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ABSTRACT

A new technique for statistically downscaling climate model simulations of daily temperature and pre-

cipitation is introduced and demonstrated over the western United States. The localized constructed analogs

(LOCA)method produces downscaled estimates suitable for hydrological simulations using amultiscale spatial

matching scheme to pick appropriate analog days from observations. First, a pool of candidate observed analog

days is chosen by matching the model field to be downscaled to observed days over the region that is positively

correlated with the point being downscaled, which leads to a natural independence of the downscaling results to

the extent of the domain being downscaled. Then, the one candidate analog day that best matches in the local

area around the grid cell being downscaled is the single analog day used there. Most grid cells are downscaled

using only the single locally selected analog day, but locationswhose neighboring cells identify a different analog

day use a weighted combination of the center and adjacent analog days to reduce edge discontinuities. By

contrast, existing constructed analog methods typically use a weighted average of the same 30 analog days for

the entire domain. By greatly reducing this averaging, LOCA produces better estimates of extreme days,

constructs a more realistic depiction of the spatial coherence of the downscaled field, and reduces the problem

of producing too many light-precipitation days. The LOCAmethod is more computationally expensive than

existing constructed analog techniques, but it is still practical for downscaling numerous climate model

simulations with limited computational resources.

1. Introduction

A changing climate will have numerous impacts on

society, such as increasing peak energy demand, altering

freshwater availability, changing ecosystems, modifying

growing degree days and pests relevant to agriculture,

and increasing heat-related health risks (e.g., Parry et al.

2007). Properly anticipating many of these impacts re-

quires climate change information on a spatial scale on

the order of 10 km, yet global climate models (GCMs)

still rarely have a spatial resolution finer than on the

order of 100km, leading to a disconnect between the

information available from GCMs and that needed to

inform climate change adaptation strategies. This is par-

ticularly true for hydrological simulations, which are sen-

sitive to elevation, local soil properties, topography, and

slope orientation, and so can benefit from higher spatial

resolutions than global models provide.

This difference in scales is generally addressed using

downscaling, that is, techniques that infer smaller-spatial-

scale structure using the original coarse-resolution fields
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along with finer-scale observations, topography, and dy-

namics. There are two main types of downscaling: dy-

namical, which uses regional climatemodels driven at the

domain boundaries by global climate model output, and

statistical, which uses the historic relationships between

large- and small-scale conditions. Dynamical methods

can capture nonstationary relationships between the

large- and finescale that may develop in the future and

can producemore variables than is practical for statistical

methods, but are orders of magnitude more computa-

tionally expensive than the statistical methods, require

large volumes of global climate model output, and typi-

cally need to be bias corrected before use in applications

anyway. Our purpose is to provide an improved down-

scaling technique for impact studies that have a limited

computational budget but wish to sample a range of

different global model results, so we explore statistical

downscaling in this work.

There are many different forms of statistical down-

scaling [reviews can be found in Wilby et al. (2004),

Fowler et al. (2007), and Maraun et al. (2010); see also

Hwang and Graham (2014)]. These methods include

stochastic weather generators (e.g., Wilby et al. 1998;

Wilks 2012); various approaches that use large-scale

fields as predictors for fine-resolution fields through re-

gression or artificial neural networks (e.g., von Storch

et al. 1993; Schoof and Pryor 2001; Chen et al. 2014);

weather-type methods that use observed associations

between characteristic recurring large-scale weather

patterns and local responses typically seen when that

weather type is present (e.g., Goodess and Palutikof

1998); and even simple ‘‘delta methods,’’ which typically

add the time-mean model-predicted change to the se-

quence of observations. Many of these methods use

different climate variables for the coarse- and fine-

resolution fields (e.g., using large-scale atmospheric

circulation to predict local precipitation).

Two statistical downscaling methods in particular have

been widely applied over the western United States:

bias correction with spatial disaggregation (BCSD;Wood

et al. 2004) and ‘‘constructed analog’’–based techniques

such as the original constructed analogs (CA; Hidalgo

et al. 2008), bias correction with constructed analogs

(BCCA; Maurer et al. 2010), and multivariate adapted

constructed analogs (MACA; Abatzoglou and Brown

2012). Unlike many of the statistical downscaling methods

noted above, these procedures use a coarse-resolution

depiction of a climate variable to produce a fine-resolution

version of the same climate variable. BCSD has proven

to be an effective technique (e.g., Maurer et al. 2010), but

as traditionally implemented it is a monthly method,

which limits the possible changes in the shape of daily

distributions and does not preserve the GCM’s daily

weather sequences [although Piani et al. (2010) and

Thrasher et al. (2012) give extensions to the daily time

scale, which is evaluated in Hwang and Graham (2014)].

Our interests include impacts that are affected by both

the distribution and specific sequences of daily extremes

and how thosemight change in the future, such as energy

use during heat waves (e.g., California electricity use

rises after the third consecutive day of hot weather) and

floods generated by sequential days of heavy precip-

itation, so we focus on improving the constructed ana-

logs process rather than changes to BCSD.

Constructed analogs are inspired by analog weather

forecasting techniques (van den Dool 1994), where the

best matching historical occurrence of a target pattern is

identified and the forecast assumes that the weather will

evolve the same way it did before. A difficulty with an-

alog techniques is that the current pattern never looks

exactly like the historical analog. Constructed analogs

address this by identifying the Na (typically 30) best

matching analog days, then optimally combining the Na

analog days to best reproduce the target pattern.

When applied to the downscaling problem, the ‘‘forecast’’

is of finescale conditions given a coarse-scale (i.e., GCM)

predictor field. The observations are first coarsened to the

GCM grid, and then the Na-coarsened historical analog

days that best match the climate model day to be down-

scaled are identified. The Na optimal weights of those

coarse analog days that best reproduce the model day to

be downscaled are computed and then applied to the

original finescale observed fields to form a weighted

average ofNa days. The result is the downscaled field inCA

and BCCA; MACA adds an additional postdownscaling

bias correction step (Hildago et al. 2008;Maurer et al. 2010;

Abatzoglou and Brown 2012).

The constructed analog method is computationally

efficient because all weights for the downscaling are

found by operations on the coarse GCM grid. However,

forming a weighted average of analog days has some

drawbacks. First, it smears finescale spatial features and

increases the spatial coherence of the final downscaled

field. This affects flooding, which is influenced by the spa-

tial coherence of the precipitation field (the same prob-

lem has been found in BCSD; Zhang and Georgakakos

2012; Hwang andGraham2014). Second, averaging tends

to reduce the temporal variance of the final result (e.g.,

von Storch 1999). Model output statistics (MOS) cor-

rectors can partially take this into account but have

problems of their own, particularly when the spatial

coherence is artificially large (Maraun 2013). Third, av-

eraging tends to produce too much drizzle when down-

scaling precipitation, because an original global model

day that has precipitation in one area but is clear in an-

other area can easily bematched to analog days that have
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precipitation in both areas. The weighted sum of the

analog days will then have low levels of precipitation in

both areas. This issue was noted in Hidalgo et al. (2008),

who found that skill of the CA technique for daily pre-

cipitation increased as the domain size decreased.

Here, we introduce the localized constructed analogs

(LOCA) technique, which was developed to address

these issues. Rather than forming the downscaled field

as a weighted sum of the Na analog days, LOCA con-

structs the downscaled field, point by point, from the

single analog day in the pool of Na analog days that best

matches weather in the local region around the point

being considered. By avoiding averaging, many of the

problems noted above are diminished.

