Utah State University
DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1982

Predicted Limnology of the Proposed Ridges Basin Reservoir

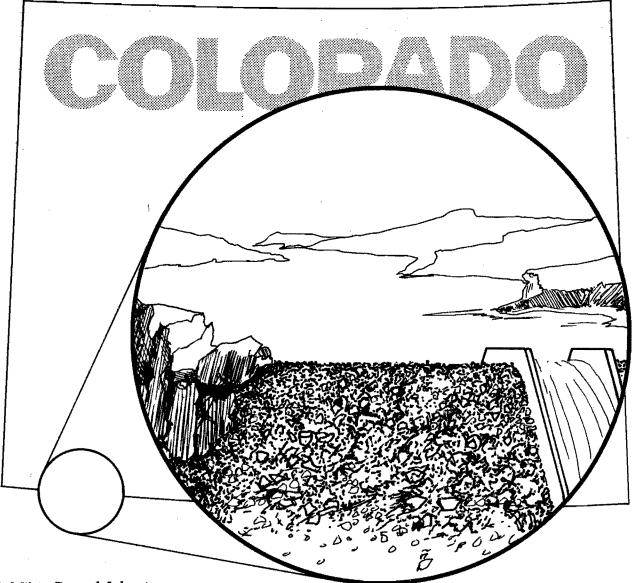
Lawrence A. Baker

V. Dean Adams

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation


Baker, Lawrence A. and Adams, V. Dean, "Predicted Limnology of the Proposed Ridges Basin Reservoir" (1982). *Reports*. Paper 615. https://digitalcommons.usu.edu/water_rep/615

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

PREDICTED LIMNOLOGY OF THE PROPOSED RIDGES BASIN RESERVOIR

Lawrence A. Baker and V. Dean Adams

Utah Water Research Laboratory Utah State University Logan, Utah 84322

WATER QUALITY SERIES UWRL/Q-82/01

April 1982

PREDICTED LIMNOLOGY OF THE PROPOSED

RIDGES BASIN RESERVOIR

Ъу

Lawrence A. Baker and V. Dean Adams

WATER QUALITY SERIES

UWRL/Q-82/01

Utah Water Research Laboratory Utah State University Logan, Utah 84322

April 1982

ABSTRACT

A limnological evaluation was conducted for the offstream Ridges Basin Reservoir proposed by the Bureau of Reclamation in southwest Colorado. The study required the determination of existing water quality in the source river and use of the information to predict the algal standing crop, hypolimnetic oxygen deficit, Secchi disk transparency, and retention of metals in the proposed reservoir.

A water quality study was conducted between May 1977 and August 1978. Samples were collected from the Animas River, which will provide the inflow to the proposed reservoir, and from the La Plata River, which will receive discharge from the reservoir. Samples were analyzed for 49 water quality constituents. The data were used to evaluate the quality of water in both rivers with respect to the proposed Colorado Water Quality Standards for raw water supply, agricultural use, and the protection of the aquatic biota.

A phosphorus loading model was evaluated and used to predict the summer standing crop of chlorophyll a that will occur in the reservoir. A computer model was used to simulate the rate of depletion of oxygen in the hypolimnion during the summer stratification period. The retention of iron, zinc, lead, and copper was predicted by using a simple mass balance model together with existing data on the retention of metals in lakes.

The standing crop of chlorophyll <u>a</u> in the reservoir will be between 5 and 13 mg/m³ during the summer. The average Secchi disk transparency will be about 1.9 m. The oxygen concentration in the hypolimnion will probably drop to between 5 and 6 mg/l by the end of the stratification period. Between 92 and 99 percent of the iron, 30 to 85 percent of the zinc, 86 to 95 percent of the lead and 0 to 85 percent of the copper entering the reservoir will be retained. Many of the proposed standards for metals were exceeded in both rivers throughout most of the study period. The concentration of total metals was correlated with peak flows that occur during the period of spring runoff. The actual values of the limnological parameters will vary with changes in the hydrologic regime of the reservoir. These predictions do not apply to the period of initial filling and stabilization.

Control of the hydrologic regime by manipulating the inflow pumping strategy was suggested as a means of controlling the inflow of both nutrients and metals into the reservoir.

iii

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Bureau of Reclamation, Salt Lake City, Utah.

The authors of this report express gratitude to the personnel of the Utah Water Research Laboratory who participated in the chemical analysis and data compilation.

Sincere thanks are also extended to the Utah Water Research Laboratory, L. Douglas James, Director, for providing laboratory equipment and facilities necessary to complete this study and to the capable editorial and secretarial staff for their assistance in preparation and publication of this report.

TABLE OF CONTENTS

.

INTRODUCTION	•••		•	•	•		•	•	•	•		•	•		•	•	1
Backgro Objecti	ves of					•		•	•	•	•	•		:	•	•	1 1 1
Project WATER QUALIT		-		тл	• • • •	• \ •• \	י ספר	י ז די כי	י ידי	•	•	•	•	•	•	•	5
WATER QUALT	I SURVE	I ANI	-1AD	LA	ГLF	11A	r AU	JJEC	1	•	•	•	•	•	•	•	5
PREDICTION O BASIN RESE		IIC STA	ATUS	FC)R]	THE ·	PR(OPOS •	SED	RII	GES	3	•	•		•	7
Introdu						•											7
Applica Model	to Exi	sting	Lak	es	and	l Re	esei	cvoi	rs		4						7
Applica Model	tion of to the	Volle Ridge	enwe es B	ide asi	er's In F	s Pl Rese	nosp ervo	phor pir	us	Loa	ıdír	ıg					15
DEPLETION OF	HYPOLI	MNETI	C DI	SSC	DLVE	ED (OXY	GEN									19
Introdu	ction																19
USBR Te		re Sir	nula	tic	m	٠	•	•		•		•	•	•	•	•	19 20
Model D	evelopm	lent	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	20
	ffusion		٠	•	•		•	•	•	•	·	•	٠	•	•	•	20 21
	nthic d vective			:	:	•	:	:	:	÷	:	:	:	:	:	•	26
																	26
Results Discuss		· · · ·	•	•	•	:	:		•	:	•		:	:	•	•	26 29
THE FATE OF	METALS	IN THE	E PR	OPO	SEI	R	DGI	ES B	SAS:	EN F	RESE	RVO	DIR				33
Introdu	ction			_		_											33
Metal R	etentio					•	•		•		•		•	•	•	•	33
Evaluat Applica									•	•	•	•	•	•	•	•	34 41
		-							•	•	•	•		•	•	•	
Di	scussio	n.	•	•	•	• .	•	•	•	•	·	•	•	•	•	•	41
CONCLUSIONS	• •	· ·	•	•	•	•	•	•	·	•	•	•	•	•	•	•	45
RECOMMENDATI	ONS .		•	•	•	•	•		•	•	•	•	•	•	•		47
Reservo Areas o							٠	•	•	•		•	•	•	•	•	47 47
		e stut	ĩy	•	•	•	•	•	•	•	•	•	•••	•	•	•	
LITERATURE C	ITED	•••	•	•	•	•	•	•	٠	•	·	·	•	٠	•	•	49
APPENDIX A.	HYDROL RESERV		SIMU.								N						55
APPENDIX B.	RAW WA	TER QU	JALI	TY	DAT	:A											59
APPENDIX C.	ION BA	LANCE	CAL	CUL	ATI	ONS	5										65
APPENDIX D.	PROPOS	ED COI	ORA	DO	WAT	ER	QUA	LIT	Y S	STAN	IDAF	DS					69
APPENDIX E.	COMPAR	ISON C	OF W	ATE	RQ	UAI	ITY	Z DA	TA	WII	'H	50					0.2
	PROPOS	ED COL	JUKA.	DO	WAT	ĽK	QUP	111	1 2) AAL	IDAL	JS	•			•	83

Page

TABLE OF CONTENTS (Continued)

APPENDIX F. USBR TEMPERATURE SIMULATION FOR THE PROPOSED 87 APPENDIX G. OXYGEN SIMULATION MODEL FOR RIDGES BASIN 101 APPENDIX H. METAL RETENTION DATA FROM LITERATURE 109

LIST OF FIGURES

Figure			Page
1.	General map of Animas-La Plata project		2
2.	Flow schematic of Animas-La Plata project (USBR 1978)		3
3.	Detailed map of Ridges Basin Reservoir	•	3
4.	Mean chlorophyll a concentration vs. phosphorus loading for 34 intermountain lakes and reservoirs	·	10
5.	Mean concentration of chl. <u>a</u> vs. P-loading term for 13 lakes that are phosphorus limited and free of macrophytes and turbidity		14
6.	Diffusion submodel		21
7.	Frequency distribution for S.O.D. values for lakes	•	24
8.	Schematic diagram showing method used to calculate surface area of reservoir bottom	•	26
9.	Benthic demand submodel		27
10.	Summary of D.O. model		29
11.	Dissolved oxygen simulation in the hypolimnion of the proposed Ridges Basin Reservoir		30
12.	Retention of iron vs. areal water load		38
13.	Retention of lead vs. areal water load		38
14.	Retention of zinc vs. areal water load		39
15.	Retention of copper vs. areal water load	•	39
16.	Mean and confidence intervals for apparent settling velocities of iron, lead, zinc, and copper		40

LIST OF TABLES

-

۲ ۲

Table		Page
1.	Length of stabilization period for water quality parameters in new reservoirs	2
2.	Morphological data for the proposed Ridges Basin Reservoir	4
3.	Data for 40 lakes and reservoirs in the intermountain west used in the test of Vollenweider's model \ldots .	8
4.	Additional data for NES lakes and reservoirs	11
5.	Comparison of characteristics of lakes and reservoirs falling above, within, and below confidence intervals of Vollenweider's model	14
6.	Phosphorus loading for the proposed Ridges Basin Reservoir	16
7.	Calculation of the mean summer epilimnetic chlorophyll a concentration in the proposed Ridges Basin Reservoir	16
8.	Nitrogen: phosphorus ratios for the Animas River at Durango	17
9.	The effect of temperature on sediment oxygen demand	22
10.	Determination of coefficients for correction of the effect of the oxygen concentration in the overlying water on sediment demand	23
11.	Effect of oxygen concentration of overlying water on sediment oxygen utilization	24
12.	Oxygen consumed in water over enclosed sediments	25
13.	Calculation of the bottom surface area for Ridges Basin Reservoir	27
14.	Input data used in the simulation of hypolimnetic dissolved oxygen in the Ridges	28
15.	Predicted dissolved oxygen concentration in Ridges Basin Reservoir	30
16.	Metal retention data for six lakes	35
17.	Apparent settling velocities for metals in six lakes	36
18.	Comparison of measured vs. predicted metals retention in six study lakes	37
19.	Comparison of the composition of metals loading with metals retention	41
20.	Loading of heavy metals into the proposed Ridges Basin Reservoir	42

LIST OF TABLES (Continued)

Table		Page
21.	Retention of total iron, zinc, lead, and copper in the proposed Ridges Basin Reservoir	42
22.	Ridges Basin end of month content (1,000 ac-ft)	55
23.	Water pumped through Durango pumping plant to Ridges Basin Reservoir (1,000 ac-ft)	56
24.	Ridges Basin releases for New Mexico M&I (1,000 ac-ft)	57
25.	Water pumped from Ridges Basin Reservoir to Dryside Canal (1,000 ac-ft)	58
26.	Water quality parameter codes and explanations	59
27.	Raw water quality data, Animas River at Durango, May 1977 - August 1978	60
28.	Raw water quality data, La Plata River at Hesperus, May 1977 - August 1978	61
29.	Raw water quality data, La Plata River at Colorado/New Mexico border, May 1977 - August 1978	62
30.	Raw water quality data, La Plata Ríver at Farmington	63
31.	Ion balances for water quality stations in Animas - La Plata project	66
32.	Proposed Colorado water quality standards: Class II water supply	70
33.	Proposed Colorado water quality standards (non- metallic): Protection of Aquatic Biota	73
34.	Proposed Colorado water quality standards (metallic): Protection of Aquatic Biota	76
35.	Proposed Colorado water quality standards: Agricultural use	77
36.	Proposed Colorado water quality standards: Recreational use	80
37.	Comparison of water quality data with proposed Colorado water quality standards, Animas River at Durango, May 1977 - August 1978	83
38.	Comparison of water quality data with proposed Colorado water quality standards, La Plata River at Hesperus, May 1977 - August 1978	84
39.	Comparison of water quality data with proposed Colorado water quality standards, La Plata River at Colorado/New Mexico border, May 1977 - August 1978	85
40.	Comparison of water quality data with proposed Colorado water quality standards, La Plata River	86
11	at Farmington, May 1977 - August 1978	
41.	Day 130	88
42.	Day 140	89

LIST OF TABLES (Continued)

Table		Page
43.	Day 150	90
44.	Day 160	91
45.	Day 170	92
46.	Day 180	93
47.	Day 190	94
48.	Day 200	95
49.	Day 210	96
50.	Day 220	97
51.	Day 230	98
52.	Day 240	99
53.	Variable names for "OXYHYP"	101
54.	"OXYHYP" computer model	102
55.	Oxygen balance for the hypolimnion of Ridges Basin Reservoir	104
56.	Loading of Fe, Zn, and Pb into Pueblo Reservoir, June 1974 - September 1975	110
57.	Discharge loading of Fe, Zn, and Pb from Pueblo Reservoir, June 1974 - September 1975	110
58.	Hydraulic retention times for Pueblo, Colorado by month	111
59.	Retention of Fe, Zn, and Pb in Pueblo Reservoir, Colorado	111
60.	Trace metal budget for Lake Washington	113
61.	Zinc loading into Coeur D'Alene Lake	113
62.	Zinc loading at Spokane River at Post Falls	114
63.	Metals loading data for Yellowtail Reservoir,	
	Feb Dec. 1968	114
64.	Metals loading data for Yellowtail Reservoir Jan Aug. 1969	115
65.	Morphological data for Yellowtail Reservoir	115

INTRODUCTION

Background

The quality of water in a reservoir is determined by the quality of the inflow water and by biological and physical processes occurring within the reservoir. Both must be examined in order to predict the quality of water that will be stored in a proposed reservoir.

One of the most important processes that affect the quality of water stored in a reservoir is the production of algae. Since excessive algae production has a detrimental effect on the quality of stored water, it is generally desirable to have very little production of nuisance algae (i.e., bluegreens) in reservoirs. Undesirable consequences associated with increasing levels of algae production include: 1) a decrease in the concentration of dissolved oxygen in the hypolimnion, 2) a loss in community species diversity, accompanied by an increase in the predominance of populations of blue-green algae, 3) taste and odor problems associated with blooms of blue-green algae, 4) a change in the composition of fish populations from game fish (trout, bass) to rough fish (carp, bulheads), and 5) the occurrence of skin rashes among swimmers (Porcella and Bishop 1975).

The processes of sedimentation and chemical precipitation also affect the quality of water stored in reservoirs. Considerable clarification of the inflow water occurs in reservoirs as the result of a reduction in water velocity, and the water leaving a reservoir is usually much less turbid than the inflow water (Churchill 1957, Hannon and Young 1974). Chemical precipitation resulting from evaporation, or changes in temperature and biological activity, may decrease the loading of some dissolved substances between the inflow and the outflow of a reservoir. These processes may result in the accumulation of heavy metals, nutrients, and other constituents in the sediments.

Finally, during the early life of a reservoir, there is often a period of stabilization during which the decay of inundated organic material and the leaching of plant nutrients and other chemicals from soils and vegetation have a profound effect on the quality of stored water. The decay of inundated organic material may result in a larger oxygen demand in the hypolimnion during the period of initial filling and stabilization of a reservoir than in its later life. The leaching of materials from newly inundated soils and vegetation may result in an increase in the loading of dissolved constituents of a stream that has been recently impounded. Bolke and Waddell (1975) observed such a phenomenon in the Colorado River following the formation of Lake Powell. Gould (1954) and Howard (1954) (both cited in Neel 1963) observed a similar increase in the loading of dissolved solids in the Colorado River following the filling of Lake Mead. The release of plant nutrients from inundated soils and vegetation may be responsible for the peak in algae production observed in some newly formed reservoirs The extent and duration of the stabilization period is probably dependent on the nature of the bed material and the morphology and hydraulic characteristics of the reservoir. The stabilization period may last up to 10 years for some reservoirs (Table 1).

Objectives of Study

The objectives of this research were to conduct a detailed study of existing water quality in the Animas and the La Plata Rivers in the vicinity of the proposed Animas-La Plata project and to make a limnological evaluation of the proposed Ridges Basin Reservoir. The limnological evaluation was to predict: 1) the trophic status of the reservoir after stabilization, 2) the extent of oxygen depletion in its hypolimnion, and 3) the retention of heavy metals in the reservoir. The predictions made in this study are applicable to the Ridges Basin Reservoir following the stabilization period. Additional study would be necessary to evaluate the water quality of the reservoir during the period of initial filling and stabilization.

Project Description

The Animas-La Plata Project will be a multiple purpose water resource development located on the Upper Colorado River Basin in southwest Colorado and northwest New Mexico. The project will supply 1.48 x 10^8m^3 (120,300 ac-ft) of water per year for irrigation and 9.7 x $10^{-7}m^3$ (78,750 ac-ft) of water for municipal and industrial use in Durango, Colorado, Aztec and Farmington, New Mexico, and surrounding communities.

Parameter	Time to Equilibrium (yrs.)	Type Reservoir	Source
Algae Production	8-10	Eastern Water Supply	Whipple (1933)
Hypolimnetic Dissolved O ₂	9-10	Eastern Water Supply	Purcell (1939)
Taste and Odors H_2S	1	TVA Reservoirs	Churchill (1957)
	3	Eastern Water Supply	Purcell (1939)
Fe, Mn	8-9	Eastern Water Supply	Purcell (1939)
Biodegradable Substances	10-15	Unspecified	Fair et al. (1958)
TDS	0	Western Flood, Power and Irrigation	Soltero et al. (1973)
	0	Eastern Flood Control (Small)	Williams (1978)
Hardness and Alkalinity	2	Missouri River Flood Control	Neel (1963)

Table 1. Length of stabilization period for water quality parameters in new reservoirs.

The central feature of this project and the object of this study is the Ridges Basin Reservoir, located southwest of Durango, Colorado (Figure 1). The reservoir will be operated as an offstream, pumped storage reservoir. Inflow to the reservoir will be supplied from the Animas River via the Durango pumping station. Stored water will be released back to the Animas River for municipal and industrial use in New Mexico $(4.6 \times 10^{7m3}/yr)$ (37,400 ac-ft/year) and in Durango, Colorado (1.1 $\times 10^{7m3}/yr$ or 8,850 ac-ft/year). An additional 152,800 ac-ft/ year will be released through the Dryside Canal to supply water for irrigation and for municipal and industrial use in the La Plata River Basin. A detailed flow schematic of the project is presented in Figure 2. The results of a USBR monthly hydrologic simulation of reservoir storage volumes, inflows, and outflows is presented in Appendix A.

The reservoir will be roughly triangular in shape (Figure 3) and will cover 9.0 x $106m^2$ (2,230 acres) at full capacity of 3.45 x 10^8m^3 (280,000 acre-feet). The reservoir will have an average hydraulic residence time of about 1.6 years (based on total capacity and projected average supply).

The rockfill and earth dam forming the reservoir will rise 93.6 m (307 ft) above the streambed and will have a crestlength of 518 m (1700 ft). The inlet from the Animas River will enter the reservoir in the northwest corner at an elevation of 2117 m (6945 ft). The outlet for the New Mexico municipal and industrial supply will be located near the damsite at an elevation of 2035 m (6677

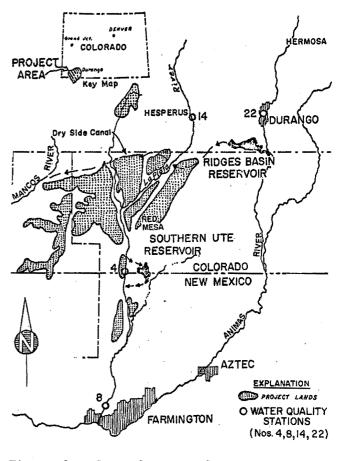


Figure 1. General map of Animas-La Plata project.

Figure 2. Flow schematic of Animas-La Plata project (USBR 1978).

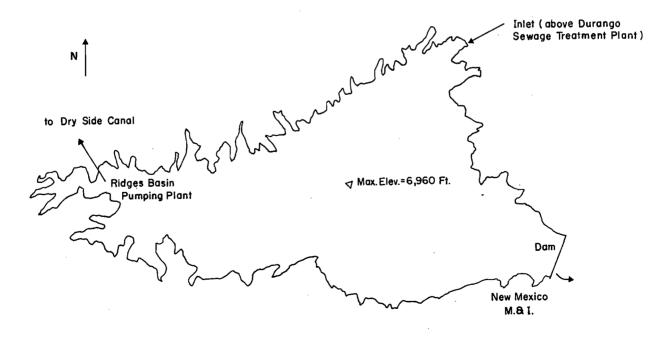


Figure 3. Detailed map of Ridges Basin Reservoir.

WATER QUALITY SURVEY

ANIMAS-LA PLATA PROJECT

During the period May 1977 to August 1978, an intensive program of water quality analysis was conducted on water samples obtained from stream segments associated with the proposed Animas-La Plata Project. The purposes of this survey were to 1) evaluate the current water quality of these stream segments with respect to the proposed Colorado Water Quality Standards, 2) provide information on the quality of waters that will be used to fill the Ridges Basin, and 3) provide a data base by which to assess the impacts of the project on the water quality downstream from the major project features.

The four sampling stations studied were:

Station #4: La Plata River at the Colorado-New Mexico Border

Station #8: La Plata River at Farmington, New Mexico

Station #14: La Plata River at Hesperus, Colorado Station #22: Animas River at Durango, Colorado

The locations of these water quality stations are shown in Figure 1.

Samples were collected monthly by USBR personnel and shipped to the Utah Water Research Laboratory for analysis. Standard Methods (APHA 1975) and USEPA (USEPA 1976a) protocol were followed in the sample collection process and the analytical techniques for determining the constituents present. Forty-nine chemical parameters were determined for each of the 16 sampling periods. The raw data obtained in this survey are presented in Appendix B. The results of the water quality study were compared with the proposed Colorado Water Quality Standards for each of the four water quality stations. The results of the comparison study are on file at the UWRL Library.

PREDICTION OF TROPHIC STATUS FOR

THE PROPOSED RIDGES BASIN RESERVOIR

Introduction

Highly productive eutrophic waters are generally undesirable for most uses. Therefore, it is desirable to be able to predict the level of algal productivity that will occur in a newly formed body of water, and, if necessary, take measures to prevent excessively high levels of algal productivity.

A phosphorus loading model, developed by Vollenweider (1968, 1969, 1975, 1976), was used to predict algal production that will occur in the Ridges Basin Reservoir. The validity of predictions generated by this model was tested using data collected by the National Eutrophication Survey (USEPA 1977) for 40 lakes and reservoirs in the Intermountain West.

Application of Vollenweider's Phosphorus Loading Model to Existing Lakes and Reservoirs

Vollenweider's (1976) phosphorus loading model can be used to predict the mean summer epilimnetic concentration of chlorophyll a (a common indicator of algal productivity) in a lake using variables that are independent of interactions occurring within the lake. According to this model, the mean summer epilimnetic concentration of chlorophyll a ([chl. a]) can be predicted from the equation:

$$\begin{bmatrix} ch1. \underline{a} \end{bmatrix} = 0.367 \begin{bmatrix} \underline{L_p q_s} \\ 1 + \sqrt{\overline{z}/q_s} \end{bmatrix}^{0.91} \dots (1)$$

where

 L_p = areal phosphorus loading, g/m²/yr

 $q_8 = water load, m/yr (m^3/yr/m^2)$

z = mean depth, m

In order to test the claim by Vollenweider (1976) that this model can be used for lakes throughout the temperate zone to predict the mean summer epilimnetic chlorophyll a concentration, its predictions for 40 lakes and reservoirs in Colorado, New Mexico, Utah, and Wyoming were compared with data collected in the National Eutrophication Survey (NES) and reported in the National Eutrophication Working Papers (USEPA 1977). The methods used in the National Eutrophication Survey are presented in USEPA (1975a). These working papers were used to compile data on mean depth (\bar{z}) , areal phosphorus loading (L_p) , areal water load (q_s) , mean concentration of chlorophyll <u>a</u> (chl. <u>a</u>), and the ratio of total soluble inorganic nitrogen to orthophosphate (TSIN:OP) for each lake and reservoir (Table 3). The chlorophyll <u>a</u> data presented in column 8 of Table 3 are the average of all the epilimnetic zone sampling stations for the particular date. The chlorophyll <u>a</u> data in column 9 is the mean of all the sampling periods for each lake. The values in column 9 were considered to be the mean summer epilimnetic concentration of chlorophyll <u>a</u> for each lake.

Equation 1 is plotted in Figure 4 along with its 99 percent confidence intervals determined as suggested by Vollenweider (1976). The symbols used in plotting indi-cate the status of nutrient limitation for each reservoir. A completely shaded circle indicates that phosphorus was the limiting nutrient during all sampling periods, a half-filled circle indicates that nitrogen was limiting during some sampling period(s) and that phosphorus was limiting at other times, and an unshaded circle indicates that nitrogen was limiting during all sampling periods. Phosphorus was considered to be limiting whenever the ratio of TSIN:OP was greater than or equal to 11.3:1, based on a weight ratio (Greens et al. 1975). Data points for 6 of the 40 water bodies were omitted from Figure 4. Viva Naughton Reser-voir (#26), Ute Reservoir (#34), Steinaker Reservoir (#13), and Blue Mesa Reservoir (#18) were omitted because the estimates of phosphorus loading for these water bodies phosphorus loading for these water bodies were considered by the author(s) of the respective working papers to be unreliable. Lake DeSmet (#27) was omitted because two major tributaries that normally flow into the lake were being diverted at the time of sampling in order to allow construction of a dam that would increase the volume of the lake. Starvation Reservoir (#16) was omitted because it was still filling during the sampling period and therefore may not have reached equilibrium, a prerequisite for use of Vollenweider's model. Thus, 34 points actually appear in Figure 4.

Table 4 presents additional data for each of the 34 lakes and reservoirs plotted in Figure 4. These data were also taken from the National Eutrophication Survey Working Paper Series. Lakes and reservoirs in this table are separated into three groups.

	Lp (mg $P/m^2/yr$)	9 ₈	Ī	L_p/q_{s}	Sampling		Chl. a^{b} Concentration	Mean Chl. α^{c} Concentration	Plotting
Lake and Location	*10 ⁻³	(m/yr)	(m)	$(1 + \sqrt{\frac{1}{3}/q_{g}})$	Date	TSIN:OP	(mg/m ³)	(mg/m ³)	Number
Minerville Res. Beaver Col, Ut.	1.45	7.71	5.6	102	5/8 8/12 9/25	0.5:1 0.5:1 2:1		33.6	1
Pelican L. Uninta Co., Ut.	0.13	0.76	3.0	57	5/13 8/7 9/23	4:1 16:1 20:1	1.4 4.7 13.3	6.5	2
Piute Res. Piute Co., Ut.	2.03	15.49	10.1	73	5/9 8/13 9/24	36:1 14:1 7:1	17.3 15.7 47.0	26.7	3
Sevier Bridge Res. Juab and Sanpete Co., Ut.	0.75	4.45	6.5	76	5/12 8/12 9/24	>44:1 >44:1 >44:1	7.5 20.5 26.7	18.2	4
Panguitch L. Garfield Co., Ut.	0.36 ·	4.94	6.4	34	8/13 9/25	10:1 6:1	19.6 72.4	30.7	5
Otter Creek Res. Piute Co., Ut.	0.61	5.20	6.3	56	5/9 8/13 9/25	<7:1 <7:1	14.6 12.1 8.7	11.8	6
Utah L. Utah Co., Ut.	0.51	2.11	2.1	121	5/12 8/8 9/19	26:1 7:1 31:1	14.0 106.5 95.6	72.0	7
Willard Res. Box Elder Co., Ut.	0.21	2.79	5.9	31	5/14 8/6 9/23	6:1 4:1 11:1	10.4 7.1 5.3	7.6	8
Fish L. Sevier Co., Ut.	0.05	0.66	25.9	10	8/12 9/25	8:1 8:1	20.1 4.8	12.5	9
Tropic Res. Garfield Co., Ut.	0.40	20.21	3.0	14	5/8 8/14 9/25	18:1 5:1 13:1	17.0 9.4 1.2	9.2	10
Joe's Valley Res. Emery Co., Ut.	0.70	19.13	16.3	18	5/13 8/12 9/24	4:1 46:1 45:1	2.1 3.8 1.6	2.5	11
Pineview Res. Weber Co., Ut.	0.72	20.55	24.7	17	5/14 8/7 9/23	>17:1 >17:1 >17:1	9.0 3.7 4.4	5.8	12
Steináker Res. Uintah Co., Ut.	0.11	7.82	14.0	6	5/13 8/7 9/22	4:1 12:1 17:1	4.1 2.4 1.7	2.6	13
Deer Creek Res. Wasatch Co., Ut.	2.47	36.08	19.9	39 ·	5/12 8/11 9/19	>16:1 12:1 20:1	7.4 1.3 18.5	9.1	14
Moon Lake Duchesne Co., Ut.	0.52	37.07	14.1	9	8/11 9/23	>23:1 >23:1	2.8 2.6	2.7	15
Starvation Res. Duchesne Co., Ut.	2.70	16.65	19.9	78	5/13 8/11 9/24	8:1 13:1 8:1	4.0 9.3 3.7	5.7	16

Table 3. Data for 40 lakes and reservoirs in the intermountain west used in the test of Vollenweider's model.^a

.

Ξ,

8

.

Table 3. Continued.

• • .

79 10

(Lp (mg P/m ² /yr) *10 ⁻³	9 ₈	B	$\frac{L_p/q_s}{ds}$	Sampling			Mean Ch1. a^{C} Concentration	Plotting
Lake and Location	*10	(m/yr)	(m)		Date	TSIN:OF	(mg/m ³)	(mg/m ³)	Number
Echo Reservoir Summit Co., Ut.	2.50	41.2	15.3	38	5/12 8/7 9/18	<10:1 18:1 <10:1	10.9 4.5 5.5	7.0	17
Blue Mesa Res. Gunnison Co., CO.	2.66	41.27	31.1	35	8/26 9/29	<10:1 <10:1	4.9 8.7	6.8	18
Dillon Res. Summit Co., CO.	0.61	24.06	24.6	13	8/25 10/9	>18:1 >18:1	2.3 4.0	3,2	19
Cherry Creek L. Arapahoe Co., CO.	1.53	2.44	5.2	26	8/22 10/9	<9:1 <9:1	<8.7 11.9	23.3	20
Barker Reservoir Boulder Co., CO.	0.59	30.15	8.3	13	5/7 8/26 10/10	16:1 10:1 7:1	4.8 3.7 7.5	5.3	21
Seminoe Reservoir Carbon Co., Wy.	2.91	28.00	25.6	53	5/19 8/27 10/16	19:1 11.1 17:1	2.2 2.2 3.2	2.5	22
Boyson Res. Fremont Co., Wy.	3.56	16.28	10.4	122	5/19 9/2 10/17	13:1 10:1 8:1	10.6 6.7 2.4	6.6	23
Big Sandy Res. Subletter and Sweetwater Co.'s, Wy	1.20	7.99	5.8	81	5/ 9/2 10/16	<4:1 <4:1 <4:1	5.3 3.6 4.1	4.3	24
Woodruff Narrows Reservoir Uinta Co., Wy.	6.02	31.68	4.9	136	5/16 8/7 9/18 10/16	3:1 7:1 5:1 6:1	6.1 3.3 31.2 11.3	13.0	25
Viva Naughton Res. Lincoln Co., Wy.	0.67	21.21	8.9	19	8/5 9/18 10/16	<8:1 <8:1 <8:1	18.6 34.0 22.6	25.1	26
L a ke DeSmet Johnson Co., Wy.	0.07	0.94	12.8	16	5/22 8/29 10/15	5:1 5:1 13:1	4.7 10.0 18.7	11.1	27
Keyhole Res. Crook Co., Wy.	0.46	1.05	6.5	126	5/23 8/29 10/15	12:1 14:1 13:1	6.2 7.5 9.6	7.8	28
Ocean L. Fremont Co., Wy.	0.26	1.77	4.2	58	5/19 9/2 10/16	3:1 10:1 14:1	5.0 5.4 12.1	7.5	29
Boulder L. Sublette Co., Wy.	0.68	25.93	12.2	16	8/27 9/17	13:1 18:1	2.5	2.5	30
Freemont L. Sublette Co., Wy.	0,12	10.88	24.4	8	8/28 10/11	22:1 20:1	4.6 3.0	3.8	31
Navajo Reservoir Arculeta Co., Co. an San Juan and Rio Arr Co., N.M.	d	25.20	33.3	46	4/30 8/18 9/30	15.1 10.1 8:1	2.3 1.6 2.7	2.2	32
Alamogordo Res. DeBaca and Guadalupe Co.'s, N.M.	1.52	5.03	8.1	133	5/1 8/20 10/2	6:1 18:1 25:1	2.1 7.3 8.2	5.9	33
Ute Reservoir Quay Co., N.M.	0.66	5.96	8.9	51	5/2 8/20 10/2	4:1 10:1 15:1	1.6 4.0 4.1	3.2	34

9

Table 3. Continued.

(Lake and Location	Lp (mg P/m ² /yr) *10 ⁻³	9 ₈ (m/yr)	<i>ž</i> (m)	$\frac{L_p/q_B}{(1 + \sqrt{3}/q_B)}$	Sampling Date	TSIN:OP		Mean Chl. a^{c} Concentration (mg/m ³)	Plotting Number
L. McMillan Eddy Co., N.M.	1.05	9,77	2,1	73	5/1 8/20 10/2	17;1 6:1 3:1	10.8 12.0 18.7	14.1	35
Elephant Butte Res. Sierra and Socorro Co., N.M.	17.35	8.39	18.3	835	5/2 8/19 10/3	<3:1 <3:1 <3:1	7.4 9.5 3.4	6.8	36
El Vado Res. Rio Arriba Co., N.M	2.67	20.91	18.3	66	5/5 8/19 10/1	11:1 5:1 5:1	2.0 2.0 2.6	2.2	37
Eagle Nest Lake Colfax Co., N.M.	0.27	2.23	9.9	39	5/6 8/21 10/7	<1:1 <1:1 <1:1	15.8 4.0 21.9	13.9	38
Conchas Res. San Miguel Co., N.M.	0.29	4.15	11.8	26	5/1 8/21 10/2	6:1 9:1 23:1	1.5 5.5 2.8	3.3	39
Bluewater L. McKinley and Valenc: Co.'s, N.M.	0.08 La	1,54	6.7	17	5/5 8/19 10/1	11:1 12:1 19:1	2.3 5.1 4.2	3.9	40

^a Data from National Eutrophication Study Working Papers (EPA, 1977).

b Chl. a is mean for all stations for each date. (Chl. a) determined from 4.6 m integrated sample.

^cMean Chl. α data is mean of all sampling dates.

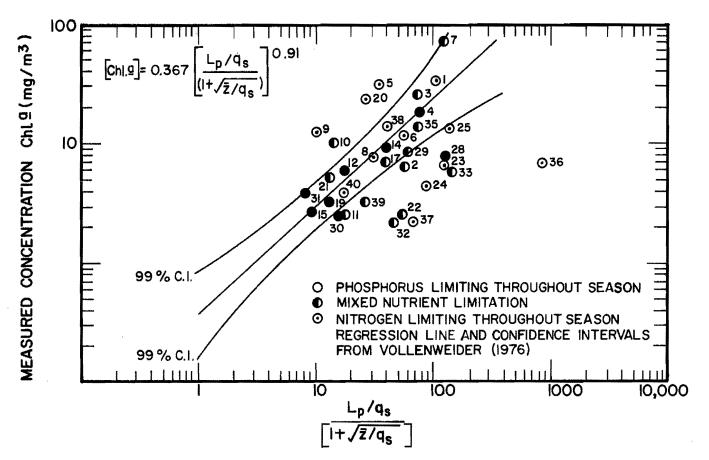


Figure 4. Mean chlorophyll <u>a</u> concentration vs. phosphorus loading for 34 intermountain lakes and reservoirs.

Lake or Reservoir and Plotting Number	<u>Mean Depth</u> (m)	θ b (yr.) (Based on Outflow)	Macrophytes x = noted xx = dense o = not noted	Turbidity x = noted xx = heavy o = not noted	Nutrient Limitation N = nitrog P = phosph N/P = mixe	en (orous	d m)	<u>Volume</u> (x10 ⁶ m ³)	Comments
Reservoirs whose mea	sured (chl.	a) within	99% limits (n=	=17)					and the second se
Otter Creek (6)	6.3	1.4	o	o	N		1.2	64.8	Greyish water in May
Utah L. (7)	2.1	2.5	жх	0	N/P		0.2	832.6	Alga1 scums
Willard Res. (8)	5.9	. 3.3	0	0	N		1.1	240,5	
Ocean L. (29)	4.2	4.4	o	o	N/P			103.6	Milky green in Sept.
Bluewater L. (40)	6.7	5.8	0	0	N/P	(med)	0.5	47.4	•
L. McMillan (35)	2.1	0.2	o	0	N/P	(med)		48.6	Water levels fluctuate; salinity problems
Eagle Nest L. (38)	9.9	5.3	0	o	N	(med)	1.1	97.9	blooms in Aug. & Oct.
Barker Res. (21)	8.3	0.3	0	0	N/P		2.1	14.2	
Pineview Res. (12)	13.4	0.7	x	o	P		1.7	135.6	
Echo Res. (17)	15.3	0.4	o .	0	N/P		1.3	91.3	
Deer Creek (14)	19.9	. 0.6	x .	o .	P		1.7	192.3	Clumps of algae at surface in Sept.
Moon Lake (15)	14.1	0.4	0	ø	P		3.1	44.1	
Dillon Res. (19)	24.6	1.3	o	0	P		8.1	313.6	
Fremont L. (31)	24.4	2.5	o	o	P	1	3.2	493.7	
Minersville Res. (1)	5.6	0.7	0	o	N		1.4	22.5	Algal blooms in Aug. and Sept.
Piute Res. (3)	10.1	0.7	o	o	N/P	I	0.4	101.5	
Sevier Bridge Res.(4)	6.5	1.6	x	o	P		1.3	291.1	Algal bloom in May
Lakes in which measu:	red (chl. a) greater t	han upper limi	it of predicti	lon (n =4)				
Panguitch L. (5)	6.4	2.2	xx	o	N	:	1.9	32.1	Algal blooms all three sampling periods
Tropic Res. (10)	3.0	0.2	xx	0	N/P		1.8	2.2	Algal bloom in August
Fish L. (9)	25.9	58.5	x	o	N	1	2.9	262.1	

Table 4. Additional data for NES lakes and reservoirs.^a

Possible bloom at station 2 in August

0.8 16.8

o

N

Cherry Creek L. (20) 5.2

3.6

х

Table 4. Continued.

