calibration of the model or modifications to the structure may be necessary if the model does not capture 

general trends or there are large systematic biases. Full evaluation of the model is described in Step 3.  See Box 

2.2f for examples of model calibration. 
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BOX 2.2F (NEW) 

AN EXAMPLE OF MODEL CALIBRATION, EVALUATION AND IMPROVEMENT THROUGH DATA ASSIMILATION 

The development of Canada’s Carbon Budget Model for the Canadian Forest Sector started in 1989 

and is continually being improved through new data collection, analysis and model enhancements. 

As part of this process, Shaw et al., (2014) assessed CBM-CFS3’s ability to predict ecosystem 

carbon stocks in independent plots established as part of Canada’s national forest inventory (NFI). 

The study demonstrated close agreement in the predictions of total ecosystem carbon stocks (within 

1percent) but found some compensating errors (bias) in specific pools, ecozones, and plots with 

different tree species. 

To further improve the CBM-CFS3 performance in Canadian forest ecosystems, a Bayesian Markov 

Chain Monte Carlo (MCMC) technique was used to calibrate 45 model parameters by assimilating 

carbon stocks of six deadwood and soil carbon pools estimated from 635 plots from Canada’s 

National Forest Inventory (Hararuk et al., 2017). These plots were randomly split into two groups; 

calibration (n = 326), used to calibrate the parameters, and validation (n = 309), used to evaluate the 

performance of the model with calibrated parameters. 

Calibration led to most improvement in the simulation of carbon stocks in small and fine woody 

debris, reducing RMSE by 54.3 percent, followed by the snag stems (RMSE reduced by 23.2 

percent), and coarse woody debris (13 percent). Twenty of the 45 parameters were well constrained 

by the available data. The calibrated parameters resulted in increased rates of carbon cycling in fine 

and coarse woody debris and the soil organic layer, distinct carbon dynamics in hardwood and 

softwood dominated stands, and increased temperature sensitivity of the carbon contained in the 

mineral soil.  

While parameter calibration considerably improved the simulation of the small and fine woody 

debris and snags stem pools, model representation of the branch snag, coarse woody debris, soil 

organic layer, and mineral soil pools were not substantially improved. This indicated the need for 

the inclusion of additional processes in carbon dynamics simulation or a change in the modelling 

paradigm. Model improvements may be achieved by including a lignin effect on deadwood decay 

and by including the effects of tree species, soil types, and mosses (see Box 2.2g) in the CBM-CFS3. 

Further data assimilation analyses are ongoing. 

Step 3.  Evaluat ion of  Model Behaviour    

Once the model has been calibrated, it should be evaluated to demonstrate that the model effectively simulates 

measured trends for the source category of interest.  Evaluation can also support the justification for selecting, 

developing or possibly improving a particular model for the inventory analysis.   

It is good practice to use measurements independent of those used for model calibration when evaluating model 

behaviour and to confirm that the model is capable of estimating emissions and removals in the source categories 

of interest (Falloon and Smith, 2002; Prisley and Mortimer, 2004). In practice, this is typically achieved by setting 

aside a subset of data collected for model calibration to be used exclusively for model evaluation. Comparisons 

between model output and independent measurements can be made using statistical tests and/or graphically.  In 

addition to evaluation with independent data, other evaluation checks may be useful, including: 

 range checks to show that estimates of carbon stocks and changes in all pools do not exceed pre-defined 

expected limits; 

 in models that track both stocks and flows between carbon pools and the atmosphere, that mass-balance is 

been maintained through all simulations; 

 use of other statistical methods for assessing model behaviour, such as resampling methods (e.g., 

bootstrapping); and 

 assessment of the sensitivity of various parameters in the model (sensitivity analysis). 

It is good practice to ensure that the model responds appropriately to variations in activity data and environmental 

conditions occurring in the spatial and temporal domain where the model will be applied. Re-calibration of the 

model or modifications to the structure (i.e., algorithms) may be necessary if the model does not capture general 

trends or there are large systematic biases. In some cases, a new model may be selected or developed based on this 

evaluation. Evaluation results are an important component of the reporting documentation. See Box 2.2g for 

examples of model evaluation and improvement. 
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BOX 2.2G (NEW) 

EXAMPLE OF MODEL EVALUATION AND IMPROVEMENT 

Finland 

The sample sizes in soil carbon inventories are usually not adequate for national level soil carbon 

stock change assessment with few exceptions (e.g., Sweden, and Germany, see Gamfeldt et al., 2014 

and Grüneberg et al., 2014). As such, most countries use soil carbon models to estimate carbon stock 

changes then evaluate the results using repeated soil inventories. In general, it has been shown that 

models can estimate soil carbon stock change in the same magnitude as that measured, but 

uncertainties of both measurements and model estimates are often higher than actual measurements 

(Ortiz et al., 2009; Rantakari et al., 2012). This makes the evaluation of model outputs challenging.  

Two soils carbon models are commonly used in Finland: Yasso07 and ROMULv. An evaluation of 

the performance of these models against forest soil carbon stock measurements was undertaken by 

Lehtonen et al. (2016). Both models require estimates of carbon input from vegetation. Litter input 

from trees was estimated using litter production rates from research sites and stem volume maps 

from the National Forest Inventory. Inputs from understorey vegetation were estimated using new 

biomass models.  

To evaluate the models, both were applied across Finland and run until steady state was achieved; 

thereafter, measured soil carbon stocks were compared with model estimates. The evaluation showed 

that the role of understorey litter input was underestimated by Yasso07, especially in northern 

Finland, and the inclusion of soil water holding capacity in the ROMULv model improved 

predictions, especially in southern Finland. Simulations and measurements indicated that models 

using only litter quality and quantity and weather data underestimate soil carbon stock in southern 

Finland, and this underestimation is due to omission of the impact of droughts on the decomposition 

of organic layers. The model evaluation results imply improving estimates of understorey litter 

production in the northern latitudes would be an area for improvement in greenhouse gas inventories 

(Lehtonen et al., 2016). 

Canada 

An evaluation of CBM-CFS3 ability to predict ecosystem carbon stock estimates derived from an 

entirely independent data set from the initial establishment of Canada’s new National Forest 

Inventory (Gillis et al., 2005) was undertaken (Stinson et al., 2016). Estimates of aboveground 

biomass, dead organic matter and soil carbon stocks from up to 696 ground plots were compared to 

model-derived estimates (Shaw et al., 2014). Model simulations for each ground plot used only the 

type of input data available to the NFCMARS for the NIR in 2010.None of the model’s default 

parameters were altered. Ecosystem total C stocks estimated by CBM-CFS3 were unbiased (mean 

difference = 1.9 Mg ha−1, p = 0.397), and significantly correlated (r = 0.54, p > 0.001) with ground 

plot-based estimates. Although the overall C stock estimates were within 1 percent of the observed 

values, detailed analyses also revealed compensating biases specific to pools, ecozones or leading 

species.  Contribution to ecosystem total C stocks error from soil was large, and from deadwood and 

aboveground biomass small. Results for percent error in the aboveground biomass (7.5 percent) and 

deadwood (30.8 percent) pools compared favourably to the GPG-LULUCF standards of 8 percent 

and 30 percent, respectively. Further details are provided in Shaw et al. (2014). 

Subsequent analyses assessed the reasons for the consistent under prediction of organic carbon 

stocks in low productivity boreal sites, in which mosses can contribute 30 percent or more of total 

ecosystem Net Primary Production (Bona et al., 2013). Although mosses are not a carbon stock that 

is included in the IPCC pools, it is increasingly evident that omitting them will result in significant 

under prediction of both carbon stocks and fluxes in forest ecosystems with high moss cover. Bona 

et al. (2016) estimated that in poorly drained upland black spruce forests of boreal Canada as much 

as 31–49 percent of the total carbon stocks are potentially contributed by mosses alone. A new moss 

module was developed and added to the CBM-CFS3 and off-line comparisons indicate that 

representing moss carbon stocks and inputs will reduce bias in organic carbon stock estimates (Bona 

et al., 2016). 

Step 4.  Col lect  and col late require model data inputs   

Models require specific input data to estimate greenhouse gas emissions and removals associated with a source 

category. These inputs may range from weather and soils data to livestock numbers, forest types, natural 

disturbances or cropping management practices. While much of this data may have been collected as part of the 

model selection process (Step 1), additional data may need to be collected prior to full implementation. For 
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example, the climate data used in model selection may have only been for specific points, while for implementation 

the model will require the data spatially over large areas. In these cases, the new spatial input data may need to be 

developed to implement the model at the desired spatio-temporal scale.   

Step 5.  Model Implementation  

The major consideration when implementing the model is to obtain enough computing resources and personnel 

time to prepare the input data, conduct the model simulations, and analyse the results. In some cases, limitations 

in computing resources may constrain the complexity and range of spatial or temporal resolution that can be used 

in implementing the model at the national scale (i.e. simulating at finer spatial and temporal scales will require 

greater computing resources). An initial analysis of computing needs should be explored during model selection 

and development (Step 1). It may be possible to increase the efficiency of this process using programming scripts, 

re-coding parts of the model and adjusting the spatial and temporal extent and resolution of the simulations. It may 

also be possible to implement the model on computing resources that are outside the agency (e.g. cloud-based 

computing). 

Step 6.  Assess uncertainty  

Uncertainty analysis should not be confused with sensitivity analysis. Uncertainty analysis determines the 

probabilities of a range of estimates that can be used to derive confidence intervals for the estimates, and to develop 

plans to further reduce uncertainties. Sensitivity analysis is conducted to determine the relative change in model 

output given changes in model input values, which can be informative for model calibration (See Step 3). 

In many Tier 3 models, Monte Carlo analyses can be used to simulate the uncertainty arising from the large number 

of possible parameters in the systems.  Empirical analyses may also be an option to quantify uncertainty in model 

structure and parameterization based on an evaluation of model prediction error for sites with known inputs (See 

Box 2.2h). In general, uncertainties are quantified at national scales on annual time steps for reporting but may 

also be estimated at finer spatial and temporal scales. However, it may not be feasible or sensible to apply full 

Monte Carlo simulations to, for example, every spatial unit in a country. Given the computing resource and time 

requirements, it may also not be necessary to repeat a full Monte Carlo analysis every year. For example, in the 

case where only the activity data time series has been updated, but no other material changes to the inventory have 

been made, uncertainty estimates can be extrapolated to the additional years in the time series. A smaller test may 

also be run to demonstrate there has been no material change in uncertainty.  

BOX 2.2H (NEW) 

EXAMPLES OF QUANTIFICATION OF MODEL UNCERTAINTY 

This box is provided for information purposes and for the presentation of examples of quantification 

of uncertainties in Tier 3 modelling approaches. 

Canada 

Both uncertainty and sensitivity analyses were conducted on Canada’s CBM-CFS3 integration 

framework (Metsaranta et al., 2017) and uncertainty analysis results are summarized below. 

A wide range of factors that contribute to the uncertainty in the model estimates were varied using 

Monte-Carlo simulations using the entire national system. These factors include the processes used 

to initialize dead organic matter and soil carbon pools, biomass increment data (a multiplier with a 

range of ±50 percent was applied to net biomass increment), activity data (wildfire (±10 percent), 

insects (±25 percent), and harvest (range varies by jurisdiction)), selection of stands during the 

allocation of natural disturbances to affected stands, and parameters defining litter input and dead 

organic matter pool dynamics. Parameter ranges for 32 biomass turnover and dead organic matter 

carbon modelling parameters were obtained from the literature and used as minimum and maximum 

values of triangular distributions (with mode set to the CBM-CFS3 default value). All parameter 

values and input data were varied independently, because the correlation structure among parameters 

could not be estimated. 

Input data for Canada’s 230 million ha of managed forest are contained in 20 CBM-CFS3 databases, 

each representing a specific region in Canada. Monte Carlo simulations for each of  
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BOX 2.2H (NEW) (CONTINUED) 

EXAMPLES OF QUANTIFICATION OF MODEL UNCERTAINTY 

these 20 databases were conducted independently and the sample size for national totals was 

increased by summing random combinations of the 100 Monte Carlo runs from the 20 projects to 

generate 1000 randomly recombined estimates of national totals. The approximated 95 percent 

confidence interval (CI) was defined from the 2.5th and 97.5th percentiles of these national 

estimates. 

Under the assumptions of this analysis, the 95 percent confidence interval width averaged 32.2 Tg 

C·year−1 (+16.6 and –15.6 Tg C·year−1) for net biome production (total stock changes) relative to an 

overall simulation median of –0.8 Tg C·year−1 from 1990 to 2014. The largest sources of uncertainty 

were related to factors determining biomass increment and the parameters used to model soil and 

dead organic matter carbon dynamics. Some of these processes also vary in their intrinsic degree of 

predictability (Luo et al., 2015), and some factors causing large contributions to uncertainty may 

prove difficult to reduce (e.g., fine root turnover and its spatial and temporal variations). 

United States of America 

Uncertainty analysis for agricultural soil carbon and N2O emissions have been conducted for the US 

greenhouse gas inventory (Ogle et al. 2010; Del Grosso et al. 2010; US EPA, 2017). A Tier 3 method 

is applied to generate emissions estimates with application of the DayCent ecosystem model. This 

process-based model simulates plant production, soil organic matter formation, nutrient cycling, 

water flows, and temperature regimes (Parton et al. 1998). Uncertainty is quantified through a 

combination of Monte Carlo simulations, an empirical analysis of model prediction error, and 

propagation of variance associated with the land representation survey data. 

The inventory is compiled by simulating plant production and soil processes based on land use 

histories at about 400,000 locations that are part of a national survey, the National Resources 

Inventory (NRI) (Nusser et al. 1998, Nusser and Goebel 1997). The major input uncertainties in the 

Tier 3 model application are associated with fertilization and tillage management and are quantified 

in probability distribution functions (PDFs), representing the likelihood of different fertilization 

rates, tillage practices and manure amendments. The model is applied using a Monte Carlo Analysis 

in a series of 100 simulations for each NRI survey locations based on random draws from the PDFs. 

In turn, the analysis produces 100 estimates of soil C stock changes and N2O emissions for each 

survey location. 

Model prediction error, including bias and precision, is quantified in statistical models with an 

empirical analysis based on a comparison of model output to measured observations of soil C stocks 

and N2O emissions from experimental sites (Ogle et al. 2007).  The model inputs are mostly known 

for the DayCent model simulations of the experimental sites and so the primary sources of 

uncertainty that are quantified in this analysis are associated with model structure and 

parameterisation, in addition to the variance in measured observations. Moreover, the experimental 

sites are independent from model calibration allowing for an independent evaluation of model 

prediction error. The resulting empirical model is applied to the DayCent model output to adjust for 

biases, to the extent needed, and to quantify precision in model results. 

In a final step, variance associated with the NRI is derived based on the standard variance estimator 

for a stratified two-stage sample design (Särndal et al. 1992) and propagated through calculations to 

estimate national totals for the inventory (Ogle et al. 2010). The largest source of uncertainty in the 

analysis is associated with model structure and parameterization, as quantified in the empirical 

analysis.  This source accounts for more than 80 percent of the total uncertainty in soil carbon stock 

change and N2O emission estimates at the national scale, highlighting the importance of further 

improving the model to reduce uncertainty. 

Step 7.  Verif icat ion of  inventory est imates  with independent data    

NGHGI estimates from Tier 3 models can be difficult to verify because alternative measurements often do not 

exist at the national scale. This is not unique to the AFOLU sector. There may however, be opportunities to verify 

component estimates against independent data.  For example, model derived estimates of crop yield, or timber 

harvest can be compared against independent data such as crop or timber production statistics. Such comparisons 

require a good understanding of the methods used for both the Tier 3 and the comparative estimates, to avoid 

interpreting possible discrepancies as an indicator of problems in the Tier 3 model, when the discrepancy is in fact 

due to methodological differences. 
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Another useful step in verification of inventory estimates is to compare current estimates against those in the 

inventory submissions of prior years. Changes in time series estimates that are not consistent with changes in 

activity or other input data should be examined and understood as these could be indicative of a variety of problems, 

including errors in data processing. Developing quality assurance/quality control (QA/QC) procedures that 

document the changes in estimates attributed to each change in input data, model parameters, or other 

methodological changes can assist inventory compilers in the verification of inventory estimates. 

Verification of inventory estimates can also be based on measurements from a monitoring network or from 

research sites that were not used to calibrate model parameters or evaluate model behaviour. The network would 

be similar in principle to a series of sites that are used for a measurement-based inventory. However, the 

uncertainty of the estimates (output) from a model-based approach does not depend directly on the sample size 

and therefore the sampling need not be as dense. In some cases, verification may demonstrate that the model-based 

estimation system is inappropriate due to large and unexplainable differences between model results and the 

measured trends from the monitoring network. Problems may stem from one of three possibilities: errors in the 

implementation step, poor input data, or an inappropriate model. Implementation problems typically arise from 

computer programming or data input errors, while model inputs may generate erroneous results if these data are 

not representative of management activity or environmental conditions. In these cases, it is good practice for the 

inventory compiler to return to either Steps 2 or 5 depending on the issue. It seems less likely that the model would 

be inappropriate if Step 2 was deemed reasonable. However, if this is the case, it is good practice to return to the 

model selection/development phase (Step 1) or to further refine the existing model.   

In addition to verifying inventory estimates, independent data may also be used to check areas estimates for land-

use and land use change including  

 that land area is conserved over time;  

 changes between land-use types are logical in terms of the type, frequency and time periods between changes, 

defined by the country;  

 consistency between input data (e.g. area to be disturbed by disturbance type X) and model simulation results 

(e.g., area actually disturbed in the model by disturbance type X). 

Step 8.  Report ing  and Documentat ion   

It is good practice to assemble inventory results in a systematic and transparent manner for reporting purposes. 

Documentation of model-based Tier 3 inventory systems should include those items listed in Table 2.6b. For 

further details on QA/QC, reporting and documentation, see the sections dealing with the specific source categories 

later in this volume, as well as information provided in Volume 1, Chapter 6. 

TABLE 2.6B (NEW) 

EXAMPLES OF DOCUMENTATION TO ASSEMBLE IN SUPPORT OF TRANSPARENT REPORTING OF TIER 3 MODEL-BASED 

INVENTORIES 

Step 1 – Model selection or development  A description of the model 

 Reason for choosing or designing the model demonstrating 

applicability  

 Discussion of any likely consequences if the model is used outside 

the domain that the model is parameterised to simulate. 

Step 2 - Model calibration   Description of the process undertaken to calibrate the model and 

documentation of the data sources informing the manual or 

automated calibration. 

Step 3 – Evaluate model behaviour   Results of the analysis verifying model behaviour using independent 

measurements to confirm that the model is capable of estimating 

carbon stocks, stock changes and/or emissions and removals in the 

source/sink categories of interest. The sources of independent data 

should also be documented. 

Step 5 - Implement the model  Overview of procedures that are used to apply the model. 

Step 6 - Quantify uncertainties  Description of the approach taken to estimate uncertainty in the 

model outputs.   

Step 7 - Verification of inventory estimates  Summary of the verification results for the inventory. 

Step 8 – Reporting and Documentation  Information on QA/QC steps 
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2.6 INTER-ANNUAL VARIABILITY 

In the AFOLU sector, the management of land is used as the best approximation of human influence and thus, 

estimates of emissions and removals on managed land are used as a proxy for anthropogenic emissions and 

removals on the basis that the preponderance of anthropogenic effects occurs on managed lands (see Vol. 4 Chapter 

1). This allows for consistency, comparability, and transparency in estimation. Referred to as the Managed Land 

Proxy (MLP), this approach is currently recognised by the IPCC as the only universally applicable approach to 

estimating anthropogenic emissions and removals in the AFOLU sector (IPCC 2006, IPCC 2010). However, it is 

also recognised that the estimated emissions and removals on managed lands can represent a combination of both 

anthropogenic (direct and indirect) and natural effects (Vol. 4 Chapter 1 p1.5; IPCC 2010; see Fig. 2.6A).  

Some of the emissions and removals from managed land are characterised by high interannual variability. 

Interannual variability (IAV) refers to the variability in the annual emissions and removals (E/R) estimates between 

years within a time series. In the AFOLU sector, the application of the MLP means that IAV can be caused by 

both anthropogenic and natural causes. The three main causes of IAV in GHG emissions and removals in the 

AFOLU sector are (1) natural disturbances (such as wildfires, insects, windthrow, and ice storms), which can cause 

large immediate and delayed emissions and kill trees; (2) climate variability (e.g. temperature, precipitation, and 

drought), which affects photosynthesis and respiration (Ciais et al. 2005; Aragão et al. 2018); and, (3) variation in 

the rate of human activities, including land use (such as forest harvesting), and land-use change (Stinson et al. 

2011; Pilli et al. 2016; Kurz et al. 2018).  

In some countries IAV in emissions from natural disturbances can be larger than the IAV of emissions caused by 

human activities such as forest management. For example, IAV in Canada’s 1990 to 2016 time series of annual 

emission and removals due to natural disturbances is much larger than the IAV in the emissions and removals on 

the remaining managed forest land (Figure 2.6C). The NGHGIs for Portugal (Figure 6-32 of Portugal’s NIR 2018 

(Portuguese Environmental Agency 2018)) and Australia (Table 6.21 of Australia’s NIR 2016 Volume 2 

(Commonwealth of Australia 2018)) are two other examples of time series with high IAV. In some countries, the 

areas burned by wildfires can vary by two orders of magnitude between years (Stinson et al. 2011; Miller et al. 

2012; Genet et al. 2018). In other countries, the majority of IAV may be due to human activities.  

When the MLP is used and the IAV in emissions and removals due to natural disturbances is large, it is difficult 

to gain a quantitative understanding of the role of human activities compared to the impacts of natural effects. In 

such situations, disaggregating9 MLP emissions and removals into those that are considered to result from human 

activities and those understood to result from natural effects may provide increased understanding of the emissions 

and removals that are due to human activities such as, land use (including harvesting) and land-use change. In this 

way, disaggregation can contribute to improved understanding of the trends in emission and removals due to 

human activities and mitigation actions that are taken to reduce anthropogenic emissions and preserve and enhance 

carbon stocks.  

Disaggregating emissions and removals according to anthropogenic and natural effects has been recognised as a 

scientific challenge (Canadell et al. 2007; Vetter et al. 2008; IPCC 2010; Kurz 2010; Smith 2010; Brando et al. 

2014; Henttonen et al. 2017). It is not yet possible to fully and accurately separate emissions and removals 

associated with human activity from those associated with natural effects. The last IPCC Expert Meeting Report 

on this topic encouraged further development of scientific methods (IPCC 2010).  

Recognizing that some but not all countries may choose to address emissions and removals from natural 

disturbances on managed land outside the inventory process, this guidance is provided as an option that may be 

used by countries that choose to disaggregate their reported MLP emissions and removals (i.e. all emissions and 

removals on managed land) into those that are considered to result from human activities and those that are 

considered to result from natural disturbances. These supplementary approaches may be of interest to countries 

with AFOLU sector emissions where IAV due to natural effects is large. The section first addresses definitional 

issues, followed by a description of whether or not different methodological approaches used to estimate C stock 

changes quantify the IAV of emissions and removals. A generic approach to report on disaggregation of the 

contribution of natural disturbances in reporting on total emissions and removals on managed lands is then 

provided, along with country-specific examples of methodological approaches to disaggregating anthropogenic 

effects and natural disturbances on managed lands. 