This work evaluates LOCA through its downscaling

of daily precipitation and temperature. Daily pre-

cipitation is of obvious importance to hydrological

simulations. Daily maximum temperature can also have

a limited effect on evapotranspiration and is of primary

importance to nonhydrological applications such as en-

ergy use and human health. The domain used is the

western United States, which provides a rich test set of

hydrological conditions to evaluate the method, ranging

from the arid southwestern deserts to the rain forest of

the Olympic peninsula. However, tests over the con-

terminous United States indicate that the downscaling

performs similarly over that broader domain.

Our experimental design, and the data required to

implement it, are described in section 2. The LOCA

technique is described in section 3, with details in the

appendix. Results for LOCA downscaling daily maxi-

mum temperature and precipitation are provided in

sections 4 and 5, respectively. An example of LOCA

multivariate downscaling to determine daily minimum

temperature is given in section 6. A summary and con-

clusions are presented in section 7.

2. Data and experimental design

An entire downscaling system based on constructed

analogs potentially consists of multiple steps, including

regridding data from multiple climate models to a com-

mon grid, bias correction, and the spatial downscaling

step. MACA adds an additional bias correction after the

downscaling. In this work, we are primarily interested in

the spatial downscaling step alone; bias correction will

be treated in a separate work. That is, we focus on the

question of how well a fine-resolution field can be

computed given an unbiased but coarse-resolution input

field, and we do not address the problem of producing an

unbiased input field from a climate model. We believe

that taking the opportunity to distinguish between er-

rors arising from downscaling versus those arising from

residual biases in the fields being downscaled can add

clarity to the analysis.

Accordingly, we examine LOCA downscaling obser-

vations over the period 1940–69 that have been aggre-

gated to a 18 3 18 grid. Observations over the period

1970–2005 are used as the training data. There are two

advantages to downscaling the coarsened observations

for our purposes. First, the role of bias correction is

minimized, because the statistical properties of the data

over the period 1940–69 are similar to those found in the

training data, more so than would likely be found when

downscaling data from a climate model. Nonetheless,

the two periods differ, primarily from natural internal

climate variability. So, analogous to a climate model,

bias correction still needs to be applied to the 1940–69

data. We use the quantile mapping approach from

Wood et al. (2004), but the effect of bias correction on

our analysis is small, and the same bias correction

method is used for both LOCA and BCCA (to which we

compare our results). Second, downscaling coarsened

observations means we have the original, fine-resolution

dataset available for comparison.

We follow the example of the U.S. Bureau of Recla-

mation (USBR) phases 3 and 5 of the Coupled Model

Intercomparison Project (CMIP3 and CMIP5, re-

spectively) archive website (http://gdo-dcp.ucllnl.org/

downscaled_cmip_projections/dcpInterface.html) by

downscaling starting from a common 18 3 18 latitude–
longitude grid (the southwesternmost grid cell is centered

at 29.58N, 125.58W; the northeasternmost grid cell is

centered at 52.58N, 104.58W).All references to the coarse

grid will therefore refer to this 18 3 18 grid.
We use the Livneh observationally based gridded

product (Livneh et al. 2013) on a 1/168 latitude–longitude
grid over the western United States (west of 1058W) for

both our coarsened data to be downscaled and our

training data. We use anomalies when downscaling

temperature and absolute values when downscaling

precipitation (the original CA scheme used anomalies

for precipitation, while BCCA and MACA use absolute

values after bias correction, as is done here). Results

shown here are produced using version 1.0 of the Livneh

et al. observational dataset, which was the latest avail-

able when this study was undertaken. We later checked

the LOCA downscaling results using version 1.2 of the

Livneh et al. dataset and found them little changed.

3. LOCA technique

a. Overview

The basic physical assumption of constructed analog

downscaling techniques is that meteorological processes
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produce cyclostationary statistical relationships between

large-scale, area-averaged values (0.58–28 latitude–

longitude) and finer-scale estimates of a climatological

field. Global climate model outputs are then considered

to be estimates of the large-scale averages, and the ob-

served relationships between area-averaged coarse and

fine scales are used to infer a plausible distribution of

values on a fine-resolution grid (1/168 here).
To downscale a model day using LOCA, the 30 ob-

served days that best match the model day in the wider

region around the point being downscaled are found,

then the single one of those 30 days that bestmatches the

model day in the local neighborhood of the point being

downscaled is identified. This multiscale matching is a

key aspect of LOCA and ensures that the final down-

scaled field is consistent with the day being downscaled

on both local and synoptic length scales. The final down-

scaled value is the value from the single best matching

observed day, scaled so that its amplitude matches the

model day being downscaled (additively for temperature,

multiplicatively for precipitation).

b. LOCA procedure

A higher-level, conceptual view of the LOCA down-

scaling process is given in the main text; details can be

found in the appendix. The steps for LOCAdownscaling

are as follows.

1) Select the locations at which the 30 analog days will

be chosen [section 3b(1); appendix section a]. This

differs from existing constructed analog techniques,

which use the same analog days at all points in the

domain. This step is only done once; the following

steps are repeated for each day being downscaled.

2) Select the pool of 30 analog days at each location

identified in step 1 [section 3b(2); appendix section b].

3) Out of the pool of 30 analog days, find the one that

best matches the model field being downscaled in the

local neighborhood of the point to which it is being

downscaled [section 3b(3); appendix section c].

4) Construct the final downscaled field by scaling the

observed day to match the model day [section 3b(4);

appendix section d].

1) ANALOG POOL LOCATIONS AND SPATIAL

MASKS

Existing constructed analog techniques use a single

pool of Na analog days for downscaling everywhere

in the domain. Those analog days are determined by

computing, over the entire domain, the Na best-fit days

between themodel field and the coarsened observations.

In LOCA, different locations can use different pools of

analog days. We refer to the locations where the pool of

analog days is chosen as the analog pool points, and we

select them from the coarse grid [Fig. 1 (top left) shows

the analog pool points used here]. Our sensitivity tests

show little influence of the exact positioning or number

of analog pool points on the final result. Although every

coarse-scale grid point could be selected, this is too

computationally expensive, so we only choose a limited

number of locations.

At every analog pool point, we use a spatial mask to

limit the region over which the model field is compared

to the coarsened observations when determining the

fit between the two. The mask is computed from the

coarsened observations; a different mask is used for

each combination of variable and season [December–

February (DJF), March–May (MAM), June–August

(JJA), and September–November (SON)]. The mask is

set to 1 at locations where the Pearson correlation with

the time series at the analog pool point is greater than 0.

This masking, which is not included in the existing

constructed analog techniques, allows us to choose the

analog days based on a limited region of influence. It

serves little purpose to require the analog days to be able

to describe precipitation in locations so far apart that the

precipitation patterns are unrelated. Limiting the analog

pool domain renders the downscaling insensitive to

changes in the domain beyond a certain region of in-

fluence; for example, analogs for summer precipitation

in Arizona are not influenced by precipitation in Mon-

tana [Fig. 1 (bottom left)]. This feature allows LOCA to

be applied on a very large, even global domain.

Figure 1 (top right), (bottom left), and (bottom right)

shows the precipitation masks for different analog pool

points and seasons. The masks tend to be smaller in

summer than winter (by about 9.5% on average), owing

to the change to more convective systems in summer

rather than the large-scale planetary wave–driven pre-

cipitation in winter. For more details on selecting the

analog pool locations, see section a of the appendix.