<u>Lake or Reservoir</u> and Plotting Number	<u>Mean Depth</u> (m)	$\frac{\Theta_h^b}{(\text{yr.})}$ (Based on Outflow)	Macrophytes x = noted xx = deuse o = not noted	Turbidity x = noted xx = heavy o = not noted	Nutrient Limitation C N = nitrogen F = phosphor N/P = mixed		D Volume) <u>Comments</u>
Lakes in which measure	d (chl. a) t	elow lower	limits of pre	diciton (n=13)			
Boulder L. (30)	12.2	0.5	0	0	P	3.5	85.8	
Joe's Valley Res. (11)	16.3	0.9	0	o	N/P	2.5	77.1	Some algae in August
Boysen Res. (23)	10.4	0.7	o	o	N/P	0.8	934.3	Clumps of Algae noted in Sept. and Oct.
Big Sandy Res. (24)	5.8	0.7	o	xx	N	0.3	48.4	Silt affects trout pop.
Woodruff Narrows Res. (25)	4.9	0.2	o	o	N	0.8	34.6	
Conchas Res. (39)	11.8	3.0	0	0	N/P (m	ed) 1.2	456.6	
El Vado Res. (37)	18.3	0.9	0	xx	N (m	ed) 0.9	239.9	Algal bloom in Oct.
Elephant Butte Res. (36)	18.3	2.2	ο	xx	N (m	ed) 0.6	2,707.5	S.D. transparencie low
Alamogordo (33)	8.1	1.7	o	x	N/P (m	ed) 0.9	150.6	
Navajo Res. (32)	33.3	1.4	0	0	N/P	1.5	2,108	
Keyhole Res. (28)	6.5	.15.2	o	0	P	1.2	246.5	Algal bloom in Oct.
Seminoe Res. (22)	25.6	0.9	0	жж	N/P	1.3	1,248.5	
Pelican L. (2)	3.0	36.8	XX	0	N/P	1.6	20.9	Bloom in Sept.

^aSource: NES Working Papers (EPA, 1977).

 ${}^{b}\Theta_{h}$ = hydraulic residence time (V/Q).

 $^{\circ}P$ considered to be limiting when TSIN:OP \geq 11.3:1 (by weight).

d"med" indicates median secchi disc reading (not a true mean).

Group 1: Lakes and reservoirs whose plotting position in Figure 4 lies above the upper 99 percent confidence limit calculated by Vollenweider (1976) (n = 4).

Group 2: Lakes and reservoirs whose plotting position lies within the 99 percent confidence interval calculated by Vollenweider (1976) (n = 17).

Group 3: Lakes and reservoirs whose plotting position lies below the lower 99 percent confidence limit calculated by Vollenweider (1976) (n = 13).

Data on the presence of macrophytes were taken from the text of the appropriate working papers and are qualitative assessments. The presence of macrophytes is recorded as follows.

o = the presence of macrophytes was either not mentioned or noted as the "absence of macrophytes."

x = the presence of macrophytes was noted in the working paper but was not described as being dense or covering large areas of the lake.

xx = the presence of macrophytes was noted in the working paper as being "dense" or "covering large areas of the lake."

Similarly, a qualitative assessment of the turbidity in each water body was noted in the text of each working paper. In Table 4 turbidity for each lake is noted as follows:

o = turbidity not noted.

x = "heavy" turbidity.

xx = "very heavy" turbidity.

In some cases the text of the working paper suggested that turbidity may limit algae growth.

The type of nutrient limitation for each lake is noted in Table 4 as follows.

N = nitrogen was limiting during all three sampling periods (i.e., TSIN:OP always less than 11.3:1).

N/P = nitrogen was limiting during some sampling periods and phosphorus was limiting during other periods.

P = phosphorus was limiting during all three sampling periods (i.e., TSIN:OP always greater than 11.3:1).

The mean or the mean of the medians of the Secchi disc readings for each lake is presented in column 7 of Table 4. In most cases the mean Secchi disc reading for each sampling period was presented in the appropriate working paper for each sampling period. For these lakes the number in column 7 is the mean for all sampling periods. In a few cases, only the median Secchi disc reading was recorded for each sampling period. In these cases, the number in column 7 is the average of the medians and is indicated as such.

Figure 4 reveals that for many of these lakes the measured values for chlorophyll <u>a</u> is not within the confidence intervals established by Vollenweider. The measured concentration of chlorophyll <u>a</u> for these lakes fell within the 99 percent confidence interval for prediction values only half (50 percent) of the time. Thirty eight percent (n = 13) had measured chlorophyll <u>a</u> concentrations less than the lower 99 percent confidence limit for predicted values, and 12 percent (n = 4) had measured chlorophyll <u>a</u> concentrations higher than the upper 99 percent confidence limit for predicted values.

Some of the discrepancy between the actual and predicted concentrations of chlorophyll a for these water bodies can be attributed to data error. The value used for "measured mean epilimnetic chlorophyll a concentration" was the average for all stations and sampling dates for each body of water. The number of sampling periods ranged from two to four for each water body. Since the chlorophyll a concentration of a lake may vary by an order of magnitude or more throughout the growing season, an estimate based on relatively few observations is likely to be in error. Although error due to insufficient sampling should be random, there may be some negative bias in the measured chlorophyll a means since the earliest sampling data in the NES study was in May. Temperate zone lakes typically have maxima in chlorophyll a concentrations in the spring (following turnover) and in the late summer: the earlier peak may have been missed for many of these lakes, resulting in a negative bias in the mean chlorophyll a data. If a negative bias was real the fit of the survey lakes to Vollenweider's model would probably be improved if more complete data were available.

Further inspection of Figure 4 and Table 5 reveals several possible reasons for the discrepancy between the observed and predicted values for chlorophyll <u>a</u> concentration. For the water bodies whose measured chlorophyll <u>a</u> concentration fell within Vollenweider's 99 percent confidence limit (Group 2), 76.4 percent were phosphorus limited (i.e., TSIN:OP > 11.3:1) for at least one sampling period, and 35.2 percent were phosphorus limited throughout the sampling period. For the lakes in Group 1 (measured values of chl. <u>a</u> above Vollenweider's 99 percent confidence limit) only 25 percent were phosphorus limited throughout the entire season. For water bodies in Group 3 (measured chl. <u>a</u> concentration below Vollenweider's 99 percent confidence limit) 69.2 percent were phosphorus limited for at least

Lake Group ^a	P Always Limiting	N Always Limiting	Mixed Nut. Limitation	Measured (chl. <u>a</u>) ⁱⁿ mg/m ³ (mean)	S.D. ^b in m (mean)	Depth in m (mean)	Volume in m ³ x 10 ⁶	θ _h (yr.)	Macro- phytes Noted	Turbidity Noted
Group 1 (n = 4)	0.0	75.0%	25.0%	18.9	4.4	10.1	78.3	16.1	100%	0.0
Group 2 (n = 17)	35.2%	23.5%	41.2%	15.5	2.2	10.6	184.4	1.9	21.0%	0.0
Group 3 (n = 13)	15.4%	30.8%	53.8%	5.1	1.3	13.4	658.4	5.0	8%	38.5%

Table 5. Comparison of characteristics of lakes and reservoirs falling above, within, and below confidence intervals of Vollenweider's model.

^aGroup 1: Lakes in which mean chl. <u>a</u> concentration for sampling period above upper 99% confidence limit of Vollenweider's model.

Group 2: Lakes in which mean chl. <u>a</u> concentration for sampling period within 99% C.I.'s of Vollenweider's model.

Group 3: Lakes in which mean chl. <u>a</u> concentration for sampling period less than lower 99% confidence limit for Vollenweider's model.

^bMean of S.D. readings is actually mean of means and/or medians. For some lakes only the median S.D. readings were calculated in the original working papers--these medians are used as means.

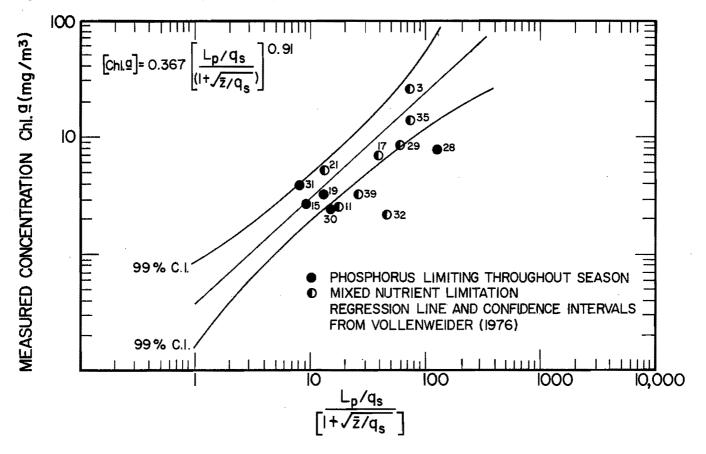


Figure 5. Mean concentration of chl. a vs. P-loading term for 13 lakes that are phosphorus limited and free of macrophytes and turbidity.

part of the year and only 15.4 percent were phosphorus limited throughout the entire sampling period. Furthermore, 75 percent of the survey lakes for which phosphorus was limiting throughout the sampling period (n = 8) fell within Vollenweider's 99 percent confidence interval. These data suggest that Vollenweider's model may be applicable only to lakes that are phosphorus limited for at least part of the growing season.

In addition, the information in Table 5 also suggests that Vollenweider's model may not be applicable to water bodies whose water is highly turbid and whose phyto-plankton production is limited by light penetration. For survey lakes whose measured chlorophyll a concentrations were below Vollenweider's lower 99 percent confidence limit, 38.5 percent (n = 5) were described in the concentration the respective working papers as being "turbid" or "highly turbid" (vs. 0 percent for both Group 1 and Group 2 lakes). Fur-thermore, the Secchi disc data for Group 3 lakes ($\bar{x} = 1.3$ m) is less than that for Group 1 lakes $(\bar{x} = 2.2 \text{ m})$ or Group 2 lakes $(\bar{x} = 4.4 \text{ m})$, even though the mean chlorophyll a concentration is lower for this group (5.1 mg/m³ vs. 18.9 mg/m³ and 15.5 mg/m³, respectively, for Groups 1 and 2). This limitation to Vollenweider's model is probably because light penetration limits algae growth in Unfortunately, lakes with high turbidity. since quantitative data on the concentration of inorganic suspended solids is not available for the NES lakes, it is impossible to determine the upper limit of suspended solids that would preclude the use of Vollenweider's model.

Finally, the data in Table 5 suggest that Vollenweider's model may not be applicable to lakes that support macrophyte populations. All of the lakes in Group 1 had growths of macrophytes during the sampling period of the National Eutrophication Survey, while only 21 percent of those in Group 2 and 8 percent of those in Group 3 were observed to have macrophyte growths. Thus, Vollenweider's model seems to underestimate chlorophyll \underline{a} when macrophytes are present. This observation is surprising in view of the fact that macrophytes are commonly considered to inhibit phytoplankton growth through light limitation and possibly by the secretion of antibiotic compounds (Wetzel 1975). On the other hand, rooted macrophytes can act as a nutrient "pump" by adsorbing phosphorus from the sediments and releasing it to the over-lying waters (Wetzel 1975). If this occurs, macrophytes would act to increase the phosphorus concentration in the overyling water by increasing the residence time of phos-Since Vollenphorus in the water column. Since Vollen-weider's model assumes that the relative residence time of phosphorus is a function of the areal water load (Vollenweider 1976), any mechanisms that acts to increase the relative residence time would cause Vollenweider's model to underestimate the total phosphorus It is possible concentration in the lake. that by increasing the concentration of

phosphorus in the water, macrophytes may, in some cases, actually promote algal growth. The position of the lakes in which macrophytes occur in Figure 4 suggests that this phenomenon may be occurring.

From this section it can be concluded that the application of Vollenweider's 1976 model to phosphorus-limited lakes in the intermountain west is valid unless: 1) the lake is highly turbid and algal productivity is limited by light penetration; 2) phosphorus is not the limiting nutrient for at least part of the year; 3) the lake supports dense growth of macrophytes.

When water bodies having growths of macrophytes, high turbidity, or nitrogen limitation throughout the sampling period were omitted from this analysis, the fit between observed and predicted values of mean summer epilimnetic chlorophyll a concentration was improved considerably (Figure 5). For the remaining 13 water bodies, 61 percent of the observed mean chlorophyll a concentrations were within Vollenweider's 99 percent confidence intervals $(r^2 = 0.49)$.

> Application of Vollenweider's Phosphorus Loading Model to the Ridges Basin Reservoir

Vollenweider's phosphorus loading model (Vollenweider 1976) as described above, was used to predict the average summer epilimnetic concentration of chlorophyll <u>a</u> in the Ridges Basin Reservoir.

Calculation of the annual phosphorus loading into the reservoir was based on data of total phosphorus concentration determined on a monthy basis by the Utah Water Research Laboratory (Appendix B) and data of inflows into the reservoir were obtained from the USBR hydrologic simulation (Appendix A).

The annual period used for this analysis began in September 1977 and ended in August 1978. The phosphorus loading analysis was performed using phosphorus data for the Animas River since nearly all of the inflow into the reservoir will be obtained from the Animas River. The inflow data used for this analysis are based on the <u>average</u> simulated monthly inflow for a 48-year period (1929-1977). Actual monthly data on inflows for the study period were not available because the USBR did not simulate the hydrologic regime for 1978. Data on phosphorus concentrations and flow rate for the inflow water, together with calculations of the monthly phosphorus loading into the reservoir are presented in Table 6.

Data on average surface area and average volume for the Ridges Basin Reservoir were obtained directly from the USBR planning study for the reservoir (USBR 1978). The overflow rate, q_s , was based on the average annual inflow as determined by the USBR hydrologic model and the average annual precipitation at the Durango Weather Station (USBR 1978).

	Total P ^a (mg/l)	Inflow ^b (1000 A.F.)	Loading of P c (1000 Kg)
Sept., 1977	0.010	8.0	98.4
Oct.	0.014	10.6	182.5
Nov.	0.008	7.1	69.9
Dec.	0.004	4.5	22.1
Jan., 1978	0.017	3.6	75.3
Feb.	0.011	3.3	44.6
March	0.008	6.1	60.0
April	0.039	13,4	642.7
Мау	0.338	20.4	8,481.1
June	0.037	24.4	1,110.4
July	0.028	19.0	654.4
August	0.024	12.7	374.9
ANNUAL TOTAL		133.1	10,816.2
		÷	

Phosphorus loading for the proposed Table 6. Ridges Basin Reservoir.

^aUWRL data

^b From USBR hydrologic simulation for <u>average</u> year.

С Loading = Total P $(\frac{mg}{\ell})$ x Inflow (1000 A.F.) x 1230 $\frac{m^3}{4\pi}$

Based on these data (Table 7) and Vollenweider's (1976) model the mean summer epilimnetic concentration of chlorophyll a in the Ridges Basin Reservoir was calculated to be 7.9 mg/m³ (99 percent C.I. 5-13 mg/m³). This prediction indicates that the Ridges Basin Reservoir will be mesotrophic, according to the trophic status classification outlined by Wetzel (1975). This predicted value for mean epilimnetic chlorophyll <u>a</u> concentration was used to predict the average Secchi disc transparency. Carlson (1977) has found that Secchi disc transparency can be predicted from the relationship:

 $\ln S.D. = 2.04 - 0.68 \ln (chl. a)$(2)

where S.D. = Secchi disc reading, in m and (chl. \underline{a}) is in mg/m³, taken near the surface.

Carlson (1977) found the regression coeffi-cient (r^2) for this relationship to be 0.93 (n = 147). Using the predicted value for the mean chlorophyll a concentration and Equation 2, the mean Secchi disc transparency

in the Ridges Basin Reservoir was calculated to be 1.9 m (6.2 ft). The chlorophyll a concentration used in this calculation was the mean value for the entire epilimnion and may be somewhat different (probably lower) than the concentration of chlorophyll a "near the surface."

Table	7.	Calculation of the mean summer epi-
		limnetic chlorophyllaconcentration
		in the proposed Ridges Basin Reser- voir.

Annual loading of phosphorus ^a 1000 Kg		10,816.2
Ave. area, $10^{6} \text{m}^{3^{b}}$		7.8695
Ave. volume, 10 ⁸ 3 ^C		2.5815
Mean depth, in m (Z) ^d		32.8
Average annual inflow 10^8 m^{3^e}	•	1.637
Areal loading of phosphorus ^f mg/m ² /yr (L _p)		1,370
Areal water loading m/yr $(q_s)^g$		21.27
$\frac{L_{p}/q_{s}}{(1+\sqrt{Z}/q_{s})}$		28.73

Predicted mean summer epilimnetich 7.79 (5-13)¹ concentration of chlorophyll a, mg/m^3

^aSee Table 5.

^bFrom Animas-La Plata project description, USBR, January, 1978, ("ave. pool. area").

^CCalculated using ave. pool area and area-volume output from USBR computer simulation.

^dMean depth = mean volume ÷ mean area.

eFrom Appendix A, Table 23.

 ${}^{f}L_{p}$ = Total P loading ÷ ave. surface area. ^gqs ave. inflow + ave. precipitation

^h(Ch1. a) = 0.367
$$\left[\frac{L_{p}/q_{s}}{(1 + \sqrt{Z/q_{s}})}\right]^{0.91}$$

¹99 percent C.I.

The accuracy of the predicted concentration of chlorophyll \underline{a} in the proposed Ridges Basin Reservoir depends on the validity of several assumptions that were made in using Vollenweider's (1976) model:

Vollenweider's model is based on the 1. assumption that a lake is a continuously stirred tank reactor (CSTR) in which the effective hydraulic retention time is equal to the theoretical hydraulic retention time. While this assumption is never entirely true, the demonstrated reliability of this model (Vollenweider 1976) indicates that departures from this assumption are not seriously If serious short violated for most lakes. circuiting occurs in a lake, the model may not produce accurate estimates of the epilimnetic chlorophyll a concentration. Ιn the Ridges Basin Reservoir some short circuiting may occur as a result of the fact that the position of the outlet to the Dryside Canal (70.1 m from the bottom) is located at approximately the same elevation as the inlet (82.3 m from the bottom). However, considering that the outlet and inlet are located at opposite ends of the reservoir and that the reservoir will be dimictic and have a hydraulic residence time of 1.6 years, it seems reasonable that its effective hydraulic residence time will be close to its theoretical residence time. Thus, the use of Vollenweider's model seems valid with respect to hydraulic considerations.

2. In developing this model, Vollenweider found that the relative residence time of phosphorus with respect to water could be predicted from the hydraulic residence time and was independent of trophic status. However, as pointed out in the previous section, the relative residence time of phosphorus, and hence algae growth, may be increased when macrophytes are present since rooted macrophytes may act as a nutrient pump. It was demonstrated that when macrophytes are present, Vollenweider's model may underestimate the actual chlorophyll <u>a</u> concentration in the epilimnion. In the Ridges Basin Reservoir, the growth of rooted macrophytes should be minimal due to the large drawdown 21.3 m (70 ft) and an increase in phytoplankton growth as the result of nutrient release by macrophytes is not expected.

3. The slope of the line that describes the relationship between the phosphorus loading term and the concentration of chlorophyll a (Figure 4) was determined in Vollenweider's model on the basis of an empirically determined relationship between the spring (turnover) concentration of total phosphorus and the mean summer concentrations of chlorophyll a in the epilimnion. Predictions of chlorophyll a using Vollenweider's model are thus based on the assumption that phosphorus is the limiting factor in determining the standing crop of phytoplankton. Although the strength of the relationship between total phosphorus concentration at turnover and the summer standing crop of chlorophyll a has been demonstrated by Sakamoto (1966) and Dillon and Rigler (1974a), other factors, such as other nutrients, turbidity or toxic materials, may limit phytoplankton production in lakes. In particular, the relationship between total phosphorus concentration at turnover and summer phytoplankton production may not be valid when other nutrients, particularly nitrogen, are limiting. In the previous section it was concluded that for water bodies that are nitrogen limited throughout the growing season, Vollenweider's model does not produce accurate estimates of the mean chlorophyll a concentration. Although the ratio of total soluble inorganic nitrogen to orthophosphate in the Ridges Basin Reservoir is not known, the ratio of TSIN:OP in the Animas River was found to be very high during four out of five sampling periods in which bioassays were conducted (Table 8). These data indicate that phosphorus is likely to be the limiting nutrient in the Ridges Basin Reservoir and thus support the validity of using Vollenweider's model to predict the chlorophyll a concentration in the reservoir.

Table 8. Nitrogen: phosphorus ratios for the Animas River at Durango.

Date (Orthophosphate (mg/& P)		Nitrate + Nitrite (mg/l N)	
September 1977	8, 26	56	122	7
November 2 1977	9, <1	26	. 190	>216
January 9, 1978	2	99	150	125
March 8, 1	978 2	48	182	115
May 10, 19	78 1	24	100	124

 $a_{\text{TSIN}} = \text{NO}_3 + \text{NO}_2 + \text{NH}_3$

OP = Orthophosphorus

Ratio of TSIN:OP on wt:wt basis

In water bodies that are highly turbid, light may limit the growth of phytoplankton, and Vollenweider's model may overestimate the actual concentration of chlorophyll <u>a</u> in the epilimnion, as demonstrated earlier. Although suspended solids were not measured in this study, the water from the Animas River generally appeared to be fairly clear except during the period of spring runoff. This observation, plus the fact that the hydraulic retention time of the reservoir (1.6 years) should be long enough to allow clarification of the inflow water, support the contention that phytoplankton growth in the Ridges Basin Reservoir will not be limited by allochthonous turbidity. Finally, the presence of toxic materials may limit phytoplankton growth. Algal bioassays conducted using water from the Animas River showed that growth without the addition of EDTA was only 10 to 40 percent of that expected on the basis of the nutrient composition of the water. The addition of EDTA, a known metal chelator, resulted in 80 to 100 percent of the expected growth. These data indicate that heavy metal toxicity was limiting the growth of algae in bioassays. The heavy metal most likely responsible for this toxicity is dissolved zinc, which was present at concentrations up to 150 μ g/l in the Animas River. Greene et al. (1975) have demonstrated that dissolved zinc in the range of 3-121 μ g/l were toxic to algae in Long Lake, Washington. It is likely that dissolved zinc will inhibit the growth of algae in the Ridges Basin Reservoir and the reservoir may have a lower standing crop of chlorophyll a than predicted by Vollenweider's model. To some extent the toxicity of zinc may be mitigated by the development of resistant strains of algae (Hutchinson and Stokes 1975) and by the precipitation of zinc in the reservoir.

4. The validity of predictions made using Vollenweider's model requires that the lake be in equilibrium with respect to the movement of phosphorus. During the period of initial filling and stabilization, this assumption is probably not valid, since phosphorus may be released from the inundated soils and vegetation. Several authors (Neel 1963, Purcell 1939) have asserted that the algal productivity of reservoirs declines following initial filling. Data to support the hypothesis of an early peak in algal productivity can be found in Purcell (1939), Whippel (1933), Barton and Johnson (1978) and Lake Tahoe Area Council (1971). They show various measures of algal productivity (microscopic cell counts, 14C fixation, Secchi disc transparency, etc.) to decrease with time after the initial filling. On the other hand, some reservoirs apparently do not have a period of high initial productivity. Wright and Soltero (1973) found an increase in chlorophyll <u>a</u> concentration in Yellowtail Reservoir between 1968 and 1969 (filling began in 1965), Williams (1978) found no obvious trend of increase or decrease in algae standing crop or Secchi disc transparency for Raystown Reservoir, Pa., between 1974 and 1976 (filling began in October 1973). Thus, some reservoirs do not appear to go through an initial period of relatively high algal productivity. As suggested by Whipple (1933), the nature of the reservoir bottom is probably an important factor in determining whether there will be an initial period of high productivity following the initial filling.

If the Ridges Basin Reservoir has an early peak in algal productivity due to potential release of nutrients from inundated soil and vegetation, it may develop eutrophic characteristics prior to the establishment of equilibrium conditions. Inhibition of algal growth by heavy metals may prevent an early peak in algal productivity.

Finally, this prediction of trophic status was based on specified conditions for the loading of phosphorus and the hydraulic regime. The actual chlorophyll <u>a</u> concentration in the epilimnion may vary with changes in the phosphorus loading or pumping strategy from year to year.

If it becomes necessary to control the growth of phytoplankton in the Ridges Basin Reservoir, the most reasonable management strategy may be to take advantage of the fact that this reservoir is an off-stream reservoir whose inflows can be controlled by simply altering the pumping regime. For example, if the current average hydrologic regime were altered by interchanging the inflow for April with that of May, the phosphorus loading for the two-month period would be decreased from 9123 kg to 6550 kg, a decrease of 2573 kg. This reduction of phosphorus loading would result in a decrease in the mean summer chlorophyll a concentration in the epilimnion from 7.9 mg/m³ to 6.0 mg/m^3 . A management strategy to reduce algal productivity could be based on an attempt to pump water into the reservoir when the phosphorus concentration in the Animas River is relatively low and to avoid pumping during periods of very high phosphorus concentration.

DEPLETION OF HYPOLIMNETIC DISSOLVED OXYGEN

Introduction

The extent to which oxygen is depleted in the hypolimnion during the period of summer stratification is an important aspect of the environmental quality of lakes. During this period, the thermocline forms a diffusion barrier that limits the vertical movement of dissolved substances, including oxygen. The oxygen pool in the hypolimnion is utilized during the stratification period by biological respiration, nitrification, and other inorganic oxidation reactions. A decrease in the concentration of hypolimnetic dissolved oxygen throughout the summer usually occurs. When the stratification is distinct and the inputs of oxidizable materials are sufficiently large, the hypolimnion may become anoxic.

Most beneficial uses of stored water are adversely affected by this decline in oxygen concentration. Populations of fish and fish food organisms are especially susceptible to decreases in oxygen concentrations. For this reason the proposed Colorado Water Quality Standards specify a minimum dissolved oxygen concentration of 6.0 mg/1 (7.0 mg/1 for spawning) for the protection of a cold water biota and 5.0 mg/l for the protection of a warm water biota. In addition to the direct impact on fisheries, large decreases in the concentration of dissolved oxygen in the hypolimnion may result in the accumulation of anaerobic decomposition products including methane, ammonia, hydrogen sulfide and organic acids in the hypolimnetic water. The presence of these compounds is particularly undesirable with respect to municipal water supply and recreational water use. Finally, low concentrations of dissolved oxygen in the hypolimnion may cause the resolubilization of metal precipitates. resolubilization of metal precipitates. The resolubilization of manganese and iron is highly undesirable with respect to municipal water supply since the presence of these metals gives drinking water an unpleasant taste and causes staining of sinks and clothing. The resolubilization of heavy metals such as lead, cadmium, and zinc may be more important. These metals may be toxic to both humans and the aquatic biota. The resolubilization of heavy metals is a potential problem in the Ridges Basin Reservoir due to the high concentrations of heavy metals in the Animas River.

In view of the severity of problems that may result due to an oxygen depletion in the hypolimnion, a prediction of the dissolved oxygen concentrations that will occur in the Ridges Basin Reservoir would be useful. This section is an attempt to model the behavior of oxygen in the hypolimnion of the Ridges Basin Reservoir. Since much of the input data used in this model was obtained from a thermal simulation of the reservoir performed by the USBR, a brief description of the USBR thermal simulation precedes the section on model development.

USBR Temperature Simulation

The USBR Durango Field Station simulated the thermal regime of the Ridges Basin Reservoir using a modified version of the U. S. Corps of Engineer/Water Resources Engineers temperature simulation model for the period May 1 - August 28, 1977. The development of this model is discussed in the U. S. Corps of Engineers (1975) and by Burdick and Parker (1971).

The hydrologic data used in this simulation were obtained from the USBR operational study of Ridges Basin Reservoir and USGS flow data for the Animas River. Data on water temperature in the Animas River were obtained by the U. S. Fish and Wildlife Service. Meteorological data were obtained from the USBR Kroeger Demo. Farm located 4.5 miles southwest of the reservoir site. Since only total radiation data were available, data on short wave radiation were generated using the data on total radiation and data on cloud cover (Reg. Leech, USBR Durango Field Office).

The results of the USBR temperature simulation are presented in Appendix F. Their diffusion coefficients are largest in the area of the thermocline, although this is exactly the oposite of what should occur. Sartoris (1978) shows that minimum effective diffusion occurs at the thermocline and the maxima occur in the hypolimnion and near the surface. Furthermore, calculation of gravitational stability, E, using the density data from this model as described by Sartoris (1978) do not give the same values as those found in the column titled "stability" in the USBR temperature simulation.

These observations suggest that an error was made in running this model. Conversations with Jim Sartoris (USBR Engineering and Research Center) and Reg. Leech (USBR Durango Field Office) support this contention. The simulation of hypolimnetic dissolved oxygen described in the following pages utilized the output from the USBR thermal simulation.

Model Development

In order to predict the concentrations of dissolved oxygen in the hypolimnion of the Ridges Basin Reservoir during the period of stratification, a simple model of hypolimnetic oxygen depletion was developed. In the development of this model several assumptions were made concerning the behavior of dissolved oxygen in lakes.

First, both the epilimnion and the hypolimnion were considered to be continuously stirred tank reactors (CSTR's) and thus verticially homogeneous with respect to dissolved oxygen concentration. The entire gradient of oxygen concentrations between the surface and the bottom was thereby compressed in the model into a single depth interval at the thermocline. The entire epilimnion was considered to be saturated at a concentration corresponding to that of the surface temperature of the reservoir (corrected for altitude). At the onset of stratification the reservoir was considered to be saturated with dissolved oxygen throughout its depth.

Three processes were considered to affect the oxygen concentration of the hypolimnion: diffusion across the thermocline, benthic utilization, and loss by advection through hypolimnetic outflow. The rate of change in the mass of hypolimnetic dissolved oxygen was calculated as a function of these three processes:

where

-----7

- M_h = mass of hypolimnetic dissolved oxygen
- M_d = mass of oxygen gained (or lost) by diffusion across the thermocline
- M_{O} = mass of oxygen lost to the hypo-limnetic outflow
- $M_b = mass of oxygen utilized by benthic demand$

Oxygen concentration was related to mass by the relationship

$$\frac{dC_{h}}{dt} = \frac{dM_{h}}{V_{h}dt} \qquad (4)$$

where

Ch = concentration of oxygen in the hypolimnion

 V_h = volume of hypolimnion

The development of each segment of the model is discussed below.

Diffusion

The rate of oxygen diffusion across the thermocline for Equation 3 was estimated with the relationship:

where

- Co = concentration of oxygen in the epilimnion
- Ch = concentration of oxygen in the hypolimnion
- A_h = the surface area of the thermocline
- ΔZ = the thickness of the layer being considered
- D_c = effective diffusion coefficient

A positive value of dM_d/dt indicates a gain of oxygen by the hypolimnion and a negative sign indicates a loss of oxygen from the hypolimnion.

In this model the term D_c is an "effective diffusion coefficient" that is composed of both true molecular diffusion and convection mixing (U. S. Corps of Engineers 1975). The use of a general effective diffusion coefficient for dissolved substances can be defended since molecular diffusion itself is very small in magnitude (U. S. Corps of Engineers 1975). Hutchinson (1957) presents data on Lake Mendota to support this contention. Values for D_c across the thermocline were based on the stability of the thermocline, where the stability, E, is calculated:

where

ρ

 $d\rho/dz = density gradient$

= average density of interval

In this model values of E were calculated for intervals immediately above the thermocline plane as defined by the USBR thermal regime model. The value of E for each time interval was used to determine values for D_c from a plot of D_c vs. E (U. S. Corps of Engineers 1975, Figure 11-2). Three values of D_c were used for each time interval as defined by the three curves depicted in U. S. Corps of Engineers (1975) Figure II-2 in order to assess the range of reasonable values for the mass flux of oxygen across the thermocline. The element thickness of the diffusion limiting element was considered to be 6.1 m. This thickness corresponds to the element thickness of the USBR temperature simulation of the reservoir. The epilimnion was considered to have a dissolved oxygen concentration corresponding to the saturation value for the surface temperature of the reservoir at each time segment. Saturation values were adjusted to account for the effects of altitude using the formula (Hutchinson 1957):

and

 $\log P_{h} = \log P_{0} - \frac{273h}{18,241 (t + 273 + 0.0025h)}$(8)

where

[02]h	<pre>= saturation concentration at elevation h, mg/l</pre>
[02]o	<pre>= saturation concentration at sea level, mg/l</pre>
h	= elevation, in m
Ph	= atmospheric pressure, in mm Hg
Po	= 760 mm Hg
t	<pre>= surface temperature of the lake,</pre>

The hypolimnion was considered to be saturated at the beginning of the first time increment (May 10 - May 20). The cross sectional area of the thermocline was determined using the area-depth curve accompanying the USBR temperature simulation. The data inputs, processes, and outputs for the segment of the model that computes the mass flux of oxygen across the hypolimnion are summarized in Figure 6.

Benthic demand

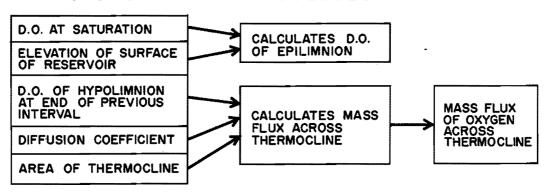
In this model of hypolimnetic dissolved oxygen, the two mechanisms by which the oxygen concentration is decreased is benthic demand and advection via the outflow. Of these, the benthic demand was expected to be the predominant mechanism.

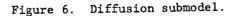
For each time interval, i, the total benthic oxygen demand was calculated as follows:

where

- A_b = area of sediment under hypolimnion
- B_i = areal rate of oxygen utilization by benthos during interval i

A literature review was conducted to find data on sediment oxygen demand (S.O.D.) values for other lakes. It was expected that SOD values could be grouped according to trophic status, with S.O.D. values increasing along the spectrum from oligotrophy to eutrophy. If such a categorization could be established, a S.O.D. value for the Ridges Basin Reservoir could be chosen on the basis of a knowledge of its trophic status (mesotrophic). The benthic demand was considered to be a constant with respect to time, but was considered to be a function of temperature and the dissolved oxygen concentration of the overlying water:


$$B_{i} = f(S.0.D._{temp, D.0.})$$
(10)


where

INPUTS

PROCESSES

OUTPUT

The literature on sediment oxygen demand was reviewed to establish the nature of the relationship between sediment oxygen demand and temperature and between sediment oxygen demand and dissolved oxygen concentration. Existing data were also reviewed with respect to establishing a relationship between S.O.D. and trophic status.

It should be noted that studies of sediment oxygen demand have been conducted under a variety of conditions. These differences dictate that comparisons in S.O.D. values found by various researchers be made Usually these studies are conwith care. ducted by enclosing a small area of sediment together with a volume of water in a cylinder composed of plexiglass or other material. Dissolved oxygen concentrations in the overlying water are measured with an oxygen electrode (Edberg and Hofsten 1973, Edwards and Rolley 1965, McDonnell and Hall 1969, Rolley and Owens 1967) or using the Winkler titration (Sonzogni et al. 1977, Hayes and MacAulay 1959, Hargrave 1969). Although some studies involve the use of mixed sediments (Porcella et al. 1975), only data from studies that involved the use of "undis-turbed" cores are included in the following analysis. Most of the experiments involving the determination of S.O.D. values have been determined in the laboratory, although Sonzogni et al. (1977) conducted their experiments both in situ and in vitro. Edberg and Hofsten (1973) found S.O.D. values determined in vitro to be lower than S.O.D. values determined in situ and attributed this difference to disturbance of the sediments in the in vitro experiments. In vitro determinations were used where available in this paper, although it is realized that the application of <u>in vitro</u> S.O.D. values to the field may be somewhat erroneous, even after accounting for the effects of differences in temperature and D.O. in the overlying water.

The effect of temperature on S.O.D. values can be described using the van't Hoff-Arrhenius equation. In modified form, Metcalf and Eddy (1972) used a temperature coefficient, θ , to evaluate differences in reaction rates that can be attributed to differences in reaction temperature:

where

 $K_1, K_2 = reaction rates$

 $t_1, t_2 = temperature$

An equivalent expression can be derived to allow calculations of a temperature correction factor, t_c :

$$t_c = \frac{1}{t_2 - t_1} \ln \frac{\kappa_2}{\kappa_1}$$
(12)

where

 $t_c = ln\theta$

Several investigators (Hargrave 1969, Pamatat and Banse 1969, Edwards and Rolley 1965, Edberg and Hofsten 1973, McDonnell and Hall 1969, Fair et al. 1941) have conducted studies of S.O.D. at various temperatures. Temperature coefficients obtained in these studies are presented in Table 9. In some cases, the temperature coefficient for a particular study was calculated from values of Q10 or other similar expressions. The data of Edberg and Hofsten (1973) were not included in the calculation of an average value for t_c because their experiments were conducted with pure cultures of cellulytic bacteria; it is not felt that this experiment was sufficiently representative of natural conditions.