 

 

                                                           
9 Disaggregating means that an estimate is separated into its component parts. 
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2.6.1 Definitional issues 

2.6.1.1 DIRECT AND INDIRECT HUMAN EFFECTS,  AND NATURAL 

EFFECTS  

Anthropogenic (i.e., direct and indirect human) effects and natural effects are described in Vol. 4 Chapter 1. Figure 

2.6a summarizes the main factors that cause these effects and their occurrences in managed and unmanaged lands. 

The specific effects included in estimates reported in NGHGIs depend on the estimation method and data used, 

which differ in approach and complexity among countries (see Table 2.6c). Describing how the various effects are 

reflected in the estimates of emissions and removals, based on the estimation method and data used, increases the 

transparency of the NGHGI and its understanding by the scientific and policy communities (Grassi et al. 2018, 

section 2.6.2). Useful information may include definition and spatial maps of managed land, information on areas 

of forest being harvested and those subject to other management, and information on the main determinants of the 

GHG fluxes (e.g., forest age structure, harvested volumes, harvest cycle). 

Figure 2.6a: Conceptual illustration of how various anthropogenic (direct and 

indirect) and natural factors affect land-related GHG emissions and 

removals in managed and unmanaged lands  (Source: Grassi et al. 

(2018)).  

 

Direct human-induced effects of any management activity on emissions or removals, by definition, only occur on 

managed lands. Indirect human-induced effects (i.e., the second order impacts of human activities on emissions or 

removals mediated through environmental change) and natural effects can occur on both unmanaged and managed 

lands. The “anthropogenic GHG emissions and removals by sinks are defined as all those occurring on ‘managed 

land’” (Vol. 4, Ch. 1). The natural effects “tend to average out over time and space” (Vol. 4, Ch. 1), provided 

that there are no trends in disturbance rates, such as increased annual area burned as a result of climate change. 

Nonetheless, their IAV in emissions and removals can have an important impact on annual NGHGIs. Depending 

on the estimation method and data used, GHG estimates for managed land may capture all or only some of this 

IAV (see Section 2.6.2).  

The IPCC describes the MLP as a method to approximate estimates of anthropogenic emissions and removals, but 

this proxy estimate also contains emissions and removals resulting from natural disturbances (IPCC 2006; IPCC 

2010). This section introduces an approach that countries can apply on a voluntary basis within the MLP in order 

to indicate those emissions and removals considered to result from human activity, and those that are understood 

to result from natural disturbances. This is achieved by disaggregating the estimated emissions and removals due 

to natural disturbances (ND E/R) within the estimated total MLP emissions and removals. This remaining 

aggregate of emissions and removals associated with human activity might still include some effects of IAV of 

natural disturbances and other natural effects on anthropogenic emissions and removals. 

2.6.1.2 NATURAL DISTURBANCES  

Disturbances, in particular wildfires, can contribute to large IAV in emissions. The number, frequency and 

intensity of fire events are strongly controlled by climate and weather, fuels, ignition sources, and human activities. 

High temperatures, past levels of fire suppression, and persistent drought events are key drivers of forest fires, for 

Managed land Unmanaged land

Direct-human induced effects

• Land use change

• Harvest and other management

Indirect-human induced effects
•Climate change induced change in temperature, 

precipitation, length of growing season 

•Atmospheric CO2 fertilisation and N deposition, 

impact of air pollution 

•Changes in natural disturbances regime

Natural effects
•Natural interannual variability

•Natural disturbances
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instance in the Western US (Westerling 2016), in the Amazon region (Morton et al. 2013) or in Indonesia (Schimel 

et al. 2015). However, land use and land-use change such as deforestation and peatland drainage can influence the 

likelihood and impacts of fire (Page & Hooijer 2016). In the Brazilian Cerrado, severe drought events explain the 

loss of almost 30 percent of aboveground woody biomass (de Miranda et al. 2014). Other natural disturbances 

with large IAV include storm damage (Yamashita et al. 2002; Lindner et al. 2010). Insects tend to follow outbreak 

cycles, thus causing more long-term trends that contribute to interdecadal rather than interannual variations (Kurz 

et al. 2008; Hicke et al. 2012). However, like IAV, the inter-decadal variability can also make it difficult to identify 

trends in emissions and removals that result from human activities. 

Definit ion of  natural disturbances  

Natural disturbances in the context of the AFOLU sector are non-anthropogenic events or non-anthropogenic 

circumstances that cause significant emissions and are beyond the control of, and not materially influenced by a 

country. These include wildfires, insect and disease infestations, extreme weather events and/or geological 

disturbances, beyond the control of, and not materially influenced by a country. Natural disturbances exclude 

human activities such as harvesting, prescribed burning and fires associated with activities such as slash and burn.10  

Non-anthropogenic events refer to non-human induced events (e.g. fire initiated by lightening, damage by wind 

storms), non-anthropogenic circumstances refer to non-human induced conditions that exacerbate these 

disturbances (e.g., fire occurring during particularly harsh conditions like strong winds, high temperature, drought, 

etc.). For information on how to document that disturbances are beyond the control of and not materially influenced 

by the country, see Section 2.6.4 below.  

The methodological guidance provided in this section is aimed at disaggregating emissions and removals in 

ecosystems where natural disturbances cause large IAV in emissions within the MLP and where subsequent 

removals occur over a multi-year period of time. Therefore, this methodological guidance is applicable to natural 

disturbances in forests, and in woody grassland, undrained wetlands or undrained peatlands, but not in other land 

categories where human actions materially determine and/or deeply influence the conditions and circumstances 

associated with significant emissions by disturbances (such in drained peatlands and in cropland).  

Balance of  emiss ions and subsequent removals  

A fundamental assumption under the MLP is that carbon emissions and removals associated with natural effects 

will average out over space and time (see also Volume 4, Chapter 1). Therefore, consistent with this assumption, 

the CO2 emissions (from above and below ground biomass, dead organic matter and soil carbon) from areas 

affected by natural disturbances are expected to be balanced by subsequent removals across the landscape at some 

future point in time. This expectation has no established time limit because the time to balance depends on the 

types of ecosystems affected by disturbances and their rates of regrowth.  

At stand level, changes in growing conditions could affect this expectation, in particular if environmental 

conditions contribute to regeneration failure of stands that were affected by natural disturbances, e.g. landslides 

and erosion after wildfire, making it more difficult to achieve the balance. Conversely, if environmental changes 

contribute to increased growth rates or reduced mortality rates, then the balance will be achieved faster.  In the 

case of repeated disturbances on the same area, the time to reach balance for that area may increase. 

2.6.2 Relationship between different methodological 

approaches and the representation of emissions and 

removals from interannual variability 

The choice of estimation method and data affects the extent to which the IAV of different drivers is reflected in 

reported estimates (see Table 2.6c). Countries can apply different estimation methods to report their emissions and 

removals capturing the anthropogenic components with different temporal resolution and disaggregation of 

variables (annual to periodic, averaged or disaggregated by drivers). Table 2.6c provides information on how the 

choice of estimation method affects whether or not factors contributing to IAV of reported emissions and removals 

are captured in NGHGIs. This table may help countries in understanding and describing how the various effects 

are reflected in the estimates of emissions and removals, therefore increasing the understanding of NGHGIs by the 

scientific and policy communities. 

                                                           
10 Information on natural disturbance definitions and approaches applied in the Kyoto Protocol accounting can be found in 

IPCC. (2014) In: 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, eds. 

T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda & T. G. Troxler, IPCC, Switzerland. 
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TABLE 2.6C (NEW) 

GENERAL GUIDANCE ON WHETHER OR NOT THE ESTIMATION METHOD IS ABLE TO DISTINGUISH BETWEEN THE IMPACT 

OF THE INDIVIDUAL DRIVERS BELOW ON THE INTERANNUAL VARIABILITY OF REPORTED ANNUAL EMISSION AND 

REMOVAL ESTIMATES  - NOTE THAT SOME EXCEPTIONS MAY OCCUR, DEPENDING ON THE DATA USED 

  Drivers 

Method  Direct Human  Indirect 

Human  

Natural climate 

variability   

Natural 

Disturbances  

Stock Difference11  

Periodic measurements (multi-year) 

No  No  No  No 

Stock Difference12  

Annual measurements 

Yes  Yes  Yes  Yes 

Gai

n- 

Loss
13 

L
iv

e 
b

io
m

as
s 

p
o
o

ls
 Biomass growth 

based on Emission 

Factors or empirical 

yield tables  

Yes  No  No  Yes   

Growth based on 

process (or hybrid) 

model  

Yes  Yes  Yes  Yes  

D
ea

d
 a

n
d

 s
o

il
 o

rg
an

ic
 m

at
te

r 
p
o

o
ls

 Dead and soil 

organic matter 

dynamics based on 

Emission Factors  

Yes  No  No  No  

Dead and soil 

organic matter 

dynamics with 

constant climate 

Yes  No  No  Yes  

Dead and soil 

organic matter 

dynamics with 

variable climate 

Yes  Yes  Yes  Yes  

The Stock Difference method calculates net emissions/removals (E/R) as the difference in estimated C stocks for 

relevant pools measured at two points in time. Average annual net E/R can be calculated by dividing the C stock 

difference of a period by the number of years between the two observations. Periodic stock assessments without 

auxiliary data therefore do not allow the quantification of the IAV of emissions and removals and its relation to 

the various drivers.  

With annual measurements of ecosystem carbon stocks, e.g. via subsets of annual plot measurements in a 

continuous forest inventory, the quantification of IAV of emissions and removals becomes possible. Periodic or 

annual subsets of inventories can by themselves not detect IAV unless auxiliary data – such as area annually burned, 

harvest rates or other specific plot-level measurements on the timing of tree mortality – are used to inform about 

IAV (Röhling et al. 2016). For non-CO2 emissions (e.g., CH4 and N2O from fires), auxiliary data on the type of 

disturbance that caused carbon losses would be required when the stock difference method is used.  

The Gain-Loss method requires annual data on forest management, land-use change and natural disturbances and 

when these are available it can provide estimates of the IAV of net emissions. Depending on the estimation 

methodology and the data sets used, it may capture some or all of the impacts of drivers of the IAV of annual 

emissions and removals. A Gain-Loss approach utilising yield tables or constant emission factors (EF) will be 

insensitive to natural climate variability and, therefore, will only be able to distinguish between the direct human 

impact and natural disturbance impacts on IAV of emissions and removals. Gain-Loss methods that utilise climate-

sensitive growth and mortality models (Richards & Evans 2004; Waterworth et al. 2007; Hember et al. 2018), or 

                                                           
11 Forest inventories with multi-year period remeasurement and no auxiliary data cannot detect IAV. In some cases, periodic 

measurements on permanent sample plots are augmented with additional annual data thus increasing the ability to estimate 

IAV. 

12 Forest inventories with annual remeasurements for the same plots can detect IAV but are rarely implemented. 

13 The assumption for the Gain-Loss method is that activity data such as harvest, land-use change, and natural disturbances are 

available annually. 
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climate sensitive models of dead and soil organic matter dynamics (see Figure 6 in Liski et al. (2006)) can, in 

addition, estimate the indirect human and natural climate variability impacts on the IAV of emissions and removals.  

2.6.3 Optional approach for reporting of emissions and 

removals from Natural Disturbances 

It is good practice for countries to apply the MLP and to estimate and report all emissions and removals that occur 

on managed lands. This section describes a generic approach for use by countries that choose to report on the 

further disaggregation of emissions and subsequent removals from natural disturbances from the total emissions 

and removals estimated using the MLP. As discussed above, disturbances may have a natural and an anthropogenic 

component. This reporting guidance aims to assist countries choosing to report on the disaggregation of emissions 

and subsequent removals associated with human activity and those associated with natural disturbances within the 

total emissions and subsequent removals estimates of the MLP. 

The elements of a generic approach are provided below, followed by examples of how the approach has been 

implemented to date:  

1. Quantification of the total emissions and removals from Managed Lands (consistent with MLP) 

Estimate total E/R consistent with the MLP. Guidance provided by the IPCC for each relevant land category 

applies for the estimation of associated emissions and subsequent removals due to regrowth within the MLP. 

This is the total MLP flux, i.e. the first order approximation of the anthropogenic emissions and removals, 

which also includes emissions and subsequent removals from areas that are identified as subject to natural 

disturbances. 

2. Reporting on the country-specific approach to applying the definition of natural disturbances 

Consistent with the generic definition of natural disturbances provided in section 2.6.1.2, countries describe 

their approach when applying the definition of natural disturbances consistently over time. The country 

description includes the types of disturbances for which the disaggregation of emissions and subsequent 

removals is implemented. The description also explains how the country excludes from natural disturbances 

the impacts of human activities, e.g., salvage logging, prescribed burning, slash and burn and deforestation. 

3. Identification of emissions and removals due to natural disturbances 

The emissions and subsequent removals associated with natural disturbances are identified by applying the ND 

definition to either the individual (stand-level) disturbed areas or the total (landscape-level) emissions from all 

disturbances in the year14. In identifying those emissions and removals, it is good practice to avoid the inclusion 

of emissions and removals that are materially affected by human actions15.  Both approaches provide for the: 

(i) Identification of the lands and area of land affected by each disturbance, as well as a description of the 

methods and criteria applied. 

(ii) For those lands, estimation of the emissions and subsequent removals associated with natural 

disturbances only (e.g. salvage logging emissions and associated subsequent removals are not included), 

as well as a description of the methods and criteria applied. 

If a country chooses to disaggregate ND emissions and removals, then it is good practice to disaggregate as 

anthropogenic the emissions and subsequent removals associated with management activities occurring on land 

affected by natural disturbances, including salvage logging and deforestation. Consequently, subsequent 

removals are disaggregated between human activities and natural disturbances, proportionally to the C stock 

losses these activities have caused, until the CO2 emissions from natural disturbances are balanced by removals.  

For example, if salvage logging follows wildfire, and the wildfire caused instant emissions of 20 t CO2 per 

hectare and subsequent salvage logging caused an additional 40 t CO2, then 20 t CO2 of subsequent removals 

are disaggregated as natural disturbances, and all remaining removals are disaggregated as anthropogenic 

effects.  This could be implemented sequentially (i.e. the first 20 t CO2 removals are disaggregated as due to 

natural causes, and all subsequent removals to anthropogenic causes) or in parallel (i.e. in this example, for 

every tonne of CO2 removal, one third is disaggregated as due to natural causes, and the remaining two thirds 

to anthropogenic causes). In both cases, once natural emissions are balanced by removals disaggregated as 

natural causes, the remaining removals are considered anthropogenic.   

                                                           
14 Methodological guidance on quantification of associated emissions and removals are given in the chapters with general 

guidance (Chapter 2 and 3) as well in the category-specific chapters (Chapter 4 and 6)". 

15 Noting that a portion of the emissions and removals considered to be associated with natural disturbances may be affected 

by human actions. 
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Disaggregation of CO2 removals following natural disturbances can be implemented at the landscape level by 

apportioning these based on, for instance, the proportion of area disturbed of total forest area and the proportion 

of C stock lost of total C stock. For example, if in a year X in a country Y, Z ha of forest land is subject to 

wildfires, representing 0.1percent of the total forest area and 25percent of the total carbon stock present in the 

burned area is lost; the percentage of total CO2 removals in the entire forest land apportioned to natural 

disturbances in this example is 0.025percent (i.e., 0.1percent*25percent) for year X. If the emissions from 

natural disturbances in year X were 25 Mt CO2, then the removals in subsequent years are considered natural 

until the sum of the removals equals that amount. 

Although the different approaches above (i.e., sequential or parallel disaggregation of removals subsequent to 

natural disturbances, stand vs. landscape level) affect the annual disaggregation, as long as the expectation of 

the balance between emissions from natural disturbances and the subsequent removals is fulfilled (see Section 

6.2.1.2), and as long as emissions and subsequent removals are treated consistently, in the long term the totals 

are the same. Furthermore, in all cases it is good practice to report information on assumptions and methods 

implemented to disaggregate subsequent CO2 removals. 

When land-use change (e.g., forest land converted to cropland) follows a natural disturbance (e.g., wildfire), 

then emissions associated with land-use changes after natural disturbances as well as the emissions from the 

prior natural disturbance, are considered to be anthropogenic emissions. If regrowth occurs on that land, then 

any subsequent removals are also considered anthropogenic.  

4. Disaggregation of the MLP 

The natural disturbance component is subtracted from the total estimate of MLP emissions and removals, 

yielding an estimate of the emissions and removals associated with human activity on managed land. Both 

components are estimated and reported as part of the total MLP emissions and removals. In countries where 

natural disturbance contributes large IAV to E/R, the component of the MLP emissions and removals identified 

as associated with human activity is expected to have a lower IAV than the MLP emissions and removals 

because the variability resulting from natural disturbances has been disaggregated. 

Given the expectation of the balance described above (Section 2.6.1.2), when emissions from natural 

disturbances are disaggregated, it is good practice that subsequent removals are also disaggregated until the 

balance has been reached. In this case, it is also good practice to disaggregate to the natural disturbance 

component those removals in each inventory year that are contributed by lands that were affected by natural 

disturbances prior to the start of the time series. In many ecosystems it may take decades for removals following 

natural disturbances to balance emissions from the disturbances. If it is not possible to estimate directly the 

amount of emissions that need to be balanced, for example if natural disturbances occurred before the reporting 

period, the time when the balance is expected can be approximated based on the estimated length (years) of 

the recovery period (see example in Box 2.2j). This ensures a consistent application of the balance principle 

throughout the time series.  

In addition to CO2 emissions, natural disturbances may cause non-CO2 emissions, e.g. wildfires cause N2O and 

CH4 emissions. While CO2 emissions are assumed to average out across time because of vegetation regrowth 

after disturbance, non-CO2 emissions are not taken up by vegetation and therefore there is no expectation that 

these emissions will be balanced by removals because the biological, chemical and physical processes that 

result in the complete decay of CH4 and N2O in the atmosphere are not captured in existing IPCC inventory 

methods. 

Examples of methodological approaches that have been developed are presented for Australia (Box 2.2i), Canada 

(Box 2.2j) and for an EU country (Box 2.2k). 
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BOX 2.2I (NEW) 

AUSTRALIAN APPROACH TO ESTIMATING INTERANNUAL VARIABILITY DUE TO NATURAL DISTURBANCES 

This box is for information only and neither adds guidance nor overrules guidance provided. 

In Australia, all lands are considered managed lands. All areas and carbon stock changes on managed 

land from anthropogenic and ‘natural disturbances’16 are reported, consistent with the MLP. ‘Natural 

disturbance’ emissions and removals are considered to be caused by non-anthropogenic events and 

circumstances beyond the control of, and not materially influenced by, human activity despite 

extensive efforts by emergency management organizations to prevent, manage and control such 

events. 

Both initial carbon losses and subsequent recoveries in carbon stocks are modelled as part of the 

disturbance event, and carbon stocks are spatially tracked until pre-disturbance levels are reached to 

ensure completeness and balance in reporting. Most Australian wildfires are not stand-replacing and 

carbon stocks typically recover after 11 years (Roxburgh et al. 2015). Estimates are prepared using 

a process (hybrid) model with DOM/SOM dynamics with variable climate (FullCAM).  

‘Natural disturbances’ are defined as occurring in a year which is an outlier (exceeding the 95percent 

probability level) in the series of annual carbon stock losses due to wildfire at the national level and, 

spatially, as fires in those regions (States) experiencing abnormal fire activity in that year. (A full 

description of the method to identify outliers can be found in Volume 2 of Australia’s NIR 2016 - 

Section 6.4.1.3) 

‘Natural disturbance’ emissions and removals are modelled on a spatial basis and, consistent with 

the MLP, included in reporting after averaging out initial carbon stock losses and subsequent 

recovery17. This leaves the trend in carbon stock changes as the dominant result of human activity 

(e.g. from prescribed burning, normal seasonal wildfires – see “B” in Figure 2.6B).   

The approach ensures that Australia’s modelled implementation of the MLP is comparable with 

estimates generated using other methods, such as Tier 3 stock-difference approaches, that tend to 

average out IAV due to natural causes over space (scaling from plots to region) and time (averaging 

between periodic re-measurements). All carbon stock changes on managed land from anthropogenic 

and natural disturbances are transparently reported in Australia’s NIR. 

 

Figure 2.6b: Example of the disaggregation of wildfire emissions in Australia into ‘natural 

disturbance’ emissions and removals and the emissions and removals from fires due to human 

activity. 

 

                                                           
16 References to ‘natural disturbances’ in this box refer to the natural ‘background’ of greenhouse gas emissions and removals 

by sinks described in 2006 IPCC Guidelines Vol 4, page 1.5: (Managed land proxy) “Finally, while local and short-term 

variability in emissions and removals due to natural causes can be substantial (e.g. emissions from fire – footnote 1), the 

natural ‘background’ of greenhouse gas emissions and removals by sinks tends to average out over time and space.” 

17 2006 IPCC Guidelines Vol 4, page 1.5: (Managed land proxy) “Finally, while local and short-term variability in emissions 

and removals due to natural causes can be substantial (e.g. emissions from fire – footnote 1), the natural ‘background’ of 
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BOX 2.2J (NEW) 

CANADA’S APPROACH TO ESTIMATING  INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES 

This box is for information only and neither adds guidance nor overrules guidance provided. 

In the 2017 National GHG Inventory Report18 Canada revised its reporting approach to increase the 

transparency of the reporting of anthropogenic emissions and removals on Forest Land remaining 

Forest Land (FL-FL). The new approach disaggregated the emissions and subsequent removals on 

managed lands affected by natural disturbances from those on the remaining lands subject to forest 

management. The concept of the MLP was maintained: the sum of these two emission and removal 

components are identical to the total emissions and removals for FL-FL under the MLP. Canada’s 

2018 National GHG Inventory Report19 further refined the approach. The methods are described in 

detail by (Kurz et al. 2018) and are summarized here. 

Canada defined natural disturbances as all stand-replacing wildfires and all disturbances of other 

natural causes (insects, windthrow etc.) that result in more than 20 percent tree mortality (biomass) 

in affected stands. The threshold of 20 percent was selected because large areas of forests are affected 

by insects that cause low levels of mortality and/or growth reductions. Disturbances with impacts 

below this threshold are considered part of the natural, small-scale forest mortality that affect stand 

dynamics such as self-thinning. 

For all areas affected by stand-replacing fire disturbances, annual CO2 and non-CO2 GHG emissions 

and subsequent CO2 removals are summarized in the natural disturbance land category for several 

decades following the fire event.  The time at which stands affected by natural disturbances transition 

back to the category of lands affected by forest management varies across Canada and is determined 

by the age at which stands are eligible for harvest, typically 60 to 90 years. For other natural 

disturbances that cause more than 20 percent biomass mortality, E/R are summarised in the natural 

disturbance category until the pre-disturbance biomass values are reached. For the 1990 to 2016 time 

series, stands regenerating following wildfire that are younger than the age at which stands are 

eligible for harvest is summarised in the natural disturbance category: removals that occur after 1989 

in stands that have been affected by stand-replacing wildfires prior to 1990 are therefore contributing 

to balancing emissions from wildfires that occurred since 1990. The 56 Mha of managed forest 

affected by wildfire disturbances prior to 1990 contribute in 1990 estimated removals of 64 Mt CO2e 

yr-1. From 1990 to 1994 these cumulative annual removals are larger than the emissions from 

wildfires since 1990, making the lands subject to natural disturbances net sinks  (Kurz et al. 2018). 

This approach contributes to balanced reporting as otherwise only removals from stands affected by 

natural disturbances after 1990 would appear in the natural disturbance component. 