2) SELECTING THE ANALOG DAYS AT THE

REGIONAL SCALE

Our method of selecting analog days follows that used

in Hidalgo et al. (2008), although in LOCA, this is done

at all analog pool points rather than once for the entire

domain.

At each analog pool location and day to be down-

scaled, we choose the pool ofNa (530 here) analog days

to use for downscaling as those observed days that have

the smallest root-mean-square (RMS) difference with

the model field being downscaled (taking the domain

mask into account). This matching is done on the coarse

grid.We further require that the day of year of an analog

day must be within 45 days of the day of year of the

DECEMBER 2014 P I ERCE ET AL . 2561



model day being downscaled, as done in Hidalgo et al.

(2008). Downscaling at each point on the fine-resolution

grid then draws from the pool of Na analog days ob-

tained at the closest analog pool point. This approach

allows us to retain the desirable constructed analog

property that downscaled results at the fine grid cells are

constructed exclusively from analog days that are the

best match to large-scale conditions, yet reduces the

sensitivity of the downscaled results to the chosen

domain size. For more details on selecting the pools of

analog days, see section b of the appendix.

3) FINDING THE ONE BEST MATCHING ANALOG

DAY AT THE LOCAL SCALE

Once the pools of 30 analog days are obtained at all the

analog pool locations, then at each location on the fine grid

we select from that pool the single best matching analog

day in the immediate neighborhood of the point to

FIG. 1. (top left) Crosses indicate the analog day pool selection points; colors indicate the domain over which

a point is used. (top right), (bottom left), (bottom right) Example weighting masks [G in Eq. (A1)] for precipitation

in three of the points and seasons. Pink areas show where the mask is 1; gray areas show where the mask is 0.

Contours show the temporal correlation between the daily time series of values (for the indicated season only) at

the analog pool selection point, indicated by a cross, and every other location (plotted for positive values only).

2562 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



which it is being downscaled. Because this matching

must be implemented on the finescale grid, we first in-

terpolate the model field to the fine grid using bicubic

interpolation. We do not, however, locally match the

interpolated model field to the observations at each

location because the latter has significant information

content at the finest spatial scales that the former

lacks. Instead, we bicubic interpolate the coarsened

observed data of the analog days back to the fine grid.

This yields a representation of the analog days on the

fine-resolution grid that have their finescale spatial in-

formation reduced in the same way as the model, so the

two can be sensibly compared.

At each fine-resolution location, we find the single an-

alog day that minimizes the RMS difference between the

interpolated model field and interpolated analog day in

a square region of size 2r 1 1 finescale grid cells around

the center grid point being downscaled. In this work, we

used r5 10. Figure 2 (top left) shows, as an example, the

analog day number selected when downscaling precip-

itation for 1 January 1940 (the first day of the period an-

alyzed in section 4). For more details on finding the best

match at the local scale, see section c of the appendix.

4) CONSTRUCTING THE FINAL DOWNSCALED

FIELD

Once the best matching single analog day is found at

each point on the fine-resolution grid, the final down-

scaled field can be constructed. We still need to match

the amplitude of the values on the analog day to the

amplitude of the model fields, similar to how BCCA

calculates the optimal weights to best match the com-

bination of analog days to the model day being down-

scaled. We do this amplitude matching after selecting

the analog days so that, for example, an unusually warm

model day is matched to an unusually warm observed

day, not to an average observed day that has been scaled

to match the model amplitude.

When downscaling precipitation, we scale the selected

analog day by the ratio of the interpolated model field to

the interpolated analog day. When downscaling tem-

perature, we add to the selected analog day the differ-

ence between the interpolated model field and the

interpolated analog day.

To reduce the chance of discontinuities between re-

gions with different analog days, any grid cell adjacent to

a cell being downscaled with a different analog day is

treated as an ‘‘edge cell.’’ The final downscaled value at

edge cells is the weighted sum of the values computed

using the multiple analog days in question, where the

weight is determined by the number of adjacent grid

cells using the different analog day. Typically, ;30% of

the points are edge cells. Figure 2 (top right) shows the

edge points found when downscaling 1 January 1940.

Figure 2 (bottom left) shows the final downscaled field

and Fig. 2 (bottom right) shows the original observations

on that day, using the experimental procedure described

in section 3. Many more examples of individual down-

scaled days, and maps of the correlation with the time

series at a point, are shown in the supplemental mate-

rials (Figs. S5–S8). For details on constructing the final

downscaled field, see section d of the appendix.

c. Multivariate downscaling

Abatzoglou and Brown (2012) and Zhang and

Georgakakos (2012) have noted the importance of

downscaling some quantities using information from

multiple variables simultaneously. This is easily ac-

complished in LOCA. There are two steps at which a

best-fit selection of analog days is performed: during the

choosing of the pool of analog days [section 3b(2)] and

when selecting the best single analog day in the local

region around the fine-resolution grid point being

downscaled [section 3b(3)]. When performing multi-

variate downscaling, in both these steps ranks are as-

signed to the candidate analog days for each variable

such that rank 1 is the best match. Then, the weighted

average rank of each candidate analog day across all the

variables being downscaled is computed, and the day

with the minimumweighted average rank is taken as the

best match. The best matches 2–30 are chosen similarly.

Weights are specified by the user and can be set so that

all variables contribute equally (in which case the same

analog day is used for all variables), one variable dom-

inates the others, or only information from one variable

is considered at all (in which case the result is the same

as univariate downscaling). An example of multivariate

downscaling is given in section 6.

d. Changes in climatology

Because temperature is downscaled as an anomaly,

the fine-resolution climatology is needed to construct

the final downscaled field. For the historical period,

observed climatology from the training data is used.

However for future climate projections, the fine-resolution

change in climatology (from historical to future) must be

calculated. Different downscaling techniques handle this

problem differently. BCSD removes the climatology

from the coarse grid values, downscales the field to the fine

grid, and then adds back in the bilinearly interpolated,

model-predicted change in climatology (Wood et al. 2004).

This is effective but means the change in climatology has

no downscaled information, because it is determined

purely by the global model. CA and BCCA do not treat

the change in climatology in any special way; so, for

example, a heat wave at the end of the century is merely
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considered to have very large anomalieswith respect to the

historical era (Hildago et al. 2008;Maurer et al. 2010). The

concern with that approach is that future anomalies might

fall outside the range of historical variability, complicating

the process of finding good historical analogs. MACA

addresses this by removing the change in climatology, then

reintroducing it after the constructed analogs are obtained

(Abatzoglou and Brown 2012).

LOCA follows the approach used in Pierce and Cayan

(2013). The model-predicted change in climatology,

which is available on the coarse grid, is simply considered

another anomaly field to be downscaled and so is itself

FIG. 2. Example fields when downscaling precipitation, illustrated for 1 Jan 1940. (top left) The selected analog

day number (integer day number starting 1 Jan 1970 and ending 31 Dec 2010). (top right) Edge points (those

adjoining a region with a different selected analog day number). (bottom left) Downscaled and (bottom right)

observed precipitation field for that day (mm).
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downscaled using LOCA. However, the change in cli-

matology represents, by definition, an average change

across many individual days. Using a single analog day

to represent the change in average conditions is in-

appropriate, not unlike how some of BCCA’s shortcom-

ings arise from representing a single day as the average of

numerous analog days. Therefore, when downscaling the

model-predicted change in climatology, the downscaling

is repeated for all Na analog days and the results are av-

eraged together to produce the change in climatology.