Table 9. The effect of temperature on sediment oxygen demand.

Source	Temperature Range (°C)	t _c
Fair et al. (1941)	?	0.065-0.075
McDonnell and Hall (1969)	5-25	0.067
Edwards and Rolley (1965)	10-20	0.065-0.077
Pamatat and Banse (1969)	5-10 5-15	0.083 0.041
Hargrave (1969)	2-12 10-20	0.203 0.079

An average value of t_c was caluclated from these data. Where several temperature ranges or sites were investigated, an average for the experiments was used. The average value for t_c was found to be 0.082 for these experiments. This value of t_c was used for adjusting S.O.D. values to 10°C in order to make comparisons in S.O.D. values among different lakes. It was also used to adjust the input S.O.D. value used in the model (S.O.D.temp, D.O.) to the temperature of each time interval for calculations of benthic demand.

The effect of D.O. concentration on S.O.D. can be described by the equation (Edwards and Rolley 1965):

An average value of t_{C} was calculated where

C = D.O. concentration of the overlying water

$$y = S.O.D.$$

a,b = constants

22

Table 10. Determination of coefficients for correction of the effect of the oxygen concentration in the overlying water on sediment demand.^a

c ^b				y b		
(mg/L)	ln C	R. IVEL	R. GAPE	R. HIZ	$ar{y}$	ln ÿ
8	2.08	0.15	0.22	0.21	0.193	-1.65
6	1.79	0.13	0.20	0.19	0.173	-1.75
4	1.38	0.10	0.17	0.16	0.143	-1.94
2	0.693	0.07	0.13	0.12	0.107	-2.23

^aData taken from Figure 5, *Edwards and Rolley* 1965. Data from *R. Lark* omitted because high concentration of invertebrates caused poor fit.

 $by = aC^b$

 $y = S.O.D. (g0_2/m^2-hr)$

a, b = 0.08 and 0.42, respectively (established by plotting).

C = concentration of oxygen in overlying water, mg/L

The effect of D.O. concentration on S.O.D. values depends largely on the abundance of invertebrates in the sediment. Sediments containing large numbers of invertebrates show a more pronounced change in S.O.D. with declining D.O. than do sediments containing fewer invertebrates; this is reflected in the coefficients of Equation 13. Values for a and b are listed for the work of McDonnell and Hall (1969), Knowles et al. (1962), and Edwards and Rolley (1965)¹ in Table 11. A more extensive compilation of these coefficients is presented in McDonnell and Hall (1969). Typical values for a are in the range 0.08-0.25 and for b, 0.30-0.42. Trial calculations indicate that this range of coefficients is too broad to permit reasonably accurate prediction of S.O.D. from a knowledge of D.O. concentration.

Thus, while S.O.D. decreases with decreasing D.O. concentration, the coefficients that have been found in the literature vary too much to permit an accurate generalization. However, most investigators have found a minimal effect of D.O. concentration on S.O.D. when the D.O. concentration was above 5-6 mg/1 (c.f. Figure 3 in Knowles et al. 1962, Figure 4 in McDonnell and Hall 1969, Figure 5 in Edwards and Rolley 1965). For the purpose of this model, S.O.D. values were assumed to follow 0th order kinetics (S.O.D. independent of D.O.) when the oxygen

¹The raw data of Edwards and Rolley (1965) was used to compute values for a and b in Equation 12 (Table 10). concentration was above 5 mg/l. When the D.O. drops below this level, this model would overestimate the rate of decline, that is, the predicted D.O. concentration would be lower than the actual D.O. concentration. This error could be serious when very low D.O. concentrations are encountered.

Sediment oxygen demand values for a number of sediments are presented in Table 12. The separation into trophic categories was done somewhat subjectively since in most cases the authors of these studies did not present a great deal of field data on which to base a trophic categorization. The trophic status of most of these lakes was determined from the authors' description (Hargrave 1969, Brewer et al. 1977, Edberg and Hofsten 1973, Sonzogni et al 1977, McDonnell and Hall 1969). In other cases data on phosphorus concentration, hypolimnetic oxygen depletion, or visual descriptions were used as a basis of trophic class designation (Kreizenbeck 1974, Hayes and MacAulay 1959).

Since the experimental temperatures at which these S.O.D. values were determined were not uniform, the S.O.D. data were adjusted to 10° C using the value of $t_{\rm C} = 0.082$ determined earlier. Oxygen concentrations for each experiment were noted, although no quantitative adjustment was made to account for differences in the D.O. concentration of the overlying water. In all experiments used for this evaluation the D.O. concentration in the overlying water was 6 mg/l or greater.

Source	Type of Sediment	Invertebrate Concentration	a	Ъ	
McDonnell and Hall (1969)	Eutrophic stream	"low" "high"	0.08 0.25	0.39 0.39	
Knowles et al. (1962)		39,000/m ² 296,000/m ²	0.20 0.31	0.38	
Edwards and Rolley (1965) ^b	River muds		0.08	0.42	

Table 11. Effect of oxygen concentration of overlying water on sediment oxygen utilization.^a

^aEffect of oxygen concentration described by equation .

 $y = aC^{b}$

where y = rate of oxygen utilization, gO_2/m^2 -hr C = concentration of dissolved oxygen in overlying water a,b = 0.08 and 0.42, respectively (established by plotting).

^bSee Table 10 for calculation of a, b from raw data.

Data on S.O.D. values were compiled for six eutrophic lakes, eight mesotrophic lakes, and three oligotrophic lakes. In order to establish the range of S.O.D. values for each trophic class, frequency distributions were plotted (Figure 7). Inspection of this plot shows that eutrophic lakes have a wide range of S.O.D. For the six values. eutrophic lakes observed, the S.O.D. values ranged from 0.17-2.95 g $0_2/m^2$ day (95 percent confidence interval: 0.24-2.61 g $0_2/m^2$ It would be difficult to determine a dav. reasonable value for sediment oxygen demand reasonable value for sediment oxygen demand in eutrophic lakes using these data. For the three oligotrophic lakes, S.O.D. values ranged from 0.168-0.247 g O_2/m^2 day with a mean of 0.197 g O_2/m^2 day (95 percent C.I.: 0.089-0.305 g O_2/m^2 day). The six mesotrophic lakes ranged in S.O.D. values from 0.139-0.836 g O_2/m^2 day with a mean of 0.399 g O_2/m^2 day (95 percent C.I.: 0.203-0.595 g O_2/m^2 day). For a mesotrophic lake, the sediment oxygen demand at 10°C can be considered to be in the range of 0.2-0.6 g O_2/m^2 day. Values for the S.O.D. constant $0_2/m^2$ day. Values for the S.O.D. constant in the model used for the Ridges Basin Reservoir were considered to be within this range based on previous data and model runs were conducted for values of 0.2, 0.4, and $0.6 \text{ g} \text{ } 02/\text{m}^2 \text{ day}.$

In order to calculate the benthic demand during each time interval (Equation 9), it was necessary to compute the bottom area under the thermocline throughout the stratification period. The area of the horizontal plane measured for each 6.1 m (20 ft) contour was determined using 1:400 scale topographic map and the USBR area-elevation curve. As a first step in measuring the bottom area along the sideslope, a map wheel was used to determine the linear distance around the reservoir halfway between the 6.1 m (20 ft)

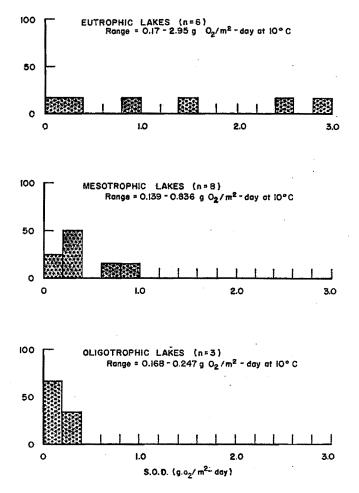


Figure 7. Frequency distribution for S.O.D. values for lakes.

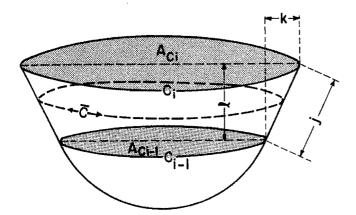
Source	Lake and Trophic Status	Exp. Temperature (^O C)	D.O. of Overlying Water (mg/l)	O ₂ Demand (gO ₂ /m ² day)	O ₂ Demand Adjusted to 10 ⁰ C (gO ₂ /m ² day)
UTROPHIC LAKES			-		
Sonzogni et al. (1977)	Shagawa L., Wisconsin	est. 10	8.0	0.12 - 0.22 $\bar{x} = 0.17$	0.12 - 0.22 $\bar{x} = 0.17$
layes and MacAulay (1959)	Montague, P.E.I. Canada	11.0 <u>+</u> 0.5	"aerated"	1.63	1.52
Edberg and Hofsten	Norrviken 1	5	"<10"	1.8	2.53
(1973)	Norrviken 2	7	"<10"	2.4	2.95
Brewer et al. (1977)	L. Hartwell, S.C.	18		0.308-0.985 x=0.684	0.178-0.570 x=0.374
Kreizenbeck (1974) ^b	L. Milner, Idaho	21-23	6.3 - 8.4	0.89 - 5.33 $\bar{x} = 2.28$	0.392 - 1.86 $\bar{x} = 1.00$
MESOTROPHIC LAKES					
dberg and Hofsten	Erken 1	4	"<10"	0.43	0.648
(1973)	Erken 2	14	"<10"	0.50	0.380
Hayes and MacAulay (1959)	Copper Lake	11.0 <u>+</u> 0.5	"aerated"	0.309	0.289
	Lily Lake	11.0 <u>+</u> 0.5	"aerated"	0.399	0.373
·	Sutherland			0.198	0.185
	Crecy			0.149	0.139
	Gibson			0.376	0.343
	Southport			0.895	0.836
LIGOTROPHIC LAKES					
ayes and MacAulay	Bluff Lake	11.0 <u>+</u> 0.5	"aerated"	0.188	0.176
(1959)	Grand Lake	11.0 <u>+</u> 0.5	"aerated"	0.264	0.247
largrave (1970)	Marion Lake	10	> 6	0.168	0.168

Table 12. Oxygen consumed in water over enclosed sediments.^a

^aThe S.O.D. values in column are adjusted to 10° C using a temperature correction factor (t_c) of 0.082 (see equation 12).

^bMean value of S.O.D. based on data from five stations.

contours (c in Figure 8). The average distance between contours was then calculated using this value and the difference between the surface areas between the two contours (k in Figure 8):


$$k = \frac{A_{c_i} - A_{c_{i-1}}}{\bar{c}} \text{ (see Figure 8) } \dots (14)$$

Since the vertical distance between contours was always 6.1 m, the average linear distance

along the bottom between contours was calculated as:

$$j^2 = 37.2 + k^2$$
 (see Figure 8)(15)

The area of the bottom between contours C_{1} and C_{1+1} was calculated directly:

 $A_{B} = AREA OF BOTTOM$

Aci = AREA WITHIN CONTOUR i

- A_{CI-I}= AREA WITHIN CONTOUR i-I
 - ! = DISTANCE BETWEEN CONTOURS i and i-!
 - \overline{C} = CIRCUMFERENCE OF CONTOUR BETWEEN i and i-1 = $\underline{Ci+Ci-1}$

 $\Delta A_{B} = j \times \overline{C}$

- A_{Bi} = CUMULATIVE AREA OF BOTTOM UNDER CONTOUR i
- Figure 8. Schematic diagram showing method used to calculate surface area of reservoir bottom.

The total area under each contour, A_{B_1} , was then calculated by summing the areas between contours for all the lower contours. This technique seemed to work well for all contours above an elevation of 2054 m (6740 ft).

For contours below 2054 m (6740 ft) the surface area between consecutive contours was considered to be equal to the bottom area between the contours (due to measuring difficulties of the irregular topography). While this approach is not strictly correct, the error in calculating the total bottom area incurred by this simplification was very small: the surface area of 85×103 m² under the 2054 m (6740 ft) contour is about one percent of the total bottom area (8,327 x 10^3 m²) of the reservoir. Data from this analysis are presented in Table 13.

A summary of all inputs, computation processes and outputs for the benthic demand segment of the model is presented in Figure 9.

Advective losses

A small amount of water leaves the Ridges Basin Reservoir via a hypolimnetic outlet and is returned to the Animas River for municipal and industrial supply downstream. The concentration of dissolved oxygen in this outflow was considered to be the same as that of the hypolimnion. The mass of oxygen lost by advection was calculated as:

where

- $Q_i = outflow rate (m^3/sec)$
- Ch = concentration of dissolved oxygen in the hypolimnion (mg/l)

A summary of all the inputs, processes, and outputs from this model is presented in Figure 10. Input data used in the simulation are presented in Table 14. The computer program used in this simulation ("OXYHYP") is presented in Appendix G, Tables 54 and 55.

Results

"OXYHYP" was run using the range of S.O.D. values determined for mesotrophic lakes (0.2-0.6 g $0_2/m^2$ day). The diffusion coefficient, D_c , was varied over the range of values given by the U.S. Corps of Engineers (1975) (Table 14). Model runs were made using all possible combinations of values for S.O.D. and D_c (nine runs). The output from each model run is presented in Appendix G.

The output from model runs using S.O.D. values of 0.2, 0.4, and 0.6 g $02/m^2$ day and the middle set of diffusion coefficients are presented in Table 15 and Figure 11. In Figure 11, the three oxygen depletion curves are extrapolated from August 30 (Day 240) through November 30 (Day 330) by assuming that the rate of change in dissolved oxygen concentration in the hypolimnion is constant throughout the stratification period. The rate of change in dissolved oxygen concentration beyond Day 240 was determined as:

$$\frac{dC}{dt} = \frac{C_{130} - C_{240}}{110 \text{ days}}$$
 (18)

where

- $\frac{dC}{dt}$ = rate of change in D.O. concentrat tion
- $C_{130} = D.0.$ concentration (mg/l at Day 130

 $C_{240} = D.0.$ concentration (mg/1) at Day 240

110 days = length of model run

Contour (m) Measured from Bottom)	£ (m)	A _{Ci} (10 ³ m ²)	A _{Ci-1} (10 ³ m ²)	$\frac{\frac{C_i+C_{i-1}}{2}}{(m)}$	k (m)	j . (m)	Δ4 _B (m x 10 ³)	ΣΑ _B (m x 10 ³)
0.0		0	_		-			
6.1	6.1	8.09	0	-	-		8.09	8.09
12.2	6.1	28.3	8.09	-	-		20.21	28.3
18.3	6.1	85.0	28.3	-			56.7	85.0
24.4	6.1	671	85.0	7,271	80.6	80.8	587	672
30.5	6.1	1,631	671	8,636	111.2	111.4	962	1,634
36.6	6.1	2,452	1,631	10,143	80.9	81.1	823	2,457
42.7	6.1	3,153	2,452	12,655	55.4	55.7	705	3,162
48.8	6.1	3,820	3,153	15,849	42.1	42.5	674	3,836
54.9	6.1	4,597	3,820	18,433	42.2	42.6	785	4,621
61.0	6.1	5,350	4,597	20,521	36.7	37.2	763	5,384
67.1	6.1	6,078	5,350	21,847	33.3	33.8,	738	6,122
73.2	6.1	6,807	6,078	25,236	28.9	29.5	745	6,867
79.2	6.1	7,499	6,807	28,430	24.3	25.1	713	7,580
85.3	6.1	8,219	7,499	32,822	21.9	22.7	747	8,327

Table 13. Calculation of the bottom surface area for Ridges Basin Reservoir.^a

^aAll terms defined in Figure 8.

. .

INPUTS

PROCESSES OUTPUTS



Figure 9. Benthic demand submodel.

Day	Distance to Thermocline(m) b	Sediment Surface	imnion Area of Thermocline (x10 ⁶ m ²) ^a	Volume ^a (x10 ⁸ m ³)	<u>Tempera</u> Bottom	ture, c	Elevation of Surface, m. ^a	D.O., mg/1 sat. at Surface Temp. under 760 mm Hg Pressure	Hypo-	Depth to Thermocline(m)	ر Stability(m	Diffusion d <u>Coefficient</u> e) High Low High
121	1	7.580	7.499	2.355	4.44	4.44	2115.2	12,98	0.00	-	0	10.0 2.5 0.16
130	73.2	6.867	6.807	1.899	4.45	7.41	2121.1	12.05	0.00	73.2	5.72 x 10 ⁻⁵	0.35 0.17 0.035
140	73.2	6.867	6.807	1.899	4.5	7.81	2120.4	11.93	1.53	73.2	4.32 x 10 ⁻⁵	0.46 0.19 0.037
150	67.1	6.122	6.078	1,506	4.45	8.32	2119.6	11.78	0.00	67.1	6.64 x 10 ⁻⁵	0.31 0.16 0.031
160	67.1	6.122	6.078	1.506	4.49	9.96	2119.4	11.32	0.00	67.1	9.84 x 10 ⁻⁵	0.19 0.12 0.021
170	67.1	6.122	6.078	1.506	4.60	11.16	2118.9	11.04	0.00	67.1	1.17 x 10 ⁻⁴	0.17 0.10 0.020
180	48.8	3.836	3.820	0.599	4.83	11.56	2117.5	10.94	0.00	48.8	6.08 x 10 ⁻⁵	0.31 0.15 0.032
190 -	67.1	6.122	6.078	1.506	5.42	12.79	2115.7	10.65	1.64	67.1	1.27 x 10 ⁻⁴	0.16 0.090 0.018
200	67.1	6.122	6.078	1.506	6.42	12.60	2113.8	10.46	0.65	67.1	1.12 x 10 ⁻⁴	0.17 0.10 0.020
210	61.00	5.384	6.078	1.506	7.20	13,40	2113.3	10.51	0.00	61.0	1.19 x 10 ⁻⁴	0.17 0.10 0.019
220	61.0	5.384	6.078	1.506	8.20	14.15	2112.7	10.34	0.00	61.0	1.33 x 10 ⁻⁴	0.16 0.09 0.018
230	61.0	5.383	6.078	1.506	9.29	14.47	2112.4	10.27	0.00	61.0	1.08 x 10 ⁻⁴	0.17 0.10 0.020
240	61.0	5.384	6.078	1.506	10.30	15.24	2112.8	10.10	0.00	61.0	1.14 x 10 ⁻⁴	0.17 0.10 0.020

Input data used in the simulation of hypolimnetic dissolved oxygen in the Ridges Basin Reservoir. Table 14.

a Data from USBR temperature simulation of Ridges Basin Reservoir
 b Computed by integration of contours (see text)

C From Metcalf and Eddy (1972)

d Stability, $E = \frac{1}{p} \frac{d\rho}{dz}$

e Diffusion coefficients from USCE, 1975, Figure II-2

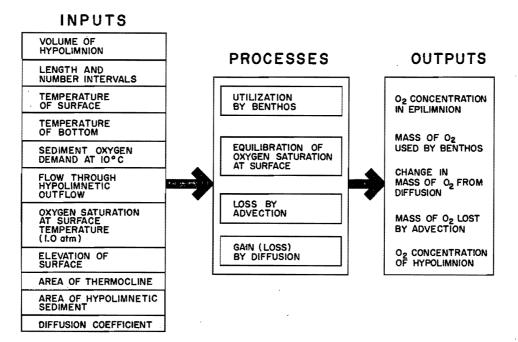


Figure 10. Summary of D.O. model.

The rates of change in D.O. concentration were determined to be 0.00754, 0.0132, and 0.0189 mg $0_2/1$ day for S.O.D. values of 0.2, 0.4, and 0.6 g $0_2/m^2$ day, respectively.

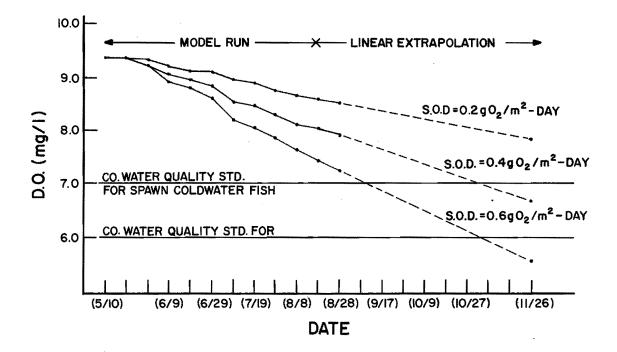
Discussion

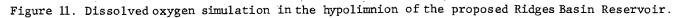
The output from this model indicates that most of the change in mass of hypolimnetic dissolved oxygen occurred as the result of benthic demand. Thus, for the middle values for S.O.D. and diffusion, benthic demand accounted for 86 percent, loss via the outflow accounted for 14 percent, and the diffusion accounted for less than one percent of the total change in mass of hypolimnetic oxygen. Variation of the ĥypolimnetic oxygen. diffusion coefficient over the range of values presented in the U.S. Corps of Engi-neers (1975) caused no changes in the predicted values for hypolimnetic dissolved oxygen concentration (Table 55), in spite of the fact that upper range of diffusion constants are approximately one order of magnitude larger than the lower range. Error associated with estimating the thickness of the element limiting diffusion should be very small considering the relatively small effect of diffusion on the overall oxygen budget of the reservoir.

This model indicates that the dissolved oxygen concentration in the hypolimnion will drop to between 7.3 and 8.6 mg/l by the end of August. This level of dissolved oxygen is adequate for the maintenance of a cold water fauna. Water quality problems associated with low concentrations of dissolved oxygen do not occur in this range of concentrations. However, this simulation

stops on August 28 because the USBR thermal simulation was not continued to fall turnover. In this location fall turnover usually occurs in October or November, so this model does not include the last two or three months of the stratification period. The results of this simulation were linearly extrapolated to the end of November in order to estimate the D.O. concentration in the hypolimnion at the end of the stratification period. Extrapolation of this simulation to November 30 indicates that the hypolimnetic D.O. concen-tration would drop to between 5.5 and 7.9 mg/l (Figure 11). The lower estimate of 5.5 mg/l is below the Colorado Water Quality Standard established for the protection of cold water biota. However, an extrapolation of the model results beyond the period of simulation is not strictly valid since the simulation is not strictly valid since the rate of change in the D.O. concentration of the hypolimnion is not linear (Figure 11). To obtain a more accurate estimate of the D.O. concentration at the end of the stratification, the thermal simulation should be extended to the turnover period and the data obtained from this simulation should be used to extend the results of the oxygen simulation model. This procedure seems especially worthwhile in view of the possibility that the D.O. concentration in the hypolimnion may drop to a level that would be detrimental to a cold water biota.

These predictions of hypolimnetic dissolved oxygen were based on assumptions that: 1) the sediment oxygen demand in a lake is directly related to its trophic status, 2) benthic demand is the major oxygen depletion mechanism in the hypolimnion, 3) both the epilimnion and the hypolimnion can be treated as CSTR's, and 4) a lake undergoes


		ъ		Hypolimnion ^C	
Date	Day	Epilimnion ^b	S.0.D. = 0.200	S.O.D. = 0.400	S.O.D. = 0.600
5/10	130	9.39	9.39	9.39	9.39
5/20	140	9.24	9.39	9.39	9.39
5/30	150	9.17	9.34	9.29	9.24
6/9	160	8.79	9.20	9.09	8.97
6/19	170	8.57	9.14	8.97	8.81
6/29	180	8.49	9.09	8.86	8.64
7/9	190	8.35	8.95	8.58	8.22
7/19	200	8.20	8.91	8.51	8.11
7/29	210	8.20	8.77	8.32	7.87
8/8	220	8.05	8.68	8.17	7.66
8/18	230	8.06	8.62	8.06	7.49
8/20	240	7.90	8.56	7.94	7.31


Table 15. Predicted dissolved oxygen concentration in Ridges Basin Reservoir.^a

^aAll D.O. values in mg/l.

^bEpilimnion considered saturated

^CValues calculated using middle diffusion coefficient curve from *USCE*, 1975, Figure 11-2.

complete mixing during turnover and becomes saturated with dissolved oxygen throughout its depth.

The clumping of S.O.D. values when plotted according to trophic status (Figure 7) suggests that there is a relationship between trophic status and sediment oxygen demand. The basis of this relationship is that the sediment oxygen demand is related to the amount of organic matter that falls to the bottom of lakes. Since there is more organic matter produced in lakes of higher trophic status, it follows that S.O.D. is related to trophic status. The relationship between S.O.D. and trophic status was alluded to by Hutchinson (1938), who proposed that the areal depletion of oxygen in the hypolimnion of lakes is related to trophic status. Hutchinson (1957) proposed ranges of the areal oxygen deficit of 0.04-0.33, 0.33-0.50, and greater than $0.50 \text{ g } 02/\text{m}^2$ day for oligotrophic, mesotrophic, and eutrophic lakes, respectively. Newbold and Liggett (1974) found that the oxygen depletion in the hypolimnion of mesotrophic Lake Cayuga could be estimated by assuming that the organic material falling into the hypolimnion was completely decomposed. In the same study, Newbold and Liggett found that benthic uptake was the major mechanism of oxygen uptake in the hypolimnion. Their study adds support to the contention that benthic demand is a function of trophic

In the Ridges Basin Reservoir the sediment oxygen demand may be less than the range of values for S.O.D. proposed in this study for mesotrophic lakes as the result of heavy metal toxicity. Heavy metal toxicity would reduce the sediment oxygen demand by 1) preventing the growth of algae and thereby reducing the amount of organic material falling into the hypolimnion, and 2) decreasing the respiratory activity of bacteria in the sediments.

A second major assumption used in this model was that benthic demand is the major mechanism of oxygen depletion in the hypolimnion. The similarity between Hutchinson's (1957) proposed ranges for the areal oxygen deficits and the ranges for S.O.D. in oligotrophic and mesotrophic lakes in this study (0.09-0.25 and 0.20-0.60 g $02/m^2$ day, respectively) support the contention that sediment oxygen demand is a major mechanism of oxygen depletion in lakes. Although the oxygen demand of the open water may result in significant depletion of oxygen in some lakes, especially those containing humic matter (Hayes and MacAulay 1959), many researchers have found that the oxygen demand that occurs in the open water is relatively minor compared to the demand exerted by benthic processes. In studies of sediment oxygen demand, neither Pamatat and Banse (1969) in a study of Puget Sound, nor Hargrave (1969) studying oligotrohpic Lake Marion, could detect changes in oxygen containing no sediments. In Newbold and Liggett's (1974) study of Lake Cayuga, oxygen-utilizing processes in the hypolimnetic water were computed to result in a depletion of only 0.8 mg/l during the 120 day stratification period.

The assumption that both the epilimnion and the hypolimnion behave like CSTR's was made so that both the epilimnion and the hypolimnion could be considered to be vertically homogeneous with respect to the distribution of dissolved oxygen. Furthermore, the epilimnion was considered to be exactly saturated. The assumption that the epilimnion has a vertically homogeneous distribution of dissolved oxygen is probably valid for most lakes, although the concentration of dissolved oxygen in the epilimnion may be significantly different from the saturation due to photosynthesis or respiration. A eutrophic lake is often supersaturated with dissolved oxygen during the daytime, due to oxygen generated by photosynthesis, and undersaturated at night, due to respiration. However, since the rate of transfer of oxygen from the epilimnion to the hypolimnion is probably very low, the small error that may have resulted in assuming the epilimnion to be saturated would have had little effect on the oxygen dynamics of the hypolimnion. The assumption that the hypolimnion is vertically homogeneous with respect to dissolved oxygen may not be strictly correct since oxygen profiles of the hypolimnion often exhibit a marked decline in oxygen concentration near the sediment surface. This localized depression of oxygen concentration near the sediment surface is the result of limited diffusion to the sediment. Thus, a prediction of the average dissolved oxygen concentration in the hypolimnion does not indicate the lowest D.O. values that may be found near the sediment surface.

Finally, it was assumed that the Ridges Basin Reservoir will be completely mixed at turnover and will be saturated throughout its depth at this time. In reality, the dissolved oxygen concentration at the bottom of lakes may not be completely saturated due to incomplete mixing, biological respiration, and photosynthesis. Hutchinson (1957) cites examples to show that the oxygen concentration of lakes during turnover may be as low as 91 percent or as high as 116 percent of the saturation value. If the actual D.O. concentration in the Ridges Basin Reservoir at turnover is less than the saturation value, the actual D.O. concentrations in the hypolimnion will be proportionately lower throughout the summer.

The quality of the input data is also a constraint on the accuracy of predictions generated by this model. Of particular importance in this respect is the possible errors associated with the USBR temperature simulation. Since the oxygen model utilized output from the temperature simulation, the results of the oxygen model can only be as accurate as the results of the temperature simulation. The accuracy of the results generated by the USBR thermal simulation is questionable and the use of these data may have produced errors in the oxygen simulation.

The predictions generated by this model are not applicable to the Ridges Basin Reservoir during its early life, since reservoirs often undergo a period of stabilization following their initial filling. During this period, the oxygen demand exerted by the decay of inundated soils and vegetation may result in hypolimnetic dissolved concentrations that are considerably lower than occur following the stabilization period. The extent of the oxygen depletion during the early life of a reservoir is related to the type and quantity of vegetation being merged (Ball et al. 1975) and probably to the organic content of the inundated soils.

There are numerous examples of reservoirs that have undergone a period of severe oxygen depletion following the initial filling. Purcell (1939) observed a gradual increase in the dissolved concentration in Wanague Reservoir, New Jersey, during the first 10 years following impoundment (from 0 percent to 20 percent of saturation). Associated with the increase in D.O. concentration was a decrease in concentrations of soluble iron and manganese and hydrogen sulfide. Similarly, Duffer and Harlin (1971) found a complete depletion in dissolved oxygen in Arbunkle Reservoir, Oklahoma, during the first two years after filling, although it is not known whether this problem has improved. Churchill (1957) states that the presence of hydrogen sulfide (associated with anoxic conditions) may be a problem in TVA reservoirs during the first year of operation. In some reservoirs a change in hypolimnetic D.O., at least in the first few years, does not seem to occur. Williams (1978) found no significant change in the hypolimnetic D.O. concentrations during the first three summers following filling of Raystown Dam, Pennsylvania. Barton and Johnson (1978) found no change in the D.O. concentration in the bottom of Cocchiti Reservoir, New Mexico, between the first and second years of filling.

Thus, although many reservoirs exhibit a pattern of severe oxygen depletion in the hypolimnion after their initial filling followed by subsequent improvement, this pattern is not ubiquitous. It would be difficult to predict whether or not the Ridges Basin Reservoir will undergo a period of oxygen depletion in its early life as the result of the decomposition of inundated plants and soils or how long this stabilization period will last. A microcosm study involving the use of soils from the reservoir site and water from the Animas River to simulate the period following initial filling may be useful in determining the potential for early oxygen depletion in the hypolimnion of the newly formed reservoir.

THE FATE OF METALS IN THE PROPOSED RIDGES BASIN RESERVOIR

Introduction

The presence of heavy metals in a body of water is significant for several reasons: 1) certain metals, such as iron, magnesium, manganese, cobalt, zinc, and copper, are essential micronutrients in biological systems, 2) all of the heavy metals (in-cluding those that are essential micronutrients) are toxic to organisms in high concentrations, and 3) many of the metals react with other dissolved constituents. In evaluating the limnology of a new reservoir, it would be desirable to predict the concentrations and speciation of the heavy metals in the stored water, the sediments, and the various components of the biota. Unfortu-nately, available water quality models provide only a rough prediction of trace metal concentrations in aquatic systems (lockic and lamas 1976). Furthermore the (Leckie and James 1976). Furthermore, the water quality parameters measured for the Animas River during this study do not provide sufficient data for detailed chemical modeling. Nevertheless an attempt was made to predict the retention of several heavy metals using a simple mass balance model similar to that used by Dillon and Rigler (1974b) and Chapra (1975) to predict the retention of phosphorus in lakes. Literature values of metal retention were used in conjunction with the mass balance model to calculate average settling velocities for iron, zinc, copper, lead, manganese, and cadmium. These calculated settling velocities were used to predict the retention of four of these metals in the proposed Ridges Basin Reservoir.

Metal Retention Model

The movement of any metal m in a lake can be described by a simple mass balance equation:

 $\nabla \frac{dm}{dt} = W_m - Qm - K_m Vm$ (19)

where

- V = lake volume
- W_m = mass loading of metal m
- Q = outflow
- m = concentration of metal in lake
 water
- K_m = a first-order rate constant for loss to the sediments for metal m

This model makes several limiting assumptions (Dillon and Rigler 1974b):

- 1. The lake is a continuously stirred tank reactor (CSTR).
- The rate of sedimentation is proportional to the amount of substance that is in the lake (i.e., K is truly first-order).
- 3. The concentration of the outflow is equal to the concentration in the lake.
- There are no seasonal fluctuations in loading rate.

Although these assumptions are violated in lake systems to various degrees, this approach has been widely used in the modeling of phosphorus (Vollenweider 1969, 1973, 1976, Dillon and Rigler 1974b, Chapra 1975, Kirchner and Dillon 1975).

If it is assumed that the concentration of any metal reaches equilibrium in a lake, the term dm/dt approaches 0. Under this condition,

A retention coefficient, R_m , can be expressed as:

Setting ρ = Q/V and solving for m in Equation 20:

$$\mathbf{m} = \frac{\mathbf{W}_{\mathbf{m}}}{\mathbf{Q} + \mathbf{K}_{\mathbf{m}} \mathbf{V}} \qquad (22)$$

Kirchner and Dillon (1975) showed that by multiplying both the numerator and the denominator on the right side of the equation by \overline{z} , the mean depth, the following equation is produced:

$$R_{\rm m} = \frac{K_{\rm m}\tilde{z}}{\bar{z}\rho + \bar{z}K} = \frac{v_{\rm m}}{v_{\rm m} + q_{\rm g}} \qquad (24)$$

where

- q_{g} = areal water load
- v_m = apparent settling velocity for metal m

If v is a constant for the removal of metals, then the retention coefficient, R, can be predicted from q_8 . If R is known, then the amount of a metal accumulated by a lake in a given year can be calculated:

 $R_{m}W_{m} = L_{s,m}$ (25)

where

L_{s.m} = loading to sediment for metal m

From this, the loss of metals in the lake discharge can be calculated:

where

Li.m = loading of metal m to outflow

 $L_{o,m} = inflow loading of metal m$

The use of an average settling velocity to calculate the retention of various metals ignores potentially important differences in transport mechanisms such as resolubilization at the sediment surface, chemical precipitation, and bioaccumulation. Although there are certainly differences in transport mechanisms of individual metals among lakes, several authors (Baccini 1976, Hem 1972, Delfino et al. 1969) have concluded that simple sedimentation of incoming suspended matter is a major mechanism by which metals are removed from the water column, adding support to the concept of using an average settling velocity to predict metals retention. The relationship between the loading of suspended metals and the overall retention of metals for several lakes is discussed later in this section.

Evaluation of Metal Retention Model

To determine values for v_m in Equation 24 for various metals data on metal retention coefficients and areal water loading was needed for a number of lakes. Data on metals retention coefficients in six lakes were extracted from the literature. In some cases data on retention coefficients for one or

more metals were presented in the published literature, but for most lakes the retention coefficients for various metals were calculated using published data on metals concentrations and flow. The six lakes for which suitable data existed and the references used are:

- Pueblo Reservoir, Colorado (Herrmann and Mahan 1977, W. C. Kregger USBR, unpublished data)
- Derwent Reservoir, England (Harding and Whitton 1978)
- 3. Alpnachersee, Switzerland (Baccini 1976)
- 4. Lake Washington, Washington (Barnes and Schell 1972)
- 5. Coeur d'Alene Lake, Idaho (Funk et al. 1975, USEPA 1975b)
- Yellowtail Reservoir, Montana (Wright and Soltero 1975)

Details concerning the calculation of loading, morphological data, and a brief description of each lake are discussed in Appendix H. It was recognized that for some of these lakes (Derwent Reservoir, L. Washington, and Yellowtail Reservoir) the metals loading data may be inaccurate, but they were all that were available. For lakes in which data were available for more than one year, the data were broken into time segments of approximately one year. For Pueblo Reservoir adequate data existed from June 1975 -September 1976. These data were divided into two segments, one extending from June through September 1975 through September 1976. For Yellowtail Reservoir the data were also divided into two segments, one extending from February to December 1968, and the other extending from January through August 1969. These data are presented in Table 16.

The data collected on metals retention was used to calculate the settling velocity of each metal in each lake by rearranging Equation 24:

 $v_{\rm m} = \frac{R_{\rm m}^{\rm q} {\rm s}}{1 - R_{\rm m}} \qquad (27)$

Based on these settling velocities an average settling velocity for each metal was calculated, together with 95 percent confidence intervals. Data on the settling velocity of each metal in each lake, the average settling velocity for each metal and the 95 percent confidence intervals for each mean are presented in Table 17. Average settling velocities were calculated for iron, zinc, manganese, copper, cadmium and lead. The average settling velocities for manganese and cadmium were based on only two data points each. Since the 95 percent confidence

Lake and	Ave.	Ave.	Θ_h	q_{s}			% Ret	ention		
Location	Volume (x 10 ⁶ m ³)	Area $(x 10^6 m^2)$	(yr.)	(m/yr)	Fe	Zn	Mn	РЪ	Cu	Cđ
Pueblo Reservoir, Colorado June-Sept., 1975	29.03	4.42	0.052	59.7	-	78.3	-	100.0	-	-
Oct., 1975-Sept., 1976	36.53	5.09	0.098	135.3	19.6	25.5		73.4		_
Coeur D'Alene Lake, Idaho	294.	129.5	0.035	64.9		17.5		-		
Yellowtail Res- ervoir, Montana FebDec., 1968	970	30.2	0.313	102.6	92.7	31.0	80.0	***	21.4	-
JanAug., 1969	1048	37.9	0.407	67.9	96.2	52.5 ·	87.8		57.1	_
Alpnachersee, Switzerland	100.1	4.76	0.284	73.97	92	50		62	42	18
Derwent Reservoir, England	5.06	4.05	0.133	13.08		70.3		89.2		98.3
Lake Washington, Washington	2904	88	2.48	13.3	99.2	44.9		96.8	58.8	

Table 16. Metal retention data for six lakes.^a

^aSee Appendix H for sources of data.

intervals of the average settling velocities for cadmium and manganese were too broad for the estimate to be considered reliable, these metals were not considered further. The average settling velocity for lead does not include a value for Pueblo Reservoir for the period June - September 1975 because complete retention of the lead entering the reservoir made vpb undefined. The fact that all of the lead entering Pueblo Reservoir during this period was retained may indicate that 1) lead has a very high settling velocity in this reservoir, 2) the loading of lead was not constant, or 3) the reservoir is not behaving as a CSTR. The calculated average apparent settling velocity for lead is thus enclosed in parenthesis to indicate an element of uncertainty since the early 1975 data for Pueblo Reservoir was not included.