The disaggregation of fluxes improves the estimate of human impacts: reported emissions and 

removals without natural disturbances showed clear temporal trends that are correlated with changes 

in the rates of human activities such as rates of clear-cut harvesting (Figure 2.6C). In areas strongly 

affected by the Mountain Pine Beetle outbreak (Kurz et al. 2008) the trend in emissions reported for 

lands affected by forest management is still somewhat influenced by the impacts of the beetle 

because that area is decreasing  (Kurz et al. 2018).  The high IAV resulting primarily from fires is 

reported separately (Table 6.5 in Canada’s NIR 2018). Further methodological details are provided 

in Canada’s NIR 2018, Sections 6.3.1 and in Annex 3.5.2.3 and in (Kurz et al. 2018). 

 

                                                           
greenhouse gas emissions and removals by sinks tends to average out over time and space. This leaves the greenhouse gas 

emission and removals from managed lands as the dominant result of human activity.” 

18 http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/can-

2017-nir-13apr17.zip 

19 https://unfccc.int/documents/65715 
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BOX 2.2J (NEW) (CONTINUED) 

CANADA’S APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES  

 

Figure 2.6c: Example of the disaggregation of Canada’s FL-FL emissions and removals into those 

occurring on lands dominated by natural disturbance impacts and those occurring in the remaining 

managed forest (A). Note the high IAV in the natural disturbance fluxes (up to 250 Mt CO2e/yr) (B) 

on the area affected by natural disturbances (primarily wildfires) and the low IAV of fluxes on the 

remaining managed forest area (C) which are correlated with forest management activities (e.g. 

primarily area of forest harvest). Fluxes in panel C are shown without (solid line) and with (dashed 

line) the emissions from harvested wood products. Data from Canada’s 2018 NIR and figure from 

(Kurz et al. 2018)).   
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BOX 2.2K (NEW) 

APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES BASED ON THE EU 

LEGISLATION20 

This box is for information only and neither adds guidance nor overrules guidance provided. This 

example demonstrates a methodological approach that has not yet been implemented. 

Forests of example country Z21 are prone to wildfires that in years with extreme weather conditions 

(e.g. drought, especially if combined with strong winds) may cause large emissions from biomass 

burning and cause high IAV in the net CO2 balance. Although, the country recognizes that most of 

its wildfires are human-induced either intentionally, e.g. pyromaniacs, or unintentionally, e.g. 

campfires, fireworks, cigarettes or other causes, some have natural causes. Consequently, emissions 

from wildfires have both an anthropogenic and a natural component. 

 

Figure 2.6d: Time series of managed forest land total GHG net emission (anthropogenic + natural 

disturbance (ND) and area burned. Blue bars (left Y-axis) represent annual total net GHG emission 

(Gg CO2e) from managed forest land net sink. The dashed red line (right Y-axis) represents the 

annual area burned (kha). 

To disaggregate the natural component of emissions and removals from wildfires, the country uses 

its national definition of natural disturbances: Natural Disturbances are those wildfires that are non-

anthropogenic events or non-anthropogenic circumstances that cause significant emissions in 

forests and are beyond the control of, and not materially influenced by, the Country’s land use and 

management practices. These practices exclude salvage logging and prescribed burning.  

All wildfires are considered not materially influenced by the country’s land use and management 

practices since the use of fire is forbidden in any forest land and the country has an advanced national 

fire management system for fire prevention, fire monitoring and fire suppression in all land uses, 

including forest land.  

To identify wildfires that cause significant emissions and are beyond the control of the country’s 

fire management system and are therefore considered natural disturbances, the country looks for 

statistical outliers that fall outside the 95 percent confidence interval of the variability of the 

historical time series of the annual GHG emissions from wildfires22. To do so, the distribution of 

emissions from wildfires is established, and it is assumed that all values within the normal  

 

                                                           
20 The presented methodology is based on the EU Regulation 2018/841 

21 Data for this example are derived from the Italian GHG inventory 

22 Such time series do not include emissions from salvage logging nor emissions from wildfires that are followed by a 

deforestation event. The time series can start before the base year of the country and may include all years for which data are 

available. For this example, the time series starts in 1971. 



 Chapter 2: Generic Methodologies Applicable to Multiple Land-Use Categories 

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 2.77 

BOX 2.2K (NEW) (CONTINUED)  

APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES BASED ON THE EU 

LEGISLATION 

distribution are exclusively associated with the anthropogenic component23, any outlier value, in the 

upper tail, is considered as the signal of a disturbance event that is unlikely to have been generated 

by anthropogenic causes alone and therefore includes a natural component. 

In practice, first a historical time series of annual emissions24 from wildfires is constructed starting 

from 1971, i.e., the base year (1990) of the NGHGI of the country minus 20 years. Then, using an 

iterative process, outliers (if any) that are larger than the mean plus two times 25  the standard 

deviation are removed from the time series in successive iterations, until an outlier-free normal 

distribution is obtained.  

The resulting time series, as well as its mean (referred to below as the background level of 

anthropogenic emissions from wildfires) and two times its standard deviation (referred to below as 

the margin) excludes all outliers. Based on these statistics, natural disturbances are those that occur 

in years when the total immediate emissions from wildfires are larger than the background level plus 

the margin and emissions from these natural disturbances are quantified as the amount exceeding 

the background level. This amount is disaggregated from the anthropogenic component.  

To establish the balance between immediate CO2 emissions (F) and total subsequent CO2 removals26 

(R) due to natural disturbances, and to avoid introducing artificial trends to the time series, the 

country also estimates and reports removals occurring from land disturbed in the X years prior to 

the inventory year, where X27 is the length of the period that is needed for forest vegetation (by 

relevant forest types and site types) to recover the pre-disturbance C stock. The CO2 removals are 

quantified under the assumption that forest vegetation fully recovers within X years after wildfires. 

This assumption is based on the current legislation that forbids conversion of burnt forests to other 

land uses and that prescribes post-fire management activities aimed at rehabilitating the pre-fire 

forest vegetation. Consequently, the average amount of subsequent annual removals (Rannual) to be 

disaggregated for X years of a past ND event28 is equivalent to 
𝐹

𝑋
 and ∑ 𝑅𝑎𝑛𝑛𝑢𝑎𝑙 = 𝑅 = 𝐹𝑋

0  (where 0 

is the year in which the natural disturbances occur and X the time needed for C stocks to recover to 

their pre-disturbance level). 

 

                                                           
23 The average value of this distribution is the so -called background level of emissions associated with disturbances and it is 

considered anthropogenic. 

24 The country includes the emissions of fire events only, delayed emissions associated with the decay of biomass that was 

killed during the fire are not considered 

25 This is an approximation of Student’s t value for data series with number of data >= 30. 

26 Calculated directly from the biomass net increment (ΔCG of IPCC equation 2.7) 

27 For this example, X has been estimated to be 20 years for the entire country’s territory. 

28 This means that in any year Y of the NGHGI the amount of CO2 removals to be disaggregated is equivalent to the 

∑ (
𝐹

𝑋
)
(𝑌−𝑋)

𝑌
𝑌−𝑋  (where (

𝐹

𝑋
)
(𝑌−𝑋)

 are the annual CO= removals occurring on all lands disturbed in the period Y-X that have 

not yet achieved their pre-disturbance level of C stocks.) 
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BOX 2.2K (NEW) (CONTINUED)  

APPROACH TO ESTIMATING INTERANNUAL VARIABILITY FROM NATURAL DISTURBANCES BASED ON THE EU 

LEGISLATION 

 

Figure 2.6e: Time series of managed forest land GHG net emissions and removals (Gg CO2e). Blue 

bars (net sink) represent annual anthropogenic GHG net emissions (Gg CO2e) from managed forest 

land; red bars (source and green line (sink)) disaggregated GHG emissions and subsequent CO2 

removals from natural disturbances in managed forest land, respectively. The coefficient of variation 

of the time series is 0.184.  

2.6.4 Reporting the contribution of natural disturbances 

and anthropogenic effects to the emissions and 

removals for managed lands 

Voluntary disaggregation of the total of emissions and removals in the MLP into those that are associated with 

human effects and those due to natural disturbances may provide a clearer picture of the impact of management 

activities. It is understood that a complete separation of the direct human impacts from natural impacts is, at this 

time, not possible due to limitations of scientific methods (IPCC 2010) but disaggregating the emissions and 

subsequent removals that are associated with natural disturbances on managed lands may be a helpful first step. 

The MLP total is the sum of all emissions and removals on managed land. Box 2.2l describes a possible approach 

to reporting the total E/R from MLP plus the two components from: 

1. Natural disturbances; 

2. Anthropogenic activities (direct and indirect human effects). 

The first component includes emissions from natural disturbances and subsequent net removals from regrowth. 

Emissions may include delayed emissions from dead organic matter that was added by the disturbance to the 

already existing dead organic matter pools.  

The second component includes emissions and removals directly and indirectly associated with human activity 

calculated as the difference between MLP total emissions and removals minus those associated with natural 

disturbances.  

In those cases where natural disturbance fluxes are large compared to the anthropogenic component of the MLP, 

the optional disaggregation of estimates of the emissions and removals associated with natural disturbances can 

identify the estimated trends of the emissions and removals on managed land associated with human activity, as 

demonstrated in recent NGHGI reports (e.g., Boxes 2.2I, 2.2J). 
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Transparency:  

For those countries that choose to identify, quantify and report disaggregated natural disturbance emissions and 

subsequent removals, it is good practice to document disaggregated emissions and removals in the MLP, and the 

approaches, assumptions and methods used.  

It is good practice to document the following: 

 Consistency of the country approach with the generic definition of natural disturbances provided in Section 

2.6.1.2, if any.  

 The types of natural disturbances for which emissions and subsequent removals are identified, quantified and 

disaggregated within MLP reporting. 

 How the requirements associated with the above definition of natural disturbances are met, including that the 

identified ND events are “non-anthropogenic events or non-anthropogenic circumstances”, which can be 

demonstrated by providing information to show that the disturbances were “not materially influenced by, and 

beyond the control of, a country”.  

 How the emissions and removals that are materially influenced by human actions are excluded from the natural 

disturbances component. 

The demonstration that natural disturbances were “not materially influenced by, and beyond the control of, a 

country” is based on scientific reasoning or evidence and documentation on practicable efforts to prevent, manage 

or control the occurrences that led to the natural disturbances. Such evidence and practicable efforts may include 

but are not limited to: 

 Studies showing the prevalent direct cause of fires in a given region, forest type and climate zone; information 

on weather conditions related to the disturbance events or to the cumulative affected areas; 

 Application of preventative measures or modifying factors related to the occurrence or propagation of the 

disturbances that may reduce the likelihood and/or magnitude of the disturbances occurring; 

 Efforts to manage or control the disturbances when they occur, to the extent possible.  

It is good practice to document the methods used to identify, quantify and disaggregate the impact of ND on GHG 

emissions and removals, including information on:  

 How the method is consistent with the expectation that the CO2 emissions from areas affected by natural 

disturbance will be balanced by subsequent removals.  

 The methods by which GHG fluxes are disaggregated from total MLP fluxes.  

 For lands subject to ND, documentation on how subsequent land use and land-use change, if any, is identified 

and how GHG fluxes previously disaggregated as associated with natural disturbances are re-assigned to the 

anthropogenic component following land-use change.  

Documentation on the manner in which emissions associated with human activities that occur after the natural 

disturbance event (such as salvage logging and site rehabilitation or other activities that do not cause a land-use to 

change), and subsequent removals, are estimated and disaggregated. 
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BOX 2.2L (NEW) 

EXAMPLE OF THE TABLE FORMAT THAT COULD BE USED FOR VOLUNTARY DISAGGREGATION OF TOTAL 

ESTIMATED FLUXES ON MANAGED LANDS INTO ANTHROPOGENIC AND NATURAL DISTURBANCE COMPONENTS  

 

 Land-use category e.g. Forest land remaining forest land  

Years   

Start 

year† … … … Inventory year 

Total Area under the MLP (kha)      

Carbon stock change  

Gains      

Losses      

Net      

non-CO2 emissions Emissions      

Net E/R plus non-CO2 Total*      

       

Annual area of natural disturbances (kha)29      

Area subject to natural disturbances (kha)30      

Carbon stock change 

Gains      

Losses      

Net      

non-CO2 emissions Emissions      

Net E/R plus non-CO2 Total       

      

Remaining area of managed land (kha)      

Carbon stock change 

Gains      

Losses      

Net      

non-CO2 emissions Emissions      

Net E/R plus non-CO2 Total #      

† This is the first year in the inventory time series, e.g. 1990. 

* This is the total MLP estimate of net emissions and removals, i.e. the first order approximation of the anthropogenic 

emissions and removals 

# This is the optional disaggregated estimate of the anthropogenic emissions and removals 

 

  

                                                           
29 The area of natural disturbance in the year it first occurs. 

30 The cumulative area which has been subject to natural disturbances up to and including the current inventory year, minus the 

area of natural disturbances on which past CO2 emissions are considered to be balanced by subsequent removals since the 

occurrence of the natural disturbance. In the cumulative area totals, areas affected multiple times are included only once. 
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Annex 2A.1 Default Mineral Soil Reference C Stocks  

Data presented in Table 2.3 were derived from Batjes (2011) and Batjes (2010) unless no values were available 

for particular combinations of IPCC Climate Zones and IPCC soil types. Where no values were available, values 

were taken from the 2006 IPCC Guidelines for National Greenhouse Gas or the 1996 IPCC Guidelines.  

Reference C Stocks for the mineral soils C method were derived for IPCC climate zones (IPCC 2006 p. 3.39)  and 

IPCC soil classes (IPCC 2006 pp. 3.40-3.41). Soil data are from the ISRIC-WISE database (10250 profiles) 

complimented with 1900 additional geo-referenced profiles from under represented temperate and boreal sites.  

Data from all soils were screened and where organic carbon contents were determined using the Walkley Black 

analysis, values were adjusted based on a conversion factor of 1.3 to estimate corresponding values that would 

have been obtained by dry combustion analysis.  Profiles were collected between 1925 and 2010 with two-thirds 

of the pedons sampled between 1955 and 1995. Profiles were classified as “cultivated or disturbed” vs 

“(semi)natural”. Only profiles flagged as being under native vegetation (classified as “(semi)natural”) were 

included (a total of 5560 profiles equating to approximately 1.6 times that used in the 2006 IPCC Guidelines). The 

profiles also had a better geographical distribution across the globe compared to those use to derive reference 

carbon stock values within the 2006 IPCC Guidelines.    

The following equation was used to compute SOC stocks: 

EQUATION 2A.1.1 

ESTIMATION OF SOIL ORGANIC CARBON STOCKS 

 
1

1
k

d i i i i

i

T P D S


      
 

Where:  

dT  = total amount of organic carbon over depth, d, (in kg m−2) 

i  = bulk density of layer i (Mg m−3)  

iP  = the proportion of organic carbon in layer i (g C Kg−1) 

iD  =  thickness of the layer (m) 

iS  = volume of the fraction of fragments >2 mm   

Gaps in bulk density and coarse fragment >2mm content data were filled using pedo(taxo)-transfer functions 

presented by Batjes et al. (2007) on the basis of soil type, soil textural class and soil depth.  IPCC Tier 1 methods 

consider changes in 0-30 cm soil depth layer; however, best-estimates were also derived for 0-50 and 0-100 cm 

soil depth layers.    
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Annex 2A.2 Additional Information for the Estimation of Soil 

Carbon Stock Change from Biochar Amendments 

to Mineral Soils Using Tier 2 and 3 Methods  

Thermochemical Conversion Technologies  
For the purpose of this methodology, biochar is defined as a solid material generated by heating biomass to a 

temperature in excess of 350 °C under conditions of controlled and limited oxidant concentrations to prevent 

combustion. These processes can be classified as either pyrolysis (in which oxidants are excluded), or gasification 

(in which oxidant concentrations are low enough to generate syngas).  

Torrefaction and hydrothermal carbonisation (also called liquefaction) are not included because they do not 

generate solid products that are significantly more persistent in soil than the original organic feedstock material 

(Libra et al. 2011; Kammann et al. 2012). Both of these processes typically utilise temperatures below 350°C, 

with torrefaction operating under dry feedstock conditions in ambient pressure, while hydrothermal carbonisation 

uses pressurised wet aqueous slurries. In contrast, pyrolysis operates at temperatures at 350°C and above (typically 

but not always below 700°C) under variable times, and gasification utilises temperatures between 500 and 1500°C 

and typically short times (Boateng et al. 2015), both in dry conditions.  Dry conditions are defined here in terms 

of the feedstock moisture, whereby feedstocks can have moisture up to 20percent after pre-drying; in comparison, 

wet slurries typically have liquid water contents above 80percent. 

Priming of native soil  organic carbon by biochar amendments  
Mineralisation of native soil organic carbon is on average reduced by 4 percent (95 percent CI = -8.1–0.8percent) 

after biochar additions to soil (Wang et al. 2015). Similar to laboratory trials (Kuzyakov et al. 2014), field trials 

also show reductions in mineralisation of native soil organic carbon close to a decade after biochar additions (Weng 

et al. 2017) as well as in biochar-rich soils after several millennia (Liang et al. 2010). Known mechanisms that 

would cause an increase in mineralisation involve co-metabolism (Whitman et al. 2015) that operates over the 

short term by supplying easily mineralisable organic matter as a source of energy to metabolise native organic 

matter (Zimmerman et al. 2011). Conservatively, we assume no effect of biochar on existing soil organic matter 

in the long term.   

Nitrous oxide emissions from soil  after biochar amendments  
Meta-analyses have found that nitrous oxide emissions are on average reduced between 54 percent (Cayuela et al. 

2014), 38 percent (Borchard et al. 2018), 32 percent (Liu et al. 2018) to 0 percent (Verhoeven et al. 2017) after 

addition of biochar to soil. Any reductions in nitrous oxide emissions due to biochar additions typically decline 

over several years after application (Fungo et al. 2017). Furthermore, assessments of nitrous oxide emissions 

several years after biochar additions are indicative of long-term emission reductions although at lower rates, since 

changes in biochar properties occur slowly over long periods of time (decades and centuries) compared to changes 

observed during the initial days to years (Nguyen et al. 2008).  

High-N feedstocks generate biochar with some microbially available N (Wang et al. 2012) and can lead to short-

term (days to weeks) increases in total nitrous oxide emissions if produced at lower temperatures (< 600 °C) 

(Cayuela et al. 2013). However, charring consistently reduces nitrous oxide emissions originating from the 

nitrogen in nitrogen-rich organic materials (Rose et al. 2016), as easily mineralisable amino-groups are converted 

to polyaromatic nitrogen-carbon structures (Knicker 2007).  

Due to limiting evidence demonstrating the long-term persistence of soil nitrous oxide emission reductions, it is 

conservatively assumed that biochar does not reduce nitrous oxide emissions from soil in the Tier 1 method.  

However, any bioavailable N additions associated with biochar amendments should be included in the calculations 

of direct and indirect soil nitrous oxide emissions (Volume 4, Chapter 11) as part of organic N inputs. This 

approach will be conservative in terms of the influence of biochar on greenhouse gas emissions for the Tier 1 

method. 

Biochar Amendments to Organic Soils  
No methods are provided in this guidance for estimating the impact of amending organic soils with biochar.  

Compilers may be able to develop a Tier 3 method for estimating the impact of biochar C amendments to organic 

soils, but it is important to recognise that the dynamics may be different, particularly with respect to priming. Few 

studies have investigated the impact of priming by biochar on organic soils. However, one study that has 

investigated priming of organic horizons in a forest soil found substantial losses of soil C over a ten-year period 

with charcoal additions (Wardle et al. 2008). Wardle et al. (2008) did not use isotopes and were therefore unable 

to attribute these losses unequivocally to the organic soil C or to the charcoal. Nor was their study able to determine 

the extent to which enhanced mass loss of organic soil carbon was due to mineralisation, or was due to vertical 

transport of the C into the soil column as dissolved or colloidal organic carbon (Lehmann & Sohi 2008). 

Nonetheless, the Wardle et al. (2008) study did indicate the possibility that priming of soil organic matter 

decomposition by biochar may lead to a net loss of soil C in organic soils.   
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7 WETLANDS 

7.1 INTRODUCTION 

No refinement. 

7.2 MANAGED PEATLANDS 

No refinement. 

7.3 FLOODED LAND 

Flooded Lands are defined in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Wetlands) as 

water bodies where human activities have caused changes in the amount of surface area covered by water, 

typically through water level regulation. Here, we also consider: i) waterbodies where human activities have 

changed the hydrology of existing natural waterbodies thereby altering water residence times and/or sedimentation 

rates, in turn causing changes to the natural flux of greenhouse gases (See A7.1.1); and ii) waterbodies that have 

been created by excavation, such as canals, ditches and ponds. Flooded Lands include waterbodies with seasonally 

variable degrees of inundation but would be expected to retain some inundated area throughout the year under 

normal conditions. Seasonally flooded wetlands such as riparian floodplain wetlands are not considered here; 

where these have been modified by human activity, emissions may be estimated using the methods described in 

the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (2013 

Wetlands Supplement, (IPCC 2014)). The range of Flooded Land considered in this chapter are listed in Table 7.7. 

TABLE 7.7 (NEW) 

TYPES OF FLOODED LAND, THEIR HUMAN USES AND GREENHOUSE GAS EMISSIONS CONSIDERED IN THIS CHAPTER 

Flooded Land types Human Uses Greenhouse gas emissions 

for which guidance is 

provided in this Chapter 

Reservoirs (including open water, 

drawdown zones, and 

degassing/downstream areas) 

Hydroelectric Energy Production, Flood 

Control, Water Supply, Agriculture, 

Recreation, Navigation, Aquaculture 

CO2, CH4 

Canals Water Supply, Navigation CH4 

Ditches Agriculture (e.g. irrigation, drainage, 

and livestock watering) 

CH4 

Ponds (Freshwater or Saline) Agriculture, aquaculture, recreation CH4 

Flooded Land emits CO2, CH4 and N2O in significant quantities, depending on a variety of characteristics such as 

age, land-use prior to flooding, climate, upstream catchment characteristics and management practices. Emissions 

vary spatially and over time.  

CO2 emissions 

Emissions of CO2 from Flooded Land remaining Flooded Land are primarily the result of decomposition of soil 

organic matter and other organic matter within the waterbody or entering the waterbody from the catchment, as 

well as respiration of biota (e.g. bacteria, macroinvertebrates, plants, fish, and other aquatic species). No guidance 

is provided in this section for emissions associated with decomposition of organic matter delivered from the 

catchment or respiration of biota because they are either accounted for elsewhere in the estimation methods 

(Volume 4, Chapter 4, Forest Land, CO2 emissions from soils Section 4.2.3, Chapter 5, Croplands, CO2 emission 

from soils, Section 5.2.3) or reflect short-term carbon cycling by the aquatic biota. The one exception is for Land 

Converted to Flooded Lands. CO2 emissions occur as the flooded organic matter decomposes, which is a 

consequence of anthropogenic management, and methods are provided for estimating the resulting CO2 emissions 

(Section 7.3.2.1).   

CH4 emissions 

Emissions of CH4 from Flooded Land are primarily the result of CH4 production induced by anoxic conditions in 

the sediment (see Annex 7.1). Methane can be emitted from small lakes or reservoirs via diffusive, ebullitive, and 

downstream emissions. Downstream CH4 emissions are subdivided into degassing emissions (see Glossary) and 
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diffusive emissions, which occur downstream from the flooded land. Methane emissions are generally higher in 

waterbodies with high organic matter loading and/or high internal biomass production, and low oxygen status.  