This procedure means that the downscaled change in

temperature climatology starts with the interpolated

model change in temperature climatology, as is used in

BCSD.However, in LOCA, this is additionally modified

by the mean difference between the 30 original fine-

resolution analog days and the coarse-resolution version

of the 30 analog days. So, if the analog days suggest there

is a consistent, small-spatial-scale feature in the change

in climatology, it can be recovered by this process in-

stead of only the interpolated model field being used.

See section e of the appendix for additional details on

calculating the change in climatology.

4. LOCA results: Daily maximum temperature

a. Monthly mean daily maximum temperature

Figure 3 shows the monthly mean daily maximum tem-

perature for selected months from the (left) observations

and errors in (middle)BCCAand (right)LOCA.Averaged

over the domain, the mean errors in LOCA’s downscaled

fields are small (,0.018C), while RMS errors are on the

order of 0.38C. BCCA’s mean and RMS errors are larger

than those found in LOCA, with a mean error of;0.038C
and an RMS error of;0.58C. LOCA’s errors do not show

any particular spatial pattern, which is a desirable charac-

teristic as it implies that regional users of the downscaled

product are unlikely to run into biases. The ‘‘spotty’’ error

field seen in LOCA (both here and in later figures) may

be influenced by two factors associated with the observed

dataset as noted in Gutmann et al. (2014): 1) observed

statistics tend to be slightly different at points with stations

compared to pointswithout stations and 2) the spotsmay be

associated with stations that have moved or otherwise

changed between the historical and training periods.

b. Hottest day in 1 and 20 years

Climate change is likely to increase extreme daily

maximum temperatures as greenhouse gases accumu-

late in the atmosphere (e.g., Parry et al. 2007). This af-

fects the peak electricity demand that the electrical

system has to be designed for, poses health risks, and

could affect wildfires, agriculture, and ecosystems. Here,

we look at the single hottest day per 1 year and per

20 years. The 1-day-in-1-yr extreme was obtained by cal-

culating the highest value of maximum daily temperature

in each year, then averaging across years. The 1-day-in-

20-yr extreme was estimated using a bootstrap method,

picking 20 random years from the dataset at a time, taking

the maximum across the 20 years, then averaging across

the 1000 trials. (Using a sliding 20-yr window gave similar

results.) The short period of record means that the esti-

mate is subject to large sampling uncertainty.

Figure 4 shows the hottest day in 1 year and 20 years

from (left) the observations and the error using (middle)

BCCA and (right) LOCA. On average, LOCA values

are within 0.18C of the observed values and the RMS

errors are ;0.58C. BCCA mean and RMS errors are

both larger than those found with LOCA (with a mean

error ;0.58C and RMS error ;18C). More notable is

that BCCA’s error pattern displays a distinct cold bias

along the West Coast, particularly in central California,

Northern California, and Oregon. This may be due to

problems representing the marine layer using domain-

wide analog patterns, because the marine layer is con-

fined to the coast. As much of California’s population is

concentrated along the coast, this cold bias could de-

grade simulations of peak energy use in the state.

c. Spatial variability in daily maximum temperature

Downscaled fields should realistically represent the

spatial variability of the original observed field. To remove

the strong effects of topography and other spatially varying

land surface influences on daily maximum temperature,

we first compute anomalies with respect to the daily cli-

matological mean value, then calculate the spatial stan-

dard deviation in a 3 3 3 array of grid cells around the

center point. Spatial variability is a function of the length

scale over which it is evaluated, so we compute the vari-

ability progressively on data that have been aggregated to
1/88 and 1/48 (i.e., by a factor of 2 and 4) in each direction.

Figure 5 shows the spatial variability (8C) for an initial

spatial coarsening of the temperature field by a factor of

(top) 2 and (bottom) 4 for the (left) observations and the

error with respect to the observations using (middle left)

and (middle right) BCCA and (right) LOCA. LOCA

captures the observed pattern accurately for the finest

spatial scales (coarsening of 2) and reasonably well for

the longer spatial scales. Averaged over the domain, the

spatial standard deviations obtained from the down-

scaled data are within 0.028C of those from the obser-

vations for a coarsening of 2 and 0.18C for a coarsening

of 4. BCCA downscaling has considerably larger errors

than LOCA in both the mean and RMS error for both

coarsening levels, with lower spatial variability in the

downscaled result than observed.
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FIG. 3.Monthlymean dailymax temperature (8C) for selectedmonths from (left) observations (1970–

2010) and the error (8C)with respect to observations after downscaling with (middle) BCCAand (right)

LOCA.
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As mentioned in the introduction, much of this unre-

alistically large spatial coherence arises from the averag-

ing of multiple analog days in BCCA. This is emphasized

by Fig. 5 (middle right), which shows the error in spatial

variability after a final bias correction step has been added

after the BCCA downscaling process (similar to what

MACA does). Even with postdownscaling bias correc-

tion, the spatial variance is lower than that found in either

the observations or LOCA.

d. Temporal variability in daily maximum
temperature

The downscaled field should properly represent tem-

poral variability in the daily maximum temperature. This

variability includes extremes, described above, but here

we consider a broader representation of anomalous var-

iation represented by the temporal standard deviation.

Figure 6 shows the seasonally averaged temporal stan-

dard deviation computed at every point from the (left)

observations and the error with respect to observations

after downscaling with (middle) BCCA and (right)

LOCA.Most of the year the standard deviation is highest

overMontana and lowest along theWest Coast, although

this pattern changes to a north–south gradient in summer.

LOCA slightly but consistently underestimates the vari-

ability, with amean error of;0.058Con values that range

from 38 to 88C. The errors in LOCA have little spatial

pattern, instead appearing evenly distributed across the

domain. BCCA has a considerably larger mean error

than LOCA and is systematically biased low, as well as

having larger RMS errors than LOCA. BCCA also has

a deficit of variability adjacent to the west coast.

Another important aspect of the temporal behavior of

daily maximum temperature is the duration of heat

waves, which affects energy use, agriculture, ecosystems,

and public health. Figure 7 (left) shows percentiles in the

observed distribution of heat wave length (days), defined

as consecutive days with daily maximum temperature

$358C. Values are only plotted in locations where there

are at least 20 heat waves, except for the median (50th

percentile) value, which shows values at all locations.

Errors in the downscaled fields with respect to observa-

tions are shown in Fig. 7 (middle) and (right) for BCCA

and LOCA, respectively. LOCA generally captures the

distribution quite well, with a slight bias that rises to ;1

day shorter than observed at the 95th percentile, aver-

aged across the domain. BCCA is similar to LOCA ex-

cept in the desert region near the border ofCalifornia and

Arizona, where BCCA does notably worse than LOCA,

especially in the 95th percentile values.

e. Correlation of downscaled daily maximum
temperature with observations

Because we are downscaling coarsened observations,

we can compute the temporal correlation between the

downscaled field and original observations at every

FIG. 4. Average highest daily max temperature (8C) from (left) observations and the error (8C)with respect to observations
after downscaling with (middle) BCCA and (right) LOCA. Results are over (top) a year and (bottom) 20 years.
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point. The correlation is shown in Fig. 8 for both (left)

BCCA and (right) LOCA, using three ways of averaging

the data. The correlation of the time series of daily

anomalies is shown in Fig. 8 (top); for LOCA the aver-

age value is 0.95, although values are slightly lower along

the coast than in the interior. This may be due to the

coarse-scale field being unable to preserve information

about coastal marine layer processes that are important

to daily maximum temperature along the coast. Monthly

averaged anomalies [Fig. 8 (middle)] are represented

incrementally better than daily anomalies, while yearly

averaged anomalies are somewhat worse [Fig. 8 (bot-

tom)]. In all three cases, BCCA gives modestly lower

correlation values than LOCA.