To test the statistical validity of metals retentions predicted from these average settling velocities, the average settling velocity for each metal and the areal water load (q_g) for each lake was used to calculate predicted values for metals retentions in each lake (R_p) using Equation 24 (Table 18). These values of predicted retention were compared to the observed values of retention (R_{Ob}) for each metal using a coefficient of determination (r^2) . Values of r^2 between R_p and R_{Ob} were 0.53, 0.23, 0.47, and 0.39, respectively, for iron, zinc, copper, and lead.

Finally, the relationship between the areal water load (q_s) and predicted retention $(R_p \text{ for iron, zinc, lead, and copper was depicted graphically in Figures 12-15 using the mean and the upper and lower boundary values of the 95 percent confidence interval of the average settling velocity for each metal.$

In terms of statistical confidence, the best relationship between metal retention and areal water load was found for iron. Despite the wide confidence interval (248-1974 m/yr) surrounding the estimate of the mean settling velocity for iron, this range of values is so high with respect to the areal water load that a large fraction of the iron is retained throughout the range of areal water loads plotted. Even the lower 95 percent confidence interval estimate of $v_{\rm Fe}$, 248 m/yr, results in over 60 percent of the iron being retained with an areal water load of 140 m/yr. The r² of 0.53 between the predicted values of retention (using the calculated average settling velocity) and the observed values indicates that there is a strong correlation between calculated and observed values. However, despite the apparent strength of the relationship between R and q_s for iron, it should be noted that the observed retention coefficient for iron in Pueblo Reservoir (0.20) was much less than the predicted value (0.89). This large discrepancy probably results from the fact that the mechanisms by which iron is trans-

Lake	Appare	ent Set	tling V	elocity,	^b v _m	(m/yr)	
	Fe	Zn	Mn	Pb ^C	Cu	Cđ	
Pueblo Reservoir							
June-Sept., 1975		215		-			
Oct., 1975-Sept. 1976	33	46		371			
Coeur D'Alene Lake		14					
Yellowtail Reservoir							
FebDec., 1968	1,303	46	410		28		
JanAug., 1969	1,719	75	489		90		
Alpnachersee	851	74		121	55	16	
Derwent Reservoir		31		108		756	
Lake Washington	1,649	11		402	19		
Average	1,111	64	449	(251)	48	386	
95% Confidence Intervals	<u></u>						
Upper	1,974	119	1018	(375)	99	3855	
Lower	248	9	-120	(127)	-3	-3083	

Table 17. Apparent settling velocities for metals in six lakes.^a

^aSee text for sources of data.

^bApparent settling velocity, $v_m = \frac{R_m q_s}{1 - R}$ where

 $R_{m} =$ fraction of metal m retained $q_{g}^{m} =$ areal water load, m/yr (m³/yr areal water load, m/yr (m³/yr/m²)

^cCalculation of ave. settling velocity does not include the early 1975 data for Pueblo Reservoir; 100 percent of the load was retained during this period, making v = undefined.

ported in Pueblo Reservoir is somehow different from the iron transport mechanisms in the other four lakes for which iron retention data were available and illustrates a basic weakness in using average settling velocities to predict metal retentions in lakes.

The plot of retention coefficient versus areal water load for lead (Figure 13) shows that the majority of lead entering the four study lakes was retained. For these four lakes the observed retention coefficient was never below 0.60 (X = 0.84). This plot also indicates that the retention of lead can be predicted with reasonable reliability. The r² between the predicted and observed values of the retention coefficient of lead was 0.39. The 95 percent confidence interval for the mean settling velocity for lead was 127-375 m/yr.

For zinc the average settling velocity was 64 m/yr (95 percent confidence interval: 9-119 m/yr). Because the settling velocity for zinc is so low, the distance between the 9 m/yr curve and the 119 m/yr curve is relatively large (Figure 14). Comparison of these curves with those for iron show that

while the relative width of the 95 percent confidence interval is similar (+ 85 percent of the mean for zinc; + 77.7 percent of the mean for iron), the accuracy of predictions of iron retention are better than those for zinc. For example, for a lake with an areal water load of 100 m/yr, the 95 percent confidence interval estimate of retention for zinc is 0.08-0.58 (range of 0.50) while that for iron is 0.70-0.95 (range of 0.25). The narrower range of estimates for the retention of iron is a result of the fact that the average apparent settling velocity for iron (1,111 m/yr) is much greater than that for zinc (45 m/yr). As discussed earlier, retention coefficients can be predicted more accurately for metals whose apparent settling rate is high relative to normal water loading rates. The accuracy of predictions of zinc retention, based on data obtained in this study, would be very low and thus of limited usefulness. The value of r^2 for the relationship between predicted and observed values of zinc retention was only 0.23.

The 95 percent confidence interval for the estimate of the apparent settling velocity of copper is between -3 and 99 $\rm m/yr$

Tab	10	18	Comp	arie
Tan	TE	TO *	COMD	a t T9(

		-		- 1	, ,	1	РЪ		
Lake		'e		Zn		Cu		rD	
	Rob	^R p	₽ _{ob}	^R p	^R ob	^{R}p	^R ob	^R p	
Pueblo Reservoir June-Sept., 1975 Oct. 1975-Sept., 1976	0.20	0.89	0.78 0.26	0.52 0.32			1.0 0.73	0.81 0.65	
Coeur D'Alene L.			0.18	0.50					
Yellowtail Reservoir FebDec., 1968 JanAug., 1969	0.93 0.96	0.92 0.94	0.31 0.53	0.38 0.49	0.21 0.57	0.32 0.41			
Alpnachersee	0.92	0.93	0.50	0.46	0.42	0.39	0.62	0.77	
Derwent Reservoir	•		0.70	0.83			0.89	0.95	
Lake Washington	0.99	0.99	0.45	0.83	0.59	0.78	0.97	0.95	
r ²	0.	53	0.	23	0.	47	0.	39	

 a_{R}_{ob} = measured retention (see Table 16)

 ^{R}p predicted retention, using average apparent settling velocity for each metal (Table 17)

$$R_p = \frac{v_m}{v_m + q_s}$$

where

= average apparent settling velocity for metal, m/yr v_m

areal water load, m/yr (m³/yr/m²) q_{g}

 $(v_{Cu} = 48 \text{ m/yr})$. An apparent settling velocity of -3 m/yr indicates that copper is moving upward. Since this cannot occur, the 95 percent confidence interval for the v_{Cu} was taken as 0 - 99 m/yr. From inspection of Figure 15 it can be seen that the retention coefficient for copper was less than 0.60 for all four of the lakes observed. The plots of R vs q_s and $v_{Cu} = 0$ m/yr and $v_{Cu} = 99$ m/yr indicate that predictions of the retention of copper on the basis of its apparent settling velocity cover a broad range of values. Based on this range of settling velocities, a lake with an areal water load of 100 m/yr would have a predicted retention of 0 - 50 percent. Nevertheless, the value of r^2 for the relationship between the predicted and observed retention of copper in the four lakes for which data were available is 0.47.

The mean and confidence intervals of the apparent settling velocities of iron, lead, zinc, and copper are presented diagramatically in Figure 16. The calculated apparent settling velocities for these metals follows the sequence:

Fe > Pb > Zn = Cu

This sequence suggests that iron and lead are retained much more effectively by lakes than are zinc and copper. Two possible explanations for this sequence are: 1) that the mechanisms by which iron and lead are removed are different from the mechanisms by which copper and zinc are removed, or 2) that the major removal mechanisms for all four metals is simple sedimentation. Iron and lead may have higher apparent settling velocities simply because they are relatively more abundant in the suspended fraction than are zinc and copper, and it is the suspended fraction that is most rapidly removed by sedimentation.

The second explanation is strongly supported by the data of Baccini (1976). In his study at Alpnachersee, Switzerland, Baccini (1976) found a very strong relationship between the proportion of iron, zinc, copper, and cadmium entering Alpnachersee in the particulate form and portions of each metal retained in the lake $(r^2 = 0.95)$. From these data Baccini concluded that simple sedimentation of the suspended fraction entering the lake was the major mechniams by which these metals were retained. The data collected by Herrmann and Mahan (1976) for Pueblo Reservoir tend to support this hypoth-

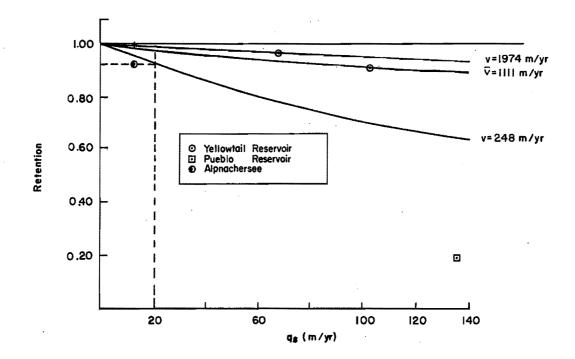


Figure 12. Retention of iron vs. areal water load.

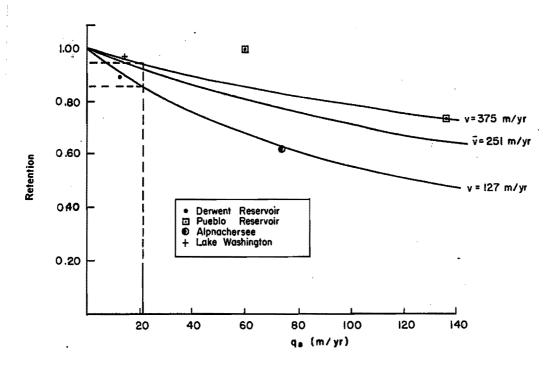


Figure 13. Retention of lead vs. areal water load.

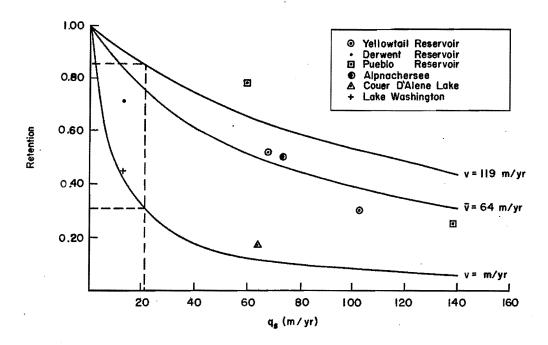
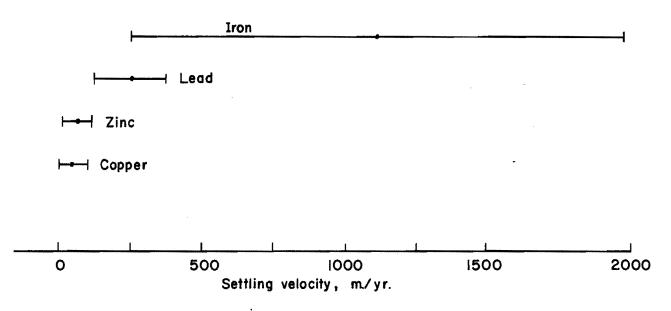
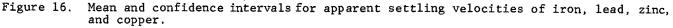


Figure 14. Retention of zinc vs. areal water load.




Figure 15. Retention of copper vs. areal water load.

esis. For Pueblo Reservoir, the relationship between the proportion of metals in the suspended fraction in the inflow (S:T, where S is the suspended load and T is the total load) and fraction retained is generally high, although discrepancies exist (Table 19). For the period June-September 1974, the relationship between retention and the ratio S:T is strong for both zinc and lead: for zinc, 86 percent of the inflow load occurred as suspended material while 78 percent was retained and for lead 100 percent was retained. For the 1975 water year, the relationship between S:T and R is strong for lead (S:T = 0.70; R = 0.73) but much weaker for zinc (S:T = 0.87; R = 0.26) and iron The fact that less (S:T = 0.99; R = 0.20). iron and zinc were retained than entered the reservoir as suspended material during the 1975 water year may be a reflection of the very high areal water load (135 m/yr) that occurred during this period that may have prevented the retention of much of the suspended water. During the period of June -September 1975, during which the reservoir was filling, the areal water load was about half as great (60 m/yr) and more complete retention of the suspended material in the inflow would be expected. Although more extensive data are required to support this hypothesis, it appears likely that the higher settling velocities of lead and iron compared with those of zinc and copper is a reflection of the fact that lead and iron are more highly associated with the suspended fraction of the inflow load to lakes than are zinc and copper.

Although much of the retention of these metals probably occurs as the result of their relative abundance in the suspended fraction, other mechanisms may account for a portion of their removal from the water column, inparticularization cluding biological of dissolved metals and chemical precipitation. Baccini (1976) found that 5 to 20 percent of the total zinc and 5 to 15 percent of the total copper in Alpnachersee was of biogenic Baccini concluded that a portion of origín. the total retention of these metals in Alphachersee resulted from in-lake particu-larization of the dissolved copper and zinc by the biota followed by sedimentation. The fraction of both copper and zinc retained in Alpnachersee included both the suspended load of each metal plus a portion of the dissolved load, particularized by the biota. Although additional data on the amount of metals retained by lakes as the result of biological particularization could not be found, there is no doubt that dissolved metals are accumulated by the biota of lakes. Examples of the extent of accumulation of metals in various components of aquatic biotas can be found in the work of Thomann et al. (1974), Mathis and Kevern (1973), and Medine et al. (1977).

In addition to the sedimentation of metals entering lakes in the suspended form and the sedimentation of dissolved metals following particularization by the biota, chemical precipitation and resolubilization of metals may play an important part in determining the rate of accumulation of

Lake	Z	n	Fe		Pb		Cd		Cu	
Lake	S/T	R	s/T	R	S/T	R	S/T	R	S/T	R
Alpnachersee	0.37	0.50	0.98	0.92			0.17	0.17	0.45	0.42
Pueblo Reservoir June-Sept., 1974	0.86	0.78	-	 .	1.00	1.00	-	-	-	-
Pueblo Reservoir 1975 Wt. Yr.	0.87	0.26	0.99	0.20	0.70	0.73	-	-	-	-
Proposed Ridges Basin Reservoir ^b	0.80	0.75	0.98	0.98	0.95	0.92	1.00	-	0.89	0.69

Table 19. Comparison of the composition of metals loading with metals retention.^a

 a_{R} = retention = $\frac{\text{mass in-mass out}}{\text{mass out}}$

S/T = suspended load/total load.

^bRetention data for the Ridges Basin Reservoir are predicted values.

metals in the sediments of lakes. Although there appears to be a paucity of data as to the effects of precipitation and resolubilization of metals on the overall mass balance of metals in lakes, it seems very likely that, at least under certain conditions, purely chemical phenomena may have a significant effect on the overall mass balance of metals.

Application to Ridges Basin Reservoir

The analysis in the previous section indicates that, at least for the lakes included in the analysis, the retention of some metals can be predicted on the basis of average settling velocities. On the assumption that the lakes included in this analysis represent the conditions at Ridges Basin, the calculated average settling velocities determined for metals in these lakes were used to predict the retention of several metals in the proposed Ridges Basin Reservoir.

Other information required for these predictions included 1) data from the USBR hydrologic simulation (Appendix A) and 2) data on metals concentrations in the Animas River during the period September 1977 to August 1978 (Appendix B). The data on metals concentrations in the Animas River were used together with the hydrologic simulation of the reservoir for an average year to compute loadings for iron, zinc, manganese, copper, and lead into the reservoir (Table 20). The retention coefficient for each metal was determined from Equation 24 using the upper and lower 95 percent confidence limits for the average settling velocity and the areal water load, q_s , for the Ridges Basin Reservoir (21.3 m/yr). Values for the retention coefficients were used to calculate the annual loading of each metal to the sediment (L_s) and to the outflow:

$$L_{s,m} = \frac{R_m L_{i,m}}{100}$$
(28)

$$L_{o,m} = L_{i,m} - L_{s,m}$$
 (29)

where

- $L_{s,m} =$ loading of metal m to sediment, kg/yr
- L_{i,m} = loading of metal m into reservoir, kg/yr
- L_{o,m} = loading of metal m to outflow, kg/yr
- R_m = retention coefficient, as percent

In addition, the average flow-weighted inflow and outflow concentration of each metal was calculated. The data used in this analysis and the results obtained are presented in Table 21.

Discussion

This analysis indicates that most of the iron and lead entering the Ridges Basin Reservoir will be retained as will lesser amounts of the zinc and copper. The predicted retention percentages correlate well with the ratio of suspended to total metal load (Table 19). Thus iron (S:T of inflow = 0.98) has a predicted retention of 92 to 99 percent, zinc (S:T of inflow = 1.00) has a predicted retention of 86 to 95 percent and lead (S:T of inflow = 0.92) has a predicted retention of 0.92. The correlation fails only for copper, whose predicted retention (0 to 92 percent) is much less than the ratio of

_	Load (kg)										
Date	Fe	Zn	Mn	Cu ^b	Pb ^b						
9/77	3,631	3,050	945	630							
10/77	2,347	2,973	1,538	65	-						
11/77	2,349	14,226	1,624	157	4						
12/77	1,583	803	1,124	0	3						
1/78	2,196	921	757	58	2						
2/78	2,480	617	832	20	2						
3/78	7,120	1,080	1,696	-	4						
4/78	10,730	9,230	1,220	363	49						
5/78	230,294	18,493	15,432	2,961	2,584						
6/78	195.078	11,675	7,113	1,771	960						
7/78	38,864	6,964	5,539	935	514						
8/78	13,637	1,546	3,718	266	0						
Annual	510,309	71,581	41,538	7,254 ^c	4,130						

Table 20. Loading of heavy metals into the proposed Ridges Basin Reservoir.^a

^aInflow data from USBR simulation of hydrologic regime for average year. All data for total metals, based on analysis by UWRL.

^bDuring months when concentrations were below detection limits, the concentration was considered to be halfway between zero and the detection limit. ^cLoading not for entire annual period due to missing data.

Table 21. Retention of total iron, zinc, lead, and copper in the proposed Ridges Basin Reservoir.

		Ме	tal	
	Iron	Zinc	Pb	Cu
Settling Velocity ^a (m/yr)	248-1974	9-119	127-375	0-99
R(%) ^b	92-99	30-85	86-95	0-82
Loading Into Reservoir, L_i (10 ⁴ kg/yr) ^c	51.03	7.08	0.41	0.73
Loading to Sediments, L _S (10 ⁴ kg/yr) ^d	46.95-50.52	2.12-6.02	0.35-0.39	0-0.58
Loading to Outflow, $L_o (10^4 \text{ kg/yr})^e$	4.08-0.51	4.96-1.06	0.06-0.02	0.71-0.1
Flow Weighted Average Concentration in Inflow $(\mu g/\text{k})^{f}$	3117	432	32	47
Flow Weighted Average Concentration in Outflow	33-266	69-324	2-5	9–51 ^g

^aSee Table 17. ^bSee Figures 12-15. ^cSee Table 20. ^dSee Equation 27. ^eSee Equation 28. ^f $[M] = \frac{10ading}{total flow}$. Data for lead and copper adjusted to account for missing inflow concentration data.

 ${}^{\rm g} {\rm Outflow}$ concentration higher than inflow due to evaporation (6% of inflow).

S:T = 100 for the inflow. This correlation suggests that the metals contained in the suspended fraction of the inflow to the Ridges will be retained.

The predicted values of retention for each metal were used to calculate the amount of iron, lead, zinc, and copper that will be retained in the sediments and that will be released to the outflow. The calculation of the amount of each metal that will be retained by the sediment is, of itself, of little value. However, if data on the amount of sediment that will be retained were available, these data could be used in conjunction with the data on the metals loadings to the sediment to make an estimate of the concentrations of each metal in the sediment:

$$C_{\rm m} = \frac{L_{\rm s,m}}{A_{\rm s} \times d_{\rm s}} \qquad (30)$$

where

- $C_m = concentration of metal in sediment (kg/m³)$
- L_{s,m} = rate of accumulation of metal m in sediment (kg/yr)
- A_s = area of bottom, m²
- d_g = rate of accumulation of sediments (m/yr)

Equation 30 was developed on the assumption that retained metals and sediment are deposited evenly over the entire bottom and that the metals, once deposited, do not migrate vertically through the sediment or into the water column. Although neither of these assumptions is strictly valid, these calculations would provide a gross approximation of the metals concentrations in the sediments of the proposed reservoir. This knowledge would allow a crude evaluation of the accumulation of each metal in a benthic feeding food chain based on concentration factors for metals determined by various investigators. Considering the relatively high levels of various metals in the inflow to this reservoir, a more detailed analysis of the effects of the metals that will enter the Ridges Basin Reservoir on the biota may be justified.

The predicted loading of iron, zinc, copper, and lead in the outflow was used to calculate the flow-weighted average concentration of each of these metals in the outflow (Table 21). Inspection of these data indicates that the concentrations of iron, zinc, and lead will be substantially reduced between the inflow and the outflow. These reductions in metal concentrations will improve the quality of the outflow water, particularly with respect to the protection of an aquatic biota (Appendix D: Proposed Colorado Water Quality Standards: Aquatic Biota).

The predicted values for metal retentions obtained in this study should be used with caution, since they are based on the concept of universal "apparent settling velocities" for each metal. This concept of a universal apparent settling velocity ignores potential differences in removal mechanisms in individual lakes and may therefore lead to erroneous predictions of metal retentions, particularly when applied to lakes with unique water quality character-istics. The model also assumes that lakes behave like CSTR's, an assumption that is never strictly correct. In spite of these weaknesses, the success with which this approach has been used for predicting phos-phorus retention supports the validity of this approach. In the future the availability of additional data on metal loadings in lakes may allow more accurate calculations of the apparent settling velocities of metals in lakes and thus enable more accurate calculations of metal retentions.

CONCLUSIONS

1. The water from the Animas River frequently exceeds the proposed Colorado Water Quality Standards. Concentrations of dissolved aluminum, total copper, dissolved manganese, total mercury, total zinc, and total cyanide exceeded the proposed standards for one or more water uses during over half of the sampling periods between May 1977 and August 1978. The metals problem is supported by symptoms of metal toxicity found in algal bioassays of filtered water from the Animas River. The high concentrations of metals is probably the result of upstream mining activity.

2. Water quality in the La Plata River deteriorates between Hesperus, Colorado, and Farmington, New Mexico. The concentrations of dissolved aluminum, total mercury, and total cyanide exceeded the proposed standards in over half of the sampling periods. Several other metals exceeded the standards, but less frequently. The sulfate concentration in the La Plata River at the Colorado-New Mexico border and at Farmington exceeded the proposed standard for raw water supply throughout most of the study period.

3. The actual mean summer epilimnetic concentration of chlorophyll <u>a</u> in lakes and reservoirs in the Intermountain West usually falls within the 99 percent confidence intervals of prediction associated with Vollenweider's phosphorus loading model. For lakes in which a) the ratio of TSIN:OP is less than 11.3:1 throughout the season, b) turbidity limits algal growth, or c) the growth of macrophytes is extensive, Vollenweider's model may not yield accurate predictions of the chlorophyll a standing crop.

4. The mean summer epilimnetic concentrations of chlorophyll a in the proposed Ridges Basin Reservoir is expected to be between 5 and 13 μ g/l. On the basis of algal standing crop, the proposed reservoir can be classified as mesotrophic. The average summer Secchi disc transparency is expected to be about 1.8 m (6 ft). The actual algal standing crop may be lower than this predicted value if metal toxicity limits algal growth in the reservoir. A change in the phosphorus loading regime would also change the algal standing crop. 5. The average concentration of dissolved oxygen in the hypolimnion is not expected to drop below 7.0 mg/l by the end of August. However, a linear extrapolation of the results of the dissolved oxygen model (decrease in D.O.) to the end of the stratification period (probably late October or November) indicated that the dissolved oxygen concentration in the hypolimnion could drop to between 5.0 and 6.0 mg/l before the fall turnover. Oxygen depletion in the hypolimnion may be less than predicted if metal toxicity inhibits algae production or benthic respiration, or greater than predicted if consumption in the water column or other mechanisms of depletion not considered are significant. The accuracy of the oxygen simulation is also constrained by the accuracy of the input data from the USBR temperature simulation.

6. Ninety-two to 99 percent of the iron, 30 to 85 percent of the zinc, 86 to 95 percent of the lead, and 0 to 82 percent of the copper that enters the Ridges Basin Reservoir will be retained in the sediments at the bottom of the reservoir. The concentration of these metals in the outflow to the Dryside Canal will be reduced proportionately to these retention values.

7. A comparison of the observed retention of metals in lakes with the ratio of the suspended to the total metals loads suggests that the sedimentation of the suspended load carried in the inflow is the major mechanism by which metals are retained in lakes.

8. Since the proposed Ridges Basin Reservoir is off-stream, the pumping of river water into the reservoir may be varied over time to avoid periods of high pollutant concentrations and thereby reduce the loading of nutrients and metals into the reservoir. A carefully planned pumping strategy may thus be utilized to some extent to control ecological characteristics of the reservoir.

9. The above predictions of dissolved oxygen concentration and algal standing crop apply to the reservoir following the period of initial filling and stabilization. Because of the variability in the stabilization process among reservoirs, quantitative predictions were not made of the limnological parameters for the newly formed reservoir.

RECOMMENDATIONS

Reservoir Operation

Since the Ridges Basin Reservoir is off stream, the loading of nutrients and other constituents into the reservoir is determined by the inflow pumping regime. If this reservoir is built, a plan should be developed and evaluated to control the loading of nutrients and heavy metals by manipulation of the inflow pumping schedule. For example, Vollenweider's phosphorus loading model could be utilized to predict the effects of alternative pumping schedules on the algae standing crop in the reservoir (Equation 2). A mass balance model could be used to predict the effects of alternative pumping schedules on the retention of iron, lead, zinc, and copper in the reservoir.

Since the concentrations of phosphorus and most of the heavy metals were highest during the period of spring runoff (April through June), an attempt should be made to minimize inflow pumping during this period. As illustrated by the example presented on page 18, a minor alteration in the hydrologic regime of the reservoir may have a considerable effect on its algal productivity during the summer.

Areas of Future Study

1. The temperature simulation performed by the USBR should be repeated, and the apparent error in the computation of diffusion coefficients should be corrected. In rerunning the temperature model, the simulation period should be extended to the end of the stratification period. The model used in this study to predict concentrations of hypolimnetic dissolved oxygen should be rerun using the data from the new temperature simulation in order to more accurately predict the extent of oxygen depletion in the hypolimnion of the Ridges Basin Reservoir.

2. The potential problems that may arise from the accumulation of metals in the reservoir should be studied further. Specifically, a study should be conducted to determine whether metals will accumulate in fish and other components of the biota. Such a study would be particularly important if the lake formed would be used as a sport fishery.

3. The predictions made in this study apply to a stabilized reservoir. The decay of inundated organic matter and the leaching of salts from the soils and vegetation may have a profound effect on the water quality of new reservoirs. Further study should be directed toward developing an understanding of the extent to which these processes will affect the water quality of the Ridges Basin Reservoir during its early life. A microcosm study involving the use of enclosed soils and water from the Animas River may be a useful tool in elucidating water quality problems that may occur during the period following the initial filling.

4. Considering the high level of metals found in the Animas and the La Plata Rivers, it is suggested that a study be conducted to determine methods of controlling the pollution of these rivers. Particular attention should be directed toward controlling erosion and runoff from existing tailing piles.

LITERATURE CITED

- APHA. 1975. Standard methods for the examination of water and wastewater. 14th Ed. American Public Health Association, Washington, DC. 1193 p.
- Baccini, Peter. 1976. Investigation of the heavy metal content of lakes (in German). Hydrologie 38:128-151.
- Ball, John, Clark Weldon, and Ben Crocker. 1975. Effects of original vegetation on reservoir water quality. Texas A and M University Water Resources Institute Technical Report No. 64. 120 p.
- Barnes, R. S., and W. R. Schell. 1972. Physical transport of trace metals in the Lake Washington watershed. In: USEPA National Environmental Research Center: Conf. on Cycling and Control of Metals, Oct. 31-Nov. 2, 1972. p. 45-53.
- Barton, Larry L., and Gordon V. Johnson. 1978. Characterization of nutrients and algal blooms at Abiquiu and Cochiti Reservoirs. New Mexico Water Resources Research Institute Completion Report 3109-069 A-058 NMEX. 105 p.
- Bolke, E. L., and K. M. Waddell. 1975. Chemical water quality and temperature of water in Flaming Gorge Reservoir, Wyoming and Utah, and the effect of the reservoir on the Green River. USGS Water-Supply Paper 2039-A. 26 p.
- Brewer, W. S., A. R. Abernathy, and M. J. B. Paynter. 1977. Oxygen consumption by freshwater sediments. Water Res. 11:471-473.
- Burdick, J. C., and F. L. Parker. 1971. Estimation of water quality in a new reservoir. Report #8, Dept. of Environmental and Water Resources Engineering, Vanderbilt U.
- Carlson, Robert E. 1977. A trophic state index for lakes. Limnol. Oceanog. 22:361-369.
- Chapra, Steven C. 1975. Comment on 'An empirical method of estimating the retention of phosphorus in lakes' by W. B. Kirchner and P. J. Dillon. Water Resources Research 11:1033-1036.
- Churchill, M. A. 1957. Effects of storage impoundments on water quality. J. Sanit. Eng. Div., ASCE. 83:1171-1-1171-48.

- Delfino, J. J., G. C. Bortleson, and G. F. Lee. 1969. Surface sediments on Lake Mendota, Wisconsin. Env. Sci. and Technol. 3:1189-1192.
- Dillon, P. J., and F. H. Rigler. 1974a. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanog. 19:767-773.
- Dillon, P. J., and F. H. Rigler. 1974b. A test of a simple nutrient budget model predicting the phosphorus content in lake water. J. Fish. Res. Board Can. 31:1771-1778.
- Duffer, William R., and Curtis C. Harlin. 1971. Changes in water quality resulting from impoundment. USEPA Water Pollution Control Series 16080 GGH 08/71. 110 p.
- Edberg, Nils, and Bengt V. Hofsten. 1973. Oxygen uptake of bottom sediments studied in situ and in the laboratory. Water Res. 7:1285-1294.
- Edwards, R. W., and H. L. J. Rolley. 1965. Oxygen consumption of river muds. J. Ecol. 53:1-19.
- Fair, G. M., J. C. Geyer, and D. A. Okun. 1958. Water and wastewater engineering. Volume I. Water supply and wastewater removal. 505 pp.
- Fair, G. M., E. W. Moore, and H. A. Thomas, Jr. 1941. The natural purification of river muds and pollutional sediments, Part I. Sew. Works J. 13:271.
- Funk, William H., F. W. Rabe, R. Filby, G. Bailey, P. Bennet, K. Shah, J. C. Sheppard, N. Savage, S. B. Bauer, A. Bourg, G. Bannon, C. Edwards, D. Anderson, P. Syms, J. Rothert, and A Seamster. 1975. An integrated study of the impact of metallic trace element pollution in the Coeur D'Alene-Spokane Rivers-Lake drainage system. Wash. State U./U of Idaho Joint Project Completion Report, OWRT Title II Project C-4145. 332 p.
- Gould, H. R. 1954. Sedimentology. In: Lake Mead Comprehensive Study, 1948-49. Vol. 3. Cooperative project by the USGS, the USBR, and the U. S. Dept. of the Navy. p. 186-210.

i

49

- Greene, J. C., R. A. Soltero, W. E. Miller, A. F. Gasperino, and T. Shiroyama. 1975. The relationship of laboratory algal assays to measurements of indigenous phytoplankton in Long Lake, Washington. In: Middlebrooks, E. J., D. H. Falkenborg, and T. E. Maloney (eds.). Biostimulation and Nutrient Assessment Workshop Proceedings, Sept. 10-12, 1975:93-126.
- Hannan, H. H., and W. J. Young. 1974. The influence of a deep-storage reservoir on the physiolochemical limnology of a central Texas river. Hydrobiologia 44(2):177-207.
- Harding, J. P. C., and B. A. Whitton. 1978. Zinc, cadmium, and lead in water, sediments, and submerged plants in the Derwent Reservoir, Northern England. Water Res. 12:307-316.
- Hargrave, Barry T. 1969. Similarity of oxygen uptake by benthic communities. Limnol. Oceanog. 14:801-809.
- Hayes, F. R., and M. A. MacAulay. 1959. Lake water and sediment V: Oxygen consumed in water over sediment cores. Limnol. Oceanog. 4:291-298.
- Hem, John D. 1972. Chemistry and occurrence of cadmium and zinc in surface water and groundwater. Water Resources Research 8:661-679.
- Herrmann, S. J., and K. I. Mahan. 1977. Effects of Impoundment on water and sediment in the Arkansas River at Pueblo Reservoir. Prepared for the U.S. Bureau of Reclamation as REC-ERC-76-19. 159 p.
- Howard, C. S. 1954. Chemical limnology. In: Lake Mead Comprehensive Survey, 1948-49, Vol. 2. Cooperative project by the USGS, the USBR, and the U. S. Dept. of the Navy. p. 173-186.
- Hutchinson, G. Evelyn. 1938. On the relation between the oxygen deficit and the productivity and typology of lakes. Int. Revue ges. Hydrobiol. Hydrogr. 36:336-355.
- Hutchinson, G. E. 1957. Treatise on limnology, Vol. 1: Geography, physics and chemistry. New York: John Wiley & Sons. 1013 pp.
- Hutchinson, T. C., and P. M. Stokes. 1975. Heavy metal toxicity and algal bioassays. Water Quality Parameters, ASTM. STP573: 320-343.
- Kirchner, W. B., and P. J. Dillon. 1975. An empiricial method of estimating the retention of phosphorus in lakes. Water Resources Research 11(1):182-184.

- Knowles, G., R. W. Edwards, and R. Briggs. 1962. Polarographic mesurement of the rate of respiration of natural sediments. Limnol. Oceanog. 7:481-484.
- Kreizenbeck, Ronald. 1974. Milner Reservoir benthic oxygen demand study. Unpublished data, USEPA Region X. 9 p.
- Lake Tahoe Area Council. 1971. Eutrophication of surface waters - Lake Tahoe: Indian Creek Reservoir. USEPA Water Pollution Control Research Series 16010 DNY 07/71. 115 p.
- Leckie, J. O., and R. O. James. 1976. Control mechanisms for trace metals in natural waters. In: Rubin, A. J. (ed.) Aqueous-Environmental Chemistry of Metals. Ann Arbor: Ann Arbor Science Publishers, Inc. p. 1-77.
- Mathis, B. J., and N. R. Kevern. 1973. Distribution of mercury, cadmium, lead and thallium in a eutrophic lake. Michigan State University Institute of Water Research Completion Report A-062-MICH(1). 14-31-0001-3522. 25 p.
- McDonnell, Archie J., and S. Douglas Hall. 1969. Effect of environmental factors on benthal oxygen uptake. JWPCF 41: R353-363.
- Medine, A. J., D. B. Porcella, and P. A. Cowan. 1977. Microcosm dynamics and response to a heavy metal loading in Lake Powell sediment-water-gas ecosystem. Report prepared for Southern California Edison Company, Contract No. U0966901 with the USU Foundation. 131 P.
- Metcalf and Eddy, Inc. 1972. Wastewater engineering: Collection treatment, disposal. San Francisco: McGraw-Hill Book Co. 782 pp.
- Neel, Joe Kendall. 1963. Impact of Reservoirs. In: Frey, David G. (ed.) Limnology of North America. Madison: U. of Wisconsin Press. p. 575-593.
- Newbold, J. Denis, and James A. Ligget. 1974. Oxygen depletion model for Lake Cayuga. J. Env. Div., ASCE. 41-59.
- Pamatat, Mario M., and Karl Banse. 1969. Oxygen consumption by the seabed. II. <u>in situ</u> measurements to a depth of 180 m. Limnol. Oceanog. 14:250-259.
- Porcella, D. B., V. D. Adams, P. A. Cowan, S. Austriheim-Smith, W. F. Holmes, J. Hill IV, W. J. Grenney, and E. J. Middlebrooks. 1975. Nutrient dynamics and gas production in aquatic ecosystems: The effects and utilization of mercury and nitrogen in sediment-water microcosms. Utah Water Research Laboratory PRWG 121-1, Utah State U. 142 p.

- Porcella, D. B., and A. Bruce Bishop. 1975. Comprehensive management of phosphorus water pollution. Ann Arbor: Ann Arbor Science Publishers Inc. 303 p.
- Purcell, Lee T. 1939. The aging of reservoir waters. J. Am. Water Works Assoc. 31:1775-1806.
- Rolley, H. L. J., and M. Owens. 1967. Oxygen consumption rates and some chemical properties of river muds. Water Res. 1:759-766.
- Sakamoto, M. 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on depth. Arch. Hydrobiol. 62:1-28.
- Sartoris, James J. 1978. Users manual: Corps/RE Reservoir Temperature simulation model. U. S. Bureau of Reclamation Engineering and Research Center, Denver. 80 p.
- Soltero, R. A., J. C. Wright, and A. A. Horpestad. 1973. Effects of impoundment on the water quality of the Bighorn River. Water Res. 7:343-354.
- Sonzogni, W. C., D. P. Larsen, K. W. Malueg, and M. D. Schuldt. 1977. Use of large submerged chambers to measure sedimentwater interactions. Water Res. 11:461-464.
- Thomann, R. V., D. S. Szumski, D. M. DiToro, and D. J. O'Connor. 1974. A food chain model of cadmium in Western Lake Erie. Water Res. 8:841-849.
- U. S. Bureau of Reclamation. 1978. The Animas - La Plata Project. Unpublished planning report prepared by the USBR, Jan. 1978. 14 p.
- U. S. Corps of Engineers, Hydrologic Engineering Center. 1975. Water quality for river-reservoir systems computer programs 401-F2-L2100 and 401-F2-L2100A. U. S. Army Corps of Engineers Hydrologic Research Center 401-100/401-100A.
- USEPA. 1975a. National eutrophication survey methods, 1973-1976. National Eutrophication Survey Working Paper #175, National Environmental Research Center, Corvallis, Ore. 91 p.
- USEPA. 1975b. River basin water quality status - Spokane River basin profile. Surveillance & Analysis Division, Region X. 225 p.
- USEPA. 1976a. Methods for chemical analysis of water and wastes. EPA-625/6-74-003a. 297 pp.
- USEPA. 1976b. Quality criteria for water. U. S. Government Printing Office: 1978. 258-389/6057. 256 pp.