Due to their high emission rates and large numbers, small ponds of area < 0.1 ha have been estimated to generate 

40 percent of diffusive CH4 emissions from open waters globally (Holgerson & Raymond 2016). Whilst emissions 

from natural ponds can (at least in part) be considered natural, those from small constructed waterbodies are the 

result of anthropogenic activity. High organic loadings and low oxygen levels can also occur in drainage ditches 

(Evans et al. 2016), constructed ponds for agriculture (e.g. (Selvam et al. 2014) aquaculture (Avnimelech & Ritvo 

2003), and flooded pastures (Kroeger et al. 2017). Emission rates of CH4 from small constructed waterbodies 

where nutrient loadings from agriculture or other sources are high may exceed those from small natural 

waterbodies, (Tangen et al. 2015), (Yang et al. 2017), and may equal or exceed those observed in small lakes and 

reservoirs (Bastviken et al. 2011). Emissions of CH4 from aquaculture ponds may be reduced through aquaculture 

management, including mixing or aeration, periodic drainage or when water is saline (Vasanth et al. 2016), (Yang 

et al. 2017), (Robb et al. 2017). Because CH4 emissions from constructed waterbodies can be considered a direct 

consequence of the construction of the waterbody, guidance on reporting these emissions is provided in this chapter.  

Nitrous oxide emissions 

Nitrous oxide emissions from Flooded Lands are largely related to input of organic or inorganic nitrogen from the 

watershed. These inputs from runoff/leaching/deposition are largely driven by anthropogenic activities such as 

land-use change, wastewater disposal or fertilizer application in the watershed or application of fertilizer or feed 

in aquaculture. The current section does not consider these emissions in order to avoid double-counting of N2O 

emissions, which are already captured in other source categories, such as indirect N2O emissions from managed 

soils (see Volume 4, Chapter 11) and wastewater management (see Volume 5, Chapter 6). Nitrous oxide emissions 

from aquaculture ponds constructed on coastal wetlands are given in Chapter 4 of the 2013 Supplement Chapter 4, 

Section 4.3.2). Compilers may address local sources of N2O emissions (i.e. those not driven by external inputs of 

N) using Tier 2 or Tier 3 methods. 

TYPES OF FLOODED LANDS 

Reservoirs  

Reservoirs are designed to store water over time scales ranging from hours to several years. Their use can serve 

single (e.g. water supply) or multiple purposes, and reservoir operation may vary depending on different user needs 

(Table 7.7). Hydropower reservoirs can be divided in three categories: storage, run-of-the-river and pumped 

storage reservoirs. These categories generally describe the relationship between storage volume, inflow and water 

residence times, but in reality, reservoirs exist on a spectrum. Natural lakes may also be used as reservoirs, often 

by damming to expand their volume and surface area.  

Flooded land is exposed to natural or anthropogenic regulation of water levels, creating a drawdown zone. 

Greenhouse gas emissions from the drawdown zones are considered significant and similar per unit area to the 

emissions from the water surface (e.g. (Yang et al. 2012), (Deshmukh et al. 2018)) and are therefore included when 

estimating greenhouse gas emissions from Flooded Land. Lakes converted into reservoirs without substantial 

changes in water surface area or water residence times are not considered to be managed Flooded Land, in 

accordance with the 2006 IPCC Guidelines.  

Reservoirs are classified according to the length of time they have been flooded: 

(i) Flooded Land Remaining Flooded Land – includes reservoirs that were converted to Flooded Land more 

than 20 years ago.  

(ii) Land Converted to Flooded Land – includes reservoirs that were flooded less than or equal to 20 years ago. 

Other Flooded Land: Constructed ponds,  canals,  ditches and f looded pastures  

Ponds are constructed by excavation and/or construction of walls to hold water in the landscape for a range of uses, 

including agricultural water storage, access to water for livestock, recreation, and aquaculture. They often receive 

high organic matter and nutrient loadings, may have low oxygen levels, and are sites of substantial CH4 emissions 

from anaerobic sediments. However, because seawater suppresses production of CH4, emissions from saline 

aquaculture ponds are lower compared to freshwater ponds. Constructed linear waterbodies (which we define here 

in accordance with the Ramsar Convention category of ‘Human-made wetlands: Canals and drainage channels 

or ditches’) are also extensive in many agricultural, forest and settlement areas, and may also be significant sources 

of emissions in some circumstances. For CH4 emissions from Other Flooded Land, there are insufficient data to 

disaggregate based on age classes of the waterbodies.  

Flooded Land Excluded Here, But Considered E lsewhere  

Emissions from various kinds of Flooded Land that are not considered in this chapter are provided in the 2013 

Wetlands Supplement and in other parts of this guidance. Table 7.8 provides the Ramsar classification, which 
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provides the framework for the terminology used in this guidance. Some rice paddies are cultivated through 

flooding of land, but because of the unique characteristics of rice cultivation, rice paddies are addressed in Volume 

4, Chapter 5 (Cropland). Emissions from wetlands created or used for wastewater treatment are provided in 

Chapter 6 of the 2013 Wetlands Supplement (Constructed Wetlands for Waste Water Treatment). Seasonally 

flooded agricultural land (including intensively managed or grazed wet meadow or pasture) that is formed via 

human modification of natural hydrological processes may also be considered Flooded Land, and can be a 

significant source of CH4 emissions (Kroeger et al. 2017). Seasonally flooded agricultural land may be coastal or 

inland, on mineral or organic soils, and relevant guidance for CO2 emissions and removals from these categories 

is provided in the 2013 Wetlands Supplement (Chapters 3-5, see Table 7.8 for details).  CO2 emissions associated 

with construction of aquaculture ponds in coastal wetlands are also considered in the 2013 Wetlands Supplement 

(Section 4.2.4 and Section 4.3.2). Flooding of land to create wetlands in coastal settings due to management 

activities, such as breaching of sea defences, are found under "rewetting" within the 2013 Wetlands Supplement 

(Section 4.2.3 for CO2 and 4.3.1 for CH4). Constructed seawater canals are not considered because there are 

insufficient data to derive an emission factor.  Furthermore, water in seawater canals is assumed to have salinity 

greater than 18 ppt, and therefore will have no CH4 emissions, consistent with guidance in the 2013 Wetlands 

Supplement. 

TABLE 7.8 (NEW) 

RAMSAR CLASSES OF HUMAN-MADE WETLANDS, IPCC TERMINOLOGY USED AND METHODOLOGICAL GUIDANCE 

PROVIDED  

RAMSAR class1 Corresponding wetlands sub-

categories in IPCC Chapters 

Methodological guidance available? 

Water storage areas Reservoir Yes for CH4 and CO2 (this chapter) 

Ponds Other constructed waterbodies Yes for CH4 and CO2 (this chapter)  

Canals and drainage channels 

or ditches. 

Other constructed waterbodies Yes for CH4 and CO2 (this chapter) 

Yes for CH4 in peatlands (2013 

Wetlands Supplement, Chapter 2) 

Aquaculture Other constructed waterbodies Yes for CH4 and CO2 (this chapter) 

Yes for CO2 during construction and 

for N2O  (2013 Wetlands Supplement, 

Chapter 4)2  

Irrigated land (if cultivated) Cropland  Yes (Vol. 4, Chapter 5) 

Seasonally flooded agricultural 

land  

Rice Cultivation Yes (Vol. 4, Chapter 5) 

Seasonally flooded agricultural 

land including intensively 

managed or grazed wet 

meadow or pasture 

Wetlands Yes for CH4 (2013 Wetlands 

Supplement, Chapters 3, 4 and 5)3,4 

Salt exploitation sites Wetlands Yes (2013 Wetlands Supplement, 

Chapter 4) 

Excavations (partly) Peatlands managed for peat extraction Yes (2013 Wetlands Supplement, 

Chapter 2) 

Wastewater treatment areas “Constructed wetlands” or Waste Sector Yes (2013 Wetlands Supplement, 

Chapter 6; Volume 5, Chapter 6) 

NOTES:  

1 Source: (Ramsar 2014)  

2 2013 Wetlands Supplement, Chapter 4, Section 4.3.2 for N2O 

3 2013 Wetlands Supplement Chapter 3 for guidance on rewetted organic soils (Section 3.2.1 for CO2, Section 3.2.2. for CH4 and 

Section 3.2.3 for N2O); Chapter 4 for guidance for seasonally flooded agricultural land on land that was previously coastal wetlands 
(Section 4.2.3 for CO2; Section 4.3.1 for CH4) and Chapter 5 for seasonally flooded agricultural land on inland mineral soils (Section 

5.2.1 for CO2 and 5.2.2 CH4)  

4 Including permanently flooded lands associated with rewetting of converted wetlands 
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CHOICE OF METHOD, ACTIVITY DATA AND EMISSION FACTORS  

Guidance is provided for choice of methods, activity data and emission factors for Flooded Land Remaining 

Flooded Land (Reservoirs > 20 years old) and other constructed waterbodies, and for Land Converted to Flooded 

Land (Reservoirs ≤ 20 years old). Guidance for selecting the type of waterbody based on human modification, 

hydrology (where there has been a significant change in surface area, and/or residence time, by > 10 percent), 

water quality, size and function and associated emission factors and activity data is presented in the decision tree 

in Figure 7.2. Tier selection and the level of spatial and temporal disaggregation will depend upon the availability 

of activity data and emission factors, as well as the importance of Flooded Land as an emission source based on 

the key category analysis for a country’s national greenhouse gas inventory. Figure 7.3 provides a decision tree to 

select the appropriate tier level for estimating emissions from Flooded Land. Country-specific emission factors 

and data are generally preferable to Tier 1 default data.  

Conversion of unmanaged waterbodies and unmanaged wetlands to managed Flooded Lands 

Greenhouse gas emissions (removals) occur on unmanaged land prior to conversion into managed land for both 

Flooded Land remaining Flooded Land and Land converted to Flooded Land. The anthropogenic impact on 

greenhouse gas emissions from managed flooded land reflect the net changes in greenhouse gas fluxes to the 

atmosphere resulting from the landscape transformation into a reservoir or other flooded lands (Prairie et al. 2017a). 

Indicative estimates of the anthropogenic component of the total greenhouse gas emissions occurring on the 

Flooded Land (see Annex Box A1) may optionally be estimated, in addition to the total emissions. This estimate 

may be obtained for Land Converted to Flooded Land by estimating emissions from the area of Managed Lands 

and Other Unmanaged Lands converted to managed Flooded Land. Types of Unmanaged Land converted to 

Flooded Land include: 1) unmanaged lakes and rivers (collectively termed ‘unmanaged waterbodies’) expanded 

by dam construction; 2) Unmanaged Wetlands (excluding lakes and rivers) converted to Flooded Land; and 3) 

Other Unmanaged Lands (including Unmanaged Forest Land, Grassland and Other Land). Previously flooded 

lands where changes in hydrology lead to substantial changes in the characteristics and ecological function of the 

area, or emissions and removals per unit area, may not be excluded from the calculation of indicative estimates of 

the anthropogenic component of total greenhouse gas emissions.  

Emissions from Unmanaged Wetlands converted to Flooded Lands are considered part of the non-anthropogenic 

component of the emissions for the first 20 years, after which they are considered to function similarly to the 

reservoir as a whole. This is the result of the legacy of the natural wetland function which will gradually transition 

to the condition of the surrounding reservoir as the accumulated organic matter is decomposed or buried in the 

reservoir. The method to produce indicative estimates of the anthropogenic component of total greenhouse gas 

emissions is presented separately in Section 7.3.3. 

The methods provided in this section are scientifically-based but with practical consideration for application of the 

methods by compilers.  It is good practice for the greenhouse gas emissions in the AFOLU sector to be estimated 

using the Managed Land Proxy (MLP), in which all emissions from managed land are considered anthropogenic, 

and to provide details of the methodology used (See Chapter 3, Volume 4). Therefore, for transparency, the 

methods are applied so that the total emissions from flooded lands are estimated based on the MLP, while 

emissions that are specifically to be the result of human activity within these areas are estimated by calculating the 

emissions for the area of Managed Land and Other Unmanaged Land converted to Flooded Land. For those 

countries that choose to develop indicative estimates of the anthropogenic component of total greenhouse 

emissions, it is good practice to report the MLP emissions, as well as the indicative estimates of the anthropogenic 

component of total greenhouse gas emissions. Details of the methodology used should be documented. As with 

other sources, Tier 1 methods have large uncertainties that may be reduced with development of Tier 2 or 3 

methods. 
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Figure 7.2 (New) Decision tree for types of Flooded Land.   
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Figure 7.3 (New) Decision tree for choice of Tier level to estimate emissions of CO2 and 

CH4 from waterbodies 
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Box1: Tier 1

Box2: Tier 1Box3: Tier 3
 

7.3.1 Flooded Land Remaining Flooded Land 

7.3.1.1 TOTAL CO2  EMISSIONS FROM FLOODED LAND REMAINING 

FLOODED LAND  

The initial flooding of land can cause elevated CO2 emissions as inundated soil and biomass decay. After this 

initial phase, typically lasting 20 years or less, the CO2 emitted from Flooded Land is largely derived from carbon 

input from the catchment, which is estimated as emissions from other managed land categories, and not addressed 

in this category to avoid double-counting of emissions (i.e., Volume 4, Chapter 4 Forest Land, Chapter 5 Cropland, 

Chapter 6 Grassland, Chapter 8 Settlements and the 2013 Wetlands Supplement). Therefore, no methodologies 

(Choice of Methods, Emission Factors, or Activity Data) are provided to estimate total CO2 emissions for Flooded 

Land Remaining Flooded Land. 
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7.3.1.2 TOTAL NON-CO2  EMISSIONS FROM FLOODED LAND 

REMAINING FLOODED LAND  

RESERVOIRS 

Choice of  Method 

The following methodology is provided for estimating CH4 emissions from reservoirs more than 20 years old. The 

Tier 1 methodology allows the estimation of the total diffusive, ebullitive and downstream CH4 emissions (see 

Glossary), FCH4tot, (Equation 7.10).  

If sufficient data exist, it is good practice for the compiler to develop country-specific emission factors using a 

Tier 2 or Tier 3 method to reduce overall uncertainty. Guidance on the development of country-specific factors 

and methods is provided below in the Tier 2 and 3 sections. For reservoirs less than 20 years old, see section 

7.3.2.3, Land Converted to Flooded Lands. 

Tier 1 

Total emissions from flooded land (FCH4tot) is the sum of the emissions occurring at the surface of the reservoir 

(FCH4res) and those originating within the reservoir but occurring downstream of the dam (FCH4downstream): 

EQUATION 7.10 (NEW) 

ANNUAL TOTAL CH4 EMISSIONS FOR RESERVOIRS >20 YEARS OLD (FLOODED LAND REMAINING 

FLOODED LAND) 

4 4 4
 CH tot CH res CH downstreamF F F                                                              (A) 

6

1 1
4CH4res i CH  age>20, j tot j,iF = α (EF • A )

 


jnres

j i

                                             (B) 

6

1 1
4 4CH downstream i CH  age>20, j tot j,i d, iF = α (EF • A )• R

 


jnres

j i

                        (C) 

Where: 

4CH totF  = Total annual emission of CH4 from all reservoirs > 20 years old, kg CH4 yr-1 

4CH resF  = Annual reservoir surface emissions of CH4 from all reservoirs > 20 years old, kg CH4 yr-1 

4CH downstreamF = Annual emissions of CH4 originating from all reservoirs but emitted downstream of dam, 

kg CH4 yr-1. For Tier 1, equation 7.10 (C) simplifies to 
4CH downstream CH4res d= F •F R  

tot j,iA  = Total area of reservoir water surface for reservoir > 20 years old 'i' located in climate zone 

'j', ha 

4CH  age>20, jEF = Emission factor for CH4 emitted from the reservoir surface for reservoir > 20 years old 

located in climate zone 'j', kg CH4 ha-1 yr-1 (Table 7.9). 

dR  = A constant equal to the ratio of total downstream emission of CH4 to the total flux of CH4 

from the reservoir surface [dimensionless]. Equals 0.09 by default for Tier 1 (Table 7.10). 

See text below for Tiers 2 & 3 Rd values. 

iα  = Emission factor adjustment for trophic state in reservoir i within a given climate zone. 

[dimensionless] Equals 1.0 by default for Tier 1. See Equation 7.11 for Tiers 2 & 3. 

i = Summation index for the number of all reservoirs > 20 years in climate zone 'j' 

j = Summation index for climate zones (j = 1-6, see Table 7.9) 

jnres  = Number of reservoirs > 20 years old in climate zone ‘j’ 
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The equation for scaling CH4 emission factors for eutrophication is estimated as follows: 

EQUATION 7.11 (NEW) 

EQUATION USED TO SCALE CH4 EMISSION FACTORS FOR THE INFLUENCE OF EUTROPHICATION 

USING MEASURED VALUES OF CHLOROPHYLL A (MODIFIED FROM DEEMER ET AL (2016)) 

0.26  i iChla    

Where: 

i  = Emission factor adjustment for trophic state in reservoir 'i', dimensionless. Equals 1.0 for 

Tier 1. 

iChla  = Mean annual chlorophyll-a concentration in reservoir 'i', µg L-1 

When chlorophyll values are not available, the trophic state adjustment factor (i, Eq. 7.11) can be estimated from 

other general assessments of reservoir trophic status (See Table 7.11).  

Tier 2  

At the Tier 2 level, downstream emissions can be estimated based on water withdrawal depths for individual 

reservoirs.  If water is withdrawn from the oxic (upper) part of the water column, the CH4 content of the water is 

expected to be relatively low, therefore downstream emissions can be assumed to be zero.  If water is withdrawn 

from the anoxic (lower) part of the water column, where dissolved CH4 can accumulate to high levels, downstream 

emissions should be estimated following equation 7.10 using the Rd factor found in Table 7.10 or by a Tier 3 

methodology. 

If a country has characterized the trophic status of its reservoirs, a compiler can improve estimates of CH4 

emissions from these systems by multiplying default CH4 emission factors (from Table 7.9) by a factor, i, either 

computed from measured mean annual chlorophyll-a (Chl-a) data using Equation 7.11, or taken from Table 7.11 

where trophic state may be known but mean annual Chl-a data are lacking. Equation 7.10 generally provides a 

more accurate approach where reservoir Chl-a concentrations [Chl-a] have been measured. If sufficient data are 

available locally to determine a country-specific relationship between trophic status and CH4 fluxes, then local 

values should be used in Equation 7.10 rather than these global averages. 

Where there are sufficient data, compilers may also include the effect of carbon burial in the sediments in case 

there is a net removal of carbon in the managed flooded land (see Box 7.1). 
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BOX 7.1 (NEW) 

ADDITIONAL INFORMATION ON SEDIMENTATION AND CARBON BURIAL IN RESERVOIRS 

Reservoirs are often sites of significant accumulation of sediments, and therefore carbon (Clow et 

al. 2015). However, to consider such carbon accumulation as an offset to greenhouse gas emissions 

is complex because it depends strongly on the origin of the sediments and what the fate of the 

associated carbon would have been in the absence of a reservoir (Prairie et al. 2017a). For example, 

particulate organic carbon from the upstream catchment sediments would, prior to impoundment, 

have been transported and possibly stored further downstream. Only the net additional C storage 

induced by the sediment trapping within the reservoir would constitute removal. Similarly, if carbon 

burial is the result of autochthonous (inside the reservoir) primary production by algae or aquatic 

plants, such carbon removal would necessarily be reflected in the CO2 exchange occurring at the air-

water interface. Subtracting C sedimentation from the air-water exchange would thus lead to a 

double-counting of the same carbon flux. Lastly, in many reservoirs, maintenance operations involve 

the sluicing of excess sediments to the downstream river by opening gates located at the base of the 

dam, thereby releasing unknown, but often large, amounts of accumulated sediment carbon over a 

short period.  

As a result of the processes described above and the difficulties in quantifying them, a Tier 1 

methodology cannot be developed for the reporting of sediment carbon accumulation. For the 

development of higher Tier methodologies for carbon accumulation in reservoirs, an important 

guiding principle is that only the portion of the carbon permanently buried in reservoir sediments 

that would not have been stored elsewhere in the hydrological network (lakes, rivers, wetlands and 

the coastal ocean) could potentially be considered as an additional carbon burial in the anoxic 

sediment of the reservoir (Isidorova et al. 2019) . 

Tier 3  

Direct measurements of CH4 diffusion and ebullition fluxes across the reservoir surface provide the most accurate 

alternative to the Tier 1 and Tier 2 approaches. It is good practice to undertake measurements at sufficient different 

locations and sufficient different times of year to capture both the spatial and temporal variability of CH4 emissions 

from a reservoir (see UNESCO/IHA GHG Measurement Guidelines for Freshwater Reservoirs 2010 (Goldenfum 

2010) for additional guidance). CH4 emissions are often highly spatially variable, with 50-90 percent of total 

reservoir emissions emanating from 10-30 percent of a reservoir’s surface (typically in areas subject to high 

organic matter deposition such as the distal arms receiving significant catchment inflows (Sherman et al. 2012)).  

Degassing can be estimated as the difference between the dissolved gas concentration at the water entering the 

dam and the dissolved gas concentration downstream of the dam, multiplied by the outlet discharge.  Dissolved 

gas concentration of the water entering the dam can be estimated from water samples collected from the reservoir 

at the depth of the water intake or directly from the water conveyance structure, if possible. Diffusive emission 

from the downstream river can be directly measured or estimated using a mass balance approach.  See (Goldenfum 

2010) (UNESCO/IHA), section 2.4.1.2.3). 

Accuracy is improved when measurements are undertaken across a full seasonal cycle because CH4 dynamics are 

very temperature sensitive. The accuracy of CH4 emissions can also be improved by considering atmospheric and 

hydrostatic pressure that may strongly influence CH4 ebullition. The measurement data should be area-weighted 

and seasonally averaged to provide the most accurate estimate of emissions from the reservoir as a whole (See 

Annex 7.1 for details).  

CH4 emissions from individual reservoirs can also be estimated by application of the Greenhouse Gas Reservoir 

Tool (G-res) model (Prairie et al. 2017b), with reservoir-specific data covering: reservoir morphometry, littoral areas, 

and local climate data including temperature and solar radiation. G-res is described in more detail in Annex 7.1.  

Other detailed models could be developed that include the range of environmental and management conditions 

that influence emissions (see Annex 7.1). 

Choice of  Emission Factors  

Tier 1  

Emission factors for CH4 via diffusion and ebullition from the reservoir surface, EFCH4 age>20,j in the six aggregated 

climate zones are provided in Table 7.9. The emission factors integrate both spatial and temporal variations and 

have been derived from the application of empirical models to a large number of reservoirs (>6000) with a 

worldwide distribution and are averaged per climate zone. See Annex 7.1 for details of how default emissions 

factors were derived.  
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TABLE 7.9 (NEW) 

CH4 EMISSION FACTORS FOR RESERVOIRS OLDER THAN 20 YEARS (> 20 YEARS) – FLOODED LAND REMAINING FLOODED 

LAND 

Aggregated Climate Zone CH4 Emission Factors  EFCH4 age>20,j 

(kg CH4 ha-1 year-1) 

 j Average   Lower and upper 95% CI of mean N 

Boreal 1 13.6  7.3-19.9 96 

Cool Temperate 2 54.0   48.3-59.5 1879 

Warm temperate/dry 3 150.9  133.3-168.1 578 

Warm temperate/moist 4 80.3  74.0-86.0 1946 

Tropical dry/montane 5 283.7  261.9-305.8 710 

Tropical moist/wet 6 141.1 131.1-152.7 805 

The emission factors are derived from the G-Res model outputs from N reservoirs in each climate zone. The aggregation into 6 climate 

zones is described in Annex 1, section A7.1.2.1. N is the number of modelled reservoirs used to estimate EF values and their 95% 

confidence intervals. 