5. LOCA results: Precipitation

a. Annual and monthly average precipitation

Figure 9 compares the LOCA and BCCA results when

downscaling January daily precipitation over the western

United States, evaluating in terms of both percentage and

actual value. As noted by Gutmann et al. (2014), BCCA

underpredicts the precipitation amount (averaged over

the domain, the result is about 15% weaker than ob-

served), particularly in the driest areas. In the wettest

regions of the Sierra Nevada and Oregon Cascades the

errors are slightly positive, so the errors appear to be

inversely related to the amount of precipitation. The

LOCA January mean, by contrast, is only 0.8% weaker

than observed, shows a much reduced signature of the

magnitude of the error being linked to the magnitude of

precipitation, and has little spatial coherence. In both

absolute (cmyr21) and relative (%) terms, the average

LOCA error is;20 times smaller than the BCCA error.

In July (Fig. 10), BCCA has a widespread region

where downscaled precipitation is less than half that

observed. Of course, in much of California, July is a very

dry month, and LOCA has trouble accurately re-

producing these extremely small values as well. How-

ever, the errors in LOCA for both January and July have

the appearance of being mostly random noise or sam-

pling errors, unlike the spatially coherent error fields

found in BCCA. The tendencies seen here for January

and July are also found in the other months and annual

average (Figs. S1 and S2 in the supplemental materials).

FIG. 5. The spatial variability of dailymax temperature anomalies (8C), computed as the spatial std dev in a 33 3 array around the center

grid cell, from (left) observations and the error (8C) with respect to observations after downscaling with (middle left) BCCA, (middle

right) BCCA (after an additional postdownscaling bias correction is added to BCCA), and (right) LOCA. Results are shown for the daily

max temperature anomaly field coarsened by a factor of (top) 2 and (bottom) 4 in each direction (lat, lon).
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FIG. 6. Temporal std dev (8C) of daily max temperature, by season, for (left) observations and the

error (8C) with respect to observations using (middle) BCCA and (right) LOCA.
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FIG. 7. Percentiles in the distribution of heat wave duration (days), where a heat wave is defined as

a consecutive sequence of days with Tmax$ 358C, for (left) observations and the error (days) with

respect to observations when downscaled using (middle) BCCA and (right) LOCA. For example,

(upper middle) shows that the median (50th percentile) length of a heat wave in the border region

between California and Arizona is 6 days.

2570 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



FIG. 8. Temporal correlation between observations and downscaled daily max tem-

perature for (left) BCCA and (right) LOCA for (top) daily, (middle) monthly, and

(bottom) yearly anomalies.
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b. Precipitation extremes

Climate change has the potential of changing extreme

high precipitation (e.g., Parry et al. 2007), which in some

locations can dominate the overall annual precipitation

change (Pierce et al. 2013). Also, climate change could

increase flooding in mountainous watersheds as more

winter storms drop rain instead of snow, and what snow

there is melts earlier in the year (Das et al. 2013). This is

a significant concern; for example, even in the present

climate, flood damage has generated the largest total

agricultural insurance payout in California over the past

15 years (Lobell et al. 2009). Here, we look at the single

day with the greatest amount of precipitation typically

found in 1 and 20 years. The methodology is the same as

used for temperature extremes (section 3c).

Figure 11 shows the average yearly maximum pre-

cipitation in a 1-yr period. BCCA tends to underesti-

mate the yearly maximum, by about 23% averaged over

the domain. Similar to the pattern seen for monthly and

annual mean precipitation, the error pattern has spatial

structure, with overestimates in the high-precipitation

regions of the Sierra Nevada of California, the Oregon

Cascades, and the Olympic peninsula and severe un-

derestimates in the dry Mojave Desert region. By con-

trast, LOCA errors are much smaller and show little

spatial coherence.

The average maximum daily precipitation experi-

enced in 20 years exhibits similar patterns, only with

more noise, which is not surprising considering the dif-

ficulty of estimating this quantity from only 30 years of

data (not shown). BCCA continues to show systematic

errors that are mildly positive over the Sierra Nevada,

Oregon Cascades, and Olympic peninsula and strongly

negative over dry areas in the Southwest. LOCA’s

average error is much smaller (mean of 24.2% versus

224.4% for BCCA) and showsminimal spatial patterns.

c. Precipitation spatial variability

Another key feature of a downscaled field that in-

fluences hydrological phenomena, including flooding, is

the spatial variability of the precipitation field. If the

downscaled field has too little spatial variability, then

FIG. 9. A comparison of LOCA and BCCA downscaling January average precipitation (mmday21) over the western United States.

2572 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



adjoining catchments are more likely to receive high

precipitation simultaneously, artificially inflating flood-

ing probabilities.

We calculate the coefficient of spatial variability for

precipitation the same as for daily maximum tempera-

ture (section 3d), with the exceptions that actual pre-

cipitation is used for the calculation instead of anomalies

and that the spatial standard deviation is normalized by

the precipitation value in the center grid point to pro-

duce a coefficient of variability (temperature anomalies

cannot be normalized this way because values can be

zero). We only include days when the center gridpoint

precipitation is $2.5mmday21 to avoid excessively in-

flating the value under conditions of little precipitation.

Figure 12 shows results for an initial spatial coarsening

by a factor of (top) 2 and (bottom) 4. BCCA has overly

weak spatial variability, by about 16% on average.

LOCA has only one-fifth this error, and the sense is in

the opposite direction (slightly too much spatial vari-

ability) for a coarsening of 2. Similar results are found

for a spatial coarsening of 4 in each direction; the BCCA

results are noisier but otherwise little changed, while

LOCA tends to slightly (3%) underestimate the spatial

variability over almost all the domain.

As discussed above, averaging multiple analog days in

BCCA increases the spatial coherence, so even bias

correcting the overly weak BCCA precipitation fields

after downscaling (like MACA does) leaves too much

spatial coherence [Fig. 12 (middle right)]. The post-

downscaling bias correction improves the representa-

tion of spatial coherence, but it still has roughly twice the

error in the mean and RMS as does LOCA.

d. Precipitation temporal variability

A proper representation of precipitation’s temporal

variability is key to impacts relating to flooding, drought,

and agriculture. Figure 13 shows the temporal standard

deviation of daily values at each point for all winter

(DJF) days. BCCA underpredicts the values with a

mean error of 21%, while LOCA is much closer,

underpredicting the values with a mean error of 2%. In

BCCA’s case, this reflects the negative bias in mean

FIG. 10. As in Fig. 9, but for July.
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precipitation (e.g., Figs. 9, 10). As seen in previous fields,

BCCA tends to have errors that mirror the actual values

of the field; for example, the errors are positive over the

regions of large precipitation in the Sierra Nevada,

Northern California, and southern coastal Oregon. By

contrast, LOCA has a pattern of errors that appears to

be closer to random sampling variability.

In summer (Fig. 14), the temporal standard deviation

of observed precipitation drops to very low values over

California, which is a challenge for both methods to

represent. BCCA nonetheless underpredicts the stan-

dard deviation over virtually the entire domain, with

a mean value of 230%. LOCA has appreciable errors

only in the very lowest-valued parts of the region, and

the errors appear to be noisy, with both positive and

negative values. Averaged over the domain, the LOCA

standard deviation is ;2.8% too small.