- USEPA. 1977. National eutrophication working paper series:
 - Working Paper # 817. Report on Almogordo Reservoir, DeBaca and Guadalupe Counties, New Mexico. 44 p.
 - Working Paper # 765. Report on Barker Reservoir, Boulder County, Colorado. 37 p.
 - Working Paper # 881. Report on Big Sandy Reservoir, Sublette and Sweetwater Counties, Wyoming. 53 P.
 - Working Paper # 767. Report on Blue Mesa Reservoir, Gunnison County, Colorado. 52 p.
 - Working Paper # 818. Report on Bluewater Lake, McKinley and Valencia Counties, New Mexico. 41 p.
 - Working Paper # 882. Report on Boulder Lake, Sublette County, Wyoming. 37 P.
 - Working Paper # 883. Report on Boysen Reservoir, Fremont County, Wyoming. 53 p.
 - Working Paper # 768. Report on Cherry Creek Lake, Arapohoe County, Colorado. 40 p.
 - Working Paper # 778. Report on Coeur d'Alene Lake, Benewah and Kootenai Counties, Idaho. 25 p.
 - Working Paper # 819. Report on Conchas Reservoir, San Miguel County, New Mexico. 47 p.
 - Working Paper # 837. Report on Deer Creek Reservoir, Wasatch County, Utah. 49 p.
 - Working Paper # 769. Report on Dillon Reservoir, Summit County, Colorado. 60 p.
 - Working Paper # 820. Report on Eagle Nest Lake, Colfax County, New Mexico. 41 p.
 - Working Paper. # 838. Report on Echo Reservoir, Summit County, Utah. 38 P.
 - Working Paper # 821. Report on Elephant Butte Reservoir, Sierra and Socorro Counties, New Mexico. 52 p.
 - Working Paper # 822. Report on El Vado Reservoir, Rio Arriba County, New Mexico. 44 p.
 - Working Paper # 839. Report on Fish Lake, Sevier County, Utah. 40 p.

- Working Paper # 886. Report on Fremont Lake, Sublette County, Wyoming. 37 p.
- Working Paper # 841. Report on Joes Valley Reservoir, Emery County, Utah. 39 p.
- Working Paper # 888. Report on Keyhole Reservoir, Crook County, Wyoming. 46 p.
- Working Paper # 884. Report on Lake DeSmet, Johnson County, Wyoming. 35 p.
- Working Paper # 823. Report on Lake McMillan, Eddy County, New Mexico. 48 p.
- Working Paper # 846. Report on Minersville Reservoir, Beaver County, Utah. 44 p.
- Working Paper # 847. Report on Moon Lake, Duschesne County, Utah. 37 p.
- Working Paper # 775. Report on Navajo Reservoir, Arculeta County, Colorado, and San Juan and Rio Arriba Counties, New Mexico. 58 p.
- Working Paper # 889. Report on Ocean Lake, Fremont County, Wyoming. 43 P.
- Working Paper # 850. Report on Otter Creek Reservoir, Piute County, Utah. 36 p.
- Working Paper # 851. Report on Panguitch Lake, Garfield County, Utah. 37 p.
- Working Paper # 852. Report on Pelican Lake, Uintah County, Utah. 34 p.
- Working Paper # 853. Report on Pineview Reservoir, Weber County, Utah. 45 p.
- Working Paper # 854. Report on Piute Reservoir, Piute County, Utah. 38 P.
- Working Paper # 890. Report on Seminoe Reservoir, Carbon County, Wyoming. 55 p.
- Working Paper # 857. Report on Sevier Bridge Reservoir, Juab and Sanpete Counties, Utah. 43 p.
- Working Paper # 858. Report on Starvation Reservoir, Duchesne County, Utah. 34 p.

- Working Paper # 859. Report on Steinaker Reservoir, Uintah County, Utah. 37 p.
- Working Paper # 860. Report on Tropic Reservoir, Garfield County, Utah. 38 p.
- Working Paper # 861. Report on Utah Lake, Utah County, Utah. 89 p.
- Working Paper # 824. Report on Ute Reservoir, Quay County, New Mexico. 45 p.
- Working Paper # 892. Report on Viva Naughton Reservoir, Lincoln County, Wyoming. 37 p.
- Working Paper # 862. Report on Willard Reservoir, Box Elder County, Utah. 46 p.
- Working Paper # 893. Report on Woodruff Narrows Reservoir, Uinta County, Wyoming. 39 p.
- Vollenweider, R. A. 1968. Scientific fundamental of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD Technical Report DAS/CSI/68.27.159 p. Revised 1971.
- Vollenweider, R. A. 1969. Moglich-Keiten und grenzen elementarer modelle der stoffbilanz von seen. Arch. Hydrobiol. 66:1-36.
- Vollenweider, R. A. 1975. Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrologie 37:53-84.
- Vollenweider, R. A. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. lst Ital. Idrobiol. 33:53-83.
- Ward, J. C., and S. Karaki. 1969. Evaluation of the effect of impoundment on water quality in Cheney Reservoir. Colorado State University Sanitary Engineering Paper No. 4. 69 p.

Wetzel, Robert G. 1975. Limnology. Philadelphia: W. B. Saunders Co. 743 p.

- Whipple, G. C. 1933. The microscopy of drinking water (4th Ed.). London: John Wiley and Sons. 586 p.
- Williams, D. R. 1978. Postimpoundment study of water quality characteristics of Raystown Lake, Huntington and Bedford Counties, Pa. USGS Water Resources Investigations 78-42. 53 p.
- Woodling, John D. 1977. Investigations of point sources of acid metals mine drainage locations and water quality effects in the Upper Animas River Basin. Report prepared for the Water Quality Control Division, Colorado Department of Health. 16 p.
- Wright, John C., and Raymond A. Soltero. 1973. Limnology of Yellowtail Reservoir and the Bighorn River. USEPA R3-73-002. 105 p.

APPENDIX A

HYDROLOGIC SIMULATION OF RIDGES BASIN RESERVOIR

					-	
	Ridges Basin					а
					(1 000	E+\ •
m-11, 22	Didooc Racin	n ond of	month	content	(1.000	ac-ii).
Table 22.	Tuges naori	r end or	monuti	concente	(
				• •		

1930 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 27.7 261.4 257.7 2	-					-							
1930 280.0 280.0 280.0 272.7 261.4 255.7 245.6 252.4 256.6 260.6 257.0 232.1 210.5 198.2 204.4 208.6 211.5 218.5 211.5 218.6 230.9 245.5 246.6 211.5 211.5 215.5 157.1 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2 157.2		JAN	FEB	MAR	APR	MAY	JUŅ	JUL	AUG	SEP	OCT	NOV	DEC
1931 261.0 260.6 260.4 257.0 232.1 210.5 198.2 204.4 208.6 265.5 246.6 1932 215.3 213.0 239.6 233.5 239.9 245.5 246.5 246.6 1933 246.1 245.9 250.6 252.2 253.6 246.3 231.0 208.7 203.6 211.5 215.5 157.5 157.5 1934 219.0 220.5 223.9 221.4 223.1 213.0 176.5 163.7 158.5 166.1 175.5 181.2 184.1 1935 158.2 193.1 213.4 225.4 224.4 224.4 224.7 227.9 226.6 271.0 218.0 228.0 280.0	1929	280.0	280.0	280.0		280.0	272.7	262.4	261.3	270.1	280.01		
1932 215.3 216.3 216.4 231.5 239.9 245.5 246.6 1933 246.1 245.9 226.5 226.5 226.5 226.5 216.5 215.0 217.7 1934 219.0 220.5 223.2 231.2 239.1 213.0 176.5 163.7 158.5 155.5 157.1 157.5 1936 166.9 186.9 199.7 213.4 225.4 218.2 196.5 166.1 175.5 181.2 181.6 175.5 181.2 181.6 175.5 181.2 181.6 175.5 181.2 181.4 195.5 210.7 220.7 220.7 229.7 229.7 229.7 229.7 229.7 229.7 239.9 210.7 210.7 219.2 196.1 176.4 185.2 193.2 180.4 180.1 176.4 185.2 193.2 180.4 280.0 280.0 280.0 277.7 260.8 258.8 255.2 262.9 271.7 277.7 1944 280.0 280.0 280.0 272.7 261.5 255.4 242.9	1930	280.0	280.0	280.0	280.0		272.7	261.4	255.7				
1933 246.1 245.9 250.6 222.2 253.6 246.3 231.0 765.5 155.6 155.6 155.6 155.6 155.6 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7	1931					264.3				198.2			
1934 219.0 220.5 223.9 213.2 239.1 213.0 176.5 163.7 185.5 155.5 157.1 157.5 1935 158.2 158.4 1175.5 181.2 186.4 1175.5 181.2 186.1 1936 128.2 224.4 224.4 225.4 218.2 198.5 192.3 183.4 195.5 203.7 207.6 1938 222.3 224.4 224.4 226.5 274.2 222.6 247.9 258.5 264.2 1938 222.3 223.7 249.0 220.0 227.7 239.9 210.9 207.6 212.4 217.7 219.6 194.2 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.2 251.1 255.2 262.9 271.7 277.7 277.7 277.7 277.7 277.7 223.6 243.1 255.7 261.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0	1932				249.6	260.9		343.3			239.9	245.5	
1935 158.2 159.1 165.1 179.5 181.4 175.5 181.2 184.4 175.5 181.2 184.4 195.5 203.7 207.6 1937 120.4 213.8 222.9 224.8 234.4 242.4 264.5 257.8 242.8 218.2 206.6 213.0 218.0 280.0 280.0 280.0 277.7 239.9 210.9 207.6 212.4 217.5 219.9 194.9 201.0 207.6 212.4 217.5 219.9 194.9 194.0 207.6 212.4 217.5 219.9 194.9 194.0 200.0 280.0 272.7 253.2 243.8 255.2 262.9 271.7 277.7 777.7 1944 280.0 280.0 280.0 280.0 272.7 261.5 252.5 239.4 244.9 257.7 263.8 261.6 264.7 251.9 255.8 194.2 264.6 267.5 271.7 277.7 277.7 271.2 231.6 244.9 230.0 280.0 280.0 280.0 280.0 280.0 280.0<	1933	246.1		250.6	252.2	253.6		231.0	208.7	203.6	211.5	215.0	
1936 186.9 199.7 213.4 225.4 218.2 198.5 192.3 180.4 195.5 203.7 207.6 1937 210.4 218.3 222.9 224.8 234.4 249.8 261.7 255.8 244.2 229.7 232.6 247.9 258.5 264.2 1938 222.3 224.8 234.7 249.0 240.6 244.9 180.1 176.4 185.5 212.4 217.5 219.5 1940 221.5 222.8 229.3 239.7 249.0 240.6 244.9 180.1 176.4 185.2 193.2 196.8 1940 221.5 221.6 243.8 244.2 223.0 283.8 242.9 223.0 280.0 280.0 280.0 280.0 280.0 280.2 233.4 242.9 255.8 244.0 236.0 244.0 255.7 266.2 230.0 234.8 242.9 248.0 244.0 236.0 248.0 248.0 244.7 254.5 258.3 231.4 244.0 236.0 260.0 280.0 280.0	1934										155.5		
1937 210.4 213.8 222.9 242.4 264.5 275.8 242.8 218.2 206.6 213.0 218.0 220.7 232.6 247.9 258.5 264.2 1939 266.5 271.1 280.0 280.0 272.7 239.9 210.9 207.6 212.4 217.5 219.9 1940 200.0 280.0 280.0 272.7 259.9 210.9 207.6 212.4 217.5 219.9 1941 200.0 280.0 280.0 276.6 251.4 251.1 255.1 253.8 262.9 271.7 277.7 1944 280.0 280.0 280.0 272.7 265.6 236.0 245.0 255.8 1945 264.6 266.5 276.0 280.0 272.7 255.0 244.6 230.0 280.0	1935				212 /	188.7					1/5.5	202 7	184.1
1938 222.3 224.8 234.4 -249.8 261.7 254.5 244.2 229.7 232.6 24.9 285.5 264.2 1939 268.5 271.1 280.0 280.0 280.0 272.7 239.9 210.9 207.6 212.4 217.5 219.9 1940 221.5 222.8 229.3 239.7 249.0 240.6 204.9 180.1 176.4 185.2 193.2 196.8 1941 200.0 280.0 280.0 280.0 280.0 272.7 266.2 252.5 239.4 249.1 255.8 1942 280.0 280.0 280.0 272.7 261.5 252.5 239.4 249.1 255.7 266.9 271.7 271.7 271.7 271.7 271.7 271.7 276.6 286.5 275.7 272.7 262.4 271.0 231.8 242.9 248.9 248.9 248.9 248.9 248.9 248.9 248.9 248.9 248.9 249.1 255.7 259.5 255.8 265.9 277.1 281.6 283.5	1930	210 1	213 8	222 0		264 5	257 8	242 8	218 2			218 0	
1939 268.5 271.1 280.0 280.0 272.7 239.9 210.9 207.6 212.4 217.5 219.5 1940 221.5 222.8 229.3 239.7 249.0 240.6 204.9 180.1 176.4 185.2 193.2 196.8 1942 280.0 280.0 280.0 280.0 280.0 276.6 266.2 253.2 243.8 248.2 253.0 255.8 1942 258.4 261.5 260.0 280.0 272.7 261.5 252.5 239.4 249.1 255.7 260.3 1945 258.8 265.6 266.5 271.7 280.0 272.7 251.5 252.5 239.4 249.1 255.7 260.3 1946 264.6 267.5 271.7 280.0 272.7 251.5 252.5 239.4 249.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0	1937	222 3		234 4		261 7						258 5	
1940 221.5 222.8 229.7 249.0 240.6 204.9 180.1 176.4 185.2 193.2 196.8 1941 200.0 280.1 281.1 271.1 281.6 281.5 245.7 251.4 242.6 251.5 258.3 255.2 258.3 252.2 258.3 252	1939	268.5		280.0		280.0	272.7	239.9	210.9		212.4	217.5	
1941 200.0 205.9 216.4 233.2 256.1 258.1 251.1 255.6 273.8 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 272.7 260.8 253.8 255.2 262.9 271.7 277.7 277.7 277.7 277.7 277.7 277.7 277.7 277.7 277.7 277.6 253.8 245.0 230.0 234.8 242.9 248.9 248.7 251.6 238.5 245.7 251.4 264.6 260.0 280.0 280.0 272.2 251.6 238.5 245.7 251.4 264.3 273.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 272.7 251.6 238.5 245.7 251.4 264.3 273.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 270.0 280.0	1940					249.0						193.2	
1942 280.0 280.0 280.0 276.6 266.2 253.2 243.8 248.2 253.0 255.8 1943 258.4 261.5 269.0 280.0 280.0 272.7 260.8 255.2 262.9 271.7 277.7 1944 280.0 280.0 280.0 280.0 272.7 261.5 252.5 239.4 249.1 256.7 260.3 1945 264.6 266.5 271.7 280.0 280.0 272.7 261.2 256.8 259.0 270.0 280.0 280.0 280.0 280.0 272.7 261.2 256.8 259.0 270.0 280.0 280.0 280.0 272.7 255.4 242.6 250.5 258.3 253.5 251.5 252.5 259.5 254.5 255.5 256.5 <td>1941</td> <td>200.0</td> <td>205.9</td> <td>216.4</td> <td></td> <td></td> <td></td> <td>251.4</td> <td></td> <td></td> <td>273.8</td> <td>280.0</td> <td></td>	1941	200.0	205.9	216.4				251.4			273.8	280.0	
1943 258.4 261.5 269.0 280.0 280.0 272.7 260.8 258.2 252.2 262.9 271.7 277.7 277.7 1944 280.0 280.0 280.0 280.0 272.9 262.6 249.6 236.0 245.0 251.9 255.7 1945 258.8 262.6 268.5 271.7 280.0 272.7 261.5 252.5 239.4 249.1 255.7 260.0 280.0 270.0 280.0 280.0 280.0 280.0 270.0 280.0 280.0 280.0 270.1 280.0 280.0 280.0 270.1 281.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 277.1 277.1 281.1 271.4 262.4 255.4 245.7 251.4 264.3 293.5 275.7 251.4 245.3 280.0 280.0 270.0 280.0 280.0 270.1 280.1 280.0 280.0 280.0 270.1 280.1 220.1 219.4 222.3 231.7<	1942	280.0.	280.0	280.0		280.0	276.6	266.2	253.2	243.8	248.2	253.0	
1945 258.8 262.6 268.5 276.0 280.0 272.7 261.5 252.5 239.4 249.1 256.7 260.0 1946 264.6 267.5 271.7 280.0 280.0 272.2 255.0 244.6 230.0 234.8 242.9 248.9 1947 253.0 256.6 267.1 280.0 280.0 280.0 272.2 261.2 256.8 259.0 270.0 280.0 280.0 280.0 280.0 272.7 262.4 251.6 235.7 251.4 265.7 251.4 265.7 251.4 265.7 251.4 221.7 197.7 127.1 121.6 216.0 219.4 222.3 33 195.7 260.9 200.7 195.8 189.9 195.9 200.3 203.3 195.4 186.6 174.4 188.4 201.6 210.8 203.3 195.7 187.4 188.2 186.3 193.7 182.3 170.1 166.7 177.4 188.3 193.9 195.9 195.1 195.7 156.1 156.2 156.1 156.2 156.1 <td>1943</td> <td>258.4</td> <td>261.5</td> <td>269.0</td> <td></td> <td>280.0</td> <td>272.7</td> <td>260.8</td> <td>258.8</td> <td>255.2</td> <td>262.9</td> <td>271.7</td> <td></td>	1943	258.4	261.5	26 9. 0		280.0	272.7	260.8	258.8	255.2	262.9	271.7	
1946 264.6 267.5 271.7 280.0 280.0 272.2 259.0 246.8 259.0 270.0 280.0 280.0 280.0 280.0 272.2 261.2 256.8 259.5 250.7 251.4 254.3 1948 280.0 280.0 280.0 272.7 262.4 255.4 242.6 250.5 258.3 253.2 1950 253.9 224.7 223.0 280.0 280.0 280.0 280.0 277.7 257.1 277.1 21.4 222.3 255.3 255.4 242.6 250.5 258.3 253.2 1951 223.9 224.3 223.0 228.9 221.7 197.7 178.0 168.2 166.7 167.4 164.2 166.3 171.4 1952 174.9 179.3 183.3 201.4 216.2 210.9 200.7 195.8 189.9 195.9 200.3 203.3 195.3 195.9 180.1 173.4 184.2 186.3 133.3 193.9 195.9 180.1 173.4 177.1 186.9 183.1	1944			280.0			272.9	262.6	249.6	236.0		251.9	
1947 253.0 256.6 262.4 270.3 279.5 272.2 261.2 256.8 259.0 270.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 277.7 262.4 251.6 238.5 245.7 251.4 264.3 1949 257.0 259.5 265.9 277.1 280.0 276.6 266.5 255.4 242.6 250.5 258.3 253.2 1950 268.3 273.0 280.0 280.0 272.7 257.1 227.1 213.6 216.0 219.4 222.3 1951 124.9 179.3 183.3 201.4 216.2 210.9 200.7 195.8 189.9 195.9 200.3 203.3 1952 146.7 187.4 188.6 201.6 210.8 203.3 176.1 172.3 181.1 184.3 193.9 1955 198.1 20.9 20.5 211.8 211.0 213.8 177.1 180.4 183.3 193.7 172.2	1945		262.6	268.5	276.0	280.0	272.7	261.5	252.5	239.4	249.1	256.7	
1948 280.0 280.0 280.0 280.0 280.0 280.0 280.0 272.7 262.4 251.6 238.5 245.7 251.4 264.3 1950 263.3 273.0 280.0 280.0 272.7 257.1 122.7 121.6 216.0 219.4 222.3 1951 223.9 224.3 225.7 223.0 228.9 221.7 197.7 178.0 168.2 166.7 169.5 171.4 1952 206.9 210.3 217.2 223.3 124.0 205.8 186.6 174.8 177.4 184.2 186.3 193.3 195.4 186.6 174.8 177.4 184.2 186.3 193.3 195.4 186.6 174.8 177.4 184.2 186.3 193.3 195.4 186.6 174.8 177.4 184.2 186.5 174.8 177.4 184.2 186.5 177.4 184.2 186.5 170.1 173.4 195.6 150.3 153.8 155.1 195.9 220.0 227.4 236.9 225.3 274.4 174.5 162.1 <td>1946</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>272.2</td> <td></td> <td></td> <td></td> <td></td> <td>242.9</td> <td></td>	1946						272.2					242.9	
1949 257.0 259.5 265.9 277.1 280.0 280.0 272.7 257.1 227.1 213.6 216.0 219.4 222.3 1950 228.9 224.7 127.7 178.0 166.2 166.7 169.5 171.4 1951 223.9 224.3 225.7 223.0 228.9 221.7 177.7 178.0 166.2 166.7 169.5 171.4 1952 174.9 179.3 183.3 201.4 216.2 210.9 200.7 195.8 189.9 195.9 200.3 203.3 1953 206.9 210.3 217.2 225.3 231.3 224.0 205.8 186.6 174.8 174.7 184.2 186.3 1954 186.1 187.4 188.2 200.3 209.5 202.3 174.5 162.1 155.6 155.8 155.1 1957 158.0 162.1 167.3 177.0 186.9 183.1 173.4 172.3 172.3 172.3 183.7 197.2 210.0 1958 220.0	1947				270.3	279.5	272.2						
1950 268.3 273.0 280.0 280.0 272.7 257.1 227.1 213.6 216.0 219.4 222.3 1951 223.9 224.3 225.7 223.0 228.9 221.7 197.7 178.0 168.2 166.7 169.5 171.4 1952 174.9 179.3 183.3 201.4 216.2 210.9 200.7 195.8 189.9 195.9 200.3 203.3 1953 206.9 210.3 217.2 225.3 231.3 224.0 205.8 186.6 174.8 174.1 184.2 186.3 1954 186.7 187.4 188.6 201.6 210.8 203.3 176.1 172.3 181.1 188.3 193.9 1955 198.1 100.4 188.2 200.3 207.4 174.5 162.1 156.7 153.8 155.1 1957 158.0 162.1 167.3 177.0 186.9 183.1 173.4 172.3 183.7 197.2 210.0 1968 215.3 219.1 221.1	1948			280.0	280.0	280.0	2/2.7	262.4	251.0	238.5		251.4	
1951 223.9 224.3 225.7 223.0 228.9 221.7 197.7 178.0 168.2 166.7 169.5 171.4 1952 174.9 177.3 183.3 201.4 216.2 210.9 200.7 195.8 189.9 195.9 200.3 203.3 1954 186.7 187.4 188.6 201.6 210.8 203.6 190.3 176.1 172.3 181.1 188.3 193.9 1955 198.1 200.9 206.5 211.8 221.0 213.8 193.7 182.3 170.1 166.7 170.1 173.4 1956 177.1 180.4 188.2 200.3 209.5 202.3 174.5 162.1 166.7 170.1 173.4 1957 158.0 162.1 167.3 177.0 186.9 183.1 173.4 172.3 172.3 183.7 197.2 210.0 1958 220.0 227.4 236.9 252.5 274.8 271.9 256.3 233.3 226.5 234.6 242.3 248.5 215.1 <	1949										250.5	258.3	
1952 174.9 179.3 183.3 201.4 216.2 210.9 200.7 195.8 189.9 195.9 200.3 203.3 1953 206.9 210.3 217.2 225.3 231.3 224.0 205.8 186.6 174.8 177.4 184.2 186.3 193.9 1955 198.1 200.9 206.5 211.8 221.0 213.8 193.7 182.3 170.1 166.7 177.1 188.4 188.2 200.3 209.5 202.3 174.5 162.1 152.6 150.3 153.8 155.1 1957 158.0 162.1 167.3 177.0 186.9 183.1 173.4 172.3 183.7 197.2 210.0 1958 220.0 227.4 236.9 252.5 274.8 271.9 256.3 233.3 226.5 234.6 242.3 248.5 1959 253.2 257.3 262.6 264.0 268.7 229.1 211.0 191.2 197.8 207.5 212.0 121.0 191.2 197.8 207.5 212.0	1950						272.7					160 5	
1953 206.9 210.3 217.2 225.3 231.3 224.0 205.8 186.6 174.8 177.4 184.2 186.3 1954 186.7 187.4 188.6 201.6 210.8 203.6 190.3 176.1 172.3 181.1 188.3 193.9 1955 198.1 200.9 206.5 211.8 221.0 213.8 193.7 182.3 170.1 166.7 170.1 173.4 1956 177.1 180.4 188.2 200.3 209.5 202.3 174.5 162.1 152.6 150.3 153.8 155.1 1957 158.0 162.1 167.3 177.0 186.9 183.1 173.4 172.3 183.7 197.2 210.0 1958 220.0 227.4 236.9 252.5 274.8 271.9 256.3 233.3 226.5 234.6 242.3 248.5 1960 215.3 219.1 227.5 246.3 255.8 248.5 235.4 208.3 203.6 219.3 232.3 239.5 <td< td=""><td>1052</td><td></td><td></td><td></td><td></td><td></td><td>210 0</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1052						210 0						
1954 186.7 187.4 188.6 201.6 210.8 203.6 190.3 176.1 172.3 181.1 188.3 193.9 1955 198.1 200.9 206.5 211.8 221.0 213.8 193.7 182.3 170.1 166.7 170.1 173.4 1956 177.1 180.4 188.2 200.3 209.5 202.3 174.5 162.1 152.6 150.3 153.8 155.1 1957 158.0 162.1 167.3 177.0 186.9 183.1 173.4 172.3 183.7 197.2 210.0 1958 220.0 227.4 236.9 252.5 274.8 271.9 256.3 233.3 226.5 234.6 242.3 248.5 1960 215.3 219.1 227.5 246.3 255.8 248.5 235.4 208.8 194.9 202.6 209.6 215.1 1961 219.3 221.5 277.1 240.6 249.8 242.2 238.4 233.4 232.8 242.3 248.1 1963	1952					231.3	224.0			174.8	177.4		
1955 198.1 200.9 206.5 211.8 221.0 213.8 193.7 182.3 170.1 166.7 170.1 173.4 1956 177.1 180.4 188.2 200.3 209.5 202.3 174.5 162.1 152.6 150.3 153.8 155.1 1957 158.0 162.1 167.3 177.0 186.9 183.1 174.4 172.3 172.3 183.7 197.2 210.0 1958 220.0 227.4 236.9 252.5 274.8 271.9 256.3 233.3 226.5 234.6 242.3 248.5 1959 253.2 257.3 262.6 264.0 268.7 261.5 229.1 211.0 191.2 197.8 207.5 212.0 1960 215.3 219.1 227.5 246.3 255.8 248.5 235.4 208.8 194.9 202.6 209.6 215.1 1961 219.3 221.5 227.1 240.0 280.0 272.7 264.3 231.4 232.8 224.7 248.1 <td< td=""><td>1954</td><td></td><td></td><td></td><td>201.6</td><td>210.8</td><td>203.6</td><td></td><td></td><td>172.3</td><td>181.1</td><td>188.3</td><td></td></td<>	1954				201.6	210.8	203.6			172.3	181.1	188.3	
1956 177.1 180,4 188.2 200.3 209.5 202.3 174.5 162.1 152.6 150.3 153.8 155.1 1957 158.0 162.1 167.3 177.0 186.9 183.1 173.4 172.3 172.3 183.7 197.2 210.0 1958 220.0 227.4 236.9 252.5 274.8 271.9 256.3 233.3 226.5 234.6 242.3 248.5 1959 253.2 257.3 266.6 264.0 268.7 261.5 229.1 211.0 191.2 197.8 207.5 212.0 1960 215.3 211.5 227.1 240.6 249.8 242.6 217.5 204.3 203.6 219.3 232.3 239.5 1962 244.4 253.6 262.2 278.4 280.0 277.7 262.2 238.4 223.4 223.8 242.3 248.1 1963 252.1 257.1 264.7 280.0 280.0 272.7 265.0 231.4 218.7 218.3 218.7 218.3 <	1955											170.1	
1957 158.0 162.1 167.3 177.0 186.9 183.1 173.4 172.3 172.3 183.7 197.2 210.0 1958 220.0 227.4 236.9 252.5 274.8 271.9 256.3 233.3 226.5 234.6 242.3 248.5 1959 253.2 257.3 262.6 264.0 268.7 261.5 229.1 211.0 191.2 197.8 207.5 212.0 1960 215.3 219.1 227.5 246.3 255.8 248.5 235.4 208.8 194.9 202.6 209.6 215.1 1961 219.3 221.5 227.1 240.6 249.8 242.6 217.5 204.3 203.6 219.3 232.3 239.5 1962 244.4 257.1 264.7 280.0 280.0 272.7 262.2 238.4 223.4 232.8 242.3 248.1 1 1963 252.1 257.1 264.7 280.0 280.0 272.7 252.0 231.4 218.2 218.8 223.8 226.7 214.0 <	1956			188.2	200.3	209.5		174.5	162.1	152.6	150,3	153.8	
1958 220.0 227.4 236.9 252.5 274.8 271.9 256.3 233.3 226.5 234.6 242.3 248.5 1959 253.2 257.3 262.6 264.0 268.7 261.5 229.1 211.0 191.2 197.8 207.5 212.0 1960 215.3 219.1 227.5 246.3 255.8 248.5 235.4 208.8 194.9 202.6 209.6 215.1 1961 219.3 221.5 227.1 240.6 249.8 242.6 217.5 204.3 238.4 232.8 242.3 248.1 1962 244.4 253.6 262.2 278.4 280.0 272.0 240.3 223.1 218.8 228.8 242.3 248.1 1963 252.1 257.1 264.7 280.0 280.0 272.0 240.3 223.1 218.8 223.8 226.7 218.8 223.8 226.7 218.8 221.6 226.0 230.7 196.5 193.3 188.7 197.8 208.0 272.7 255.0 232.4	1957			167.3				173.4	172.3	172.3	183.7	197.2	210.0
1959 253.2 257.3 262.6 264.0 268.7 261.5 229.1 211.0 191.2 197.8 207.5 212.0 1960 215.3 219.1 227.5 246.3 255.8 248.5 235.4 208.8 194.9 202.6 209.6 215.1 1961 219.3 221.5 227.1 240.6 249.8 242.6 217.5 204.3 203.6 219.3 232.3 239.5 1962 244.4 253.6 262.2 278.4 280.0 272.7 262.2 238.4 223.1 218.2 218.8 223.8 242.3 248.1 1963 252.1 257.1 266.7 280.0 272.0 240.3 223.1 218.2 218.8 223.8 223.8 226.7 1964 228.7 229.9 230.6 231.0 232.4 225.1 195.3 182.8 173.0 169.6 173.3 176.6 1965 180.3 183.3 188.7 197.8 208.0 277.7 255.0 232.4 218.4 221.6 <	1958	220,0	227.4	236.9	252.5	274.8	271.9	256.3	233.3	226.5	234.6	242.3	248.5
1961 219.3 221.5 227.1 240.6 249.8 242.6 217.5 204.3 203.6 219.3 232.3 239.5 1962 244.4 253.6 262.2 278.4 280.0 272.7 262.2 238.4 223.4 232.8 242.3 248.1 1963 252.1 257.1 264.7 280.0 280.0 272.0 240.3 223.1 218.2 218.8 223.8 226.7 1964 228.7 229.9 230.6 231.0 232.4 225.1 190.0 189.2 197.5 214.0 227.2 238.7 1966 248.5 256.5 268.4 280.0 280.0 272.7 255.0 232.4 218.4 221.6 226.0 230.7 1967 233.0 236.0 244.3 247.0 239.8 218.1 205.2 190.6 193.4 195.8 1968 198.5 201.7 210.5 221.9 231.3 224.1 212.7 207.0 189.7 191.0 195.6 199.3 1969	1959		257.3			268.7						207.5	
1962 244.4 253.6 262.2 278.4 280.0 272.7 262.2 238.4 223.4 232.8 242.3 248.1 1963 252.1 257.1 264.7 280.0 280.0 272.0 240.3 223.1 218.2 218.8 223.8 226.7 1964 228.7 229.9 230.6 231.0 232.4 225.1 195.3 182.8 173.0 169.6 173.3 176.6 1965 180.3 183.3 188.7 197.8 208.4 201.2 190.0 189.2 197.5 214.0 227.2 238.7 1966 248.5 256.5 268.4 280.0 280.0 272.7 255.0 232.4 218.4 221.6 226.0 230.7 1967 233.0 236.0 243.4 244.3 247.0 239.8 218.1 205.2 192.5 190.6 193.4 195.8 1968 198.5 201.7 210.5 221.9 231.3 224.1 212.7 207.0 189.7 191.0 195.6 199.3 <td>1960</td> <td></td> <td>219.1</td> <td></td> <td></td> <td>255.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>209.6</td> <td></td>	1960		219.1			255.8						209.6	
1963 252.1 257.1 264.7 280.0 280.0 272.0 240.3 223.1 218.2 218.3 223.8 226.7 1964 228.7 229.9 230.6 231.0 232.4 225.1 195.3 182.8 173.0 169.6 173.3 176.6 1965 180.3 183.3 188.7 197.8 208.4 201.2 190.0 189.2 197.5 214.0 227.2 238.7 1966 248.5 256.5 268.4 280.0 272.7 255.0 232.4 218.4 221.6 226.0 230.7 1967 233.0 236.0 243.4 244.3 247.0 239.8 218.1 205.2 192.5 190.6 193.4 195.8 1968 198.5 201.7 210.5 221.9 231.3 224.1 212.7 207.0 189.7 191.0 195.6 199.3 1969 202.8 205.7 211.2 230.2 240.9 233.6 223.3 213.4 215.2 231.8 245.2 256.0 <td< td=""><td></td><td></td><td>221.5</td><td></td><td>240.6</td><td></td><td>242.6</td><td>217.5</td><td></td><td>203.6</td><td>219.3</td><td>232.3</td><td></td></td<>			221.5		240.6		242.6	217.5		203.6	219.3	232.3	
1964 228.7 229.9 230.6 231.0 232.4 225.1 195.3 182.8 173.0 169.6 173.3 176.6 1965 180.3 183.3 188.7 197.8 208.4 201.2 190.0 189.2 197.5 214.0 227.2 238.7 1966 248.5 256.5 268.4 280.0 280.0 272.7 255.0 232.4 218.4 221.6 226.0 230.7 1967 233.0 236.0 243.4 244.3 247.0 239.3 218.1 205.2 192.5 190.6 193.4 195.8 1968 198.5 201.7 210.5 221.9 231.3 224.1 212.7 207.0 189.7 191.0 195.6 199.3 1969 202.8 205.7 211.2 230.2 240.9 233.6 223.3 213.4 215.2 231.8 245.2 256.0 1970 261.9 266.8 270.6 272.7 260.6 244.9 231.6 239.9 251.8 260.0 1971	1962		253.6	262.2			272.7	262.2	238.4	223.4	232.8	242.3	
1965 180.3 183.3 188.7 197.8 208.4 201.2 190.0 189.2 197.5 214.0 227.2 238.7 1966 248.5 256.5 268.4 280.0 280.0 272.7 255.0 232.4 218.4 221.6 226.0 230.7 1967 233.0 236.0 243.4 244.3 247.0 239.8 218.1 205.2 192.5 190.6 193.4 195.8 1968 198.5 201.7 210.5 221.9 231.3 224.1 212.7 207.0 189.7 191.0 195.6 199.3 1969 202.8 205.7 211.2 230.2 240.9 233.6 223.3 213.4 215.2 231.8 245.2 256.0 1970 261.9 266.8 270.6 272.7 218.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 208.2 196.3 206.0 219.4 233.1 1972 267.3 272.9 280.0 280.0 280.0 269.6 265.9 <	1963				280.0	280.0	272.0	240.3	223.1	218.2	218.8	223.8	226.7
1966 248.5 256.5 268.4 280.0 280.0 272.7 255.0 232.4 218.4 221.6 226.0 230.7 1967 233.0 236.0 243.4 244.3 247.0 239.8 218.1 205.2 192.5 190.6 193.4 195.8 1968 198.5 201.7 210.5 221.9 231.3 224.1 212.7 207.0 189.7 191.0 195.6 199.3 1969 202.8 205.7 211.2 230.2 240.9 233.6 223.3 213.4 215.2 231.8 245.2 256.0 1970 261.9 266.8 270.6 272.7 260.6 244.9 231.6 239.9 251.8 260.0 280.0 280.0 280.0 272.7 260.6 244.9 231.6 239.9 251.8 260.6 249.9 233.6 239.9 251.8 260.6 261.9 264.2 271.7 276.1 279.9 1971 280.0 280.0 280.0 280.0 280.0 268.2 265.9 264.2	1904					232.4	201.2			1/3.0	214 0	1/3.3	
1967 233.0 236.0 243.4 244.3 247.0 239.8 218.1 205.2 192.5 190.6 193.4 195.8 1968 198.5 201.7 210.5 221.9 231.3 224.1 212.7 207.0 189.7 191.0 195.6 199.3 1969 202.8 205.7 211.2 230.2 240.9 233.6 223.3 213.4 215.2 231.8 245.2 256.0 1970 261.9 266.8 270.6 272.1 279.1 271.8 259.4 246.3 253.4 269.2 280.0 <td>1905</td> <td></td> <td></td> <td>268 /</td> <td>280 0</td> <td>280.4</td> <td>272 7</td> <td>256 0</td> <td>232 A</td> <td>219 1</td> <td>221 6</td> <td>226 0</td> <td></td>	1905			268 /	280 0	280.4	272 7	256 0	232 A	219 1	221 6	226 0	
1968 198.5 201.7 210.5 221.9 231.3 224.1 212.7 207.0 189.7 191.0 195.6 199.3 1969 202.8 205.7 211.2 230.2 240.9 233.6 223.3 213.4 215.2 231.8 245.2 256.0 1970 261.9 266.8 270.6 272.1 279.1 271.8 259.4 246.3 253.4 269.2 280.0 280.0 280.0 1971 280.0 280.0 280.0 280.0 272.7 260.6 244.9 231.6 239.9 251.8 260.6 1972 267.3 272.9 280.0 280.0 272.7 238.0 208.2 196.3 206.0 219.4 233.1 1973 245.0 254.8 268.6 280.0 280.0 280.0 265.5 265.9 264.2 271.7 276.1 279.9 1974 280.0 280.0 280.0 280.0 280.0 265.5 223.7 202.1 203.4 209.0 212.0 1975			236.0		244 3	247 0	239 8	218 1		192 5		193 4	
1969 202.8 205.7 211.2 230.2 240.9 233.6 223.3 213.4 215.2 231.8 245.2 256.0 1970 261.9 266.8 270.6 272.1 279.1 271.8 259.4 246.3 253.4 269.2 280.0 280.0 280.0 280.0 272.7 260.6 244.9 231.6 239.9 251.8 260.6 1972 267.3 272.9 280.0 280.0 280.0 272.7 260.6 244.9 231.6 239.9 251.8 260.6 1972 267.3 272.9 280.0 280.0 280.0 272.7 238.0 208.2 196.3 206.0 219.4 233.1 1973 245.0 254.8 268.6 280.0 280.0 280.0 266.5 257.9 264.2 271.7 276.1 279.9 1974 280.0 280.0 280.0 272.7 251.5 223.7 202.1 203.4 209.0 212.0 1975 214.6 216.2 22.9 236.0 256.5 <t< td=""><td></td><td></td><td></td><td></td><td>221.9</td><td>231.3</td><td></td><td></td><td></td><td>189.7</td><td></td><td></td><td></td></t<>					221.9	231.3				189.7			
1970 261.9 266.8 270.6 272.1 279.1 271.8 259.4 246.3 253.4 269.2 280.0 280.0 280.0 280.0 272.7 260.6 244.9 231.6 239.9 251.8 260.6 1972 267.3 272.9 280.0 280.0 280.0 272.7 260.6 244.9 231.6 239.9 251.8 260.6 1972 267.3 272.9 280.0 280.0 280.0 272.7 238.0 208.2 196.3 206.0 219.4 233.1 1973 245.0 254.8 268.6 280.0 280.0 280.0 269.6 265.9 264.2 271.7 276.1 279.9 1974 280.0 280.0 280.0 280.0 272.7 251.5 223.7 202.1 203.4 209.0 212.0 1975 214.6 216.2 222.9 236.0 256.5 257.6 247.2 240.9 234.9 240.0 243.4 246.1 1976 248.8 252.7 259.6 271.3 <	1969	202.8				240.9	233.6	223.3		215.2	231.8		
1971 280.0 280.0 280.0 280.0 272.7 260.6 244.9 231.6 239.9 251.8 260.6 1972 267.3 272.9 280.0 280.0 280.0 272.7 238.0 208.2 196.3 206.0 219.4 233.1 1973 245.0 254.8 268.6 280.0 280.0 280.0 269.6 265.9 264.2 271.7 276.1 279.9 1974 280.0 280.0 280.0 280.0 272.7 251.5 223.7 202.1 203.4 209.0 212.0 1974 280.0 280.0 280.0 272.7 251.5 223.7 202.1 203.4 209.0 212.0 1975 214.6 216.2 222.9 236.0 256.5 257.6 247.2 240.9 234.9 240.0 243.4 246.1 1976 248.8 252.7 259.6 271.3 280.0 272.7 258.0 240.2 227.9 232.2 236.1 238.6 1977 239.5 239.6	1970				272.1	279.1				253.4	269.2		
1972 267.3 272.9 280.0 280.0 280.0 272.7 238.0 208.2 196.3 206.0 219.4 233.1 1973 245.0 254.8 268.6 280.0 280.0 280.0 269.6 265.9 264.2 271.7 276.1 279.9 1974 280.0 280.0 280.0 280.0 272.7 251.5 223.7 202.1 203.4 209.0 212.0 1975 214.6 216.2 222.9 236.0 256.5 257.6 247.2 240.9 234.9 240.0 243.4 246.1 1976 248.8 252.7 259.6 271.3 280.0 272.7 258.0 240.2 227.9 232.2 236.1 238.6 1977 239.5 239.6 239.2 232.8 221.3 204.9 177.3 173.3 168.3 167.1 170.3 172.9	1971		280.0			280.0		260.6		231.6	239.9	251.8	
1973 245.0 254.8 268.6 280.0 280.0 269.6 265.9 264.2 271.7 276.1 279.9 1974 280.0 280.0 280.0 272.7 251.5 223.7 202.1 203.4 209.0 212.0 1975 214.6 216.2 222.9 236.0 256.5 257.6 247.2 240.9 234.9 240.0 243.4 246.1 1976 248.8 252.7 259.6 271.3 280.0 272.7 258.0 240.2 227.9 232.2 236.1 238.6 1977 239.5 239.6 239.2 232.8 221.3 204.9 177.3 173.3 168.3 167.1 170.3 172.9	1972		272.9	280.0	280.0	280.0	272.7	238.0	208.2	196.3	206.0	219.4	
1975 214.6 216.2 222.9 236.0 256.5 257.6 247.2 240.9 234.9 240.0 243.4 246.1 1976 248.8 252.7 259.6 271.3 280.0 272.7 258.0 240.2 227.9 232.2 236.1 238.6 1977 239.5 239.6 239.2 232.8 221.3 204.9 177.3 173.3 168.3 167.1 170.3 172.9	1973		254.8	268.6		280.0	280.0			264.2	271.7	276.1	
1976 248.8 252.7 259.6 271.3 280.0 272.7 258.0 240.2 227.9 232.2 236.1 238.6 1977 239.5 239.6 239.2 232.8 221.3 204.9 177.3 173.3 168.3 167.1 170.3 172.9													
1977 239.5 239.6 239.2 232.8 221.3 204.9 177.3 173.3 168.3 167.1 170.3 172.9	1975								240.9				
AVG. 233.2 236.1 241.7 249.6 255.8 248.8 231.6 218.0 210.7 217.2 223.8 227.9	19//	239.5	239.0	239.2	232.8	221.3	204.9	1//.3	1/3.3	100.3	10/.1	1/0.3	172.9
niu. 20072 20071 24177 24270 20070 24070 20170 21070 21077 21772 22370 22779	AVG	232.2	236 1	241 7	240 6	255 9	248 9	231 F	218 0	210.7	217 2	222 0	227 0
		200.2	200.1	641.7	242.0	700.0	240.0	201.0	£10.0	210.7	41/16	66.3.0	661.7