Default values for the ratio of total downstream emission of CH4 to the total flux of CH4 from the reservoir surface 

are provided in Table 7.11. 

TABLE 7.10 (NEW) 

RATIO OF TOTAL DOWNSTREAM FLUX OF CH4 (KG CH4 HA -1 YR-1) TO THE FLUX OF CH4 FROM A RESERVOIR’S SURFACE 

TO THE ATMOSPHERE (KG CH4 HA -1 YR-1) – RD  

Median Upper 95% CI of the 

median 

Lower 95% CI of the 

median 

Number of reservoirs 

0.09 0.22 0.05 36 

Note: The default Tier 1 value is the median of all Rd values reported in the literature.  The 95% confidence interval of the median was 

calculated using the bias-corrected and accelerated (BCa) bootstrap interval. 

References: (Teodoru et al. 2012), (Diem et al. 2012), (DelSontro et al. 2016), (Maeck et al. 2013), (Soumis et al. 2004), (Beaulieu et al. 

2014a), (Bevelhimer et al. 2016), (Descloux et al. 2017), (DelSontro et al. 2011), (dos Santos et al. 2017), (Kumar & Sharma 2016), 

(Chanudet et al. 2011), (Abril et al. 2005), (Bastien & Demarty 2013), (Deshmukh et al. 2016), (Serça et al. 2016), (Guérin et al. 2006), 

(Kemenes et al. 2007).  

Trophic state adjustment factor (i, Eq. 7.11) can be estimated from other general assessments of reservoir trophic 

status, for example from trophic index, total phosphorus and nitrogen and Secchi depth, and alternative values are 

provided in Table 7.11. 

TABLE 7.11 (NEW) 

RELATIONSHIPS BETWEEN TROPHIC INDEX (TI), SURFACE CONCENTRATIONS OF CHLOROPHYLL-A (CHL-A), TOTAL 

PHOSPHORUS (TP), TOTAL NITROGEN (TN), SECCHI DEPTH (SD), AND TROPHIC CLASS1 AND TROPHIC STATE 

ADJUSTMENT FACTOR (I) 

TI Chl-a 

(µg/L) 

TP 

(µg/L) 

TN 

(µg/L) 

SD 

(m) 

Trophic Class Trophic State Adjustment Factor 

i 

Range and (recommended value) 

<30 - 40 0 - 2.6 0 - 12 –<350 > 4 Oligotrophic 0.7 (0.7) 

40 - 50 2.6 - 20 12 - 24 –350-650 2 - 4 Mesotrophic 0.7 - 5.3 (3) 

50 - 70 20 - 56 24 - 96 650-1200 0.5 - 2 Eutrophic 5.3 - 14.5 (10) 

70 - 100+ 56 - >155 96 - >384 >1200 < 0.5 Hypereutrophic 14.5 - 39.4 (25) 

1 (Carlson 1977), (Smith et al. 1999) 

Tier 2  

Under Tier 2, country-specific emission factors may be developed that take into account national circumstances 

as well as specific properties of individual reservoirs including: reservoir operation, size, and depth; relative 

locations of oxic/anoxic water and water intakes; trophic status; sedimentation and sequestration of carbon; and 

other environmental (e.g. seasonal ice cover) and management factors. CH4 emissions due to wastewater inflow 
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may be estimated using the guidance in Volume 5, Chapter 6 and subtracted from reservoir emissions to avoid 

double counting (see Box 7.2). 

BOX 7.2 (NEW) 

ADDITIONAL INFORMATION ON EMISSIONS ARISING FROM WASTEWATER WITHIN RESERVOIRS 

Emissions of CH4 from both Land Converted to Flooded Land and Flooded Land Remaining 

Flooded Land result from the degradation of autochthonous and allochthonous organic carbon in 

anoxic conditions (Bastviken et al. 2004). Allochthonous organic carbon from treated and/or 

untreated wastewater may reach the flooded land area and be converted to CH4 (Deemer et al., 2016). 

At Tier 2 and 3 it is a good practice to estimate CH4 emission from wastewater treatment and 

discharge using the guidance in Volume 5, Chapter 6 and subtract them from reservoir emissions, to 

avoid double counting. 

Tier 3  

Under Tier 3, emission factors derived from models (mechanistic or statistical) or measurement campaigns may 

be used instead of the default equations and/or default factors (see Annex 7.1). It is anticipated that a mix of 

country-specific emission factors and modelled values will be used when the latter do not cover the full range of 

environmental and management conditions within a country. The development of reservoir- or region-specific 

emission factors that are influenced by eutrophication is discussed below. CH4 emissions due to wastewater inflow 

may be estimated using guidance provided in Chapter 6, Volume 5 of the 2006 IPCC Guidelines and subtracted 

from the reservoir emissions to avoid double counting (see Box 7.2). The derivation of reservoir or region-specific 

factors should be clearly documented.  

Reservoirs or other constructed wetlands cause a perturbation of the natural processes of decay to the atmosphere 

of the organic matter contained in the water, so altering the natural pathway to GHG emissions of such organic 

matter when stored in such flooded land. The perturbation effect can be considered the anthropogenic component 

of the GHG emissions from the reservoirs. Approaches based on the mass balance of the organic carbon inputs 

and its decay also qualify as Tier 3 methods to estimate the emissions from reservoirs or other constructed 

waterbodies based on the Managed Land Proxy, caused by conveying freshwaters into reservoirs or other 

constructed wetlands. 

Choice of  Activity Data 

Several different types of activity data may be needed to estimate Flooded Land emissions, depending on the Tier 

and the known sources of spatial and temporal variability within the national territory. 

Tier 1  

Country-specific data on the area of reservoirs within each climate zone are required to estimate CH4 emissions 

from flooded land. Estimates of flooded land area for reservoirs behind large dams can be obtained from the 

International Commission on Large Dams (ICOLD 1988), from the World Commission on Dams report (WCD 

2000) , or from the Global Reservoir and Dam (GRanD) database (Lehner et al. 2011b). However, country-specific 

datasets are likely to be more complete. 

Tier 2 and 3  

Estimates of flooded land area for reservoirs can be obtained from a drainage basin cover analysis or from a 

national dam database. Because flooded land area could change over time due to climate variation and change and 

management activities, countries should use updated and recent data from national databases in order to obtain 

more accurate emission estimates. Water withdrawal depths and anoxic zone depths are required for estimating 

downstream emissions at the Tier 2 level.  These data can be obtained from water utilities responsible for dam 

operation and maintenance as well as from national dam operation databases. Tier 3 approaches can also include 

more detailed activity data on, for example, effects of climate variability on water surface area and reservoir 

management, but the exact requirements will depend upon the model or measurement design. 

Data to directly calculate the trophic status adjustment, i, (Eq 7.11, Table 7.11) can usually be sourced from water 

quality databases held by the relevant water authorities. Remote sensing of Chl-a concentrations may also be 

possible for larger reservoirs. 

OTHER CONSTRUCTED WATERBODIES (FRESHWATER PONDS, SALINE 

PONDS, CANALS AND DITCHES) 

The procedure presented here expands the methodology developed for quantifying CH4 emissions from drainage 

ditches in organic soils described in the 2013 Wetlands Supplement, to include all other constructed waterbodies 

apart from reservoirs, which are considered separately in the previous section. The approach described here allows 
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for the reporting of emissions from other Flooded Lands including constructed freshwater and saline ponds used 

for agriculture, aquaculture or other activities (e.g. recreation), and canals and ditches. This includes ponds within 

settlements; however, note that CH4 emissions associated with wastewater are considered elsewhere (Volume 5, 

Chapter 6, 2019 Refinement). For Managed Land categories on organic soils inventory compilers may choose to 

‘embed’ emissions from small channels such as drainage ditches within their reporting of other Managed Land 

categories (using Equation 2.4, Section 2.2.2.1 of Chapter 2, Drained Inland Organic Soils, of the 2013 Wetlands 

Supplement1). The same emissions should however not be included in Flooded Lands if they are included other 

Managed Land categories.  

Choice of  Method 

Methodology is provided for estimating CH4 emissions from all other constructed waterbodies, including ditches 

and ponds.  If CH4 emissions from other constructed waterbodies are a key category, then it is good practice for 

the compiler to develop country-specific emission factors with application of a Tier 2 method or develop a country 

specific method with a Tier 3 approach to reduce overall uncertainty, incorporating variations in inundation 

regimes due to inter-annual and seasonal variation in water levels, management or other factors. All other 

constructed waterbodies are assumed to emit CH4 at a constant average rate for as long as the land remains flooded. 

However, waterbodies may move between emission categories as a function of changes in site factors if higher 

tier approaches are applied. Compilers could use different tiers for subcategories within the Other constructed 

waterbodies category, depending on the importance of different waterbodies and the availability of activity data. 

Guidance on the development of country-specific factors or methods is provided below in Tier 2 and Tier 3 

approaches.  

Tier 1  

The Tier 1 method extends the methodology developed for quantifying CH4 emissions from drainage ditches in 

organic soils for the 2013 Wetlands Supplement (Section 2.2.2.1) to include a wider range of constructed 

waterbodies. At Tier 1, emission factors are not stratified by climate zone or trophic status, but this can be 

incorporated at Tier 2 and 3. See Annex 7.1 for details of how default emissions factors were derived.  

Total emissions are calculated for a given waterbody type using Equation 7.12.  

EQUATION 7.12 (NEW)  

ANNUAL CH4 EMISSION FROM OTHER CONSTRUCTED WATERBODIES 
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Where:  

4CH otherF   = Total annual flux of CH4 from ponds and ditches [kg CH4 yr-1] 

, ,j w iA  = Area of other waterbody ‘i’ of type 'w' in climate zone 'j' [ha].  

, ,j w i  = Emission factor adjustment for trophic state other waterbody 'i' of type 'w' located in climate 

zone 'j'. Currently = 1 for all tiers. [dimensionless] Refer to Eq. 7.11, Table 7.11. 

4,CH wEF  = Emission factor for other waterbody of type 'w' [kg CH4 ha-1 y-1]. Refer to Table 7.15. 

,w jnother  = Number of other waterbodies of type 'w' in climate zone 'j' 

i = Summation index for the number of other waterbodies of type 'w' in climate zone 'j' 

j = Summation index for climate zones (j = 1-6, e.g. Table 7.12) 

w = Summation index for waterbody classes (Table 7.12). 

Tier 2 

The Tier 2 approach for CH4 emissions from constructed agriculture and aquaculture ponds, and from canals and 

ditches, incorporates country-specific information in Equation 7.19 to estimate the emissions. Tier 2 emission 

                                                           
1  Note that the approach described to estimate ditch CH4 emissions in the 2013 Wetlands Supplement combined these emissions with those 

from adjacent terrestrial areas, to provide a single emission estimate. Implicitly, this approach considered ditches to form part of the terrestrial 

land-use category, rather than as a separate Flooded Land category. Either approach may be used, but not both. 
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factors may be further stratified by sub-classifying waterbodies according to type (w) and trophic status (j,w,i). In 

addition, it may be possible to incorporate additional modifiers such as soil type (e.g. mineral versus organic); 

water flow rate; inter-annual and seasonal variation in water levels; salinity; presence of emergent vegetation 

(which may increase emissions) and species (for aquaculture); or take account of site management activities that 

may increase or decrease overall CH4 emissions (e.g., controlling organic matter loadings or aeration, including 

pond drainage). 

Tier 3  

A Tier 3 approach for constructed ponds and ditches may specifically address the influence of different soils and 

land-uses within the catchment area of each waterbody as controls on organic matter and nutrient inputs. It could 

also disaggregate the different components of CH4 emissions (diffusive flux across the water surface, ebullition 

and plant-mediated emissions) and the associated controlling factors in order to provide more site-specific 

emission estimates. Compilers may also consider use of models that incorporate within-year and between-year 

variation in emissions as a function of climatic or land-management variability, water level variability or 

maintenance activities such as dredging and the duration of periodic drainage when sediments are exposed to air. 

Tier 3 approaches are likely to require the development of a process-based model to address these additional 

variables and activities influencing emissions as the small size and large number of waterbodies in some countries 

may make measurement-based approaches infeasible. For aquaculture ponds, Tier 3 approaches could also include 

models incorporating management practices (e.g. species, yield, aeration, drainage regimes). 

Choice of  Emission Factors  

Tier 1  

Tier 1 emission factors for agriculture and aquaculture ponds, and from canals and ditches, are provided in Table 

7.12. Emissions from ponds are separated into Freshwater Ponds with water column salinity < 18 ppt and Saline 

Ponds with salinity of > 18 ppt, consistent with the 2013 Wetlands Supplement (Chapter 4, Annex 4A.1 salinity-

based definitions). At present, available data are not sufficient to derive emission factors for any category by 

climate zone, or to disaggregate emissions from canals, drainage channels and ditches, which are therefore 

considered as a single Tier 1 category. Disaggregation by surrounding land-use, nutrient loading and/or yield is 

also not currently possible at Tier 1. For ditches in organic soils, the Tier 1 emissions factors presented in Table 

2.4 of the 2013 Wetlands Supplement may be used.   

 

TABLE 7.12 (NEW) 

CH4 EMISSION FACTORS FOR OTHER CONSTRUCTED WATERBODIES (FRESHWATER PONDS, SALINE PONDS, CANALS, 

DRAINAGE CHANNELS AND DITCHES) 

Waterbody type w Climate 

zone 

EFCH4 
a
 

(kg CH4 ha-1 yr-1) 

95% confidence intervalsb 

(kg CH4 ha-1 yr-1) 

No. of sites 

Saline ponds 1 All 30 16-55 15 

Freshwater and 

brackish ponds 
2 All 183 118-228 68 

Canals and ditchesc 3 All 416 259-669 24d 

a Emissions factors for each category were calculated from the mean of log10-transformed values, because untransformed observations 

showed a positively skewed distribution in all cases 
b 95% confidence intervals shown are derived from standard errors, and thus represent the uncertainty in the mean emission factor rather 

than the variability of the original measurements. 

c For Emission Factor for ditches in organic soils refer to Table 2.4, 2013 Wetlands Supplement.   
dDitch data are mostly aggregated to study level, where studies reported multiple measurements from the same ditch network or from 

sites in close proximity; therefore the total number of individual ditches used to derive the emission factor exceeds the number shown. 

References. Saline ponds: (Cameron et al. 2016), (Castillo et al. 2017), (Chen et al. 2015), (Hai et al. 2013), (Strangmann et al. 2008), 

(Vasanth et al. 2016), (Yang et al. 2015). Freshwater and brackish ponds:  (Baker-Blocker et al. 1977),  (Casper et al. 2000), (Grinham 

2018),  (Hu et al. 2016), (Huang 2016), (Liu et al. 2017), (Merbach et al. 1996), (Natchimuthu et al. 2014), (Selvam et al. 2014), 
(Stadmark & Leonardson 2005), (van Bergen 2015), (Singh et al. 2000), (Xiong et al. 2017), (Yang et al. 2017), (Zhu et al. 2016).  Canals 

and ditches:  (Best & Jacobs 1997), (Chamberlain et al. 2015), (Chistotin 2006; Chistotin et al. 2006), (Evans et al. 2017), (Harrison 

2003), (Hendriks et al. 2007), (Kosten et al. 2018), (McPhillips et al. 2016), (McNamara 2013), (Peacock et al. 2017), (Schrier-Uijl et al. 
2010), (Schrier-Uijl et al. 2011),  (Selvam et al. 2014), (Sirin et al. 2012), (Teh et al. 2011), (Van Den Pol-Van Dasselaar et al. 1999), 

(Vermaat et al. 2011), (Wang et al. 2009), (Yu et al. 2017). 
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Tier 2  

At Tier 2, country-specific emission factors may be further stratified according to waterbody type, nutrient status, 

water levels or other potential explanatory factors (e.g. management practices or yield for aquaculture), as 

described in the preceding section. 

Tier 3  

To develop a model-based Tier 3 approach, additional empirical data are needed to define relationships between 

each component of the CH4 emission and the relevant explanatory variables. These components could include the 

effects of temperature, organic matter and nutrient supply and management processes such as periodic drainage; 

effects of salinity, water depth and flow on CH4 production in the sediment and oxidation within the water column; 

relationships between sediment composition and bubble production; and influence of vegetation type and cover 

on plant-mediated emissions.  

Choice of  Activity Data  

Activity data consist of the total area of (non-reservoir) constructed waterbodies, stratified according to the 

waterbody type and any additional factors used to estimate emissions. Since flooded land area could change over 

time, countries should consider this in developing their time series of activity data, attributing land cover to the 

appropriate category. Countries may use older data sources to establish time series data as well as updated and 

recent data. Tier 2 and Tier 3 approaches are preferably based on national databases to track flooded land surface 

area in order to obtain more accurate emission estimates. For aquaculture ponds, additional data on product yields 

from ponds (FAO data) or management could be collected and related to CH4 emissions to derive more accurate 

emission estimates. 

Tier 1  

Activity data required to support Tier 1 reporting are either complete mapping data for all constructed waterbodies, 

or alternatively a reliable estimate of the proportion of land area occupied by each waterbody type, such as 

estimates derived from a land use survey. For agricultural ponds, it may be possible to evaluate small representative 

areas within a larger land category in order to estimate the total proportion (and therefore total area) of ponds 

present (Lowe et al. 2005). The Ramsar Convention (Ramsar 2005) provides guidance on mapping of wetlands 

(Annex III) which can be used to determine the area of Other constructed waterbodies. Additional guidance for 

mapping agricultural ponds can be found in (Shaikh et al. 2011) and MDBC (2009) (Cunningham et al. 2009). The 

minimum recommended scale of mapping is 1:5000 (50m x 50m or 0.25 ha), which could be used if appropriate 

data are available, for example from Landsat remotely sensed imagery (Pekel et al. 2016). Other satellite imagery 

has a higher resolution, for example Sentinel 2 data have a resolution of 10 m, sufficient to detect many smaller 

ponds, and are freely available.  In many cases, drainage occurs at regular spacing within agricultural landscapes, 

such that the proportion of ditches in an area can be estimated from data on mean ditch width and spacing, as 

described in Section 2.2.2.1 of the 2013 Wetlands Supplement (the Fracditch calculation). For these areas, inventory 

compilers may choose to report these emissions within the appropriate land category, or separately in the Flooded 

Lands category. For irregularly distributed ditches or other constructed channels such as canals, it may be possible 

to estimate overall extent and area by digitizing or estimating total channel length within representative areas. For 

area of aquaculture ponds, estimates of area may be available from remote sensing imagery (Ottinger et al. 2017) 

or national databases.  If waterbodies vary substantially in their spatial extent through the year, the annual average 

(rather than annual maximum) inundated area may provide the most appropriate basis for flooded land area 

estimation. 

Tier 2  

Additional activity data required to apply a Tier 2 approach are likely to include information on waterbody 

distribution (e.g. from remotely sensed imagery), waterbody type, nutrient status, flow rates, vegetation and other 

factors as described in the Choice of Method section. Additional management-related factors may be considered if 

these affect emissions, for example if waterbodies are subject to large seasonal or short-term changes in water 

level and area, this may produce different CH4 emissions that a waterbody with the same average surface area but 

more constant water levels. For aquaculture ponds national databases of pond area or pond yields on an area basis, 

disaggregated by region or species cultivated could be used to increase accuracy of CH4 emission estimates.  

Tier 3  

Tier 3 approaches could include dynamic modelling of emissions evaluated from monitoring of greenhouse gas 

concentrations and fluxes in representative systems or measurements of emissions on fine spatial and temporal 

scales. Additional activity data required to apply a Tier 3 approach are likely to include information on waterbody 

distribution from remotely sensed imagery (which for drainage ditches could include high resolution aerial 

photography), waterbody type, nutrient status, flow rates, vegetation and other factors as described above. National 

level information capturing differing pond management (e.g. whether ponds are intensively managed or abandoned 
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(Gusmawati et al. 2016), particularly where pond management influences CH4 emissions (e.g. through drainage, 

(Yang et al. 2015)) may also be appropriate to incorporate within a Tier 3 method. 

7.3.2 Land Converted to Flooded Land 

7.3.2.1 TOTAL CO2  EMISSIONS FROM LAND CONVERTED TO 

FLOODED LAND  

RESERVOIRS 

Conversion of land to Flooded Land is a disturbance that affects all five terrestrial C pools in the area impounded 

(above-ground biomass, below-ground biomass, litter, dead wood and soil organic matter; see 2006 IPCC 

Guidelines (Volume 4 Chapter 2, Fig. 2.1). The 2006 IPCC Guidelines and 2013 Wetlands Supplement, in addition 

to Chapter 2 of this volume, give guidance on how to estimate the five carbon pools in the land to be flooded and 

guidance is provided in Chapter 12 for estimating harvested wood products (HWP). This Chapter gives guidance 

on emissions related to land use conversion and the subsequent emissions. 

Carbon stock changes in the five pools that occur prior to Land Converted to Flooded Land need to be estimated 

using the guidance in other chapters (See Volume 4, Chapter 2; Equation 2.3).  The amount and fate of flooded 

biomass depends largely on management decisions prior to flooding. The area to be impounded may be totally or 

partially cleared of biomass including vegetation and the organic matter in soils prior to flooding. Another 

management procedure may be the burning of the biomass. If the pre-impoundment area was forested, and the 

forest was harvested before flooding, part of the biomass removed can go to HWP, but organic matter from 

grassland or cropland most likely remains. 

The time elapsed since flooding has a significant influence on greenhouse gas fluxes from Flooded Lands and also 

on the partitioning of the gases. Statistical analyses on reservoirs worldwide indicate that there is a rapid surge of 

emissions immediately following flooding, after which emissions return to a relatively stable level. The rate of the 

post-flooding decrease in emissions may depend on the region in which a reservoir is located and can differ 

between CO2 and CH4, but seems to occur mainly during the initial decade following flooding.  

Evidence suggests that CO2 emitted during approximately the first decade after flooding results from decay of 

some of the organic matter on the land prior to flooding. Upon flooding, the easily degradable carbon and nutrients 

are made available to the microbial community and metabolized. Beyond this time period, CO2 emissions are 

sustained by the input of organic material transferred into the flooded area from the watershed, (Houel 2003), 

(Hélie 2004), (Cole & Caraco 2001), and would have occurred in the absence of flooding, albeit displaced in space.  

In addition to managed lands, unmanaged lands such as natural forests and peatlands, existing (smaller) 

waterbodies and other land cover types not considered to be managed land may be converted to Flooded Land. 

This guidance describes methods for reporting emissions from each land use / land cover type converted to Flooded 

Land.  

Choice of  Method  

Organic matter is subject to decay after flooding and the rate of decay diminishes over time following initial 

inundation. Therefore, it is not appropriate to report all C losses from biomass, dead wood, litter and soil organic 

matter in the first year after land is converted to Flooded Land. Because Land Converted to Flooded Land is 

defined as the first 20 years after flooding, the expected total CO2 emissions during the 100-year lifespan of the 

reservoir from the flooded stock of organic matter are allocated to these 20 years (see below and Annex 7.1 Fig 

A4). C stocks are estimated using existing methodologies when possible (e.g., Volume 4, Chapter 2).   