A critical aspect of precipitation’s temporal behavior

is the persistence of heavy-precipitation events, because

it has bearing on floods (for multiday rain events) or

transportation (formultiday snow events). Percentiles in

the distribution of the length of wet spells are shown in

Fig. 15 for a threshold of 10mmday21. LOCA generally

captures the duration of wet spells quite well. Results

using a threshold of 25mmday21 are similarly well

represented (not shown).

An important point to emphasize here is that LOCA is

a spatial downscaling scheme; every time step is down-

scaled independently, without regard to any other time

step. The method has no ‘‘knowledge’’ of the temporal

characteristics of either the observations or coarse-

resolution GCM data. So if, for example, a coarse cli-

mate model precipitation field had a poor representation

of wet-spell length, then LOCA, being a spatial down-

scaling scheme, would not mitigate this temporal bias. In

an entire downscaling system that used LOCA as the

spatial downscaling step, such a bias in wet-spell length

would have to be addressed in the bias correction step.

e. Fraction of zero-precipitation days

One drawback of BCCA is that it tends to produce driz-

zle in locations where the original field being downscaled

FIG. 11. The most precipitation that falls in a single day, on average over a year (cmday21).
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is dry, because there is a reasonable chance that some of

the 30 analog days that are weighted into the downscaled

estimate have precipitation where the field being down-

scaled has none. This is illustrated in Fig. 16, which shows

the fraction of winter (DJF) days that have precipitation

less than 0.1mmday21. This threshold is chosen to avoid

pointlessly exaggerating the problem in the BCCA re-

sults; if a threshold of zero had been used, BCCA’s de-

piction would look substantially worse, but such

precipitation values are so small as to be of little impor-

tance for most applications. (One possible exception

might be if a cloud or solar insolation parameterization is

affected by the presence of nonzero precipitation.) As

expected, BCCA depicts fewer days than are seen in the

observations, by about 11% on average. The errors are

not random, having a distinct spatial pattern that mimics

that of the overall zero-precipitation day rate. LOCA

produces about 2% more days than observed, with only

a weak spatial pattern.

The fraction of ,0.1mmday21 precipitation days in

summer (JJA; Fig. 17) shows similar results. The area-

averaged BCCA shortfall is nearly the same as in winter

(211.3%), and the spatial pattern of errors again reflects

the mean field, although the pattern itself is different

from the winter pattern. The errors in LOCA during the

summer are about 22%, on average.

Compared to the traditional CA approach, LOCA

generates less drizzle in locations where the coarse input

field is dry because LOCA only needs one analog day to

be dry in the local region being downscaled to produce

a dry downscaled field. By contrast, traditional CA may

produce drizzle if any of the 30 analog days has pre-

cipitation in the location being downscaled, depending

on how exactly the combination of 30 analog weights

multiplied by the precipitation values cancels to zero in

the dry location. However, it should be understood that

LOCA is a spatial downscaling technique and does not

‘‘know’’ if the coarse field being downscaled has drizzle

because the day really did have drizzle or because it is

from a GCM that is systematically biased toward having

toomuch drizzle. Bias correction that produces a realistic

precipitation distribution must be applied to a GCMfield

before it is downscaled with LOCA to avoid excess

drizzle in the downscaled result. Likewise, a training

dataset that has too much drizzle would produce down-

scaled fields with too much drizzle, as the LOCA scheme

assumes (like other statistical methods) that the training

dataset is accurate. This may be an issue with the training

FIG. 12. The coefficient of spatial variability (nondimensional) for daily precipitation, computed as the spatial std dev in a 3 3 3 array

divided by the value at the center.
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data used here, where the time of observation is used to

split measured precipitation amounts across 2 days

(Livneh et al. 2013).

f. Correlation of downscaled precipitation with
original observations

Figure 18 (top) shows the temporal correlation be-

tween the precipitation time series at each point from

the observations and downscaled data. LOCA shows

higher values than BCCA over the majority of the do-

main and a higher average correlation overall. The

subsequent rows of Fig. 18 show the analogous corre-

lation fields for the daily anomalies, monthly anomalies,

and yearly anomalies. LOCA generally has higher skill

in reproducing the original fields than BCCA. LOCA

daily anomaly correlations with observations, averaged

over the western U.S. domain, are 0.83 compared to 0.76

for BCCA. Skill increases at the longer time scales,

particularly from daily to monthly aggregation.

LOCA’s correlations tend to be slightly higher where

the finescale grid box falls in the center of the original

coarse 18 3 18 data that were downscaled, as can be seen

in Fig. 18. This is likely because at the center of a coarse

grid cell, LOCA’s local spatial matching is covering

approximately the same region as was aggregated to

produce the coarse-scale data in the first place.

6. LOCA results: Multivariate downscaling for
daily minimum temperature

Generating downscaled fields from multiple climate

variables should preserve important aspects of their

joint distribution (e.g., Zhang and Georgakakos 2012).

For example, Thrasher et al. (2012) recommend calcu-

lating bias-corrected daily minimum temperature Tmin

as the difference between daily maximum temperature

Tmax and diurnal temperature range DTR, because this

prevents Tmin. Tmax. This approach was implemented

in LOCA by calculating downscaled Tmin as the differ-

ence between downscaled Tmax and downscaled DTR.

However, when Tmax and DTR are downscaled in-

dependently, the derived Tmin has unrealistically high

FIG. 13. Temporal std dev of daily precipitation in winter (DJF).
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variability along the West Coast even though downscaled

Tmax and DTR themselves do not show excessive vari-

ability. This is likely because Tmin adjacent to the coast is

influenced by ocean surface temperatures (which are less

variable than land temperatures), so that a high Tmax

along the coast is associated with a high DTR—that as-

sociation is not properly captured when Tmax and DTR

are downscaled independently.

As described in section 3c, LOCA implements multi-

variate downscaling by choosing analog days on the basis

of weighted ranks across all the variables being down-

scaled. If w is the weighting parameter and two variables

are being downscaled, then the final multivariate rank of

a day when downscaling variable 1 along with information

from variable 2 iswR11 (12w)R2 whereRn is the rank of

the observed day for variable n. If w 5 0.5, the variables

are weighted equally, while if w 5 1.0, then the two vari-

ables are downscaled independently, exactly as if a uni-

variate downscaling were being performed.

The procedure is illustrated when computing Tmin as

the difference between downscaled Tmax and down-

scaled DTR in Fig. 19. Plotted values are the error in the

simulated daily Tmin standard deviation in summer as a

function of the weight w used in the multivariate down-

scaling (indicated in titles). The RMS error increases

monotonically as the weight increases from (top left) 0.5,

indicating equal weighting of Tmax and DTR, to (bottom

right) 1.0, indicating independent downscaling ofTmax and

DTR. These results show that multivariate downscaling is

necessary to improve the simulation of daily Tmin com-

puted as Tmax2 DTR and should be evaluated for other

circumstances and variables. In particular, Abatzoglou and

Brown (2012) indicate the importance of multivariate

downscaling when computing relative humidity.

As a test, we recomputed Fig. 8 (the point-by-point

temporal correlation between the downscaled and ob-

served Tmax fields) with Tmax from the multivariate

downscaling and found the results to be nearly indistin-

guishable. So using the multivariate scheme does not ap-

pear to degrade the quality of the Tmax downscaled field.