a USBR (1978).

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1929	2,8	.4	.5	4.6	12.7	25.1	25.9	25.9	24.0	12.6	.5	.5
1930	.4	. 4	.5	3.2	12.7 23.8	25.1	25.0	21.3	5,0	9.4	4.8	2.9
1931	2.2	.1 3.7	.3 12.8	3.0	23.8	25.1	11.3	6.0	6.6	12.9	4.6	4.1
932	3.5	3.7	12.8	24.9	25.9	25.1	25.9	22.4	9.9	9.0	6.1	1.5
933	0.0	.2 1.8	5.2	7.8	18.0	25.1	20.9	4.8	10.7	10.7	4.0	3.2
934	1.7	1.8	3.9	14.3	24.7	6.5	.0	.1 24.4	1.2	3.2	2.1	.9
935 936	1.1 3.2	1.3 2.4	6.5 11.3	20.8	25.6	25.1	25.8	24.4 20.8	12.6 11.2	12.1 9.7	6.2 8,7	3.4 4.4
930 937	. 3.3	3.8	9.6	19.6 20.6	25.9 25.9	25.1	16.5	20.8	3.4	9.1	5.5	2.7
938 938	2.6	2.9	10.1	20.8	25.9	25.1 25.1	21.3 25.9	12.7	17.9	18.0	11.1	6.1
939	4.7	3.0	9.4	6.3	16.2	25.1	4.8	.3	14.3	8.5	5.5	2.9
940	2.0	1.7	9.4 7.0	16.6	25.9	24.0	1.9	1.0	8.5	15.3	8.4	4.1
941	3.6	6.2	11.1	17.8	25.9	25.1	25.9	22.9	18.0	19.8	6.7	.5
942	.4	.4 3.5	.5	.9	6.1	24.6	25.9	14.1	5.7	7.1	5.2	3.3
943	3.0	3.5	8.0	.9 17.0	12.6	25.1	24.3	25.2	11.4	10.4	9.3	6.5
944	2.7	.4	.5	6.2	13.5	25.1	25.9	14.2	1.4	11.7	7.4	4.3
945	3.5	4.2	6.4	13.4	15.5	25.1	25.0	18.1	2.0	12.4	8.0	4.1
946	4.7	3.4	4:6	14.6	16.7	24.6	23.0	12.7	4.3 21.2	11.5	8.6	6.5
947	4.5	4.0	6.2	14.2 6.1	25.9	25.1	25.2	22.5	21.2	17.1	10.5	.5
948 949	.4 3.1	.4 2.9	4:6 6.2 .5 6.8 7.5	17.4	15.2 18.9	25.1 25.1	25.9 25.9	16.4 16.1	2.0	9.8 10.5	6.2 8.3	3.4 5.4
9 4 9 950	5.6	5.1	75	5.2	13.0	25.1	20.6	.0	1.6	6.2	3.9	3.3
951	2.1	.8	1.9	4.2	22.4	25.1	12.2	5.0	i.ĭ	6.2 4.8	3.3	2.4
952	3.9	4.7	1.9 4.6	22.9	25.9	25.1	25.9	22.2	9.2	8.6	4.9	3.5
953	4.0	3.8	7.3	14.4	22.1	25.1	18.0	7.8	.3	4.9	7.3	2.5
954	.9	1.1	1.7	19.2	25.8	25.1	22.9	8.2	7.1	15.2	7.7	6.1
955	4.6	3.3	6.0	11.5	25.9	25.1	16.1	14.1	.5 0.0	2.8	3.9	3.8
956	4.1	3.7	8.3 5.7	18.2	25.9	25.1	3.9	.3	0.0	.8	4.0	1.7
957 958	3.3	4.5	5./	15.8	25.7 25.9	25.1	25.9	25.9 4.1	15.0 8.3	14.1	13.9 8.2	13.3
958 959	10.5 5.1	7.8 4.5	10.0 5.7	17.0	25.9	25.1 25.1	20.7	4.1 9.0	0.3	10.7 13.3	10.1	6.7 4.9
960	3.7	4.3	8.8	7.7	21.5 25.9	25.1	4.5 23.1	2.3	.2	10.4	7.4	6.0
961	4.7	2.6	6.1	19.7	25.9	25.1	11.2	13.8	17.1	18.6	13.6	7.7
962	5.2	9.7	9.0	22.5	18.3	25.1	25.8	4.0	3.6	12.9	10.1	6.3
963	4.4	5.5	8.0	21.6	16,7	24.4	5.4	10.1	14.0	7.3	5.5	3.4
964	2.4	1.7	1.2	6.6	18.1	25.1	6.5	13.9	2.9	2.9	4.2	3.8
965	4.1	3.5	5.9 12.4	15.1	25.9	25.1	25.9	25.3	23.4	19.2	13.6	12.0
966	10.2	8.4	12.4	16.1	12.7	25.1	18.5	5.0	1.1	5.9	4.8	5.2
967	2.8	3.4	7.9 9.3	7.2	19.8	25.1	14.6	14.2	6.2	4.7	3.3	3.0
968 969	3.1 3.9	3.5	9.3	17.6 24.8	25.8 25.9	25.1 25.1	24.8 25.9	21.4 17.2	2.0 16.9	6.5 19.2	5.0 13.9	4.2 11.2
969 970	3.9 6.3	3.4 5.4	5.9 4.3	24.8 7.8	25.9	25.1	23.9	14.0	22.1	19.2	11.3	.5
971	.4	.4	4.3	6.2	16.7	25.1	24.2	11.4	5.6	14.9	12.5	9.2
972	7.1	6.1	7.6	6.3	16.7	25.1	3.1	.2	7.1	15.8	13.9	14.2
973	12.3	10.2	14.3	12.7	3.8	23.0	25.9	23.5	13.4	10.1	5.0	4.2
974	.5 3.1	.4	.5	6.2	16.7	25.1	15.1	1.5	0.0	5.6	6.1	3.5
975	3.1	.4 2.0	7.2	14.8	25.9	25.1	25.9	20.8	9.1	7.7	3.9	3.1
976	3.2	4.3	7.4	18.0	25.4	25.1	21.6	9.3	6.7.	10.9	4.4	3.0
977	1.3	.5	.1	1.4	5.8	15.9	4.4	10.3	4.8	5.0	3.7	3.0

Table 23. Water pumped through Durango pumping plant to Ridges Basin Reservoir (1,000 ac-ft).

^a USBR (1978).

Table 24. Ridges Basin releases for New Mexico M&I (1,000 ac-f	111.	
--	------	--

·							,					·····
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0CT	NOV	DEC
1929	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1930	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1931	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.50	0.00	0.00	0.00	0.00
1932 1933	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	$0.00 \\ 0.00$	0.00 0.00	$0.00 \\ 0.00$	0.00 0.00
1933	0.00	0.00	0.00	.80	0.00	10	3.90	2.50	0.00	0.00	0.00	0.00
1935	0.00	0.00	0.00	0.00	0.00	.10 0.00	0.00	0.00	0.00	0.00	0.00	0.00
1936	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1937	0.00	0.00	0.00	0.00	0.00	0.00	0.00	. 30	0.00	0.00	0.00	0.00
1938	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1939 1940	. 0.00	0.00	0.00	0.00 0.00	0.00	0.00	1.10 .80	2.30	0.00	0.00	0.00 0.00	0.00 0.00
1940	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
1942	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1943	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1944	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1945	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1946	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1947 1948	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00
1948	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1950	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
1951	0.00	0.00	0.00	.80	0.00	0.00	0.00	.50	.60	0.00	0.00	0.00
1952	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1953	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.70	0.00	0.00	0.00
1954 1955	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 .80	0.00 0.00	0.00 0.00	0.00 0.00
1955	0.00	0.00	0.00	0.00	0.00 0.00	0.00	.80	2.80	3.10	30	0.00	0.00
1957	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.30 0.00	0.00	0.00
1958	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1959	0.00	0.00	0.00	.10	0.00	0.00	.40	0.00	1.50	0.00	0.00	0.00
1960	0.00	0.00	.0.00	0.00	0.00	0.00	0.00	1.70	.40	0.00	0.00	0.00
1961 1962	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1962	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	.00	0.00	0.00 0.00	0.00	0.00
1964	0.00	0.00	0.00	0.00	.10	0.00	.70	.30 0.00	0.00	0.00	0.00	0.00
1965	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1966	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.40 0.00 0.00	0.00	0.00	0.00	0.00
1967	0.00	0.00	0.00	0.00	.40 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1968	0.00	0.00	0.00	0.00	0.00	0.00	0000	0.00	.80	0.00	0.00	0.00
1969 1970	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
1970	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1972	0.00	0.00	0.00	0.00	0.00	0.00	1.20	2.90	0.00	0.00	0.00	0.00
1973	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1974	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.20	2.70	0.00	0.00	0.00
1975	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1976	0.00	$0.00 \\ 0.00$	0.00 0.00	0.00	0.00	0.00	0.00 1.90	0.00	0.00 .10	0.00	0.00 0.00	0.00
1977	0.00	0.00	0.00	1.60	.80	0.00	1.30	0.00	. 10	0.00	0.00	0.00
AVG.	0.00	0.00	0.00	.07	.03	.00	.22	.41	.24	.01	0.00	0.00

a. USBR (1978).

Table 25. Water pumped from Ridges Basin Reservoir to Dryside Canal (1,000 ac-ft).

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC
1929	0.0	0.0	0.0	3.7	11.4	30.7	34.7	25.7	14,1	1.9	0.0	0.0
1930	0.0	0.0	0.0	2.3	11.4	30.7	34.7	25.7	14.1.	1.9	0.0	0.0
1931	0.0	0.0	0.0	5.4	15.4	30.7	34.7	25.9	18.0	5.9 1.9	0. 0.0	0.0 0.0
1932 1933	0.0 0.0	0.0 0.0	0.0 0.0	5.4 5.4	13.2 15.4	30.7 30.7	34.7 34.7	25.7 25.9	14.1 14.9	2.0	0.0	0.0
1934	0.0	0.0	0.0	5.4	15.4	30.7	30.9	8.8	5.5	5.4	.0	0.0
1935	0.0	0.0	0.0	5.4	15.4	30.7	34.7	25.9	14.1	1.9	0.0	0.0
1936	0.0	0.0	0.0	5.1	12.5	30.7	34.7	25.7	14.1	1.9	0.0	0.0
937	0.0	0.0	0.0	.2 4.0	2.5	30.1	34.7	25.9	14.1	1.9	0.0	0.0
1938 1939	0.0 0.0	0.0 0.0	0.0 0.0	4.0 5.4	12.7 14.8	30.6	34.7 34.7	25.9 25.9	14.1 16.6	1.9	0.0 0.0	0.0
1939	0.0	0.0	0.0	5.4	14.8	30.7 30.7	34.7	23.9	11.3	2.9 5.7	.0	0.0
941	0.0	0.0	0.0	.2	1.7	21.4	31.0	21.9	12.5	.8	0.0	:0.0
942	0.0	0.0	0.0	0.0	4.7	26.4	34.7	25,9	14.1	1.9	0.0	0.0
1943	0.0	0.0	0.0	5.1	11.3	30.7	34.7	25.9	14.1	1.9	0.0	0.0
944	0.0	0.0	0.0	5.4	12.1	30.5	34.7	25.9	14.1	1.9	0.0	0.0
1945	0.0	0.0	0.0	5.1 5.4	10.1	30.7 30.7	34.7 34.7	25.9 25.9	14.1 18.0	1.9 5.9	0.0 .0	0.0 0.0
1946 1947	0.0 0.0	0.0 0.0	0.0 0.0	5.4	15.4 15.4	30.7	34.7	25.9	18.0	5.2	.0	0.0
1948	0.0	0.0	0.0	5.2	13.8	30.7	34.7	25.9	14.1	1.9	0.0	0.0
949	0.0	0.0	0.0	5.4	14.6	26.8	34.5	25.8	14.1	1.9	0.0	0.0
950	0.0	0.0 [.]	0.0	4.3	11.6	30.7	34.7	25.9	14.1	3.0	0.0	0.0
951	0.0	0.0	0.0	5.4	15.1	30.7	34.7	23.0	9.8	5.4	.0	0.0
1952	0.0	0.0	0.0	4.0	9.8	28.7	34.7	25.9	14.1	1.9	0.0	0.0
1953 1954	0.0 0.0	0.0 0.0	0.0 0.0	5.4 5.4	14.8	30.7 30.7	34.7 34.7	25.8 21.2	9.8 10.0	1.6 5.6	0.0 .0	$0.0 \\ 0.0$
1955	0.0	0.0	0.0	5.4	15.4	30.7	34.7	24.3	11.4	5.4	.0	0.0
1956	0.0	0.0	0.0	5.4	15.4	30.7	28.9	8.6	5.5	2.0	0.Õ	0.0
1957	0.0	0.0	0.0	5.4	14.5	27.3	34.2	8.6 25.8	14.1	1.9	0.0	0.0
1958	0.0	0.0	0.0	.6	2.3	26.3	34.7	25.9	14.1	1.9	0.0	0.0
1959 1960	0.0 0.0	0.0 0.0	0.0 0.0	5.4 5.4	15.4 15.1	30.7 30.7	34.7 34.7	25.9 25.9	18.0 14.1	5.9 1.9	.0 0.0	0.0 0.0
1961	0.0	0.0	0.0	5.4	15.4	30.7	34.7	25.9	16.8	2.1		0.0
1962	0.0	0.0	0.0	5.4	15.4	30.7	34.7	25.9	17.6	2.8	0.0	0.0
963	0.0	0.0	0.0	5.4	15.4	30.7	34.7	25.9	18.0	5.9	0	0.0
964	0.0	0.0	0.0	5.4	15.4	30.7	34.7	25.2	11.8	5.5	.0	0.0
965	0.0	0.0	0.0	5.1	14.0	30.7	34.7	25.9	14.1	1.9 1.9	0.0	0.0
966 967	0.0 0.0	0.0 0.0	0.0 0.0	3.6 5.4	11.4 15.4	30.7 30.7	34.7 34.7	25.9 25.9	14.1 18.0	5.9	0.0 .0	$0.0 \\ 0.0$
968	0.0	0.0	0.0	5.4	15.1	30.7	34.7	25.9	18.0	4.4	0.0	0.0
969	0.0	0.0	0.0	5.0	13.9	30.7	34.7	25.9	14.1	1.9	0.0	0.0
970	0.0	0.0	0.0	5.4	15.4	30.7	34.7	25.9	14.0	1.9	0.0	0.0
971	0.0	0.0	0.0	5.4	15.4	30.7	34.7	25.9	18.0	5.9	.0	0.0
972	0.0	0.0	0.0	5.4	15.4	30.7	34.7 34.7	25.9	18.0	5.4 1.9	.0 0.0	0.0
973 974	0.0 0.0	0.0 0.0	0.0	.4 5.4	2.4	21.3 30.7	34.7 34.7	25.9 25.9	14.1 18.0	3.5	0.0	0.0 0.0
1975	0.0	0.0	0.0	.9	4.1	22.4	34.7	25.9	14.1	1.9	0.0	0.0
1976	0.0	0.0	0.0	5.4	15.4	30.7	34.7	25.9	18.0	5.9	.0	0.0
1977	0.0	0.0	0.0	5.4	15.4	30.7	28.2	13.2	8.8	5.4	.0	0.0
NVG.	0.0	0.0	0.0	4.5	12.8	29.8	34.3	24.6	14.3	3.2	.0	0.0

a USBR (1978).

APPENDIX B

RAW WATER QUALITY DATA

Table 26. Water quality parameter codes and explanation.

A. M	ETALLIC CONSTITUENTS	В.	NON-METALLIC CONSTITUENTS
101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 130. 131. 132.	Aluminum, Dissolved, $\mu g/\ell$ Aluminum, Total, $\mu g/\ell$ Barium, Dissolved, $\mu g/\ell$ Barium, Total, $\mu g/\ell$ Cadmium, Total, $\mu g/\ell$ Cadmium, Total, $\mu g/\ell$ Calcium, mg/ ℓ Chromium, Hexavalent, $\mu g/\ell$ Chromium, Total, $\mu g/\ell$ Copper, Dissolved, $\mu g/\ell$ Copper, Total, $\mu g/\ell$ Hardness, Total, $\mu g/\ell$ Hardness, Total, $\mu g/\ell$ Iron, Dissolved, $\mu g/\ell$ Lead, Dissolved, $\mu g/\ell$ Lead, Dissolved, $\mu g/\ell$ Magnesium, mg/ ℓ Manganese, Dissolved, $\mu g/\ell$ Manganese, Total, $\mu g/\ell$ Mercury, Dissolved, $\mu g/\ell$ Molybdenum, Dissolved, $\mu g/\ell$ Nickel, Dissolved, $\mu g/\ell$ Nickel, Total, $\mu g/\ell$ Nickel, Total, $\mu g/\ell$ Selenium, Dissolved, $\mu g/\ell$ Silver, Dissolved, $\mu g/\ell$ Silver, Total, $\mu g/\ell$	201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214. 215. 216.	Alkalinity, Total, mg/l Arsenic, Dissolved, µg/l Arsenic, Total, µg/l Bicarbonate Hardness, mg/l Boron, mg/l Carbonate Hardness, mg/l Chloride, mg/l Cyanide, mg/l Fluoride, mg/l Nitrogen, Nitrate, mg/l Nitrogen, Nitrite, mg/l Nitrogen, Total Organic, mg/l Phosphorus, Ortho, mg/l Phosphorus, Total, mg/l Sulfate, mg/l
133.	Zinc, Total, µg/l		

	COPF	5/25/77	6/10	6/40	7/19	8/24	9 \ 51	10/19	11/15	12/13	1/18/78	2/15	3721	4/18	5/18	6710	7/19	8/24	
	101		200.			440.	280.	79.	156.	74	96.	308.	-50.	129.	129.	844.	182.	341.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	102	1044.	720.		576.	1102.	403	81.	368			389.	621.	513.	5290.	A160.	1033.	543.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	103						-		=1682	-100	-100.	-100.	-190	-100.	-109.	-100.	-100,	-196.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									119.	-100]	124.	-i00.	179.	329.	470.	-100.	-100,	-100.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105		-3.		-3.	-3.	-3.	-3.	-3.	-3.	-3.	-3,	-3.	-3.	-3.	-3.	-3.	3.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106	129.	10.			18.	-3.	14.	7.	-3	-3.	-3.	-3.	10.	3.	-3.	-3,	5.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	107		14.		47.	66,	68.	95.	toe.	104.	91.	95.	91.	58,	32.	23.	38.	90.	
	106		-1.		-1	-1.	-1.	-1.	2.	-1.	=1.	~1.	-1.	-1.	5.	-1.	-1.	2.	
	140										-20.	-20.	-20.	-20.	+2n,	-50	-50*	-20.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110		#10 .		-10.	16.	-10,	-10.	-10.	-10,	-10,	-10,	-10.	-10.	-10,	-10.	-10.	-10.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111	19.	55.		-10	40.	64.	-10,	16	-10	13.	-10.		55	118.	59.	40.	17.	
	112		134.		320	199.	256.	276.	286	298	291.	251.	596	138.	75.	62.	108.	236.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113		61.		90	58.	41.	- 21 .	u2.		27	-21-	-21.	36.	65	9 J 🔒	86.	Þ3.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114	629.	830.		376	1021.	359				-						1063.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	115											-	-	-1.					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	116									_	•		•	-					
	117		4.		19.	8.	21.	19.						-		-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	118																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	114	152.	107.																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•					· · · · ·								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121	1.0																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•			-			-					-				-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-5.			-	-													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	-		-	-	-	-			-	-			-		-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21.			-	-		-			-	-		-		-		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.0		-					-	•								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•				-				-		-	-		•			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		=1.	-								-								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		••						-						•	-9.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		#9.									-			•		-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•				-		•											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•		•		-			-					-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		325.																	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21.24																	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			- 1			-											-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 1											-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		••	•		•		•	-							56				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 44			•													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-	-													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•		U			-		-		-	•		2	-		
209 0,17 0,29 0,22 0,27 0,32 0,35 0,02 0,01 0,01 0,01 0,01 0,01 0,02 0,05 210 0,17 0,15 0,16 0,16 0,16 0,20 0,27 0,27 0,27 0,15 0,19 0,17 0,20 0,17 0,23 0,20 211 0,001 0,004 0,005 0,005 0,005 0,005 0,006 0,004 0,002 0,003 0,003 0,005 0,005 212 0,5 -0,1 0,1 0,9 0,1 -0,1 -0,1 -0,1 -0,1 -0,1 0,005 0,005 213 0,003 0,003 0,003 0,003 0,004 -0,001 0,004 0,002 0,027 0,027 0,027 0,027 0,011 0,001 0,004 0,001 0,004 0,001 0,004 0,001 0,004 0,001 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,027 <						a a t							•		•			-	
210 0,17 0,15 0,16 0,16 0,20 0,27 0,15 0,14 0,17 0,20 0,17 0,23 0,20 211 0,001 0,004 0,005 0,005 0,005 0,004 0,002 0,003 0,003 0,003 0,005 0,005 212 0,15 -0,1 0,1 0,0 0,0 0,0 0,003 0,005 0,005 213 0,003 0,003 0,001 0,004 0,003 0,004 0,005 0,004 0,005 0,005 0,005 213 0,003 0,003 0,004 0,003 0,004 0,004 0,004 0,005 0,004 0,005 0,005 0,002 0,002 0,002 0,002 0,002 0,004 0,004 0,004 0,004 0,003 0,004 0,004 0,004 0,003 0,004 0,004 0,004 0,003 0,004 0,004 0,004 0,004 0,003 0,004 0,004 0,004 0,003 0,004 0,004 0,003 0,004 0,016 0,003 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>17 • 11 1</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td></t<>											17 • 11 1				•				
211 0.001 0.000 0.005 0.002 0.005 0.006 0.007 0.002 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.005 212 0.5 -0.1 0.1 0.9 0.1 -0.1 0.3 0.6 -0.1 -0.1 -0.1 0.5 -0.1 2.4 213 0.003 0.003 0.003 -0.001 0.004 0.003 0.001 0.001 0.001 0.004 0.002 0.022 0.022 0.02 214 0.003 0.013 -0.001 0.004 0.008 0.004 -0.001 0.001 0.003 0.037 0.023 0.022 0.024 215 52 162 111, 87, 157, 151, 153, 181, 152, 50, 3°, 4°, 56, 140,											0 37				•				
212 0.5 -0.1 0.1 0.9 0.1 -0.1 0.3 0.6 -0.1 -0.1 -0.1 0.5 -0.1 2.4 213 0.003 0.003 -0.001 0.004 0.003 0.001 0.004 -0.001 0.001 0.004 0.002 0.022 0.02 214 0.003 0.019 0.029 0.010 0.004 0.008 0.004 0.011 0.001 0.039 0.338 0.037 0.023 0.424 215 52 162 111 87 157 151 153 181 152 50 3" 40 55 140																			
213 0,003 0,003 0,003 -0,001 0,004 0,003 0,001 0,004 -0,001 0,001 0,004 0,004 0,002 0,022 0,021 214 0,003 0,019 0,029 0,010 0,014 0,008 0,007 0,011 0,008 0,039 0,338 0,037 0,029 0,024 215 52 162 111, 87, 157, 151, 153, 181, 152, 50, 30, 49, 58, 140,																			
214 6.003 6.019 0.029 0.010 0.014 0.008 0.0017 0.011 6.008 0.039 0.338 0.037 6.029 6.029 215 52 162 111, 87, 157, 151, 153, 181, 152, 50, 35, 49, 55, 140,																			
215 52. 162. 111. B7. 157. 151. 153. 181. 152. 50. 38. 49. 5e. 140.																			
							• •				0.917								
ETO							-				* > >				-				
	613		1 K .		-3¢+	eec.	5 4 A 4	अम्द•	· • • 7 •	N (17 %	266.	343*	<u>⊅</u> ∩€•	142.	151.	71.	160*	¥€?•	

t

. . .

Table 27. Raw water quality data, Animas River at Durango, May 1977 - August 1978.

and the second second

OPE	5/25/77	6/16	6/30	7/19	B/24	9721	10/19	11/15	15/13	1/18/78	2/15	3/21	4/18	5/18	¢/16	7719	8/24
P1	203.	260.		. 455	54.	140.	-50.	~50.	-50	-50.	-50.	+50.	-50.	142.	1280.	109.	175.
50	413.	260		280	480	451	-50	~50	51	351.	-50	-50	-50		864	118.	175.
0C A3	4134			6.0°° e	~~~.			-198	-100	-100	134	-109.	-100	-100.	+100	-100	-100.
64								-100	119	184	134.	-100	209	1209	-190	-100	-100
n5	-3.	-3.		-3.	-3.	-3.	-3.	=3.	-3	-3.	-3,	-3	•3	-3.	- 3	-3	- 3
п6	с.	57.		8	9	6.	11.	-3.	-3	- 3	-3.	-3.	5	6,	-3.	-3.	-3
07	30.	27		÷.	34	42.	35	30.	35	32	35.	32.	28.	20.	16.	24.	20.
0.8	2	-1.		-1	+1.	-1.	-1.	-1.	-1	-1.	-1.	-1.	-1.	2.	4	-1.	- 1
19				- • •			•••			-20	-20.	-20	-20	-20	+20	-29	-20,
10	-14,	29.		-10_	-10.	-10	-16-	-10-	-10	-10	-10	-10	-19.	-10.	-10	-10.	-10
11	-1.7	29		-10	20	32.	-10	-10	-10	24	-10	-10	-10	104	-10.	14	-10.
12	87	79		97	86.	165	108	94	178	111	112.	92	82.	54	48	69.	76.
13		-21		-21	-21.	-21.	-21.	21	56	-21	-51	-21.	-21	64.	14	41.	25
5	-21. 225.	89		54	161.	151.	35.	-21	107.	286	-21.	-21	190	4312.	475	80	70
15	CC3.	С У .		34.	101.	1210	27.	-1,	-1	-1.	-1.	-1	-1	=1	-1.	-1.	-1
15						•		-1,	-1.	=1	-i -	-1	1.	7	-i.	15.	-1
10	3.			20.	-1.	11.	5.	1.	21,	A.	6	3.	3.	. 1.	2.	ž.	S
		3. 5.		-5	-,.	8	8.	10	6,		-5	20	13.	55	-5.	14	14
1 C 1 4	* •	5			6.	25.	8.	10	56	7.	-5.	26	13.	745	29	8.	14
	24.			-5.		0.2	-0.2	-0.2	-0.2	-0.2	0.2	-0.2	0.3	-0 Z	0.6	S.o	1.
20 21	0,2	-0.5		4.1	0.3 2.4	0.5	1.2	-0.5	0.5	-0.2	0.2	-0.2	0.5	0 Z	2.3	5.0	1.
-	0.5					-	•5.	-9.2		-5.	•5.	-5.	-5.	5	=5.	-5.	-5
22	-5,	-5.			-5.	-5.		-5.		-5.	6.	-5.	-5.	-5.	-5.	7	- 5
73	-5.	-5.		12.	19.	6.	-5.		-5.		-5.	-5.	*6.	-5,	-6,	-6	-6
24	-6.			-6.	-6.	-6.	-6.	-6.	=6,	-6,				18	-5,	-6.	-6
25	11.	20.		18,	14.	58.	28,	-6	-6	-6.	-6. 0_8	-6-	11.	1.6	2.9	5.0	5.
25	1.0	0.5		1.0	1.0	1_0	1,3	0.9	3.7	0.7		1.5	•	1.0	-1.	-1.	
27	=1.	-1.		-1.	-1.	7.	-1-	-1.	1	-1.	-1.	-1.	-1.		-1,	2.	13
28	-1.	-1.		-1.	s.	7.	-1.	-1.	=1,	~1 .	-1.	-1.	-1,	-9.	-9	-0	9
20	• • 4 •	-9.		-9.	=9.	-9.	* ? •	-9.	-9.	-9.	•	-9.		9	- 9	- 9	-9
30	-9.	-9.		-2-	-?.	11.	-9. (7	•9.	-2,	* 9•	-9. 3.	-9.	•9. ?.	2.	1	4	- 7,
51	5.	1.		5.	4.	11.	17.	3.	5.	3.	-	· · ·			-5.		-5,
15		-5-		-5.	-5.		5.	-5.	-5.	-5.	-5.	-5.	-5.	8.		28.	-5
53	439.	183.		118.		183.	320.	92.	-5-	-5.	-5.	-5,		40.	. =5,	52.	61
01	56.	S4.		59.	58.	61.	÷4.	64.	61,	57.	66.	58,	54.	40.	- 1	-	
2.1	*1.	- 14		-1.	-1.	-1.	-1.	-1.	-1,	-1.	1.	-!.	-1.	:	- 1.	-1,	-1.
0 ž	-1.	-3.		-1.	-1.	-1.	-1	-1.	<u> </u>	· -1.	- 3 -	-1-	-1.		-1.	-1.	
94	5e.	54.		59,	58	61.	64.	64.	61.	57.	66.	58	54.	40		52.	. 61
05	5.16	0.05		0,86	0.10	-0,05	-0.05	0,25	=0.05	0,19	-0.05	. 0.11	-0.05	.1,03	0,25	-0.05	-0.6
P6	0	0		0	0	0	0	0	0	• 0 • •	0	0	0	0	•	0	- 0
07	3.	-1.		-1.	-1.	-1-	-1-	2.	1.	- 1 -	-1.	1.	11.	=1,	2.	-1.	1
19	-0.01	0.01		-0,01	-0.01	-0.01	0 08	0,11	-0.01	20,0	+0.01	0.11	-0_01	-0.01	0,01	0.02	-0.0
9	0.18	0,11		51.0	0,47	0,14	0,11	0,13	55.0		0.16	0.01	0.01	0.01	-0.01	0.02	0.0
0	0.14	C.15		0.05	0.13	0.09	0 07	0.07	0.15		51.0	0,13	0.55	0.23	0.15	0,09	0.0
11	0.003	0.001		0.004	0.051	0,009	0.001	0.002	0.084		0.003	0.003	0.002	0.001	0.002	0.002	0.00
15	0.5	0.6		1.4	0.5	. 0,6	0.1	0.9	-0.1	*0.1	=0.1	-0.1	+0.1	0.7	0.4	-0.1	0.
13	0.001	0,004		0.003	0.004	-0,001	0,002	0.004	0,001	0.001		-0.001	0.003	0.006	0,003	0,005	
14	0.994	0,004		0.003	0,005	0,003	0.011	0.008	0.001		0.005		0.015	0,156	0,024	0.065	0.000
15	54.	35.		27.	27.	31.	35.	. <u>88</u> .	30	28,	55*	. 75	26.	14.	33.	17.	. 19.
16	28.	118.		108.	50.	76.	119.	117.	94	110.	.5751.	157.	71.	92.	65.	88.	99

Table 28. Raw water quality data, La Plata River at Hesperus, May 1977 - August 1978.