Organic C pools that remain in the impoundment area after flooding are subject to slow decomposition constrained 

by reduced presence of oxygen. The fate of organic matter removed from the area prior to flooding can vary. For 

example, biomass removed from the impoundment area prior to impoundment, e.g., by harvesting of timber, slash 

or stumps, is reported according to the guidance for CO2 emissions and removals (Volume 4, Chapter 2.3). The 

CO2 and non-CO2 emissions of deliberately burned biomass are reported according to guidance in other chapters 

(See Volume 4, Chapter 2). The biomass remaining in the impoundment area after flooding becomes submerged 

(except for that in the drawdown zone) and a fraction of this organic matter is subsequently decomposed to CO2 

(for more details, see Annex 7.1).  

Annex 7.1 explains how the G-res model estimates CO2 emissions for land converted to Flooded Land using 

average organic carbon stock in the top 30 cm soil layer as an empirically-based approximation for the total flooded 

organic matter decay (Annex 7.1, Section 1.5). Tier 1 emission factors are derived by determining the average, 
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spatially interpolated soil organic C stock for the flooded landscape area from a global soil carbon map (FAO, or 

default reference soil organic C stocks from Volume 4, Chapter 2. Table 2.3). 

Tier 1  

Emission factors for CO2 from the reservoir surface, EFCO2,j, in the six aggregated climate zones are provided in 

Table 7.13. The emission factors correspond to the total CO2 emission attributable to the reservoir and integrate 

both spatial and temporal variations and have been derived from the application of empirical models to a large 

(>6000) number of reservoirs with a worldwide distribution (see Annex 7.1 for details and (Prairie et al. 2017a)) 

and are averaged per climate zone. 

EQUATION 7.13 (NEW) 

ANNUAL ON-SITE CO2-C EMISSIONS/REMOVALS FROM LAND CONVERTED TO FLOODED LAND 

2 2

6

, , 20,

1 1

•
jnres

CO tot total j i CO age j

j i

F A EF 

 

  

Where: 

2CO totF  = Total annual emission (removal) of CO2 from Land Converted to Flooded Land (Reservoirs 

≤ 20 years old), tonnes CO2-C yr-1. 

, ,total j iA  = Total area of reservoir water surface for reservoir 'i' located in climate zone 'j', ha. 

2 20,CO age jEF   = Emission factor for CO2 for reservoir ≤ 20 years old in climate zone 'j', tonnes CO2-C ha-1 

y-1. Refer to Table 7.13. 

jnres  = Number of reservoirs ≤ 20 years old in climate zone 'j'  

i = Summation index for the number of waterbodies of same type in same climate zone 

j = Summation index for climate zones (j = 1-6, see Table 7.13) 

Tier 2  

The methodology for estimating Tier 2 annual carbon loss as CO2 on recently flooded land (<20 years old) uses 

Equation 7.13 substituting in the emission factor calculated using Equation 7.14. Tier 2 methods for determining 

annual CO2 emissions from land converted to Flooded Land use knowledge about climate zone and distribution of 

soil organic carbon stock of the land prior to flooding in order to develop country-specific factors.  

EQUATION 7.14 (NEW) 

ANNUAL CO2-C EMISSIONS/REMOVALS FROM LAND CONVERTED TO FLOODED LAND INCLUDING 

SOIL CARBON STOCKS 

2 , , ,

1

• •
j i

nsoil

CO i k j k j

k

EF SOC M


  

Where: 

2 ,CO j iEF  = Emission factor for CO2 for reservoir 'i' climate zone 'j', tonnes CO2-C ha-1 y-1.  

,j kSOC  = Soil C stock (tonnes C ha-1 in 0-30 cm depth) values per climate zone 'j' and mineral soil 

type (k) from Table 2.3 (Volume 4, Chapter 2), for undrained and drained peatlands using 

Table 2.6 (2013 Wetlands Supplement) with conversion from dry organic matter to organic 

carbon (see A7.1.2.2), or from FAO Global Soil organic C map (http://www.fao.org/global-

soil-partnership/resources/highlights/detail/en/c/1070492/), or country specific SOC stocks. 

i = Summation index for the number of waterbodies of same type in same climate zone 

j = Summation index for climate zones (j = 1-6, see Table 7.13) 

k  = Summation index for soil type  

,i k  = The fraction of reservoir 'i' area with soil type k, dimensionless 
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jM  = Scaling factor per climate zone to convert SOC stocks based on empirical relationships 

between emissions estimated from G-res (integrated 100 year emissions post-flooding 

reported as a constant yearly flux for the first 20-year post-flooding) and soil C stocks and 

climate. (see Annex 7 for more explanations), y-1. Values in Table 7.14. 

nsoil  = Number of soil types (= 6, see Volume 2, Table 2.3) 

Note that 
,

1

1
nsoil

i k

k




  will be nearly 1 if only a river existed prior to inundation of a large reservoir. In contrast, 

the value will be close to 0 if the reservoir is a small expansion of a natural lake. 

Tier 2 may include: 1) a derivation of country-specific emission factors; 2) specification of climate sub-zones 

considered suitable for refinement of emission factors; 3) a finer, more detailed classification of management 

systems with a differentiation of pre-flooding land-uses; 4) differentiation of emission factors by time since 

flooding, and 5) a finer, more detailed classification of nutrient status or other water quality attributes, e.g. nitrogen, 

phosphorus, and chlorophyll. 

For compatibility of approach, country-specific Tier 2 factors for CO2 emissions and removals that are compiled 

using domestic flux data measured at the water-atmosphere boundary should follow a similar general concept to 

the G-res model, which is used in this guidance for generating Tier 1 emission factors (see details in Annex 7.1).  

An alternative method can use observed data on the decay curve of CO2 release to the atmosphere from the surface 

of the waterbody. These observations include a declining annual CO2 emission due to the newly flooded organic 

matter, and a natural annual background release of CO2 that is associated with catchment inputs and should not be 

included in the annual emissions. Instead, the natural emissions should be subtracted from the declining emissions 

in order to obtain the apparent CO2 release from the land converted to Flooded Land. The shape of the declining 

curve of annual CO2 release does not need to follow a specific equation, as long as it asymptotically declines as 

reservoirs age and can be integrated. 

It is good practice to derive country-specific emission factors if measurements representing the national 

circumstances are available. Countries need to document that methodologies and measurement techniques are 

consistent with the scientific background for Tier 1 emission factors in Annex 7.1. Moreover, it is good practice 

for countries to use a finer classification for climate and management systems. Note that any country-specific 

emission factor must be accompanied by sufficient national or regional land-use/management activity and 

environmental data to represent the appropriate climate sub-domains and management systems for the spatial 

domain for which the country-specific emission factor is applied. 

Tier 3  

CO2 emissions/removals at Tier 3, compared to those at Tier 2, would use detailed data and models of soil carbon 

and other remaining carbon pools prior to flooding and time series of CO2 emissions after flooding for a range of 

reservoirs that encompass an appropriate range of environmental conditions. Details for the development of 

measurement and model-based methods are discussed in Annex 7.1. 

Choice of  Emission Factor  

Tier 1  

CO2 emissions are calculated using the emission factors in Table 7.13. 
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TABLE 7.13 (NEW) 

CO2-C EMISSION FACTORS FOR RESERVOIRS ≤ 20 YEARS OLD – LAND CONVERTED TO FLOODED LAND 

Climate Zone 
CO2-C Emission Factors EFCO2 age<20,j 

(tonnes CO2-C ha-1 y-1) 

 j Average Lower and upper 95% CI of mean 

Boreal 1 0.94 0.84 –1.05 

Cool Temperate 2 1.02 1.00–1.04 

Warm temperate dry 3 1.70 1.66 –1.75 

Warm Temperate moist 4 1.46 1.44–1.48 

Tropical dry/montane 5 2.95 2.86–3.04 

Tropical moist/wet 6 2.77 2.71–2.84 

The emission factors are derived from model outputs for each climate zone (Annex A7.1.2.1). The aggregation into 6 climate zones is 

described in Annex section A7.1.2.1.  

Tier 2 and 3  

The Tier 2 approach for estimating total CO2 emissions from Flooded Land incorporates country-specific 

information with derivation of country-specific scaling factors.  The compiler may address other drivers of 

emissions including: 1) specification of climate sub-zones considered suitable for refinement of emission factors; 

2) a finer, more detailed classification of management systems including estimation of emissions associated with 

drawdown zones during the time period of low water level in reservoirs; 3) time-series data that incorporate 

seasonal/annual variation in CO2 emissions. Country-specific soil maps, measured in situ data, or updated versions 

of global soil databases that can be used in estimating the soil organic carbon stocks for 0-30 cm top soil layer 

within the flooded area using GIS tools. Table 7.14 provides scaling factor values that may be used with the Tier 

2 method.  

Choice of  Activity Data  

Tier 1  

Areas of newly flooded lands are available from dam operators such as hydropower companies or responsible 

government agencies. In many cases recent impoundments have been extensively described in Environmental 

Impact Assessment (EIA) documents of specific projects. Those documents are often publicly available. In absence 

of such information sources, satellite images and aerial images taken during the past 20 years are commonly 

available and allow determination of flooded land areas by comparison of pre-impoundment and post-

impoundment images.  

Tiers 2 and 3  

Detailed area information is needed for Tier 2 and 3 approaches, and can be found in geographic information 

products, reservoir statistics, or remote sensing products. Management systems for pre-impoundment land use 

characteristics of the flooded land may be derived from project-specific EIA documents, forest surveys from the 

pre-impoundment period, or remotely-sensed land cover assessments.  

Countries could consider differentiating the fluxes from the drawdown zone. Estimation of drawdown zone areas 

can be done using remote sensing images taken during the time period of low water level in reservoirs or from 

reservoir managers.   

Many countries also monitor water quality parameters from watercourses impacted by management activities. 

These include industrial effluent disposal, mining, land drainage, and wastewater treatment. In the best cases, time 

series of water quality parameters are available in national registers for over 20 years and may be useful for 

applying Tier 3 emission factors differentiated by those parameters. 
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TABLE 7.14 (NEW) 

SCALING FACTOR VALUE M [Y-1] FOR EQUATION 7.14, ANNUAL ON-SITE CO2-C EMISSIONS/REMOVALS FROM LAND 

CONVERTED TO FLOODED LAND.   

IPCC climate zones 

Aggregated climate zone M 

 j Average 
Lower and upper 

95% CI  

Number of 

reservoirs 

Boreal dry 

Boreal 1 0.0091 0.0075-0.0107  118 
Boreal moist 

Polar dry 

Polar moist 

Cool temperate dry 
Cool temperate 2 0.0146 0.0141-0.0151  2103 

Cool temperate moist 

Warm temperate dry Warm temperate dry 3 0.0568 0.0541-0.0595  679 

Warm temperate moist Warm temperate moist 4 0.0302 0.0291-0.0312  2095 

Tropical dry 
Tropical dry/montane 5 0.0900 0.0846-0.0954  902 

Tropical montane 

Tropical moist Tropical moist/wet 6 0.0668 0.0628-0.0708  920 

Note: Scaling factors were derived from the integrated CO2 emissions attributable to the reservoir estimated from the G-res model 

(see Annex 7.1 for details, (Prairie et al. 2017b) expressed as a fraction of soil organic carbon content (SOC) and applied to the first 

20 years post-impoundment. The aggregation into 6 climate zones is described in Annex 1, section A7.1.2.1. 

OTHER CONSTRUCTED WATERBODIES (DITCHES, CANALS,  FARM 

PONDS AND AQUACULTURE PONDS) 

No specific methodologies are provided to estimate CO2 emissions resulting from land conversion to other 

constructed waterbodies as there are insufficient CO2 emission data. However, compilers may estimate CO2 

emissions for coastal wetlands converted to aquaculture ponds by excavation based on guidance in the 2013 

Wetlands Supplement (Chapter 4, Coastal Wetlands).  For all types of pond created by damming, the methodology 

described above to estimate CO2 emissions from land converted to reservoirs may be used.  

7.3.2.2 TOTAL NON-CO2  EMISSIONS FROM LAND CONVERTED TO 

FLOODED LAND  

RESERVOIRS 

In reservoirs, high levels of CH4 emissions can occur in the first 20 years following flooding (see Annex 7.1). No 

guidance on estimating N2O emissions from flooded land is provided here because N2O emissions from aquatic 

systems are indirect N2O emissions from managed land that are addressed in other sections of this guidance (e.g. 

Volume 4, Chapter 11). 

Choice of  Method  

Tier 1  

For Tier 1, guidance can be found in section 7.3.1 Non-CO2 emissions from Flooded Land Remaining Flooded 

Land. The Tier 1 approach to calculate CH4 emissions from Land Converted to Flooded Land (flooded ≤ 20 years 

prior to reporting year) is based on Equation 7.15, which differs from Equation 7.10 only in the values of the 

emission factors, EFCH4 age<20,j. 
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EQUATION 7.15 (NEW) 

ANNUAL CH4 EMISSIONS FOR RESERVOIRS ≤ 20 YEARS OLD FOR LAND CONVERTED TO FLOODED 

LAND 

4 4 4CH tot CH res CH downstreamF = F + F                                                                    (A) 

6

1 1
4 4CH res i CH  age 20, j tot j,iF = α (EF • A )

 


jnres

j i

                                               (B) 

6

1 1
4 4CH downstream i CH  age 20, j tot j,i d, iF =  α (EF • A )• R

 


jnres

j i

                  (C) 

Where: 

4CH totF  = Total annual emission (removal) of CH4 from all reservoirs ≤ 20 years old, kg CH4 yr-1 

4CH resF  = Annual reservoir surface emissions of CH4 from all reservoirs ≤ 20 years old, kg CH4 yr-1 

4CH downstreamF  = Annual emissions of CH4 originating from the reservoir but emitted downstream of dam. 

For Tier 1, equation 7.15 (C) simplifies to 
4 4CH downstream CH res dF = F • R , kg CH4 yr-1 

tot j,iA  = Total area of reservoir water surface for reservoir ≤ 20 years old 'i' located in climate zone 

'j', ha 

4CH  age 20, jEF  = Emission factor for CH4 emitted from the reservoir surface for reservoir ≤ 20 years old 

located in climate zone ‘j’, kg CH4 ha-1 y-1 (Refer Table 7.15) 

dR  = A constant equal to the ratio of total downstream emission of CH4 to the total flux of CH4 

from the reservoir surface, dimensionless. Equals 0.09 by default for Tier 1 (Table 7.10) and 

zero for all other reservoirs. See text below for Tiers 2 & 3 Rd values. 

i  = Emission factor adjustment for trophic state in reservoir 'i' within a given climate zone, 

dimensionless. Equals 1.0 by default for Tier 1. See Equation 7.11 for Tiers 2 & 3. 

I = Summation index for the number of reservoirs of ≤ 20 years in climate zone 'j' 

j = Summation index for climate zones (j = 1-6, see table 7.15) 

jnres  = Number of reservoirs ≤ 20 years old in climate zone 'j' 

Tiers 2 and 3  

For Tiers 2 and 3, refer to guidance in section 7.3.1, Non-CO2 emissions from Flooded Land Remaining Flooded 

Land.  

Choice of  Emission Factor  

Tier 1  

Emission factors for CH4 via diffusion and ebullition for Land Converted to Flooded Land in the six aggregated 

climate zones are provided in Table 7.15. As for Flooded Land remaining Flooded Land (Table 7.9), the emission 

factors integrate both spatial and temporal variations and have been derived from the application of empirical 

models to a large (>6000) number of reservoirs with a worldwide distribution (see Annex 7.1 for details) and are 

averaged per climate zone. 

Tiers 2 and 3  

For Tiers 2 and 3, refer to guidance in section 7.3.1, Non-CO2 emissions from Flooded Land Remaining Flooded 

Land. 
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TABLE 7.15 (NEW) 

CH4 EMISSION FACTORS FOR RESERVOIRS ≤ 20 YEARS OLD – LAND CONVERTED TO FLOODED LAND 

Aggregated Climate Zone CH4 Emission Factors  EFCH4 age<20,j 

(kg CH4 ha-1 year-1) 

 j Average Lower and upper 

95% CI of the mean 

N 

Boreal 1 27.7 20.8–34.7 96 

Cool Temperate 2 84.7 78.8-90.6 1879 

Warm temperate dry 3 195.6 176.9-214.7 578 

Warm Temperate moist 4 127.5 121.5-133.4 1946 

Tropical dry/montane 5 392.3 366.5-417.7 710 

Tropical moist/wet 6 251.6 236.6-266.7 805 

Note: The Emission Factors are derived from model outputs from N reservoirs in each climate zone. The aggregation into 6 climate zones 

is described in Annex 1, section A7.1.2.1. 

Choice of  Activity Data  

Tier 1  

For Tier 1, refer to guidance refer in section 7.3.1, Non-CO2 emissions from Flooded Land Remaining Flooded 

Land.  

Tiers 2 and 3  

For Tiers 2 and 3, refer to guidance in section 7.3.1, Non-CO2 emissions from Flooded Land Remaining Flooded 

Land. 

OTHER CONSTRUCTED WATERBODIES (DITCHES, CANALS, FARM 

PONDS AND AQUACULTURE PONDS) 

Refer to guidance in section 7.3.1, Non-CO2 emissions from Flooded Land Remaining Flooded Land. There is 

insufficient information to derive separate emission factors for CH4 emissions for recently constructed ponds, 

canals and ditches. 

7.3.3 Approach to provide indicative estimates of the 

anthropogenic component of total CO2 and non-CO2 

emissions (optional) 

A method for estimating the contribution of human activities to total emissions from Flooded Land is provided 

that uses the area of Managed Land and Unmanaged non-Wetland categories converted to Flooded Land to develop 

indicative estimates of the anthropogenic component of total CO2 and non-CO2 greenhouse gas emissions. This 

method includes the area that was not previously (before flooding) unmanaged lakes, rivers/streams and 

unmanaged wetlands, on the basis that emissions from these unmanaged lands are not reported in national 

greenhouse gas inventories. For unmanaged lakes and rivers, which have similar CH4 emissions to reservoirs, this 

method is robust. When unmanaged wetlands are flooded this method could under- or over-estimate anthropogenic 

CH4 and CO2 emissions because flooding may alter the greenhouse gas emissions and removals from these 

unmanaged lands due to changes in biogeochemical processes (see Annex 7.1.1). However, there are insufficient 

empirical data to provide guidance to estimate the changes in emissions from land that was unmanaged wetlands 

after it is flooded. Additionally, CH4 emission factors from unmanaged wetlands, reservoirs and other constructed 

waterbodies in many climate zones are broadly similar and thus when unmanaged wetlands are a small component 

of the land surface before the area was converted to Flooded Land this method is robust. If unmanaged wetlands 

occupy a high proportion of the surface of the land prior to flooding then countries may choose to better understand 

anthropogenic emissions at Tier 2 or 3 using methods described in section 7.3.1 and 7.3.2. However, previously 

flooded lands where changes in hydrology lead to substantial changes in the characteristics and ecological function 

of the area, or emissions and removals per unit area, may not be excluded from the calculation of indicative 

estimates of the anthropogenic component of total greenhouse gas emissions.  
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An analogous approach to develop indicative estimates of the anthropogenic component of total greenhouse gas 

emissions, following the same principles, could also be applied to other constructed waterbodies. Developing these 

estimates will require a Tier 2 or 3 method. 

INDICATIVE ESTIMATES OF THE ANTHROPOGENIC COMPONENT OF 

TOTAL CH 4  EMISSIONS IN FLOODED LAND REMAINING FLOODED LAND  

Indicative estimates of the anthropogenic component of total CH4 emissions for Flooded Land Remaining Flooded 

Land are estimated with the following equation (flooded > 20 years prior to reporting year) by using the area of 

flooded land that was not an unmanaged waterbody prior to flooding:  

EQUATION 7.16 (NEW) 

INDICATIVE ESTIMATE OF THE ANTHROPOGENIC COMPONENT OF TOTAL ANNUAL CH4 

EMISSIONS IN FLOODED LAND REMAINING FLOODED LAND  
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Where: 

4CH anthropF  = Indicative estimate of the anthropogenic component of total annual emissions of CH4 from 

flooded land, kg CH4 yr-1 

, ,anthrop j iA  = Area associated with the anthropogenic component of emissions and comprises all areas of 

reservoir water surface for reservoir > 20 years old 'i' located in climate zone 'j', but excluding 

areas that were unmanaged waterbodies (lakes and rivers), ha 

4CH downstreamF  = Annual downstream CH4 emissions, estimated above (Equation 7.15), kg CH4 yr-1 

i  = Emission factor adjustment for trophic state in reservoir 'i' within a given climate zone. 

[dimensionless] Equals 1.0 by default for Tier 1. See Equation 7.11 for Tiers 2 & 3. 

4 20,CH age jEF  = Emission factor for CH4 emitted from the reservoir surface for reservoir > 20 years old 

located in climate zone 'j', kg CH4 ha-1 yr-1 (Table 7.9). 

In general, other Unmanaged Lands, including forest land and grassland, are not considered a significant source 

of CH4 emissions, and removals of CH4 are not recognized as an anthropogenic source category in the AFOLU 

sector guidance. However some removal of CH4 can occur through oxidation of atmospheric CH4 by 

methanotrophic microorganisms in aerated soils, but this flux is typically small when expressed per unit land area 

(Oertel et al. 2016).  Regardless, no guidance is provided to estimate CH4 removal from unmanaged forest land 

and grassland. 

INDICATIVE ESTIMATES OF THE ANTHROPOGENIC COMPONENT OF 

TOTAL CO 2  EMISSIONS IN LAND CONVERTED TO FLOODED LAND 

Indicative estimates of the anthropogenic component of total CO2 emissions in Land Converted to Flooded Land 

(i.e. Reservoirs ≤ 20 years old) are calculated following the method described in section 7.3.1.1 but using Eq. 7.17 

to calculate.  

EQUATION 7.17 (NEW) 

INDICATIVE ESTIMATE OF THE ANTHROPOGENIC COMPONENT OF TOTAL ANNUAL CO2 

EMISSIONS IN LAND CONVERTED TO FLOODED LAND 
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Where 

2CO anthropF  = Indicative estimate of the anthropogenic component of total annual emission of CO2 from 

Land Converted to Flooded Land (reservoirs ≤ 20 years old), tonnes CO2-C yr-1. 
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, ,anthrop j iA  = Area associated with the anthropogenic component of emissions and comprises all areas of 

reservoir water surface for reservoir ≤ 20 years old 'i' located in climate zone 'j', but excluding 

areas that were unmanaged waterbodies (lakes and rivers) or unmanaged wetlands prior to 

flooding [ha]. Note: previously flooded lands where changes in hydrology lead to substantial 

changes in the characteristics and ecological function of the area, or emissions and removals 

per unit area, may not be excluded from the calculation of indicative estimates of the 

anthropogenic component of total greenhouse gas emissions. 

2 20,CO age jEF   = Emission factor for CO2 for reservoir ≤ 20 years old in climate zone 'j', tonnes CO2-C ha-1 

y-1. Refer to Table 7.13. 