Temperature/precipitation relationships and snow

K. Hegewisch and J. Abatzoglou (2013, personal

communication) have pointed out the importance of

FIG. 14. As in Fig. 13, but for summer (JJA).
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FIG. 15. Percentiles in the distribution of wet-spell length, where a wet spell is defined as a string of

consecutive days with precipitation$10mmday21: (left) observations, (middle) LOCA, and (right)

the difference (LOCA minus observations). Values are only plotted in locations that experience at

least 20 wet spells, except for the median (50th percentile), which is plotted in all locations with at

least one value.
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preserving observed relationships between temperature

and precipitation in downscaled datasets used for hy-

drological applications. In many locations and seasons,

observations show that wet days are colder than dry

days. If a downscaling scheme fails to preserve this dif-

ference, the simulated precipitation might arrive as rain

instead of snow and thus run off quickly rather than

being preserved in the snowpack. We evaluate this by

comparing the seasonal distribution of Tmax found on

wet days to that found on dry days, using the observa-

tions, downscaled LOCA, and BCCA data. Overall,

LOCA does a good job of preserving the wet/dry day

temperature difference; BCCA does nearly as well if

a 1mmday21 precipitation threshold is used in the

analysis to reduce the impact of BCCA’s too numerous

drizzle days (Fig. S3 in the supplemental materials).

A similar question is whether LOCA, which down-

scales based on temperature anomalies, does as well

reproducing temperature on below-freezing days as it

does on above-freezing days. Selection of the analog

days does not take into account whether or not the

temperature is below freezing, yet snow might prefer-

entially be present on such days, perhaps leading to

characteristically different spatial patterns of tempera-

ture. We evaluated this by calculating the temporal

correlation between LOCA downscaled Tmax anoma-

lies and observed Tmax anomalies as a function of actual

Tmax (i.e., not the anomaly) for the day. Results (Fig. S4

in the supplemental materials) show that correlations

tend to be highest for temperatures near the middle of

the distribution and fall off at the extreme temperatures,

but there is no systematic change in correlation as the

freezing point is crossed.

7. Summary and conclusions

We have introduced a new technique for statistical

downscaling called localized constructed analogs (LOCA).

Existing constructed analog techniques such as CA,

BCCA, and MACA (Hidalgo et al. 2008; Maurer et al.

2010; Abatzoglou and Brown 2012) average together

multiple days to construct the final downscaled field.

FIG. 16. Fraction of days with precipitation .0.1mmday21 (referred to as zero-precipitation days) for winter (DJF).
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This averaging increases the spatial coherence of the

downscaled fields, dilutes extremes, and produces driz-

zle in nonprecipitating areas of the original model.

LOCA avoids these problems by selecting the single

best matching analog day in a local region about the

point being downscaled.

Results from downscaling daily maximum tempera-

ture and precipitation over the western United States

illustrate that LOCA reproduces the extremes in down-

scaled summer maximum daily temperature and winter

daily precipitation quite well. LOCA provides a respect-

able representation of the overall variability, with tem-

poral correlations against observations that are superior

to BCCA over a range of time scales. LOCA also re-

alistically captures the spatial variability of the original

field and avoids the production of drizzle in non-

precipitating areas.

Unlike the other constructed analog methods, there is

a natural domain independence to LOCA. Starting from

a point being downscaled, increasing the domain size

past the distance where the correlation between the

distant point and the starting point drops to zero does

not affect the downscaling results at the starting point.

Like all other statistical methods, though, LOCA is

trained on historical observations, and it therefore as-

sumes that this spatial relationship will remain largely

unchanged in the future climate. Likewise, LOCA as-

sumes that the characteristic relationship between local

and area-averaged climate fields will not appreciably

change in the future. Such assumptions could be tested

with targeted dynamical downscaling simulations.

Multivariate downscaling is straightforward to incor-

porate into the LOCA framework with user-specifiable

weights for the multiple variables. The results here show

the utility of multivariate downscaling when computing

daily minimum temperature as the difference between

daily maximum temperature and the diurnal tempera-

ture range.

Recently, BCCA has been found to significantly un-

derestimate monthly averaged precipitation as well as

spatial and temporal variability and extreme events

(Gutmann et al. 2014). Postdownscaling bias correction,

FIG. 17. As in Fig. 16, but for summer (JJA).
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FIG. 18. Correlation between time series of precipitation at each point from the original observations and

downscaled results for (left) LOCA, (middle) BCCA, and (right) their difference for (from top to bottom) the

entire period without taking anomalies first, daily anomalies, monthly anomalies, and yearly anomalies.
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such as used in MACA (Abatzoglou and Brown 2012),

reducesmany of these errors but is unable to repair all of

them. For example, we have shown that the represen-

tation of spatial variability is improved but not com-

pletely fixed by an additional bias correction step added

after BCCA.Also, different fine-resolution grid cells are

bias corrected independently, so the spatial structure of

an event (say, a storm) will be modified by this process.

A related question is whether it is better to use

a downscaling scheme that produces less bias in the first

place, versus producing downscaled fields that initially

have larger biases and then correcting them with an-

other processing step. Also, some applications may be

intrinsically better suited to the smoothed spatial char-

acteristics of the BCCA downscaled fields. Although

the answers to these questions depend on a host of fac-

tors such as the application being considered and the

processing time available, we believe that the LOCA

scheme represents a useful addition to the arsenal of

downscaling tools currently available.
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FIG. 19. Error (8C) with respect to observations in the std dev of summer (JJA) daily temperature min, computed as the difference

between downscaled Tmax and downscaledDTR.Each is computed using a different weight in themultivariate downscaling procedure.A

weight of (top left) 0.5 means that the two variables (Tmax and DTR) are considered equally in the multivariate downscaling procedure;

a weight of (bottom right) 1.0 means that the two variables are downscaled independently. See text for details.
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APPENDIX

Details of the LOCA Procedure

Let OF(x, y, t) be a time series of daily observations,

which are a function of longitude x, latitude y, and day t

on a fine-resolution grid (here, 1/168). When downscaling

temperature, anomalies are calculated with respect to

day of year mean values estimated using cubic spline

interpolation of monthly mean values in order to reduce

the sampling errors generated by calculating day of year

mean values directly with only 41 years of data. Leap

days are ignored, with themean for 29 February taken as

the mean of the values on 28 February and 1 March.

Let MC(x, c, t 0) be the model field on the coarse-

resolution grid (we indicate the coarse-grid longitude and

latitude by x and c and the fine grid resolution by x and y

to emphasize their difference), and t 0 is a model day to be

downscaled. Let DY(t) be the day of the year of day t.

a. The analog pool locations: Finding matches at the
regional scale

We refer to the locations where the pool of analog

days are chosen as the analog pool points xP and select

them from the coarse grid. For each xP, we use a spatial

mask G(x, c) to limit the region over which the model

day is compared to the coarsened observations when

determining the fit between the two. Variable G is set to

1 where the Pearson correlation between the observed

time series at locations xP and OC(x, c) . 0 over the

historical training period, where OC(x, c, t) is the ob-

servations aggregated to the coarse model grid. Variable

G is set to 0 elsewhere. As a sensitivity test, we also tried

setting G to 1 where the correlation is significantly pos-

itive at the 95% level; with ;30 years of daily training

data by season, this yields a significance value of ;0.07

(assuming a synoptic autocorrelation time scale of

5 days), which made little difference to the final result.