CODE	5/25/17	6/15	0/30	7/19	8/24	9/21	16/19	11/15	15/13	1/15/78	2/15	3/21	a/18	5/18	6/15	7/19	5/24
101	717.	490.		770.	550.	300.	158.	163.	119	505*	361.	259.	219.	70.	1450.	254.	245.
165	1127.	800.		7010.	3300,	575.	313.	368,	413.	316.	394.		15111*	2310n.	3664.	775,	24%.
193								-lee.	-100	-100,	152.	-109.	103	134.	-100.	100.	-100.
104								172,	-100	415.	365*	134.	359.	035.	194.	100.	=100,
105	-5.	-3.		-3.	5.	-3.	5.	-3,	-3,	-3.	-3.	-3.	3.	-3.	-3.	•3.	- 3.
106	100.	91.		13.	45,	-3.	15.	4.	-3.	21.	-3.	-3.	11.	-3.	7.	-3.	4.
107	140.	12".		139.	500.	117.	140.	169.	161.	85.	500*	203.	72.	40.	50.	68.	151.
108		-1.		-1,	-1.	-1.	-1.	-1.	5.	-1.	-1.	-1.	2.	4.	-1.	-1,	-1.
108									_	-20.	-50.	-20.	-29.	-56+	-56*	-50*	-29.
110	-19,	-10.		50.	-12.	-10.	-16.	-10.	-10	-10,	26.	-10,	-10.	-ie.	-10.	-10.	-10.
111	-10,	84.		50,	5°,	32.	-10.	-10.	20.	19.	56.	-10.	15.	100.	16.	-10.	11.
511		626.		704	724.	645.	631.	576.	724.	336.	B14.	832.	53°.	120.	161.	446.	515.
113	210.	23.		62.	33.	-21.	33.	-21.	58.	-21,	-21.	-21.	36.	69.	•S•	40.	18.
114	543.	536		4396	2207.	306.	346.	334	148	254.	271.	404	4656,	31591.	3000.	396.	170.
115	-	-		-				9.	5.	-1.	-1.	-1.	-1.	-1.	-1.	-1.	-t.
116								٩,	5.	-1.	-1.	-1.	-1.	55.	-1.	- 56.	-1.
117		74.		80.	54.	85.	a4.	34	78	30.	76,	78.	14.	1.	14.	71.	51.
118	24.	11.		-5	4P.	10	14.	15.	13	10.	55.	47.	25.	-5.	-5,	-5.	-5.
119	24.	16.		8.e.	96	13.	14.	15.	16.	25.	30.	72.	176.	519,	118.	31.	-5.
120	1.0	-6.2		1.6	0.3	0.3	1.7	0.3	-9.2	0 4	0.3	0,9	0.6	-0.2	-0.2	-0.2	0.9
121	1.2	=0.2		4.1	0.7	0.3	1.7	0.7	-9.2	0.4	0.3	0.9	3.6	-0.2	0.2	0.6	2.4
120	-5	12.		10	-5,	11.	7.	-5.	9	8	-5	-5	-5,	-5.	-5	-Š.	-Ś.
123	-5	12.		39	15,	14	11.	-5,	9	11.	27,	-5	11.	-5	-5	52.	-5.
124	-6.	- 5		-6.	-6.	•6	7.	a0.	-6	-6.	=b	-5.	-6.	-b.	= ò .	-6.	-t.
125	21.	49		30	51.	56.	109	40	-6	-6.	-6	-6	184	57.	35.	-6	-6.
176	3,0	2.0		3.0	5 0	3.0	2.7	1.5	5.1	1.3	1.6	2.4	1,5	4,3	3.0	3.0	3.4
127	-I.	-1		-1.	-1.	-1	-1.	-1,	4	-1.	-1.	-1.	-1.	•	-1.	-1.	-1.
128	-1.	-1		-1	2	-1	-1.	-1	7	-1.	-1.	-1.	•1.	•	-1.	1.	ε.
129	- V -	-9		-9	-4	- 9	-9	. 9	=9		-9	-9	-9	-9.	-9	- 0	-9,
130	• • •	- 0			-9	11.	- 9	-9	-9	-9	-9.	17.	٩.	-9	- Q_	- 4	÷9,
131	66.	47		58	58	61.	68.	62.	63	58.	62.	72.	19.	3.	в.	32.	45.
132	-5	-5		5	9	8.	10	18.	-5.	-5.	-5.	5.	17.	11.	-5.	-5.	в.
133	411.	S17.		510	501.	250	346.	18.	-5	16.	158.	5.	446	194.	30.	74.	23.
201	176	174		207	199	184	205	221.	218.	217.	234.	181.	118.	130.	86	172.	156
202 -	-1.	-1		-1	-1.	-1,	-1.	-1.	=1	-1.	-1.	-1	-1.		< =t.	-1.	-1,
203	-t.	-1.		2.	-1	-1.	-1.	-1	-1	-1.	-1.	-1	. 4		-	-1.	21.
204	175.	174		190	199	178	205	217.	218	217.	234	181.	118.	130.	66.	172.	153.
205		=0.05		• • • •	0,89	0.15	0 27	9 17	-0.05	-0.05	-0.05	0.17	-0.05	0,17	n,28	0.29	-0.05
20.0	0	0		17.	0	8	0	4	Ó	0	0	0	0	Ő	` 0	0	۰ ۵
207	31.	3 .		29	24.	4n	24.	31.	36	29,	34.	32.	17.	3.	4.	12.	19.
208	214	0.02		-0.01	0.01	-0.01	n 09	0 03	*0,01	0.96	0.01	0.01	-0,01	0.01	0.01	0.02	0.06
209	0.17	0,15.		0.15	0.19	0,17	0.19	0 18	0.29	.	0,21	0.02	0.01	0 01	0.01	0.02	0.04
219	0 10	0 03		0.32	15.0	0 07	0 04	0.38	0,27	0.61	0.36	0.35	0.34	0,49	0.06	0.05	0.15
211	0 002	0.001		0.007	0.004	0.004	0.003	0,004	0,007	0.005	0.007	0.008	0.015	0,004	0.003	0.003	0.002
					1.7	0,4	0.5	5.0	-8_1	5.0	0.3	-0.1	0.0.5	3.6	0.6	+0.1	0.6
212	9 . 7	5.1		2.1			-	0.001	0,005		0.004	0.005	0.006	-	500.0	0.003	0.001
213	0,011	0.004		0_014	0.004	0,004 0,029	0,042	0,001	0,002	0.001	0.018	0.051	0.270	0.010	0.084	0.017	250.0
214	9,961	0.044		8.014	ñ.165								133.	57.	110	314	403.
215	511.	409.		560.	455.	478.	502.	536.	607	493.	620,	664.				659	78p.
210		٩32.		1034	982.	1906.	1032.	1011.	1124	925.	1169.	1269.	307.	186.	241.	* * 67	106.

Table 29. Raw water quality data, La Plata River at Colorado/New Mexico border, May 1977 - August 1978.

,

. . .

and the second second

.

62

.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CODE	5/25/77	0/16	6/30	7/19	8/24	9721	19/19	11/15	12/13	1/18/78	2/15	3/21	4/18	5/18	t/1t	7/19	#124
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101	•			840.	350.	520.	246.	278.	215.	1961.	504.	455.	224.	155.	1760.	317.	664.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	501				12120.	1500.	1450.	357.	977.	302.3	10000	34430.	5529.	1302.	77200.	9510.	1491	669.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	103				-	-	-	-	197				195.	172.	127.	-100	125.	-100.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	104											570.				021.	125.	367.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105				-3.	5.	α.	5.				-3.	4	3.	-3.	-3.	-3.	10.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100														7.	- 3 .	-3,	11.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	107	205.			100	169.	167	170.			80.	260.	430.	93.	70.	150.	95.	241.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	108	-			u u	-1,	-1.	-1.	3.		5.	-1.	-1.	3.	6.	-1.	-1.	-1.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	109						-		-		138.	24.	-20	37.	43.	-20.	-50.	32,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110				20.	10.	-10.	-10.	-10.	-10			36.	-10.	-10.	-10	-10	12.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111												46	54	203.	7.1	-10	44.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	511	733.							605.	-		930	1395	339.	555	81.	352.	821.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113					28.	41.	45.		52		-21	192.	36.	73.	32.	72.	65.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	1109	834.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					•					-							-1.	-1.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												•	-				-1.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		53.			16.	26.	35.	41.		••							28	53.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										903							560.	852
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															-		503	852.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														•			-0.S	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														1.5			0.3	2.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											-						6.	21.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													-				34	25.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-					-			-	-	-	-D.	*6.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-		-				-				-	-6	25.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										-			-				3.0	5.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							•						-		••••		1.	-1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																-	9	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															-9.		- 9	=9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-							•			-9	13.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-							-									92	334.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										-5					-		15.	53.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										138							105	296.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		174															236	256.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11-1								= 1					130 -		-1.	-1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											· •			-		-	-1	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	174						-			152				158	-	236.	266.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		117.								*0.05							=0.05	+0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0								-0.05							-0.05	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-					-	-			-	35.	296.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													-		-	-		0,05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											0.93						50.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					V	0.43	0.00	C. 10	v. • •			0.33	1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a	0 • • • •	11 1 11 1	¥•22€	n . 04	0.05
212 0.6 1.3 1.1 0.6 1.2 -0.1 4.7 -0.1 i.0 3.1 -0.1 - 213 0.011 0.018 0.009 0.004 0.004 0.013 0.008 0.005 0.013 0.025 0.004 0.014 0.002 0.177 0.360 0.094 0.024 0.014 0.012 0.0177 0.360 0.094 0.024 0.029 0.177 0.360 0.094 0.029 0.294 0.011 0.089 0.057 0.934 0.017 0.016 0.002 0.177 0.360 0.094 0.029 0.029 0.025 0.025 0.029 0.029 0.025 0.025 0.029 0.029 0.025 0.025 0.029 0.029 0.025 0.025 0.029 0.025 0.029 0.029 0.025 0.029 0.025 0.029 0.025 0.029 0.029 0.025 0.025 0.029 0.025 0.029 0.025 0.025 0.025 0.029<					0 1131	0 017	6 0 0 8	0.001	6 402		0 033	0 00+	0 004	0 0.04	0 007	0 001	0.002	506.N
213 C.O.I.I O.O.I.8 O.O.Q.Q.O.Q.O.Q.Q.O.Q.Q.O.Q.O.Q.O.Q.O.Q									-								-0.1	5.0
214 0.011 0.089 0.057 0.034 0.017 0.016 0.002 0.177 0.360 0.096 0.400 1.000 0.029 0. 215 819, 574, 422, 541, 526, 664, 507, 1224, 2536, 137, 150, 740, 3								· ·		0 804							•	-
215 819. 574. 422. 541. 526. 664. 507. 1224. 2536. 137. 150. 740. 3																	0.013	500.0
						•				V.00₽		•			•		0.027	0.030
516 1702		-												-			322,	1009.
216 1796, 1160, 1084, 1263, 1471, 1468, 946, 1799, 3704, 482, 352, 835, 6	210	1170.			1100*	1004*	1503	1471.	1.400*		440.	1/77.	3/04.	402.	356.	· 727.	688.	5130.

.

Table 30. Raw water quality data, La Plata River at Farmington.

.

1 3 1

*

APPENDIX C

ION BALANCE CALCULATIONS

37

÷

Table 31. Ion balances for water quality stations in Animas - La Plata project.

ANIMAS-LA PLATA PROJECT

STATION BE LA PLATA AT FARMINGTON

	5/25/77	6/15	6/30	7/19	8/24	9/21	10/19	11/15	12/13	1/18/78	2/15	3/21	4/18	5/18	6/16	7/19	8/24
C A	206.0	0 . 0	0_0	100.0	169.0	167.0	170.0	211.0	0.0	80.0	260.0	430.0	93.0	70.0	150.0	95.0	241.0
46	53.0	0.0	0,0	15.0	56.0	35.0	41.0	19.0	0.0	8.0	67.0	77.0	25.0	12.0	50.0	28.0	53.0
PI &	0.9	0.0	0,0	272.0	182.0	97.0	275,0	264.0	426.0	247.0	250.0	515.0	40.0	11.0	69.0	92.0	334.0
к	6.0	0.0	0.0	8.0	7.0	5.0	3.5	2.1	6.0	4.1	5.9	4,6	1.7	11.8	5.9	3.0	5,0
HC03	174.0	0.0	0.0	117.0	195.0	247.0	272.0	266.0	0.0	152.0	270.0	227.0	156.0	158.0	164.0	236.0	266.0
C03	0.0	0.0	^_ 0			0.0		0.0		0.0							0.0
CL	109.0	0.0	0.0	38.0	81.0	109.0	88.0	142.9	0.0	34.0	65.0	192.0	33.0	7.0	20.0	35.0	295.0
804	819.0	0.0	-	574.0		_		664.0	0.0	507.0	1224.0	2536.0	137.0	150.0	740.0	355.0	1009.0

1 •

. . .

 STD8
 1361.0
 0.0
 0.0
 1125.0
 1092.0
 1201.0
 1375.5
 1572.1
 432.0
 1032.1
 2138.9
 3981.6
 485.7
 419.8
 1174.0
 811.0
 2204.0

 MTD5
 1796.0
 0.0
 0.0
 1160.0
 1094.0
 1263.0
 1471.0
 1468.0
 0.0
 946.0
 1799.0
 3704.0
 482.0
 352.0
 835.0
 688.0
 2139.0

 SC
 14.639
 0.000
 0.000
 18.343
 18.668
 15.560
 23.000
 23.000
 23.404
 18.684
 15.499
 29.435
 50.311
 8.481
 5.260
 12.753
 11.122
 31.043

 S4
 23.606
 0.000
 0.000
 15.363
 14.971
 19.279
 18.874
 23.150
 0.000
 14.555
 32.717
 62.756
 6.903
 6.480
 19.251
 12.411
 34.678

 ADIFF
 8.967
 0.000
 0.000
 3.697
 3.719
 5.034
 0.653
 18.684
 0.945
 3.283
 12.445
 1.577
 1.220
 6.498
 1.289
 3.635

ANIMAS-LA PLATA PROJECT

STATION 14: LA PLATA AT HESPERAS.

	5/25/77	6/16	6/30	7/19	8/24	9/21	10/19	11/15	12/13	1/18/78	2/15	3/21	4/18	5/18	6/16	7/19	8/24
CA	30.0	27.0	0.0	6.0	34.0	42.0	35.0	36.0	35.0	32,0	35.0	32.0	28.0	20.0	16.0	24.0	26.0
MG	3.0	3.0	0.0	20.05	-1.0	11.0	5.0	1.0	21.0	8.0	6.0	3.0	3.0	1.0	2.0	5.0	5.0
NA	2.0	1.0	0.0	5.0	4.0	11.0	17.0	3.0	5.0	3.0	. 3.0	5.0	2.0	5.0	1.0	4.0	3.0
ĸ	1.0	0,5	0.0	1.0	1.0	1.0	1.3	0.9	3.7	0.7	0.8	1.5	1.1	1.6	2.0	5.0	2.0
HC03	56.0	54 0	0.0	59.0	58.0	61.0	64.0	64.0	61.0		66.0	58.0	54.0	40.0	0.0	52.0	61.0
C03	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0,0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
CL	3.0	-1.0	0.0	-1.0	-1.9	-1.0	-1.0	2.0	1.0	1.0	-1.0	1.0	11.0	-1.0	5.0	-1.0	-1.0
S 04	54.0	35.0	0 0	27.0	27.0	31.0	35.0	28.0	30.0		22.0	27.0	26.0	14.0	33.0	17.0	19.0
STOS	149.0	120.5	0_0	115.0	124.0	157.0	157.3	134.9	156.7	129.7	132.8	127.5	125,1	78.6	56.0	101.0	113.0
MTDS	28.0	118.0	0.0	108.0	50.0	76.0	119,0	117.0	94.0	110.0	5751.0	157.0	71.0	92.0	65.0	88.0	99.0
SC	1_856	1.650	0.000	2.057	1.896	3.505	2.931	2,032	3.784	2,403	2.391	2.099	1,759	1,208	1.058	1.587	1.644
Så	2.329	1.809	0.000	1.742	1.722	1.865	2.009	1.919	1,873		1.778	1,750	1.932	1.091	0.743	1.394	1,616
ADIFF	0.473	0.158	0.000	0.315	0.174			0,113				0.349	0.173	0.117	0.314	0.193	0.028
ERR(X)	11,291	4,577	0.000							15.697					17.439	6.485	0.859

1 9 1 1

Table 31. Continued.

4 1 L

```
ANIMAS-LA PLATA PROJECT
```

- - ee- j

- b

STATION 22: ANIMAS AT DURANGO

	5/25/77	6/16	6/30	7/19	8/24	9/21	10/19	11/15	12/13	1/18/78	2/15	3/21	4/18	5/18	6/16	7/19	8/24
C.A.	0.0	48.0	0.0	97.0	66.0	68.0	95.0	100.0	104.0	91.0	95.0	91.0	58.0	32.0	23.0	38.0	90.0
MG	0.0	4.0	0.0	19.0	8.0	21.0	10.0	9.0	9.0	15.0	10.0	10.0	-1.0	-1.0	1.0	3.0	3.0
NA	0.0	12.0	0.0	44.0	14.0	36.0	27.0	14.0	23.0	16.0	17.0	5.0	9.0	3.0	2.0	8.0	25.0
ĸ	0.0	2.0	0.0	B.0	3.0	3.0	4.2	2.4	6.6	. • .	2.7	2,8	1.3	1.8	3.0	3.0	5.0
HC03	0.0		0 0	204.0	87.0	97.0	137.0	141.0	232.0		132.0	113.0	81.0	56.0	34.0	50.0	105.0
C03	0.0	0 0	0.0	6.0	0.0	-	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
CL	0.0	11.0	0.0	45.0	0.0		23.0	30.0	45 0		27.0	19.0	12.0	-1.0	3.0	10.0	33,0
504	0,0	52.0	0.0	162.0	111.0	87.0	157.0	151.0	153.0		181.0	152.0	50.0	30.0	49.0	56.0	140.0
	ν.																
STOS	0.0	129.0	0.0	590.0	289.0	324.0	453.2	. 451.4	572.6	259.2	464.7	392.8	211.3	122.8	115.0	168.0	461.0
MTDS	0,0	0.455	0.0		525.0			435.0			385 0		125.0	101.0	91.0	168.0	428.0
SC	0,000	3.297	0.000	8,522	4.637	6.763	6.845	6.575			6.372		3.319	1.773	1.394	2.568	5.953
54	0,000	1.393	0.000	8,951	4.051	4.090	6.658				7.170		3,000	1.745	1.785	2 44A	7.146
ADIFF	0,000	1.904	0.000	0.429	0.586		0.187			3,638	0.798		0.319	0.029	0.391	0.120	1.193
ERR(%)	0,000	40,603								38.639					12,306		9,105

1 4 4 -

ANIMAS-LA PLATA PROJECT

STATION 4: LA PLATA RIVER AT CO./N.M. BORDER

\$/25/77 6/16 7/19 9/21 10/19 11/15 12/13 1/18/78 2/15 3/21 6/30 8/24 4/18 5/18 6/16 7/19 8/24 128.0 49.0 C A 140.0 139.0 200,0 117.0 85.0 200.0 203.0 72.0 0.0 180.0 169.0 161.0 50.0 68.0 151.0 54.0 MG 0.0 74.0 86.0 85.0 44.0 38.0 78,0 30.0 76.0 78.0 14.0 71.0 51.0 0.0 1.0 14.0 66.0 47.0 NA 56.0 50.0 61.0 68.0 62.0 63.0 58.0 72.0 19.0 32.0 45.0 0.0 95.0 3.0 8.0 ĸ 3,0 2.0 5.0 2.4 0.0 3,0 3.0 2.7 1.5 5,1% 1,3 1.6 1,5 4.3 3,0 3.0 3.0 217.0 HC03 176.0 174.0 234,0 181.0 172.0 153.0 0.0 190.0 199.0 178.0 205.0 217.0 518.0 118.0 130.0 86.0 0.0 C 0 3 0.0 17.0 0.0 0.0 0.0 8.0 0.0 4.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 31.0 31.0 29.0 40.0 24.0 36.0 29.0 34.0 32.0 17,0 3.0 0,0 29,0 CL 3.0 4.0 12.0 19.0 \$04 511.0 409.0 0,0 560,0 455,0 478,0 502,0 536,0 607,0 493,0 620,0 664,0 133,0 57,0 110,0 314,0 403,0

 STDS
 927.0
 837.0
 0.0
 1082.0
 992.0
 970.0
 1025.7
 1058.5
 1168.1
 913.3
 1227.6
 1232.4
 374.5
 247.3
 275.0
 672.0
 795.0

 MTDS
 0.0
 932.0
 0.0
 1038.0
 982.0
 1006.0
 1032.0
 1011.0
 1124.0
 925.0
 1169.0
 1269.0
 307.0
 188.0
 241.0
 659.0
 780.0

 SC
 9.934
 14.570
 0.000
 16.610
 16.725
 15.561
 15.628
 14.294
 17.321
 9.266
 18.970
 19.739
 5.609
 2.768
 4.071
 10.702
 12.267

 SA
 15.034
 12.080
 0.000
 16.617
 14.271
 14.800
 15.422
 18.548
 18.347
 5.609
 2.768
 4.071
 10.702
 12.267

 SA
 15.034
 12.080
 0.000
 10.607
 14.271
 14.800
 15.422
 18.548
 18.347
 5.609
 3.871
 4.123
 10.316
 1.986

 ADIFF
 5.100
 2.490
 0.000
 0.007
 2.454
 0.76

67

E ST ST

APPENDIX D

PROPOSED COLORADO WATER QUALITY STANDARDS

Parameter	Standard
hysical	·
$D.O. (mg/l)^{1}$	Aerobic ²
pH	5.0-9.0
Suspended solids and turbidity	3
Temperature	x
TDS (mg/l)	Ŷ
iological	
Algae ⁴	Free of toxic and
	objectionable algae
Fecal coliforms (#/100 ml)	1,000
norganics	
Ammonia (mg/ l as N)	0.5
Total residual chlorine (mg/l)	X
Cyanide (mg/l)	0.2
Fluoride (mg/l)	5
Nitrate (mg/ ℓ as N)	10
Nitrite $(mg/\ell \text{ as } N)$	1.0
Sulfide as H_2S (mg/ ℓ)	0.05
Boron (mg/l)	X
Chloride (mg/l)	250
Magnesium (mg/l)	125
Sodium adsorbtion ratio	Х
Sulfate (mg/l)	250
Phosphorus (mg/ l as P)	Bioassay ⁶
oxic Metals (mg/l)	
Aluminum	X
Arsenic	0.05
Barium	1.0
Beryllium	X
Cadmium	0.01
Chromium	0.05
Copper	1.0
Iron	0.3 (soluble)
Lead	0.05
Manganese	0.05 (soluble)
Mercury	0.002
Molybdenum	Y
Motybdenum	-

Table 32. Proposed Colorado water quality standards: Class II water supply.

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

.

Table 32. Continued.

Parameter	Standards
Toxic Metals (mg/l)	
Selenium	0.01
Silver	0.05
Thallium	Х
Zinc	5.0
<u>Organics</u> ⁷ $(\frac{\mu g}{\lambda})$	
Chlorinated pesticides ⁸	
Aldrin ⁹	Y
Chlordane ⁹	Y
Dieldrin ⁸	Y
DDT ⁹	Y
Endrin	0.2
Heptachlor ⁹	Y
Lindane	4
Methoxychlor	Y
Mírex	100
Toxaphene	5
Organophosphate pesticides ⁸	
Demeton	Y
Endosulfan	Y
Guthion	Y
Malathion	Y
Parathion	Y
Chlorophenoxy Herbicides	
2, 4-D	100
2, 4, 5-TP	10
PCB's ¹⁰	Y
Pheno1	1
Radiological ¹¹ (pCi/l)	
Alpha II. 12	15
Alpha ¹¹ , ¹² Beta ¹¹ , ¹²	15
Cesium 134	50
Plutonium	80 15
	5
Radium 226 and 228^{12} , ¹³ Strontium 90 ¹² , ¹³	5 8
Thorium 230 and 232	8 60
Tritium	
Uranium (total, mg/l)	20,000
oranitum (cocar, mg/~)	. د

- ¹Where dissolved oxygen levels less than the standard occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/ ℓ dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵Fluoride limits vary from 2.4 mg/L at 12.0 C and below, to 1.4 mg/L between 26.3 C and 32.5 C, based upon the annual average of the maximum daily air temperature (see *National Interim Primary Drinking Water Regulations* for specific limitations).
- ⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods* for the Examination of Water and Wastewater.
- ⁷All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁹The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- ¹⁰Every reasonable effort should be made to minimize human exposure (EPA).
- ¹¹Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹²If Alpha or Beta are measured in excess of 15 or 50 pCi/& respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹³Maximum permissible concentrations including naturally occurring or background contributions.

Parameter	Cold Water Biota	Warm Water Biota
Physical	ć	
D.O. $(mg/l)^{1}$	6.0 7.0 (spawning) ²	5.0
pH	6.5 - 9.0	6.5 - 9.0
Suspended solids and turbidity	3	3
Temperature (°C)	Maximum 20°C w/ 3° increase ⁴	Maximum 30°C w/ 3° increase ⁴
TDS (mg/l)	Y	Y
<u>Biological</u>		
Algae ⁵	Free from objec- tionable and toxic algae	Same as Cold Water
Fecal coliforms	X	X
Inorganics		
Ammonia (mg/l as N) Total residual chlorine	0.02 unionized	0.10 unionized
(mg/l)	0.002	0.01
Cyanide (mg/l)	0.005	0.005
Fluoride (mg/l)	X	X
Nitrate (mg/ ℓ as N)	х	Х
Nitrite $(mg/l as N)$	0.05	0.5
Sulfide as H_2S (mg/l)	0.002	0.002
=======================================	undissociated	undissociated
Boron (mg/l)	X	X
Chloride (mg/l)	X	
Magnesium (mg/l)		X
	X	X
Sodium adsorbtion ratio	X	X
Sulfate (mg/l) Phosphorus (mg/l as P)	X Bioassay ⁶	X Bioassay ⁶
$\frac{0 \text{ rganics}^7}{\ell}$		
Chlorinated Pesticides ⁸		
Aldrin ⁹	.003	.003
Chlordane	0.01	0.01
Dieldrin ⁹	0.003	0.003
DDT	0.001	0.001
Endrin	0.004	0.004
Heptachlor	0.001	0.004
Lindane		
	0.01	0.01
Methoxychlor	0.03	0.03
Mirex	0.001	0.001
Toxaphene	0.005	0.005

Table 33. Proposed Colorado water quality standards (non-metallic): Protection of Aquatic Biota.

77 | ~

Table 33. Continued.

Parameter	Cold Water Biota	Warm Water Biota
Organophosphate Pesticides ⁸		
Demeton	1	1
Endosulfan	0.003	0.003
Guthion	0.01	0.01
Malathion	1	1
Parathion	0.04	0.04
Chlorophenoxy_Herbicides		
2, 4-D	Y	Y
2, 4, 5-TP	Y	Y
PCB's	0.001	0.001
Phenols	1	1
Radiological ¹⁰ in (pCi/%) Alpha (excluding uranium		
and radium ¹¹)	15	15
Beta (excluding Sr ^{90 11}	50	50
Cesium 134 Plutonium 238, 239,	80	80
and 240	15	15
Radium 226 and 228	5	5
Strantium 90 ¹²	8	8
Thorium 230 and 232	60	60
Tritium	20,000	20,000
Uranium (total) ¹³		

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

¹Where dissolved oxygen levels less than the standard occur naturally a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

 2 A 7 mg/ ℓ standard, during periods of spawning of coldwater fish, shall be set on a case by case basis as defined in the NPDES permit for those dischargers whose effluent would affect fish spawning.

³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards. ⁴Temperature shall maintain a normal pattern of diurnal and seasonal fluctuations with no abrupt changes and shall have no increase in temperature of a magnitude, rate and duration deemed deleterious to the resident aquatic life. Generally, a maximum 3°C increase over a minimum of a 4-hour period, lasting for 12 hours maximum, is deemed acceptable for discharges fluctuating in volume or temperature. Where temperature increases cannot be maintained within this range using BMP, BATEA, and BPWITT control measures, the Division will determine whether the resulting temperature increases preclude an Aquatic Life classification.

⁵Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.

⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods for the Examination of Water and Wastewater*, American Public Health Association.

⁷All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.

⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.

 9 Aldrin and dieldrin in combination should not exceed 0.000003 mg/ ℓ .

¹⁰Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.

- ¹¹If Alpha or Beta are measured in excess of 15 of 50 pCi/& respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹²Maximum permissible concentrations including naturally occurring or background contribution.

¹³See Uranium in Table 41 for aquatic life limitations.

Parameter	Water Ha	rdness ¹ -	Cold and	Warm Wat	er Biota
	0-100	<u>,</u> 100–200	200-300	300-400	over 400
Toxic Metals ² (mg/l)					
Aluminum (soluble)	0.1	0.1	0.1	0.1	0.1
Arsenic	0.05	0.05	0.05	0.05	0.05
Barium	Х	Х	Х	Х	Х
Beryllium	0.01	0.3	0.6	0.9	1.1
Cadmium	0.004	0.001	0.005	0.01	0.015
Chromium	0.1	0.1	0.1	0.1	0.1
Copper	0.01	0.01	0.01	0.02	0.04
Iron	1.0	1.0	1.0	1.0	1.0
Lead ³	0.004	0.025	0.050	0.100	0.150
Manganese	1.0	1.0	1.0	1.0	1.0
Mercury	0.00005	0.00005	0.00005	0.00005	0.00005
Molybdenum	Х	Х	Х	х	Х
Nickel	0.05	0.10	0.20	0.30	0.40
Selenium	0.05	0.05	0.05	0.05	0.05
Silver	0.00010	0.00010	0.00015	0.00020	0.00025
Thallium	0.15	0.15	0.15	0.15	0.15
Uranium	0.03	0.2	0.4	0.8	1.4
Zinc	0.05	0.05	0.10	0.30	0.60

Table 34.	Proposed	Colorado	water	quality	standards	(metallic):	Protection of
	Aquatic I	Biota.					

X = numerical limit generally not needed for protection of classified use.

¹Concentrations of total alkalinity or other chelating agents attributable to municipal, industrial or other discharges or agriculatural practices should not alter the total alkalinity or other chelating agents of the receiving water by more than 20 percent. Where the complexing capacity of the receiving water is altered by more than 20 percent or where chelating agents are released to the receiving water which are not naturally characteristic of that water, specific effluent limitations on pertinent parameters will be established. In no case shall instream modification or alteration of total alkalinity or other chelating agents be permitted without Commission authorization.

²Bioassay procedures may be used to establish criteria or standards for a particular situation. Requirements for bioassay procedures outlined in Section 3.1.10, Colorado Water Quality Standards, May 2. 1978.

³For bioassay lead concentration is based on soluble lead measurements (*i.e.* non-filterable lead using a 0.45 micron filter).

Parameter	Standard
Physical	
D.O. $(mg/l)^{1}$	Aerobic ²
pH	Х
Suspended solids and turbidity	3
Temperature	X
TDS (mg/l)	Y
<u>Biological</u>	
Algae ⁴	Free of toxic and
	objectionable algae
Fecal coliforms (#/100 ml)	1,000
Inorganics	
Ammonia (mg/L as N)	Х
Total residual chlorine (mg/l)	Х
Cyanide (mg/l)	0.2
Fluoride (mg/l)	X
Nitrate (mg/L as N)	100 ⁵
Nitrite (mg/l as N)	10 ⁵
Sulfide as H_S (mg/l)	Х
Boron $(mg/l)^2$	0.75
Chloride (mg/l)	X
Magnesium (mg/l)	Х
Sodium adsorbtion ratio	Х
Sulfate (mg/l)	Х
Phosphorus (mg/l as P)	Х
Toxic Metals (mg/l)	
Aluminum	X
Arsenic	0.1
Barium	Х
Beryllium	0.1
Cadmium	0.01
Chromium	0.0
Copper	0.2
Iron	Х
Lead	0.1
Manganese	0.2
Mercury	X
Molybdenum	Y
Nickel	0.2

Table 35. Proposed Colorado water quality standards; Agricultural use.

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

Parameter	Standard
Toxic Metals (mg/l)	
Selenium	0.02
Silver	X
Thallium	X
Zinc	2.0
Organics ⁶ , $(\frac{\mu g}{\ell})$	
Chlorinated Pesticides ⁷	
Aldrin ⁸	Y
Chlordane ⁸	Ŷ
Dieldrin ⁸	Ŷ
DDT ⁸	Ŷ
Endrin	Ŷ
Heptachlor ⁸	Ŷ
Lindane	Ŷ
Methoxychlor	Ŷ
Mirex	Ŷ
Toxaphene	Ŷ
Organophosphate Pesticides ⁷	
Demeton	Y
Endosulfan	Ŷ
Guthion	Ŷ
Malathion	Y Y
Parathion	Ŷ
Chlorophenory Horbisides	
Chlorophenoxy Herbicides 2, 4-D	Y
2, 4, 5-TP	Y
	Ŧ
PCB's ⁹	Y
Phenol	Y
Radiological ¹⁰ (pCi/l)	
Alpha ¹¹ , ¹²	15
Beta ¹¹ , ¹²	50
Cesium	80
Plutonium	15
Radium 226, and 228 ¹²	5
Strontium 90 ¹²	8
Thorium 230 and 232	60
Tritium	20,000
Uranium (total, mg/l)	5

- ¹Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/& dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blut-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, or allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵ In order to provide a reasonable margin of safety to allow for unusual situations such as extremely high water ingestion or nitrite formation in slurries, the NO₃-N plus NO₂-N content in drinking waters for livestock and poultry should be limited to 100 ppm or less, and the NO₂-N content alone be limited to 10 ppm or less.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁸The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposeure to a minimum (EPA).

⁹Every reasonable effort should be made to minimize human exposure (EPA).

- ¹⁰Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹¹If Alpha or Beta are measured in excess of 15 or 50 pCi/L respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹²Maximum permissible concentrations including naturally occurring or background contributions.

	Standard	
Parameter	Class I	Class II
	(Primary Contact)	(Secondary Contact)
Physical		
$\frac{Physical}{D.0.1} (\frac{mg}{\ell} D.0.)$	Aerobic ²	Aerobic ²
рН	6.5-9.0	х
Suspended solids and		
turbidity	х	Х
Temperature	Х	Х
TDS (mg/l)	Х	X
Biological		
<u>Biological</u> Algae ⁴	Free of objection-	Free of objection
	able and toxic	able and toxic
	algae	algae
Fecal coliforms		
(#/100 ml)	200	1,000
Inorganics		
Ammonia (^{mg} / ₄ as N)	Х	Х
Chloride (mg/L)	X	Х
Cyanide (mg/l)	Х	Х
Fluoride (mg/l)	X	Х
NO_3 (mg/ ℓ as N)	Х	х
NO_2 (mg/ ℓ as N)	X	X
Sulfide as H_2S (mg/l)	Х	х
Boron $(mg/l)^2$	Х	Х
Chloride (mg/l)	X	х
Magnesium (mg/l)	Х	Х
SAR	Х	х
Sulfate (mg/l)	Х	Х
Phosphorus (mg/l as P)	Bioassay ⁵	Bioassay ⁵
Foxic Metals (mg/l)		
Aluminum	Х	х
Arsenic	Х	Х
Barium	X	Х
Beryllium	Х	Х
Cadmium	Х	Х
Chromium	Х	Х
Copper	X	Х
Iron	Х	Х
Lead	X	Х
Manganese	X	Х
Mercury	X	Х
Molybdenum	X	Х
Nickel	X	Х
		Х

Table 36. Proposed Colorado water quality standards: Recreational use.

.....

Abudence .

.

-

•

Table 36. Continued.

	Standard					
Parameter	Class I	Class II				
	Primary Contact)	(Secondary Contact				
Toxic Metals (mg/l)						
Silver	Х	х				
Thallium	Х	х				
Uranium	X	х				
Zinc	X	Х				
Organics ⁶						
Chlorinated Pesticides ⁷						
Aldrin ⁸	Y	Y				
Chlordane ⁸	Y	Y				
Dieldrin ⁸	Ŷ	Ŷ				
DDT ⁸	Ŷ	Ŷ				
Endrin	Ŷ	Ŷ				
Heptach1or ⁸	Ŷ	Ŷ				
Lindane	Ŷ	Ŷ				
Methoxychlor	Ŷ	Ŷ				
Mirex	Ŷ	Ŷ				
Toxaphene	Ŷ	Ŷ				
Our contraction of the T						
Organophosphate Pesticides ⁷	37	37				
Demeton	Y	Y Y				
Endosulfan	Y					
Guthion	Y	Y				
Malathion	Y	Y				
Parathion	Y	Y				
Chlorophenoxy Herbicides						
2, 4-D ·	Y	Y				
2, 4, 5-TP	Y	Y				
PCB's ⁹	Y	Y				
Pheno1	Y	Y				
Radiological Alpha	X	х				
Beta	X	X				
	X	X				
Cesium 134 Blutenium 228 220 and 2						
Plutonium 238, 239, and 2		X				
Radium 226 and 228	X	X				
Strantium Therefore 220 and 222	X	X				
Thorium 230 and 232	X	X				
Tritium	X	X				
Uranium (total)	Х	X				

- X = numerical limit generally not needed for protection of classified use.
- Y = limit may be required but there is insufficient data for setting a general standard.
- ¹Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/& dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspsended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods for the Examination of Water and Wastewater*, American Public Health Association.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity. No point source discharge of organic pesticides shall be permitted to state waters.
- ⁸The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- ⁹Every reasonable effort should be made to minimize human exposure (EPA).