INDICATIVE ESTIMATES OF THE ANTHROPOGENIC COMPONENT OF 

TOTAL CH 4  EMISSIONS IN LAND CONVERTED TO FLOODED LAND  

Indicative estimates of the anthropogenic component of total CH4 emissions for Land Converted to Flooded Land 

can be derived with the following equation (flooded ≤ 20 years prior to reporting year) by using the area of flooded 

land that was not an unmanaged waterbody or unmanaged wetlands prior to flooding:  

EQUATION 7.18 (NEW) 

INDICATIVE ESTIMATES OF THE ANTHROPOGENIC COMPONENT OF TOTAL ANNUAL CH4 

EMISSIONS IN LAND CONVERTED TO FLOODED LAND  
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Where: 

4CH anthropF  = Indicative estimate of the anthropogenic component of total annual emissions of CH4 from 

flooded land, kg CH4 yr-1 

, ,anthrop j iA  = Area associated with the anthropogenic component of emissions and comprises all areas of 

reservoir water surface for reservoir ≤ 20 years old 'i' located in climate zone 'j', but excluding 

areas that were unmanaged waterbodies (lakes and rivers) or unmanaged wetlands prior to 

flooding, ha. Note: previously flooded lands where changes in hydrology lead to substantial 

changes in the characteristics and ecological function of the area, or emissions and removals 

per unit area, may not be excluded from the calculation of indicative estimates of the 

anthropogenic component of total greenhouse gas emissions. 

4CH downstreamF  = Annual downstream CH4 emissions, estimated above (Equation 7.15(C), kg CH4 yr-1 

i  = Emission factor adjustment for trophic state in reservoir 'i' within a given climate zone, 

dimensionless. Equals 1.0 by default for Tier 1. See Equation 7.11 for Tiers 2 & 3. 

4 20,CH age jEF   = Emission factor for CH4 for Land Converted to Flooded Land, kg CH4 ha-1 y-1. Refer to 

Table 7.15. 

i = Summation index for all reservoirs of age ≤ 20 years in climate zone 'j' 

j = Summation index for climate zones (j = 1-6, e.g. Table 7.15) 

Choice of  Activity Data  

Activity data needed include area of Unmanaged Wetlands (Note: previously flooded lands where changes in 

hydrology lead to substantial changes in the characteristics and ecological function of the area, or emissions and 

removals per unit area, may not be excluded from the calculation of indicative anthropogenic emissions) and 

natural lakes that become a managed flooded land, and the final flooded land area in each climate zone. Activity 

data required to support Tier 1 calculations are complete mapping for pre-flooding wetland and lake area estimated 

from a land use survey, remotely sensed imagery (e.g. Landsat data) or other national maps and data bases. 

7.3.4 Uncertainty Assessment 
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The two largest sources of uncertainty in the estimation of CH4 emissions from Flooded Land are the quality of 

emission factors and estimates of the flooded land areas. 

Flooded Land surface area  

For reservoirs, national statistical information on the flooded area behind large dams (> 100 km2) should be 

available and will probably be accurate to within 10 percent. Where national databases on dams are not available, 

and other information is used, the Flooded Land areas retained behind dams will probably have an uncertainty of 

more than 50 percent, especially for countries with large Flooded Land areas. Detailed information on the location, 

type and function of smaller dams may be difficult to obtain, though statistical inference may be possible based 

on the size distribution of reservoirs for which data are available. Reservoirs are created for a variety of reasons, 

and this will influence the availability of data. Consequently, uncertainty regarding surface area is dependent on 

country specific conditions. 

Uncertainties in estimating emissions and removals from other constructed waterbodies (ditches, canals, farm 

ponds and aquaculture ponds) are to a large extent derived from assumptions and uncertainties in the area to which 

the EFs are applied. Variation in salinity of aquaculture ponds may also contribute to uncertainty in CH4 emissions. 

Emission factors  

As shown in Tables 7.9 and 7.15, average emissions can vary both within and among climate regions. Therefore, 

the use of any default emission factor will result in high uncertainty as reflected in the 95% confidence intervals 

as discussed in Annex 7.1. 

Downstream CH4 emissions occur primarily when anoxic and methane-rich hypolimnetic water (i.e. the lower 

water layer in a stratified water column) is withdrawn from a reservoir and passed through the dam structure, 

including turbines in hydropower reservoirs, and discharged to a downstream river (see Annex 7.1 for a more 

detailed description). Accordingly, downstream emissions are typically negligible in well-oxygenated reservoirs 

(Diem et al. 2012) or those with epilimnetic withdrawal  (Beaulieu et al. 2014b), but can exceed emissions from 

the reservoir surface in thermally stratified systems with hypolimnetic withdrawal (Kemenes et al. 2007), (Abril 

et al. 2005). At the Tier 1 level, downstream emissions are estimated from Rd, defined as the average ratio of 

downstream to surface emissions.  Sources of uncertainty in Rd include differences among studies in how fluxes 

from the reservoir surface and downstream or the reservoir were measured. Uncertainty can be reduced at the Tier 

2 and 3 levels by accounting for the reservoir mixing patterns and withdrawal depths on a case-by-case basis. 

To reduce the uncertainties on emissions factors, countries should develop appropriate, statistically-valid sampling 

strategies that take into account natural variability of the ecosystem under study. When applicable, the distinction 

between ice-free and ice-covered periods may be a significant improvement in accuracy (Duchemin et al. 2006). 

Those sampling strategies should include enough sampling stations per reservoir, enough reservoirs and sampling 

periods. The number of sampling stations should be determined using a recognized statistical approach (see 

(Goldenfum 2010) (UNESCO/IHA for measurement guidelines). 

The EF values in Table 7.9 represent global averages and have large uncertainties due to variability in climate and 

management practices, including depth of the waterbody, salinity of water, presence of emergent vegetation, 

recharge rate and (for aquaculture) the intensity of management, including fish feeding characteristics and pond 

aeration. 

Uncertainties associated with the indicative estimates of anthropogenic component of total emissions  

The methods to produce the indicative estimates of the anthropogenic component of total emissions from managed 

flooded lands have additional uncertainties beyond the estimation of total emissions. The key uncertainty is 

determining the excluded areas that were unmanaged waterbodies (lakes and rivers) or unmanaged wetlands prior 

to flooding. The unmanaged river and possibly lake area is particularly challenging to estimate if there is large 

intra- or inter-annual variability in river water level, resulting in a highly variable river area over time. To address 

this uncertainty, compilers may use the long-term mean river and lake area, but it should be highlighted that there 

is a risk for higher uncertainty where the average area is challenging to assess.  

7.4 INLAND WETLAND MINERAL SOILS 

No refinement.  

7.5 COMPLETENESS, TIMES SERIES 

CONSISTENCY, AND QA/QC 

No refinement.  
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Annex 7A.1 Estimation of Default Emission Factor(s) for 

greenhouse gas emissions from Flooded Lands  

7A.1.1 Background on CH4 cycling in Flooded Land 

CH4 emissions from aquatic environments are the combined result of CH4 production, oxidation and transport 

processes, which are described in e.g. (Bastviken 2009), (Bridgham et al. 2013), (Duc et al. 2010), and (Bogard et 

al. 2014) (the two former being reviews and the two latter describing updates). A summary is provided below: 

Production and oxidation of  CH 4  

Methane production is a microbially-mediated process that primarily occurs in anoxic sediment. Sediment 

methanogenesis represents the terminal step in the anaerobic degradation of organic matter, and is strongly 

stimulated by temperature, anoxic conditions, and high sedimentation rates.  The last of these, sedimentation, 

provides organic matter and promotes anoxia. Inhibition is induced by the presence of molecular oxygen (O2) and 

other alternative electron acceptors in organic matter degradation, such as nitrate, iron (III), manganese (IV) and 

sulphate. Because sulphate is common in waters with high salinity, methanogenesis in the upper sediments is often 

low under saline conditions (Reeburgh 2007).  

Methane oxidation in aquatic environments is primarily a microbial process in which dissolved CH4 is used as a 

carbon and energy source. Therefore, CH4 oxidation takes place at redox gradients where both CH4 and suitable 

electron accepting compounds are present. Anaerobic CH4 oxidation using e.g. nitrate and sulphate has been 

observed and sulphate-dependent CH4 oxidation can be important in saline sediments. In freshwater environments, 

O2 dependent CH4 oxidation is considered to dominate (Bogard et al. 2014). By being confined to redox gradients, 

CH4 oxidation is therefore often most intense in spatially restricted zones near the interface between anoxic and 

oxic conditions in water columns, or in the top millimetres of sediments overlain with oxic water (below a few 

mm depth most sediments are anoxic). The oxidation of CH4 can be extensive and reported removal of dissolved 

CH4 during passage through a zone with oxidation often range from 50 to >95% (Bastviken 2009). Aerobic CH4 

oxidation in situ is considered to be primarily substrate dependent, i.e. to depend largely on concentrations and 

supply rates of CH4 and O2.  

The transport of  CH 4  through waterbodies  

With reference to processes numbered in Figure 7A1, the transport of CH4 through a reservoir can be described 

as follows (Bastviken 2009):  

CH4 produced in anoxic sediments, and subsequently dissolved in the water, is transported along the concentration 

gradient by Fickian transport (molecular diffusion or eddy diffusion) and, at times advection, into the hypolimnion 

water (1). The transport of CH4 from the hypolimnion into the epilimnion is often very small due to limited mixing 

between water layers and because extensive microbial CH4 oxidation occurs at the interface where both CH4 and 

O2 are present (Bastviken et al. 2008) (2). The release of CH4 from epilimnetic sediments is also constrained by 

CH4 oxidation, similarly occurring at the oxycline in the top several mm of the sediment (3). However, water 

movements such as waves can speed up CH4 transport across the epilimnetic sediment-water interface (Bussmann 

2005), reducing the fraction being oxidized. Additional epilimnetic CH4 can be sustained by production in oxic 

water (Bogard et al. 2014) (4). The dissolved CH4 in surface water is emitted across the diffusive boundary layer 

at the water-atmosphere interface (diffusive emission). The diffusive emission rates are stimulated by high CH4 

concentrations and high turbulence in the water (5). The solubility of CH4 in water is rather low, and therefore 

CH4 bubbles are formed in the sediment. Emissions to the atmosphere by ebullition occur when such CH4-rich 

bubbles are released and rapidly rise through the water column into the atmosphere (6). Ebullition can be the 

dominant flux pathway, and is influenced by CH4 production rates in the sediment, physical triggers releasing 

bubbles such as drops in barometric pressure, changes in the water level or waves. CH4 emissions can also occur 

via rooted emergent aquatic plants with gas transporting aerenchyma tissue.  These structures can function as gas 

conduits between sediments and the atmosphere. Such plant-mediated emission can be substantial and depends on 

CH4 production, plant abundance, activity and species composition. In reservoirs, water, with its dissolved CH4, 

is withdrawn into the dam structure (D) inlet and released to the outlet river (7a and 7b). The dissolved CH4 can 

then be degassed to the atmosphere upon passage through dam structures or emitted after release to the outlet river 

(8). Both degassing and reservoir-related emissions from the outlet river are a result of the reservoir, but occur 

downstream of the reservoir surface and are collectively referred to in this chapter as downstream emissions. 

Downstream emissions are low if oxic epilimnetic water with low CH4 concentrations is withdrawn (7a), but can 

be high if anoxic, CH4 rich hypolimnetic water is withdrawn (7b).  

The degassing of the water in the turbines is relevant in hydroelectric reservoirs only, but the other parts of the 

description in Figure A1 are valid for non-hydroelectric reservoirs and for non-reservoir waterbodies. 
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Figure 7A.1 (New) Methane related transport within and from waterbodies, exemplified 

with a reservoir with an anoxic hypolimnion.  

 

For explanations of numbered processes, see text. 

Emissions of  CH 4  

Aquatic CH4 emissions are favoured by high CH4 production and by conditions facilitating transport pathways 

where most CH4 escapes oxidation. Conditions leading to high whole-system CH4 production rates include low 

salinity  (Camacho et al. 2017), high temperatures (Yvon-Durocher et al. 2014), (Deemer et al. 2016), (DelSontro 

et al. 2016), and a high load of labile organic matter (DelSontro et al. 2016), (DelSontro et al. 2018), (Deemer et 

al. 2016). The overall CH4 production potential in freshwaters in a given climate zone is also positively related to 

the flooded area. In this guidance: estimation of emissions from coastal aquaculture ponds (Tier 1) is improved by 

consideration of salinity of the water as sulphides in seawater supress methanogenesis (Poffenbarger et al. 2011); 

temperature is considered by separating emission factors by climate zone and including temperature seasonality 

when generating emission factors (Tier 1); methanogenic habitat extent is considered by including the area of the 

flooded land in calculations (Tier 1); and the supply of labile organic matter is considered via a trophic state 

adjustment option (Tier 2; see also below). 

Conditions favouring rapid transport from sediments to the atmosphere by ebullition or via plants, bypassing CH4 

oxidation zones, include shallow water depth and a high abundance of emergent aquatic plants. These conditions 

are indirectly considered at the whole climate zone level at the Tier 1 via validation to available data, but are highly 

variable among waterbodies and consideration for individual waterbodies can therefore only be performed at the 

Tier 3 level. Downstream emissions also represent situations where high water turbulence causes rapid emission 

of CH4 with little time for oxidation. Downstream emissions are considered at Tier 1, and are estimated using 

empirical relationships between CH4 fluxes from waterbody surfaces and observed downstream emissions. 

Trophic status and greenhouse gas emissions from Flooded Lands  

Flooded lands with high inputs of nutrients and high rates of biological production (eutrophic systems) generally 

emit CH4 to the atmosphere more rapidly on a per-area basis than less productive (meso- or oligotrophic) systems. 

This relationship is seen in meta-analyses examining fluxes from many reservoirs (Narvenkar et al. 2013), (Deemer 

et al. 2016), and a positive relationship between local primary production and CH4 emission has also been 

demonstrated in laboratory assays using sediments from individual lakes (West et al. 2016). One recent review of 

available data found that, on average globally, per-area CH4 fluxes are 8.0 times higher for eutrophic reservoirs 

than for mesotrophic reservoirs, which in turn have CH4 fluxes that are, on average, 1.7 times as high as those 

from oligotrophic systems (Deemer et al. 2016). Therefore, when possible, we recommend that countries include 

an estimate of trophic status in their estimates of reservoir CH4 emissions allowing adjustment of emission factors 

at Tier 2. Trophic status designation is generally achieved using either total phosphorus or chlorophyll a data and 

latitude-specific classification cut-offs (Carlson 1977).   

It has been suggested that eutrophication can enhance CO2 uptake and burial (Pacheco et al. 2015), but there is no 

evidence that this occurs consistently, and, when it does occur, the magnitude of this effect on CO2 is generally 

much smaller (in overall greenhouse gas flux terms) than the effect of eutrophication on CH4 emissions (Deemer 

et al. 2016). 

Estimating the indicative anthropogenic component of total  emissions  

Estimation of the indicative anthropogenic component of total emissions or removals reflects the changes in 

greenhouse gas fluxes to the atmosphere resulting from the landscape transformation into a reservoir or other 

flooded lands. Unmanaged wetlands (e.g. peatlands) emit CH4 and sequester soil carbon and unmanaged lakes can 

also be a source of CH4 prior to their conversion to a reservoir, but these are not estimated in national greenhouse 
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gas inventories. The calculations allow for estimation of the anthropogenic component of emissions when these 

unmanaged lands are converted to a reservoir by only considering the flooded land that was not previously 

unmanaged lakes or wetlands. Box 7A.1 describes the general approach for estimating anthropogenic emissions, 

based on the area of Managed Land and unmanaged non-Wetland categories, which is used in this Guidance. 

BOX 7A.1 (NEW) 

APPROACH FOR DEVELOPING INDICATIVE ESTIMATES OF THE ANTHROPOGENIC COMPONENT OF TOTAL 

EMISSIONS FROM FLOODED LAND 

The diagram below shows the rationale for indicative estimation of the anthropogenic component of 

total emissions using the example of CH4 and CO2 fluxes from a reservoir where land is either 

unmanaged (left) or managed (right) prior to flooding. CH4 and CO2 fluxes after flooding are shown 

(green arrows) compared to before flooding and the anthropogenic component, the newly flooded 

land (red arrows) for Flooded Land remaining Flooded Land (FLRFL) and Land converted to 

Flooded Land (LCFL). CH4 emissions/removals from the original water surface area and from 

unmanaged wetlands are not considered in this approach by subtracting their area from the total 

surface area of the reservoir.  

For estimating anthropogenic CO2 emissions/removals from the reservoir, CO2 fluxes from 

unmanaged lands in both FLRFL and LCFL are assumed zero. Changes in soil carbon stocks during 

the first 20 years after flooding (LCFL) are provided in the guidance. For both FLRFL and LCFL, 

long-term CO2 fluxes arising from the decomposition of catchment-derived organic matter are 

considered natural in this guidance and are not incorporated into the CO2 emission factors. For 

managed land (e.g. forest, croplands or grasslands), CO2 and CH4 fluxes prior to flooding, guidance 

is provided in other Chapters and not considered here.  

 

7A.1.2 Reservoirs 

Introduction 

Correctly estimating the anthropogenic component of greenhouse gas emissions from reservoirs requires a careful 

assessment of the source and fate of reservoir carbon fluxes as such estimates are prone to double counting and 

inappropriate attribution of fluxes to human activity (Prairie et al. 2017a). The greenhouse gas emission factors 

from Flooded Lands presented in this methodology report are composited output from an empirical model (Prairie 

et al. 2017b), developed and calibrated with field measurements from diverse types of reservoirs located in various 

regions of the world (see section 7A.1.2.3 Data Sources). The model allows us to annualize emissions that are 

often measured over short periods (e.g. during the ice-free period for boreal systems) and estimate changes in 

reservoir greenhouse gas activity that have been observed to occur as reservoirs age. We anticipate that the models 

will continue to improve over time as more measurements are made and additional models become available. 
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7A.1.2.1DEVELOPING TIER 1  EMISSION FACTORS FOR CO2  AND NON-

CO2  EMISSIONS FROM FIELD MEASUREMENTS  

Recent, largely overlapping, literature compilations of field greenhouse gas measurements from over 220 distinct 

reservoirs (Deemer et al. 2016), (Prairie et al. 2017b) form the basis of the emissions factors listed in Tables 7.9 

and 7.15. The field measurements are a mixture of diffusive CO2, CH4 diffusive and/or bubble emissions and, for 

a new but smaller subset, downstream emissions for either or both gases. The method used to estimate greenhouse 

gas fluxes from reservoirs is critical because different techniques can give quite different flux estimates (Schubert 

et al. 2012), (Deemer et al. 2016), and because techniques integrate spatial and temporal variability to different 

degrees (Wik et al. 2016). Flux estimates used to derive reservoir EFs in Chapter 7 were attained in a variety of 

ways. For CO2, diffusive fluxes were estimated using near-surface concentrations in combination with a thin 

boundary layer model for the majority of systems (Deemer et al. 2016), floating chambers, or, in a minority of 

cases, eddy flux measurements.  For CH4, diffusive fluxes were estimated using near-surface concentrations in 

combination with a thin boundary layer model or chamber flux measurements.  Ebullition fluxes of CH4 were 

estimated using inverted funnel traps and echo sounders. Combined ebullitive and diffusive CH4 fluxes were 

estimated using floating chambers or eddy flux techniques, or a combination of available methods.  Downstream 

emissions for gases were available for only a subset of the studied reservoirs. 

Deriving Emission Factors directly from the compiled data is subject to a number of assumptions that can lead to 

potential biases. First, it requires an assumption that sampled systems are statistically representative of overall 

reservoir distribution, a potentially problematic assumption given that measurement campaigns may occur in 

systems and periods in time where or when greenhouse gas emissions are high (e.g. where CH4 bubbling is visible) 

or low. Second, it assumes that sampling of reservoirs is representative in time, potentially leading to biases as 

there is considerable evidence that greenhouse gas emissions decrease markedly as reservoirs age (Abril et al. 

2005), (Barros et al. 2011), (Teodoru et al. 2012), (Serça et al. 2016).  

The Emissions Factors from reservoirs presented for this methodology were derived from the application of the 

Greenhouse Gas Reservoir (G-res) model (Prairie et al. 2017b). The G-res model is currently the only easily and 

widely applicable model and was developed to account for the potential biases described above. It uses empirical 

relationships between environmental drivers and emissions to estimate reservoir greenhouse gas fluxes. Depending 

on available input data, the G-res model can also be used to make Tier 2 or Tier 3 estimates.  

The methodology used to develop the G-res model and its usage to estimate reservoir greenhouse gas emissions is 

described in detail in (Prairie et al. 2017b) but, briefly, consists of the following steps: 

1. Data annualization: field sampling campaigns reported in the literature are rarely carried through the entire 

annual cycle. For this reason, greenhouse gas data obtained over sub-annual time periods were annualized by 

taking into account the annual temperature cycle at the reservoir site and the known temperature dependence 

of processes leading to the production of CO2 and CH4. 

2. Identifying relationships between annualized flux estimates and environmental variables: environmental 

characteristics for each reservoir where greenhouse gas fluxes have been measured were extracted using 

available global databases (GIS layers) and used as input variables for predictive models with an elastic net 

variable selection procedure. This statistical analysis of the relevant data yielded the following model equations: 

EQUATION 7A.1 (NEW) 

CH4 DIFFUSIVE EMISSION (MG C M-2 D-1) 

   
4 _10 10

log  0.88( 0.16) 0.012( 0.002)  0.048( 0.006)  0.61( 0.706) log
diff factor littoral

CH Age T pcA         

 

EQUATION 7A.2 (NEW) 

CH4 BUBBLING EMISSION (MG C M-2 D-1) 

   
4 _10 10

log 0.99( 0.63) 0.049( 0.011)  1.01( 0.028) log
ebul rad littoral

CH Q pcA        
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EQUATION 7A.3 (NEW) 

CO2 DIFFUSIVE EMISSION (MG C M-2 D-1)  
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Where: 

Age  = G-res Reservoir age since construction, yr 

res
A  = G-res Surface area of reservoir, km2 

littoral
pcA  = G-res percentage of reservoir area, Ares < 3 m deep, % 

4 _diff
CH  = Diffusive emission of CH4 used in G-res, mg-C m-2 d-1 

4 _ebul
CH  = Ebullitive (bubble) emission of CH4 used in G-res, mg-C m-2 d-1 

2 _ diff
CO  = Diffusive emission of CO2 used in G-res, mg-C m-2 d-1 

rad
Q  = G-res mean daily solar irradiance, kWh m-2 d-1 

SOC  = G-res Soil organic carbon from (0-30 cm), kg m-2 

factor
T  = G-res temperature factor derived from air temperature, °C 

Here, Age  is reservoir age (years since construction), 
littoral

pcA  area was operationally defined as the percent 

reservoir surface area shallower than 3m as derived from modelled reservoir bathymetry, SOC  is surface Soil 

Organic Carbon (0-30cm), factor
T  is a temperature factor that corrects for the non-linearity in the temperature 

response of CH4 emissions, and rad
Q  is the mean daily solar irradiance averaged over a latitude-dependent period 

(see G-res documentation for details), and res
A  is reservoir area, the surface area of the reservoir (km2). Further 

details on the statistical analysis, the input environmental variables, their definition and sources can be found in 

(Prairie et al. 2017b). All resulting empirical models (Equation 7A.1 to 7A.3) were statistically highly significant 

and explained between 37 and 47% of the variation in the greenhouse gas flux component (log scale).  