To determine the locations of the xP in a systematic

way, we modeled them as points that are repelled from

both each other and the domain edges. We initially

placed 35 points randomly in the domain (providing

approximately one xP per 38 3 38 latitude–longitude

square) and then let them evolve forward in time,

moving according to their mutual repulsion from both

the domain edges and all the other points, until the ve-

locity of the points dropped to near zero. The xP were

then chosen as the closest coarse-grid locations to the

final point positions. This process only needs to be done

once for a given domain. In sensitivity tests, we found

the points to generally end up near the same final loca-

tions no matter where they started, except in a few lim-

ited regions where the points would alternate between

different near-stable configurations. We also tried using

20 and 70 xP points; although the results differed in de-

tails, the overall statistics of the final downscaled field

were little changed. We conclude that the exact place-

ment of the points does not matter as long as the total

number of points is unchanged and they are distributed

approximately equally across the domain.

For picking xP locations in a new domain, the key

point is that the spacing between analog pool points

should be smaller than the extent of the G masks. This

allows a gradual change in the composition of the analog

day pool as the domain is traversed, rather than an

abrupt transition going from one xP to another. It also

ensures that every fine-resolution grid cell falls inside

the mask used to compute analog days for that grid cell.

So, for example, if the G masks have a typical extent of

108 3 108 in longitude–latitude (Fig. 1), placing an xP

point every 38 or finer is appropriate.

b. Selecting the analog days at the regional scale

After determining the xP locations for analog day

selection, we choose the analog days by finding those t

such that

 
�
x,c

fG(x,c, xP, t̂)[OC(x,c, t)2MC(x,c, t0)]g2/n
!1/2

(A1)

is minimized, subject to the constraint that DY(t) and

DY(t0) are within 45 days of each other. This procedure is
like that used in Hidalgo et al. (2008), but calculated at

all analog pool locations andwith a spatial mask applied.

Here, n is the number of active points on the coarse grid,

and, as described above, G(x, c, xP, t̂ ) is a spatial mask

that is different at each xP point and is a function of

season t̂. The applicable season is determined by t 0.
When conducting cross-validated testing (i.e., down-

scaling coarsened observations over the same period as

the training period), we additionally require that the

potential analogs must be well removed from the

downscaled target day (jt2 t0j. 320 days), so that no

information from any day near the day being down-

scaled is used to train the model.

Equation (A1) is computationally expensive [for each

location (x, c) there are over 3000 values of t in our

training dataset that have to be checked for each t 0], which
is why we choose only a limited number of xP locations.

c. Finding the one best matching analog day at the
local scale

As noted in the main text, finding the best match be-

tween themodel and observationsmust be implemented
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on the finescale grid. We therefore first interpolate

MC(x, c, t0) to MF(x, y, t0) using bicubic interpolation.

However,OF(x, y, t) has significant information content

at the finest spatial scales that MF(x, y, t0) lacks. To

address this, we bicubic interpolateOC(x, c, i) from the

Na analog days (where i is the analog day number) in the

pool of analog days back to the fine grid to produce

ÔF(x, y, i), which can sensibly be compared toMF(x, y, t0).
At each fine-resolution grid location (x, y) we find the

single analog day t from the pool of analog days that

minimizes

(
�

x05x1r,y05y1r

x05x2r,y05y2r
[ÔF(x0, y0, t)2MF(x0, y0, t0)]2/n

)1/2

.

(A2)

This single analog day selection is done locally (hence

the name, localized constructed analogs), in a square

region of size 2r 1 1 grid cells around the center grid

point being downscaled. It is desirable to have r as small

as practical, because the overall downscaling time in-

creases with r, but not so small as to produce downscaled

results that are spatially incoherent. We used r 5 10 for

both temperature and precipitation.We also tried r5 20

and found that the computational time increasedwith no

net benefit in the final result (some measures were bet-

ter, others worse).

d. Constructing the final downscaled field

To construct the final downscaled field we define

a scale factor S. When downscaling absolute values (i.e.,

precipitation), we use a multiplicative scale factor:

S5

8>><
>>:

0 if ÔF(x, y, t)5 0,

MF(x, y, t0)
ÔF(x, y, t)

otherwise
. (A3)

To avoid having S blow up for small values of

ÔF(x, y, t), we limit it to 2. When downscaling anoma-

lies (i.e., temperature), we use an additive scale factor:

S5MF(x, y, t0)2 ÔF(x, y, t) . (A4)

The downscaled value d(x, y) is then

d(x, y)5

�
SOF(x, y, t) for absolute values

S1OF(x, y, t) for anomalies
. (A5)

At edge cells using a different analog day (t0), Eqs.
(A3)–(A5) are recomputed at (x, y) using t0. The final

downscaled value at edge cells is then the weighted sum

of the values computed using t and t0, where the weight
is determined by the number of adjacent grid cells using

t0 versus t.

e. Calculating the change in future climatology

LOCA downscales temperature as an anomaly, so

when downscaling a climate projection, the systematic

future change in climatology toward warmer conditions

must be addressed. CAandBCCAdonot treat the change

in climatology in any special way; for example, a hot day at

the end of the century is simply considered an extremely

hot day compared to the historical training period.

In LOCA, the change in climatology is calculated

in separate 30-yr periods. The selection of 30-yr cli-

matologies is motivated by the recommendation of the

World Meteorological Organization (WMO) that cli-

matological normals be calculated over 30-yr periods [a

brief history of climatological normals can be found in

Trewin (2007)], a recommendation followed by the

National Oceanic and Atmospheric Administration

(NOAA) and theNational ClimaticDataCenter (NCDC;

www.ncdc.noaa.gov/oa/climate/normals/usnormals.html).

For example, imagine we are downscaling the future

period 2040–69. We calculate the mean over the his-

torical period and the mean over the future period (for

each day, since LOCA is a daily method), and take the

difference. The result is simply an anomaly field rep-

resenting the change in climatology from the historical

period to the future period, which is itself downscaled

using LOCA as described in the main text. The result is

a fine-resolution representation of the change in cli-

matology, which is added to the historical climatology

to produce the climatology of the future period. The

downscaled temperature anomaly fields LOCAgenerates

are then added to this future climatology. If we were also

downscaling a different future period, say 2070–99, then

the process is repeated for that future period.

One advantage to calculating the change in climatol-

ogy this way is that it becomes easier to find historical

analogs for temperature in the face of global warming.

CA and BCCA must find historical analogs even for

days during heat waves at the end of this century, which

could be challenging given the likely temperature

changes. By contrast, LOCA’s anomalies are only cal-

culated with respect to the future 30-yr climatology and

so are easier to match with historical analogs.

Consider how a model’s representation of decadal

variability such as the Pacific decadal oscillation (PDO)

would be affected by this procedure. Assume for sim-

plicity that the model’s PDO was high over the period

2040–69 and low over the period 2070–99. Then (by

construction) the mean of the downscaled field over

2040–69 would match the mean of the GCMover 2040–69,
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and similarly for the 2070–99 period. So, the downscaled

product would retain the original GCM’s PDO signal on

those long time scales. On shorter time scales (i.e.,

within the 2040–69 period), assume that the model PDO

was trending toward a peak. That trend would also be

preserved by LOCA because the temperatures would

start out cold at the beginning of the 2040–69 period and

trend to warm at the end of the 2040–69 period, and

LOCA preserves the model-predicted temperature evo-

lution (e.g., Fig. 8). Thus, the overall result is that the

GCM’s PDO will be reproduced in the downscaled field.
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