1. Application of the models to larger database: 

The empirical models described above were applied to the larger Global Reservoir and Dam (GRanD) database, 

(Lehner et al. 2011a) consisting of 6684 reservoirs with capacity >0.1 Mm3 located worldwide as shown in the 

map in Figure 7A.2. These reservoirs are estimated to comprise collectively over 75% of the global surface area 

of reservoirs and are distributed in all climate zones (Table 7A.1, Figure 7A.2). The environmental variables 

required by the models were extracted for each reservoir as previously described and were used as inputs in 

Equations 7A.1 to 7A.3 to estimate the various components of greenhouse gas emissions. In total, greenhouse gas 

emissions could be estimated for more than 6000 reservoirs worldwide.  
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Figure 7A.2 (New) Location of the reservoirs in the GranD database and shadowgram of 

their latitudinal distribution.  

 

 

TABLE 7A.1 (NEW) 

NUMBER OF RESERVOIRS IN THE GRAND DATABASE IN EACH IPCC CLIMATE ZONE. 

IPCC Climate zone Number of Reservoirs 

Boreal dry 3 

Boreal moist 87 

Cool temperate dry 333 

Cool temperate moist 1746 

Polar moist 27 

Tropical dry 625 

Tropical moist 793 

Tropical montane 227 

Tropical wet 126 

Warm temperate dry 623 

Warm temperate moist 2072 

2. Derivation of CH4 Emissions Factors:  

CH4 emission is the sum of reservoir-wide ebullitive and diffusive emissions (Equations 7A.1 and 7A.2). However, 

because the diffusive component is not constant in time but declines with age, Equation A.1 was integrated to 

estimate the average annual emission over different periods. Based on the available literature, much of the initial 

greenhouse gas pulse occurs within the first 20 years following impoundment and this time interval was assumed 

to represent Land converted to Flooded Land. The emission factor of CH4 in this time interval can be derived with 

Equation 7A.4. For Flooded Land remaining Flooded Land, the integration period was from 20 to 100 years post-

impoundment. The emission factor of CH4 in this time interval can be derived with Equation 7A.5.  
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EQUATION 7A.4 (NEW) 

EMISSION FACTORS FOR LAND CONVERTED TO FLOODED LAND 
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EQUATION 7A.5 (NEW) 

EMISSION FACTORS FOR FLOODED LAND REMAINING FLOODED LAND 
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Where 

EF  Emission Factor  

4 _ diff
CH  Diffusive emission of CH4, Mg-C m-2 d-1 

4 _ bubbling
CH  Ebullitive (bubble) emission of CH4, Mg-C m-2 d-1 

Application of Equations 7A.4 and 7A.5 to the reservoirs described in Table 7A.1 were averaged according the 

aggregated climate zones defined in Table 7A.2 to produce the final Emission Factor (EF) tables for Flooded Land 

Remaining Flooded Land (Table 7.9) and Land Converted to Flooded Land (Table 7.15). Emissions factors (EFs) 

are expressed as kg CH4 ha-1 yr-1. 

In addition to the diffusive and ebullitive emissions from reservoir surfaces, downstream CH4 emissions are 

estimated. These downstream emissions are estimated by multiplying reservoir emissions by a fraction (Rd), which 

is the ratio of total CH4 emissions (kg CH4-C y-1) downstream of the reservoir (i.e. degassing at the dam and 

emissions from the downstream river) to CH4 emissions from the surface of the reservoir (diffusion + ebullition; 

kg CH4-C y-1).  Downstream emissions are influenced by local climate, reservoir morphology, and design features 

of the dam and spillway (Deemer et al. 2016).  In general, these emissions will be large in thermally stratified 

reservoirs with anoxic, CH4-rich bottom waters and hypolimnetic withdrawal (dos Santos et al. 2017). These 

emissions can be further enhanced by high air-water gas exchange rates at the dam or spillway that promote the 

rapid evasion of CH4 to the atmosphere before it can be oxidized to CO2 in the downstream river (Abril et al. 2005). 

Accurately predicting downstream emissions requires detailed knowledge of dam design (i.e. withdrawal depth) 

and operating conditions (i.e. withdrawal rates) and is beyond the scope of the Tier 1 methodology. However, if 

appropriate at a higher tier, downstream emissions may be estimated using climate zone specific Rd values in Table 

7.10 derived from a literature compilation listed in section 7A.1.2.3 Data Sources. 

Downstream emissions have received much less attention than emissions from reservoir surfaces, but have been 

reported for 36 reservoirs distributed across the 6 aggregated IPCC climate zones (see section 7A.1.2.3 Data 

Sources, Table 7A.5). It should be noted, however, that reported downstream emissions can be biased high or low, 

depending on study-specific methodological details. For example, several studies assumed that all excess dissolved 

CH4 (i.e. the difference between actual dissolved CH4 concentration and atmospheric equilibrium) entering the 

dam would evade to the atmosphere via a combination of degassing at the dam and diffusion from the river surface 

(Beaulieu et al. 2014a), (Teodoru et al. 2012). This approach will overestimate downstream emissions because up 

to 85% the CH4 that enters the downstream waterbodies can be oxidized to CO2 (Kemenes et al. 2007). Other 

studies only reported degassing in turbines (i.e. did not estimate downstream waterbody emissions), thereby 

biasing downstream emissions low (Maeck et al. 2013). Although methodological differences can bias downstream 

emission values, the effect of methodology was not apparent in the pooled data, likely because other factors, such 

as the depth of water withdrawal relative to the oxycline, were more important drivers. Similarly, differences 

among climate zones were not apparent in the data, therefore the Tier 1 Rd value was not disaggregated by climate 

zone. Due to the highly skewed distribution of reported Rd values, the Tier 1 Rd value is based on the median value 

(see 7A.1.2 “Validation of the data-model approach”). At the Tier 2 level the downstream emission term in 

Equation 7.10 can be set to zero in reservoirs where epilimnetic water is withdrawn and discharged to the river 

downstream. Countries can directly measure downstream emissions at the Tier 3 level using the methods discussed 

in the references cited in section A7.1.2.3 Data Sources (Table A5). 
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3. Grouping of reservoirs according to IPCC climate zones 

The 6014 estimates of CH4 emissions (diffusive + ebullitive) from worldwide reservoirs generated by the G-res 

tool were grouped according to the IPCC climate regions. A regression tree approach was used to lump certain 

climate categories together based on their abilities to separate groups with different CH4 emissions. The final 

grouping comprised 6 aggregated climate zones (Table 7A.2) and these were applied throughout this Methodology 

Report. 

TABLE 7A.2 (NEW) 

AGGREGATED CLIMATE ZONES BASED ON DIFFERENCES IN CH4 EMISSIONS BETWEEN CATEGORIES 

IPCC Climate zone Aggregated climate zone 

Boreal dry 

Boreal 
Boreal moist 

Polar dry 

Polar moist 

Cool temperate dry 
Cool temperate 

Cool temperate moist 

Warm temperate dry Warm temperate dry 

Warm temperate moist Warm temperate moist 

Tropical dry 
Tropical dry/montane 

Tropical montane 

Tropical moist 
Tropical moist/wet 

Tropical wet 

Validation of  the data-model approach 

Surface Emissions 

Model estimations and direct measurements are not strictly comparable in that the former have been annualized 

and represent the integrated average annual emissions of the first 20 years post-impoundment (plus ebullitive 

emissions) while the latter are point measurements encompassing varying degrees of spatial and temporal 

integration depending on the study. Nevertheless, it is informative to compare the central tendency and variability 

in CH4 emissions among reservoirs in each of the climate zones. Both model estimations and field measurements 

were highly variable and positively skewed in each climate zone (Figure 7A.3).  
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Figure 7A.3 (New)  Box plots of model estimates (empty) and Field measurements (filled) 

of CH4 emissions (note logarithmic scale) in aggregated IPCC climate 

zones. 

 

Field measurements are from (Deemer et al. 2016) while modelled estimates are derived from G-res model applied 

to about 6000 reservoirs worldwide. Exact correspondence between measured and modelled ranges is not expected 

given that the models were applied to a large number of reservoirs of different configurations. Numbers in box 

plots correspond to the number of observations in each climate zone. 

While the distribution of modelled and measured greenhouse gas emission estimates generally overlapped in each 

climate zone, a more direct measure of correspondence is shown by the relationship between field measurements 

versus model estimates of CH4 emissions (Figure 7A.4). CH4 emissions from individual reservoirs predicted using 

the Tier 1 approach agreed reasonably well with measured CH4 emissions (Nash-Sutcliffe Efficiency: 0.8, with no 

detectable bias in either slope or intercept of least-squares regression; Figure 7A.4). These comparisons 

collectively provide evidence that the model estimates capture both the variability and central tendency in CH4 

emission rates.  
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Figure 7A.4 (New) Comparison of measure CH4 emissions with estimates based on the 

Emission Factors (EFs, Tables 7.9 and 7.15) of Tier 1 methodology.  

 

Figure 7A.4 re-drawn using final approved Tier-1 method. NSE=0.83; no evident bias for any climate category.  

No chlorophyll correction used (alpha=1 in all cases). 1:1 line (black), best-fit linear regression line (blue) with 

95% confidence intervals for slope (grey shading) are shown. 

Downstream Emissions 

Downstream emissions estimated using the median of the literature Rd values (0.09), combined with model 

estimated surface emission rates, agree well with observed downstream emission rates (Figure 7A.5). Downstream 

emissions estimated using the mean Rd literature value (0.60) systematically overestimate downstream emissions 

(Figure 7A.5), lending additional support for the use of the median Rd value for estimating downstream emissions.  
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Figure 7A.5 (New) Measured downstream (DN) CH4 emissions compared to model 

estimates.  

 

The left and right panels model downstream emissions using the median and mean Rd values collected from the 

literature, respectively. Because using the mean produced consistent overestimates (right panel), the use of the 

median is preferred. 

7A.1.2.2CO2  EMISSION FACTORS FOR LAND CONVERTED TO 

FLOODED LAND. 

The creation of reservoirs as well as other Flooded Lands often involves the flooding of terrestrial ecosystems and 

their organic matter pools. A portion of these pools is rapidly degraded by microbial activity generating a CO2 

pulse that diminishes steadily during the 10-20 years following flooding until the Flooded Land attains a new 

steady state emission rate (Abril et al. 2005), (Barros et al. 2011), (Teodoru et al. 2012). The new steady state 

emission rate generally falls in the range typical of other freshwater ecosystems that have remained flooded for > 

20 years (Prairie et al. 2017b). Meta-analyses of published emission studies (Barros et al. 2011), (Prairie et al. 

2017b) suggest that the rate of decline decreases with time (faster in the early years, slower later on) and that the 

temporal evolution of CO2 emissions is expressed as a general negative power function. The literature suggests 

that a decade is a realistic period for the return to a quasi-equilibrium (e.g.(Tremblay et al. 2005), reflecting the 

new balance between primary production and respiration of the reservoir ecosystem. A more conservative 

approach assumes, instead, that this new equilibrium is reached only after 100 years - a value that is often used to 

represent the expected lifetime of reservoirs in life-cycle analysis (e.g. (Gagnon et al. 2002). Over such a period, 

integration of the emissions above the modelled new equilibrium value at 100 years (upper panel of Figure A6) 

suggests that about 75% of the cumulative CO2 flux is natural, i.e. that only 25% can be considered the result of 

the impoundment process (Prairie et al. 2017a). 

The carbon stocks of the land prior to impoundment are specific for each land use / land cover, and the default 

Tier 1 estimates for these pools can be derived from the 2006 IPCC Guidelines, FAO 2017 database as refined in 

this volume, and the 2013 Wetlands Supplement, while masses for dry matter in undrained and drained peatlands 

are given in the 2013 Wetlands Supplement Table 2.6. The guidelines recognize five terrestrial C pools: above-

ground biomass, below-ground biomass, dead wood, litter and soil organic matter. In preparation of the 

impoundment area, the carbon losses from harvested biomass and the emissions from deliberately burned biomass 

are reported according to the 2006 IPCC Guidelines as refined in this volume. The CO2 emissions from the decay 

of dead organic matter in the newly flooded land is described below. 

The easily decomposable organic matter fractions (litter, foliage, twigs, fine roots, organic soils) contribute to the 

post-flooding CO2 pulse, while the more recalcitrant fractions (tree boles, mineral soils) are for the most part 

preserved. However, it is noteworthy that following flooding, the mineral soil layer rapidly becomes (and remains 

indefinitely) anoxic below a depth of a few mm (Lorke et al. 2003). Anaerobic remineralisation occurs very slowly 

and below this depth, organic carbon can be considered permanently buried for practical inventory estimation 

purposes. In organic soils and in humus layers, flooding may produce an analogous anaerobic zone. In thermally 

stratified reservoirs, mineralisation of organic matter will be retarded in anoxic hypolimnia. 
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The surge in CO2 emission post-flooding is caused by the remineralisation of pre-flooding organic matter pools 

and it can be considered as a net loss of the carbon stock from the previous land use. At the moment, there is little 

information to quantify how individual terrestrial organic carbon pools contribute to the post-flooding CO2 surge.  

Nevertheless, the abundant amount of reservoir emission measurements for young (< 20 y) reservoirs (Deemer et 

al. 2016) has made possible the development of models such as G-res that can be used to estimate net post-flooding 

CO2-C emissions (Table 7.13). 

The approach used to derive net CO2 emissions from reservoirs is the same as that used to derive emissions of CH4 

(section 7A.1.2.1) and is based on the greenhouse gas reservoir (G-res) model (Prairie et al. 2017b) which uses 

empirical relationships between environmental drivers and greenhouse gas emissions to estimate reservoir 

greenhouse gas fluxes from a large, diverse set of reservoirs (>6000 reservoirs with global distribution). 

Instantaneous greenhouse gas flux measurement data are annualized to take into consideration seasonal changes 

in temperature that may be different from the moment when empirical measurements were conducted in the field. 

An example where annual fluxes are generated from point measurements is described in the technical 

documentation of the IHA G-Res tool (Prairie et al. 2017b). There are two approaches to derive emissions. In one, 

a power function for annual flux, CO2 = C ∙ Age-b where C is a reservoir specific constant depending on nutrients, 

temperature, reservoir area etc. and b is estimated by fitting to the data, is assumed to reach the natural equilibrium 

level of CO2 flux at the reservoir age of 100 years. That level determines how much of the annual CO2 flux should 

be subtracted each year from the integrated area under the flux CO2 curve, see (Prairie et al. 2017a). Another 

approach, which is applied to derive Tier 1 emission factors, uses an empirical relationship between the derived 

integrated decay curve and soil organic carbon stock as well as climate under the newly flooded area (Fig. 7A.6 

and Equation 7A.3). The emissions attributable to the creation of the reservoir over a 100-year period are reported 

as a constant rate over the first 20 years post-flooding. Accordingly, the rates of emissions are dependent on climate 

and soil C content (to 30 cm depth) for the flooded area (see text in 7A.1.2 and Equation 7A.3 and section 7.3.2, 

Equation 7.14). 

Figure 7A.6 (New) Relationship between CO2 surge estimates from the newly flooded 

lands using the decay curve approach and the flooded soil organic 

carbon stock approach. 
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7A.1.2.3DATA SOURCES  

Data sources and range of emission values (mg C-CH4 m-2 d-1) for directly measured CH4 emissions are in Table 

7A.3. Data sources used to develop models (Equations 7A.1, 7A.2 and 7A.3) are largely overlapping and are in 

Annex VI of Prairie et al. 2017b. These were used in section 7A.1.2.2 of this Annex to validate the Emission 

Factors provided in Tables 7.9 and 7.15.   

Data sources (including systems assessed and citations) for estimating the multiplier (RD, Table 7.10) which is the 

ratio of total CH4 emissions (kg CH4-C yr-1) downstream of the reservoir (i.e. degassing at the dam and emissions 

from the downstream river) to CH4 emissions from the surface of the reservoir (diffusion + ebullition; kg CH4-C 

yr-1)  are in Table 7A.4. 

TABLE 7A.3 (NEW) 

DATA SOURCES USED FOR MODELLING CH4 EMISSIONS FROM RESERVOIRS WITHIN DIFFERENT CLIMATE ZONES. 

Grouped 

IPCC 

Climate 

Zone 

Number of 

systems with CH4 

measurements in 

category 

Range of reported 

emissions values 

(mg C-CH4 m-2 d-1) 

References 

Polar moist, 

boreal dry 

and moist 

6 0.4-13 

(Tremblay et al. 2005), (Teodoru et al. 2012), (Demarty et al. 

2011), (Demarty et al. 2009), (Brothers et al. 2012), (Kelly et al. 

1994), (Roehm & Tremblay 2006), (Tadonléké et al. 2012), 
(Duchemin et al. 1995), (Huttunen et al. 2002), (Fedorov et al. 

2015) 

Cool 

temperate 

moist and 

dry* 

16 0-360.7 

(Harrison et al. 2017), (Matthews et al. 2005), (Hendzel et al. 

2005), (Venkiteswaran Jason et al. 2013; Venkiteswaran et al. 

2013), (Kelly et al. 1997), (Deemer et al. 2011), (Maeck et al. 
2013), (Huttunen et al. 2002), (Gruca-Rokosz et al. 2011), 

(Gruca-Rokosz et al. 2010), (Beaulieu et al. 2014a), (Beaulieu et 

al. 2014b) 

Warm 

temperate 

moist 

14 2.5-176.0 

(Rosa et al. 2004), (dos Santos et al. 2006), (Harrison et al. 

2017), (Li et al. 2015), (Maeck et al. 2013),  (Gruca-Rokosz et 

al. 2010), (Zhao et al. 2013), (Wu 2012), (Yang et al. 2013), 
(Chen et al. 2011), (Lu et al. 2011), (Zhen 2012), (Xiao et al. 

2013), (Zhu et al. 2013), (Zhao et al. 2015), (Li et al. 2014), 

(Bevelhimer et al. 2016), (Mosher et al. 2015) 

Tropical dry 

and 

montane 

13 0.5-582.3 

(Diem et al. 2012), (Ometto et al. 2013), (Pacheco et al. 2015), 

(Roland et al. 2010), (Sturm et al. 2014),  (DelSontro et al. 
2011), (Selvam et al. 2014), (Bansal et al. 2015), (DelSontro et 

al. 2010), (Eugster et al. 2011), (Kumar & Sharma 2012), 

(Teodoru et al. 2015), (Almeida et al. 2016)  

Tropical wet 

and moist 
26 3.6-258.3 

(Therrien et al. 2005), (Tremblay et al. 2005), (Bergström et al. 

2004),  (Guérin et al. 2006), (Kemenes et al. 2007), (Kemenes et 
al. 2011), (Musenze et al. 2014), (Rosa et al. 2004), (dos Santos 

et al. 2006), (St. Louis et al. 2000), (Ometto et al. 2013), 

(Bergier et al. 2011), (Duchemin et al. 2000), (Roland et al. 
2010), (Keller & Stallard 1994), (Joyce & Jewell 2003), (Selvam 

et al. 2014), (Deshmukh 2013), (Deshmukh et al. 2014), (Abril 

et al. 2005), (Rosa et al. 2003), (Lima 2005), (Lima et al. 2002), 

(Lima et al. 1998), (Marcelino et al. 2015) 
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TABLE 7A.4 (NEW) 

RESERVOIRS AND CITATIONS FOR MEASURED RD VALUES 

System Name IPCC climate zone *Citation 

Eastmain-1 Boreal (Teodoru et al. 2012) 

Gruyere, Lake Grimsel, Lake 

Luzzone, Lake Sihl, Wohlen, Serrig, 

Dworshak 

Cool temperate (Diem et al. 2012), (DelSontro et al. 2016), (Maeck 

et al. 2013), (Soumis et al. 2004) 

F.D. Roosevelt, New Melones, 

Wallula 

Warm temperate dry (Soumis et al. 2004) 

William H Harsha Lake, Allatoona, 

Douglas, Fontana, Guntersville, 

Hartwell, Watts Bar, Eguzon, Oroville, 

Shasta 

Warm temperate moist (Beaulieu et al. 2014b), (Bevelhimer et al. 2016), 

(Descloux et al. 2017), (Soumis et al. 2004) 

Lake Kariba, Xingó, Tehri Tropical dry/montane (DelSontro et al. 2011), (dos Santos et al. 2017), 

(Kumar & Sharma 2016) 

Nam Leuk, Nam Ngum, Funil, Itaipu, 

Segredo, Serra da Mesa, Três Marias, 

Petit Saut, Koombooloomba, Nam 

Theun 2, Tucuruí, Samuel, Balbina 

Tropical moist/wet (Chanudet et al. 2011), (dos Santos et al. 2017), 

(Abril et al. 2005), (Bastien & Demarty 2013), 

(Deshmukh et al. 2016), (Serça et al. 2016), 

(Guérin et al. 2006), (Kemenes et al. 2007) 

*See references section for full citations. 

7A.1.3 Other constructed waterbodies (agricultural ponds, 

aquaculture ponds, canals and ditches) 

Many forms of agricultural and silvicultural land management involve the creation of artificial waterbodies. For 

example, ditches are often used for land drainage or irrigation; small constructed ponds are used for small scale 

irrigation or as a water source for livestock; and canal systems are used for water level management, water transfers 

and navigation. Aquaculture ponds and flooded pastures can occupy extensive areas on the landscape (Yang et al. 

2017), (Kroeger et al. 2017). In settlements ponds may be created for recreation, aesthetics or stormwater 

management. 

Similar to reservoirs, CO2 emissions from smaller volume constructed waterbodies including ditches, canals, farm 

ponds and aquaculture ponds, are the result of decomposition of soil organic matter and other organic matter within 

the waterbody or entering the water from the catchment, as well as from biological components (e.g. fish). No 

guidance is provided here since these emissions are either estimated elsewhere (e.g. as soil carbon loss) or represent 

short-term natural carbon cycling (e.g. biological turnover). 

CH4 emissions from small constructed waterbodies are primarily the result of new methanogenic production of 

CH4 induced by anoxic conditions, which occurs when waterbodies have high organic matter loading and low 

oxygen status. These conditions often occur in small constructed waterbodies, such as slow-flowing ditches (Evans 

et al. 2016), agricultural ponds (Selvam et al. 2014) and aquaculture ponds (Robb et al. 2017), but may be lower 

where mixing or aeration occurs as part of aquaculture management (e.g. (Vasanth et al. 2016) and are sensitive 

to temperatures (Davidson et al. 2011).  Area-specific emissions from these constructed waterbodies may equal or 

exceed those observed in small lakes and reservoirs (Bastviken et al. 2010); see above). Furthermore, the CH4 

emissions from small constructed waterbodies are a direct consequence of the construction of the waterbody. 

CH4 emission factors from small constructed waterbodies (Section 7.3.1.2, Table 7.12) are based on review of the 

peer reviewed literature using appropriate search terms. Literature was obtained using Web of Science and Google 

Scholar. In some cases (e.g. PhD Theses), data were obtained directly from authors. For each study or sites within 

studies, a mean CH4 flux was extracted from tables, figures or text. Fluxes were converted to annual fluxes by 

simple scaling (e.g. multiplying per day rates by 365 days), or if more information was provided (e.g. days per 

aquaculture production cycle and production cycles per year), data were annualized using this additional 

information. Methane emissions from land and water surfaces are rarely normally distributed within datasets due 

to the heterogeneity of emission pathways and controlling factors, and data were therefore log-transformed during 

the calculation of mean emission factors. The high variability and relatively small number of observations also 

precluded estimation of separate Tier 1 EFs by climate zone or other factors (apart from waterbody type and (for 

ponds) salinity), and 95% confidence intervals are correspondingly large. 
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