APPENDIX E

COMPARISON OF WATER QUALITY DATA WITH PROPOSED COLORADO WATER QUALITY STANDARDS

Table 37. Comparison of water quality data with proposed Colorado water quality standards, Animas River at Durango, May 1977 - August 1978.

C 00	E CUNSTITUE OF	STANDARD	SOURCE	NUN-EN Excreding	NUMPER OF SAMPLES	FERCENT Exceeding
101	ALUMINIUM, DISSOLVFO (UG/L) BAAIUM, TUTAL (UG/L) Commun. Tutal (UG/L)	100.000	A 6	11	14	78.57
104	BAGIUM, TUTAL (UG/L)	1000 000	100	0	5	0.00
100	CADMIUM, TUTAL (UG/L)	10,010	AG	. 4	9	44.44
	· · · · · · · · · · · · · · · · · · ·	10,000	4911	4	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	44.4
	· · ·	1,000	48L1 4812	3	9	11,11 33,33
	·	5,000	A 11 2 3	2	9	55.55
		10,000 15,000	8334 8864	U	9	0.00
109	CHACHIUM, TOTAL (UG/L)	100,000	ÅG	0	0	0,00 0,00
		50,000 100,000 200,000 10,000 10,000 10,000 20,000 20,000 300,000 1000,000 1000,000	NS	0	9	0.00
111	COPPER. TOTAL (UG/L)	100,000	A 8 A 6	0	. 9	0.00
-		1000.000	ws	6	11	0,00
		10,000	4861	2	ii	18,12
		10,000	4512	4	11	30.30
		20,000	4634	4	11	35.36
		40,000	4864	ñ	11	ប់.ពេល
113	IPON, DISSULVED (UG/L) IRON, TOTAL (UG/L)	300,000	*5	0	12	8.00
115	IRON, TOTAL (UG/L) LEAD, TOTAL (UG/L)	1000,000	AG	4	15	25.00 25.00
•••		100,000 50,000 4,000		1	4	52.00
		ā, 60a	AALL	2	ü	50,00
				0	a	0.00
		100.000	8863 8433	0	4	ព.្រក ប្រូល
		50,000 100,000 150,000 125,000	4711 4712 4723 4734 4734 4734	õ	4	0,04
117	MAGHESIUM (NG/L) MANGANESE, DIGSOLVED (UG/L)	125.000	*5	0	13	0.00
	MANGANESE, TOTAL (UG/L)	30,000	n5 40	15	13	100.00
		1090.000	40 44	ν σ	16	43.75
121	MERCURY, TUTAL (UG/L)	125.000 50.000 200.000 1099.000 2.000 0.050 200.000 50.000 100.000	ABU NS NS AG AB AG ABL1 AG	ź	11 11	18.14
125	NICKEL, TOTAL (UG/L)	0,050	45	11	* *	100.00
	inner forme (oute)	50,000	481.1	ŏ	9 9	0 do 0 do
		100.000	2412	ő	ę	0.0
		200.000	19451	0	9	0,00
		200, 200, 50, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 50, 200, 50, 200, 2000, 200, 50,	4454	9 0	9	0.63
159	SELENTUM, TOTAL (UG/L)	20,000	âĢ	ŏ	2.	0,03 0,03
		10,000	۳S	Q	2	a na 0,20
130	STEVER, TOTAL (UG/L)	50.000	AA 	0	5	0,30
	CIEVERY (CINE (COVE)	0.190	AFLI	0	5	0,60 0,03
		0,100	4812	n Q	1	0.00
		0.150	A-23	1	1	100.00
		0.250	47.54	1 0 0 2 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0.00
135	ZINC, TOTAL (US/L)	2000.000	A G	ŏ	1.6	0,00
		5000,000	¥3	0	16	0,00
		50,000	44L1 4412	2	1e	12,50
		100,000	4423	i	15	45,75
		300.010	4534	Q	16	a.~~
205	LUSENIC, DISSOLVED (UG/L)	600,000 100,000	4804 48	0	10	2.40
		50.000	*5	0 0	. U	0.00
205	3080N (HG/L)	50.000	A4	n	υ	0,00
207	CHLCFIDE (PG/L)	758.000 250.000	4 G 6 C	0 0	10	0,00
208	CTANLOE (MG/L)	0.204	AG	0	13	ល់ ត្រ ប៉ូត
•		0.260	n S	a	ý	1.92
249	FLUGHIDE (RGAL)	0,005	48 45	9	9	104,45
219	NIT-USEN, METPATE (MG/L)	100.000	42	0	13	0,49 0,09
		10.000	*5	9 N	15	0,00
611	NITRUDEN, NITRUTE (MGZL)	10,040	AG	n	15	9 · 11 -,
		1,000	*5 ARC	0	15	0.00
	*···	0,500	4.2	ä	10 0 11 13 9 9 13 15 15 15 15 15	0 at 0 0 1
2 15	SULFATE ("G/L)	10,040 1,000 0,050 0,500 250,300	* 5	0	14	0.01
	「東山」田二本の戸里ない。		19040351 10000351 10000331 10000551 10000551	LFSS THAY 1: 163+201) 240-5301 360-1603 604-1603 604-1603 604-1603	10) 1 4893	

Caul	 CONSTITUENT ALUMINIUM, DISSULVED (UG/L) GADHUM, TOTAL (UG/L) CADHIUM, TOTAL (UG/L) CHROMIUM, TOTAL (UG/L) COPPEP, TOTAL (UG/L) IRON, DISSULVED (UG/L) IRON, TOTAL (UG/L) SELEMIUM, TOTAL (UG/L) SELEMIUM, TOTAL (UG/L) SELEMIUM, TOTAL (UG/L) ARSEMIC, OISSUL/ED (UG/L) ARSEMIC, OISSUL/ED (UG/L) IRON (MG/L) CHUDMIDE (MG/L) RUNDEDE (MG/L) NITRUSEN, NITHITE (MG/L) SULFATE (MG/L) 	STANGARD	Sau≏c€	NUMPER Exceeding	NUMEEY OF SAMPLES	PERGENT Eachfuing
101	ALUMINIUM, DISSOLVED (UG/L)	100,000	AB	8	q	88.H3
104	GAPIUM, TOTAL (UG/L) Caomium, total (UG/L)	1056,000	*S	1 2	5	20,00
100		10,000	*5	ž	8	25,00
		0.400	46L1	6	8	75.00
		5.000	4512	5.	8	5.00
		19,000	4634	0	8	0.70 0.00
107	CHROMIUM, TOTAL (UG/L)	100.000	ABG4 AG	ů.	9	មិ.បេច កិ.បេថ
		50,000	¥ S	0	0	0.00
111	COPPER, TOTAL (UG/L)	240,000	A U A G	0 0	и 5	9.00
		1000,000	* \$	0	6	0,05
		10,000	A612	ž	6	33.33
		10.000	*453	a a	6	0,00
		40,000	4864	0	6	0.00
113	IRON, DISSOLVED (UG/L)	300,000	*5	0	5	0.00
116	LEADA TOTAL (UGAL)	100.000	AG	0	3	0,00
		50,000	*5	0	3	0,00
		25.000	A8L1 A612	. ∠	3 5	0,00
		50,000	4823	0	3	0.00
		100,000	AH S4 Ah G4	0	3	0,00
117	HAGNESIUM (HG/L)	125.000	*8	ů A	15	0.00
114	MANGANESE, DISCOLVED (UG/L) Manganese, Tutal (Ug/L)	200,000	AG	1	14	7.14
		1000.000	48	ç	14	0,00
141	MEMLURY, IDIAL (UG/L)	e.050	45 45	11	11	100,00
125	NICKEL, TOTAL (UG/L)	200,000	ΔG	0	8	0.00
		50,000	4812	ů	5	6,00
		200,000	A823	0	8	0.00
		300,000	A#34 Aagu	0	8 8	0,40 8,10
128	SELENIUM, TOTAL (UG/L)	50.000	AG	o	4	5.00
		10,000	WS AR	1	4	25.00
130	SILVER, TOTAL (UG/L)	50.000	*5	0	ż	0.00
		0,100 0,100	44612	1	2	50.00 50.00
		. 0,150	4823	0	2	0.00
		0.250	4664 4664	0	ź	0,00
133	ZINCA TOTAL (UG/L)	2000,000	A G	n	9	0.00
		5060,000	45L1	7	4	77.73
	, .	50.000	AH12	5	¥	22.42
		100,000 300,000	AH23 4-13	e 4		9,03
24.2		600,000	A 571, 14	จ่	9	6.84
<12	-machicy 01500C/EB (0671)	100,000	≜G ⊣≪	e n	9	វា ្ មក វាកក
346		50.001	A.1	0	n	0,00
207	CHLOMIDE (AG/L)	250.000 250.000	∔G WS	0	9 7	0,400 0,63
508	CYANIDE (HG/L)	0.209	AG	0	4	0.00
		6,289 0,305	∀2 AB	0 8	6 8	9,69 195.69
274	FLUOPIDE (HG/L)	5.200	+5	¢	14	0.00
e 1 0	ariannent uttaute (4850)	106,490 16,490	#G #5	0 0	,16 15	0,69
211	NETRUSEN, NITHITE (MG/L)	10,000	15	0	10	6.01
	-	1,000	-S ▲8C	a 0	ic in	0,#3 0,04
215	SULFATE (HG/L)	0,500	****	0	16	0,0
	eeer The Sharya	250,000	₩5	0	10	ñ,0%
	SOURCE CUCESE AR & ACUATIC					•
	ABC # AQUATIC	HIDIA (CUUD)				
	- 第二日 - 二日 -	1073 (#45#) 01014 (#1014	MARDHESS	1 LØ88 1444 1	0.03	
	ANI@ # AWUATIC	PIGTA ETUIAL	MANLAPSA	1 1 4 4 - 299 1		
	APRN # Allvattd	SIGTA (TOTAL) SIGTA (TOTAL)	HAHPNE 373	1 201-2063		

Table 38. Comparison of water quality data with proposed Colorado water quality standards, La Plata River at Hesperus, May 1977 - August 1978.

Table 39.	Comparison of water quality data with proposed Colorado water quality
	standards, La Plata River at Colorado/New Mexico border, May 1977 -
	August 1978.

- -

Ţ

-

.

.

.

1006	CONSTITUENT	STANDARD	SOUNCE	NUMPER Exceruing	NUPLER OF	PEPCENT EACEEUI:
101	ALUMINIUM, DISSOLVFO (UG/L)	100,000	46	15	16	93.75
a 4	BARIUH, TOTAL (UG/L) CAOMIUM, TOTAL (UG/L)	1000,000	NS.	0.	10	6,00
00	CAOMIUM, TOTAL (UG/L)	10,900	▲G	0		60.04
		10,000	#3		19	60,00
		0,000.	ABLI	0	10 -	0,00 10,00
		1,000	SIRA	1.	10	10.00
		5.000	8588 4434	i	10	10.00
		15,000	4904	3	10	39,00
903	CHROMION, TOTAL (UG/L)	100,000	AG	ũ	ă	0,00
		50,000	45	Ó	ó	0.49
		100,000	48	0	0	0.00
111	COPPER, TOTAL (UG/L)	200,000	ÝG.	n	11	0.09
		1000.000	HS.	0	11	0,49
	•	10.000	ABLI	0	11	0.07
		10,000	. AB12 A923	2	11	16.18
		20,000	4834	ò	11	0.00
		40,000	4864	ž	ii	16,14
113	IRON, DISBOLVED (UG/L)	300,000	WS	ñ	11	0.40
14	IRON, TOTAL (UG/L)	1000.000	48	5	16	31,25
110	LEADS TOTAL (UG/L)	*** ***	A G	` 0	4	0,00
		50,000	жs	U	٩	0,00
			AGLI	0	*	0.111
		25.000	4812	0	4	0,00
		50.000	4623	ο.	4 4	0,00 0,00
		100,000 150,000	4834 4864	0 0	ů 4	0,00
17	MAGNESIUM (PG/L)	125.000	*004 *5	ŏ	15	0.00
18	MANGANESE, DISSOLVED (UG/L)	50,000	*5	ŏ	ii	0,40 0,00
19	MANGANESE, TOTAL (UG/L)	200,000	AG	1	15	6.07
		1000 000	44	Ó	15	0,00
21	MEPCURY, TOTAL (UG/L)	2,000	*5	• 3	13	23.08
		0.030	¥0	13	13	100,00
25	NICHEL, TOTAL (UG/L)	. 500,000	ÅĢ	0	10	0.00
-		50.000	ABLI	0	10	0.00
e e	ť	100.000	4812 4823	C C	10	0,00
1		200,000 100,000	4534	õ	-10	0.06
•		400.000	8 H G 4	ň	10	0,00
25	SELENIUM, TOTAL (UG/L)	50.000	AG	0	4	0.09
		10.900	¥S	0	4	0,00
		50.000	4Ř.	0	4	0,00
130	SILVER, TOTAL (UG/L)	50,000	*5	q	3	0,00
	,	0,100	ABLI	0	3	0,00
		0.110	5184	0	3	0,09
		0,150	4723 4934	1	3	33.33
	·	0,200	4464	ž	3	60.07
11	ZING, TOTAL (UG/L)	2000,000	AG	. 0	15	0.00
		3009 010	*5	0	15	0,09
		50,100	APLI	0	15	0.02
		50,000	4812	1	15	6.57
		100.000	£59A	1	15	b .67
	<i>k</i>	300,000	4934	0	15	0,00
	· · · · · · · · · · · · · · · · · · ·	200.000	1964	ů.	15	0,00
02	APSENIC, DISSOLVED (UG/L)	100,900	AG	0	ů ů	0.00
		50,000	8.5 8.6	0	0	8,00 0,00
05	HORDN (MG/L)	50,600 754,000		0	6.	9.20
	CHLOMIOE (MG/L)	250,400	#3	õ	10	0.90
0.6	CYANEDE CHUZLI	0.200	AĞ	ō	iī	0.90
	· · · · · · · · · · · ·	6.200	- 5	0	11	0,40
		0,005	64	11 0	11	100.40
	FLUCHIDE (MG/L)	2,400	45	0	15	0.04
10	NITEGGE 4. NITEATE (HG/L)	100,000	46	v	15	6,40
	417 \$1514 \$241 \$1.7 \$2.7 \$4.4 \$1.4 \$1.4	10.000	-5	0	16	n_0-)
11	NITPUGEN, NITPITE (PG/L)	10.000	4 ij	0	16	6ູກບ ວ່າມ
		1,000	₩5 44C	о.	ie te	0.00
		0,050 8,500	42-	о. С	10	0.00
	SULFATE CHS/L1	250.000	* 5	13	16	
	SULFATE CHOVED	250,000		13	16	81.25

ABC = AQUATTC BITTA (CRUD) ABC = AQUATTC BITTA (CRUD) ABC = AQUATC BIDTA (TOTAL PARCHESS: LESS THAN 190) AR[2 = AQUATC BIDTA (TOTAL PARCHESS: LESS THAN 190) AR[2 = AQUATC BIDTA (TOTAL PARCHESS: LESS THAN 190) AR[3 = AQUATC BIDTA (TOTAL PA

.

.

CODE	CONSTITUENT		STANDARD	SOUACE	NUMAEH Excficing	NUMBER OF BAMPLES	PERCENT Excerdin
101	ALUMINIUM, DISSOLVED	(0571)	140.000	46	14	14	100,00
1 ***	BARIUM, TOTAL (UG/L)	3	1000.000	-5	2	10	20.01
100	CADHIUM, TOTAL (UG/	L)	10,980	4G	÷	10	60.00
			10,000	*5	•	10	64,69 0,03
			0,400 1,110	4812 4612		10	0.00
			5,000	4923	ĭ	10	10.00
			10,000	4834	ž	10	20,00
			15,000	4844	1	10	10,00
104	CHHOMIUM, TOTAL (UG.	/[]	- 190,000 50,000	AG	1	5	20,00 20,00.
			100.790	*5 46 46 *5	i	ś	20.00
111	COPPER, TOTAL (UG/L)	נ	201,000	AG	2	11	16,15
			1000.000	- 3	0	11	6,00
			10.000	4815 184	1	11	9,04 0,04
			18,000	A823	ž	ii	10,11
			20.000	A634	ž	11	18,?à
	····		40.000	1464	3	11	27.27
113	IPON: DISSCLVED (UG.	/L)	300.000	-5	1	13	7.64 84,74
114	IRON, TOTAL (UG/L) LEAD, TOTAL (UG/L)		1000.000	A BY	T	1	0.0-
* 1 4	22-01 (01-E (001E)		50.044	487 1415 1415	ő	10 10 10 10 10 10 5 5 11 11 11 11 11 11 11 11 11 11 11 11	0.00
			4,000	8761	Ó	3	0,00
			25.000	1815	¢	3	0.00
			50,000	4823 4834	0	3	0,70
			100,400 150,400		0	i	0,00
117	MAGNESIUM (HG/L)		125,000	#5	ò	14	0.40
119	MANGANESE, DISSOUVED		50.000	*5	8	13	· •1.54
119	MANGANESE, TOTAL (U	G/L)	135,000 125,000 50,000 1000,000 2,000 6,050 200,000	AG	13	14	42,70
131	MERCURY, TOTAL (UG/	•	1000,000	45	5	14	12,29 15,38
		.,	0.050	49	13	13	100.00
	NICKEL, TOTAL (UG/L))	200.000	ÅĞ	1	10	10,00
	÷		20.000	ANLI	0	10	0,00
1			100.000 100.000	4612 4673	0 1	10	0.00
•			300,000	4814	ů.	10	0,00
			400.000	ARGU	ť	10	0.00
128	SELENIUM, TOTAL (UG)	(1.)	50,000	AG	0	5	0.00
			10,000 50,000	¥5 43 ¥5	¢ n 0	5	0.40
130	SILVER, TOTAL (UG/L)	,	50.000	#0 #5	8	5 a a	0.00
		•	0.100	ABL1	ō	4	0,90
			0,100	¥812	6	4	0.10
			0.150	4423	1		25.00
			0,250	4834 4894	ů l	4 4 4	0,00 75,00
133	ZINC, TOTAL (UG/L)		2000.000	AG	õ	14	0.04
•••	•••••		5000,000	4G #5	0 6 1 0 3 0 0	14	0.00
			50,000	44L1	1	14	7.14
		*	50,000	1915	0	14	0.01
			100.000	A823 4334	2	14	14.29
			304,000 684,000	1734 1864	1	14	6,00
202	AFSENIC, DISSOLVED	(UG/L)	100.000	AG.	· 0	1	6.69
			50,000	WS	a		0.00
			50,000	4.6 4.0	0	1 7	0,02 0,04
	BOYON (NGZL)		750.000 250.000	# Fg 16 12	0	14	7.14
	CPLCHIDE (HG7L) CYANIDL (MG7L)		0,200	AG	ò	8	ດູດວ
6U7	grantes the st		0,200	45	٥	ŧ	0.00
	·		0.005	********	0 1 0 8 0 1 1 0	. A	100.40
	FLUDFIGE (hG/L)		2,400 100,000	#3	0 A	13 1	0,00
510	FITPOGEN, NITPATE (un sêrî	10.000	#5	ů	i	0.04
213	NETECOLY, NITHITE ()	FG/L}	10,000	A G	n	14	6,00
			1.000	45	0	3 4	0,00
			A.050		0	14	0,00 0,00
	SULFATE (MG/L)		0,500 250,000	45	12	14	85.73
¢12	JULF # 12 1-6/21				• •	•-	
		AR & AQUATTO	SIGTA COLDI				
	A1	Be a AUIATLC	n1014 (+454)				
	4 5 1	1.1	HINTA CICTAL BUTTA CIGIAL	H3494F55. H3484F34	1 6533 1844 1 100-2003	100)	
	▲ 2	23 W ANDATIC	BIDIA (TOTAL	144404555	1 5-00-2003		
	4 6	THE A SCHETT	41471 (1014)	B&4010 55	1 100-1001		
		GH & AGUATIC					

Table 40. Comparison of water quality data with proposed Colorado water quality standards, La Plata River at Farmington, May 1977 - August 1978.

APPENDIX F

USBR TEMPERATURE SIMULATION FOR THE PROPOSED RIDGES BASIN RESERVOIR

(Note: Source is USBR Durango Field Office, 1977 data used in simulation.)

Table 41. Day 130.

ang pag-and general second ago and a second		GENERAL	SYSTEM INF	ORMATION			
	FL	FVATION	BOTTUM OF	P001 20	129.97 M		
END OF TIM	E INTERVAL	# b . * 1 # *			AVEPAGE OV	ER TIME INT	RVAL
	POOL DEP		45.10 M			E ALR TEMP	13.90 C
	HEACE ELEVE		5.65 M			EN OUTFLOW	7.11 CM
THERMOCLINE DISTANC			73.2 M			TEM INFLOW	11.93 CM
	CE WATER TE		7.42 C			BRIUM TEMP	
COMPUTED DO	L EVAPORATI		.018 M			ATION RATE	
COMPOTED DO	WNSIREAM IN	MP .	5.94 C	2	OBJE	CTIVE TEMP	4.44 C
		00 0E 0C	4.240E-02 1.510E-02 -1.444E-02	KC/M2/S KC/M2/S	2		
	T (5 # 7)		TEMP				
rangang sarangkalan sarar sarar sa salar sa salar sa sa sa	TRIP NO	FLOW CMS	DEG C	DIST. FR		l	an ann an
	1	11.93	10.00	82.		÷	
nu 4 · · ·		• • • • • • • • •		بر بین می بود از این این ا			
			011771-0116				
na a de la compañía d			DHITFLOWS A	NU LEVELS			ar an
OUTLET		TEMP	DIST. FRO		WITHDPAWÄ		
NO		YEG C	BOTTOM (M		UPPER	· LOWER	
an a	0.00	4.45	4.57	2	0.0	0.0	
1	7.11	5.94	70.10	12	97.5	61.0	

DISTANCE	TEMP	TEMP	HOPZ OUT	HORZ IN	DENSITY	STABILITY	DIFFUSION
ROM BOTTOM	UEG. C.	DEG. F.	CMS	CH5	KG/CM		COEFFICIENT
0.0	4.4454	40,0015	0.0000	4.0000	AAA*AA858	0.	0.
5.1	4.4454	40.0018	0.0000	0.0000	999.99828	4.7146E-14	8.0000E-02
15.5	4.4454	40.0018	0.0000	0.0000	999.99828	S*8584E-13	8.0000E-0d
18.3	4.4454	40.0018	0.0000	0.0000	999.99828	1.4723E-12	8.00005-02
24.4	4.4455	40.001H	0.0000	0.0000	444*44858	5.4409E-12	8.00005-02
30.5	4.4455	40.0019	0.0000	0.0000	999.99827	2.9491E-11	8.0000E-02
36.6	4.4454	40,0025	0.0000	0.0000	999,99827	1.7346F-10	8.0000F-02
42.7	4.4414	40.0054	0.0000	0.0000	449.94826	4,9048E-10	8.00005-02
48.8	~ 4,4551 [~]	40.0191	0.0000	0.0000	999,99820	5.27696-09	8.0000E-02
54.9	4.4872	40.0769	0.0000	0.0000	999.94795	2.5542E-08	6.00005-02
61.0	4.0074	40.2932	0.0000	0.0000	999.99687	1.1833E-07	8.0000F-02
67.1	4.9978	40.9960	5722	0.0000	999,99180	5.78555-07	8.0000F-02
73.2	6.0660	42.0189	1.0756	5.8089	999.96593	3.1693E-06	8.0000E-02
79.2	7.4168	45.3503	1.4997	6.1239	999.90878	8.4074E-06	1.23916-01

Table 42. Day 140.

1

	GL	MERAL	SYSTEM INF	DRMATION			
	ELEV	ATION	FOTTOM OF 1	-00L 202	29.97 M		
END OF TIM	INTERVAL		tarrat a due totales a desemble pa		AVEPAGE OVE	R TIME INTE	ERVAL
THERMOCLINE DISTANCE SUPFA	POOL LEPTH REACE ELEVENT - FROM BOITON CE WATER TEMP - EVAPORATION INSTREAM TEMP		4.4H M 5.23 H 73.2 H 7.K1 C .045 M 6.44 C			N OUTFLOW EM INFLOW RIUM TEMP	9.40 C 8.64 CMS 0.00 CMS 5.72 C 2.93E-01 CMS 4.44 C
		SUREA	CF HEAT CO	PONETS			
na na an a		QNS	8.558E-02			nennen (m) i seggen i sener di di di di di di di	
	1	QNA QW QE	3.123E-02 8.277E-02 2.139E-02 -4.057E-03	KC1M212	/	a Jaamay - ara, care e Anna a .	
Bearly Maria Landon and	i was				an a	of communities and an appropriate property of the training	
an fina da se		ī	NFL DES LEAD	POSITIONS))		
	TR1P NO	FLOW CMS	TEMP - DEG C			an an an ann an Anna an Anna an Anna an A	n norð mil sæð þæræðinn - ær skrifti í sam sína sá mei afaði sæði að
	1	0.00	9,44	0.0			
an na sharan an sharan a shara	,	nga 2 a.a				en da ana can provins hanar	andras - Pro e o regeneration
Ann Samman I Than an an an a			OUTELOWS AN	D LEVELS	.,		
OUTLET NO	CMS DE	EMP G C J	DIST. FROM POTTOM (M)			LOWEP	191 197 4 - wali dati wa ti kwa mku i Yofikati daki kudu a w
1		∎46 ∎946	4.57 70.10	12	48.8 91.4	0 ± 0 61 ± 0	

SUHMARY OF OUTPUT FOR 20 MAY 1977 (140) EXECUTION INTERVAL ENDING 2400 HRS

.

DISTANCE	теми	TEMP	HOPZ OUT	HORZ IN	DENSLTY	STABILITY	DIFFUSION
FROM BOILOM	UE6. C.	. DEG. F.	CMS	CMS	KGZCM		COFFFICIENT
0.0	4.4450	40.0021	0.0000	0.0000	999.99827	0.	0
5.1	4.4454	40.0025	.1191	0.0000	999.99827	1.30065-10	8.00005-02
15.5	4.4454	40.0035	.2439	0.0000	949,94827	4,33118-10	8.0000E-02
18.3	4.4411	40.0058	.2546	0.0000	999.99826	1.1173E-09	H.0000F-02
24.4	4.4500	40.0100	.2637	0.0000	999.99824	2.0/13E+09	8.0000E-02
30.5	4.4500	40.0213	, 1654	0.0000	^т 999 , 9 9819 ^т	6.0/951-09	B.0000F-02
34.0	4,4753	40.0055	.2416	0.0000	999.99805	1.8469F-08	8.0000F-02
42.7	4.5243	40,143/	.1467	0.0000	999.94764	5.3897E-08	8.0000F-02
44,8	4.6405	40,3531	0.0000	4,0000	999,99653	1.5360F-07	8.0000E-02
54.9	4.8825	40.7885	0.0000	0.0000	999.99355	4.29106-07	8.0000E-02
bl. 0	5.3272	41,5890	0,000	4.0000	999.98568	1.17652-06	8.00008-02
67,1	6.0452	۲ <u>۶،</u> ۵۵،۶۶	.6223	0.0000	° 999,96657	2.90/56-06	8.00005-02-
73.2	6.9799	44.5038	1.1438	0.0000	999.93019	5.66946-06	9.40416-02
19.2	7.8130	46.0045	1.5504	0.0000	999,88695	7.70596-06	1.1658F-01

.

......

Table 43. Day 150.

A 'SUMMARY OF OUTPUT FOR	YAM OL	1977 (150) <u>EXE</u> C	CUTION INTE	RVAL ENDING	2400 HRS
2						
	SENER 4L	SYSTEM INF	ORMATION			
FLF	VATION	BOTTOM OF	POOL 202	29.97 M		
END OF TIME INTERVAL				VERAGE OVE	R TIME INTE	RVAL
POOL DEPT	[н (3.67 M		SUBEACE	AIR TEMP	14.40 C
DEPTH OF SURFACE ELEMEN	11 1	0.52 7	 T	OTAL SYSTE		7.11 CM
HERMOCLINE DISTANCE FROM BOTT		67.1 M		TOTAL SYST		5.29 CM
SUFFACE WATER TEN	φ	8.32 C			RIUM TEMP	9.08 C
CUML EVAPORATIC	NN	.060 M			TION RATE	1.72E-01 CM
COMPUTED DOWNSTREAM TEN	4P	8.02 C		OHJEC	TIVE TEMP	4.44 C
	SURFA	CF HEAT CO	PONETS			
	QNS	8.674E-02				
	ONA	3.764E-02				
	i)w O(8-318E-02				
	OE QC	1.265E-02				
an ballan aft die e skyllagerike andre i en eine die eine skyllagerike angeby eingerik -		-101.101.102	KC7			
		NELOWS AND	POSITIOUS		·	
TRIB	FLOY	TEMP	DICT CUO	M ELEM		
NO	CMS		BOTTOM (M			
. 1	5.29		76.2			
· · ·			10.0			
		OUTFLOWS AN	D LEVELS			-
OUTLET FLOW	1EMP	DIST. FROM	ELEM		LINTE	
	EGC	BOTTON (M)		WITHDRAWAL	LOWER	
	4.45	4.57		0.0	0.0	
2 7.11	8.02	70.10	12	91.4	61.0	
· · · · · · · · · · · · · · · · · · ·	~	1.4		7	51.0	

SUMMARY OF OUTPUT FOR 30 MAY 1977 (150) EXECUTION INTERVAL ENDING 2400 HRS

DISTANCE	TEMP	TEMP	HORY OUT	HOPZ IN	DENSITY	STAHILITY	DIFFUSION
FROM BUTTUM	DEG. C.	DFG. F.	CMS	CMS	KG/CM		COEFFICIENT
0 . 0	4.4528	40.0150	0.000	0.0000	949.99885	0.	0.
6.1	4.4554	40.0205	0.0000	0.0000	999.99820	3.2987E-09	8.0000F-02
12.2	4.4630	40.1344	0.0000	0.0000	999,99814	8,1659E-09	8.0000F-02
14.3	4.4777	40.0549	0.0000	0.0000	999.99803	1.5016E-08	S0-30000.8
24.4	4.4941	40.0905	0.0000	0.0000	999.99789	1.9433F-08	8.0000E-02
39.5	4.530/	40.1552	0.0000	0.0000	999 99759	4.38665-08	8.0000F-02
35.6	4.0() 55	40.2917	0.0000	0.0000	999.99688	1.0.316E-07	8.00000-02
42.7	4,7540	40.5572	0.0000	0.0000	999 99525	2.3962E-07	8.0000F-02
49.8	5.0223		0.0000	0.0000	999,99140	5.6554E-07	S0000F-02
54.9	5.4778	41,8600	0.0000	0.000	999.98233	1.3478E-06	8.0000F-02
61.0	6.2200	43.1960	0.000	0.000	999.96078	3.2800E-06	8.0000E-02.
	7.1550	44. 4404	.6223	1.7568	444.451401	5.9428E-06	9.7193E-02
73.2	8.3248	46.9846	1.1438	3.5256	999.85552	1.1003E-05	1.4959F-01
79.2	d.3248	46 9846	1.5504	0.0000	999.85552	0.	0.

.

Table 44. Day 160.

-

	GENERAL	SYSTEM INF	ORMATION				
	ELEVATION	BOTTOM OF	P00L 20	29.97 M			
FND OF TIME INTERVA	L			AVERAGE OVER	TIME INTER	RVAL	
	FPTH	83.46 M		SURFACE	AIR TEMP	20.60	ç
DEPTH OF SURFACE ELE THERMOCLINE DISTANCE FROM BO SURFACE MATER CUML EVAPORA COMPUTED DOWNSTPEAM	5 FN [10.30 M		TOTAL SYSTER	OUTFLOW	14.63	CMS
THERMOULINE DISTANCE FROM BO SHOPATE WATED	TEMP	67.1 M 6 66 C		TOTAL SYSTE	M INFLOW	11+93	CMS
CUML EVAPORA	TION			EVAPOPAT	IUN RATE	0.	ČMS
COMPUTED DOWNSTREAM	TEMP	9.32 C		OBJECT	IVE TEMP	4.44	С
	9£ 0C	0. 0.	KC/M2/S	n - a an an agus an aite aite an		dense and the second second second	
		INFLOWS AND	POSITION	S	······································	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	FLOw	TEMP	DIST. FH	OM ELEM			
NO 1	CMS 11.03	-DEG C 11.67	BOTTOM (M) 20 13			
E 	A A • 7 -3	من میں میں ایک اور مراج میں میں ایک اور		тара — Алай . П. анция — П.			
		OUTELOWS_A	ND LEVELS		e i 2 e - 10 2 120. Photo Anna Araba		
OUTLET FLOW	TEMP	DIST. FRO	M ELEM	WITHDRAWAL	LIMITS		
NO CMS	UE(+_C			WITHDRAWAL UPPER 0.0 91.4	0.0	Maariaa a Aariaati	
1 0400	7047		C.	91.4	0.0		

WITHDRAWAL ZONE WAS COMPUTED USING WES METHOD.

SUMMARY OF OUTPUT FOR 9 JUN 1977 (160) EXECUTION INTERVAL ENDING 2400 HRS

DISTANCE	TEMP	TEEP	HOPZ OUT	HORZ IN	DENSITY	STABILITY	DIFFUSION
ROM POTTOM	DEG. C.	DFG. F.	C/4S	CM5	K67CM		COEFFICIENT
·0.0	4,4901	40.0321	0.0000	0.0000	449.04743	0.	0.
6.1	4.501/	40.1030	0.000	0.0000	999.99783	1.3820E-08	8.0000F-02
12.2	4,5301	40.1542	0.0000	0.0000	999.99759	3.5282E-08	8.0000F-02
14.3	4.5755	40.2359	0.0000	0.0000	999.99718	6.0510E-08	8.0900F-02
24.4	4.0147	40.1154	0.0000	0.0000	999,99675	6.39J0E-08	8.0000F-02
30.5	4.7034	40.4971	0.0000	0.0000	<u> </u>	``1.3425É−07 `	8.0000E-02
35.6	4.8574	40.7022	0.0000	0.0000	449.94375	3,0639F-07	8.0000E-02
42.7	5.1697	41.3054	0.0000	0.000	949.08812	7.1700E-07	8.0000F-02
48.5	5.7100	42.2788	0.0000	0.0000	999,97647	1.78036-06	8.0000E-02
54,9	6.6330	47,9394	0.0000	0.0000	999.94522	4.6230E-06	8,1525F-02
51.6	7.0514	45.7733	0.0000	0.0000	999.89612	7.79496-06	1.1752F-01
67.1	8,7209	47.6976	1.2805	4.0413	949.828t4	1.0% 06E-05	1.4828F-01
73.2	9.9638	49.9349	2.3538	1.8915	999.730255	1.5903E-05	1.9358F-01
79.2	9.9638	40,9349	3,1904	0.0000	499.73025	0.	0.

Table 45. Day 170.

	GENERAL	SYSTEM INF	ORMATION			
1	LEVATION	BOTTOM OF	P00L 20	29.97 M		
FND OF TIME INTERVAL				AVEPAGE ON	ER TIME INTE	PVAL
POOL DO	PTH	82.95 M			E AIR TEMP	20.60 C
DEPTH OF SURFACE ELFT	IEN1	9.80 M			EM OUTFLOW	14.63 CM
THERMOCLINE DISTANCE FROM BO SUPFACE #ATER					TEM INFLOW	5.52 CMS 12.57 C
CUME EVAPORA	TAU	11.16 C		ENUILI	ATION RATE	2.39E-01 CMS
COMPUTED DOWNSTREAM		10.61 C	ł	OBJE	CTIVE TEMP	4.44 C
fRIP NO 1	QNS ONA QE QC FLOW CMS 5.52	1.773F-02 -1.789E-02 INFEOWS AND TEMP - DEG C	KC/M2/5 KC/M2/5 KC/M2/5 KC/M2/5	OM ELEM		
and an		ann an a suisme ar suismen				
, . Mennya panalaka katakata katakata katakata katakata katakata	ng tala da si da talapan ga tan	OUTFLOWS A	ND LEVELS	and the second se		alattalan atawa atawa kata ata atawa atawa atawa ata atawa ata at
OUTLET FLOW	TEMP	DIST. FRO		WITHDRAWA		
NO CMS	DEG C	HOTTOM (M 4.57		0.0	+ LOWER	and a second
1 0.00 2 14.63	10.61	70.10		91.4	0.0	
C 14.03	10.01	10.10	12	41+4	01*0	

SUMMARY OF OUTPUT FOR 19 JUN 1977 (170) EXECUTION INTERVAL ENDING 2400 HRS

DISTANCE FROM BOTTOM	ТЕМР ФЕС. С.	TEMP DEG. F.	HOPZ OUT CMS	HORZ IN CMS	DENSITY KG/CM	STABILITY	DIFFUSION
an singer in and the second							
0.0	4.5954	40.2735	0.0000	0.0000	999.99698	Ο.	0.
6.1	4.0245	40.3241	0.0000	0.0000	999.99670	4.1468E-08	8.000002
15.5	4,6910	40.4437	0.0000	0.0000	999,99559	1,05076-07	8.0000E-02
18.3	. 4.7920	40.6256	0.0000	0.0000	999.99477	1.78896-07	8.0000E-02
24.4	4.8861	40.7950	0.0000	0.0000	999,99349	1.8745E-07	8.00005-02
30.5	5.0621	41,1117	0.0000	0.0900	999,99074	4.0448E-07	8.0000F-02
36.6	5.3982	41.7169	0.0000	0.0000	999,98415	9.6566F-07	8.0000F-02
_ 42.7	6.0019	42.9033	0.0000	0.0100	999,96198	2.3501E-06	8.00006-02
49.8	6,9229	44.4612	0.0000	0.0000	999,93278	5.4414E-06	9.13775-02
54.9	7.8987	46.2176	0.0000	0.0000	999.88197	8.0415E-06	1.2011E-01
61.0	8.9070	48.0326	0.000	0.0000	999.81525	1.0780E-05	1.4746E-01
67.1	9,9315	49.8/67	1.2805	1.9341	999.73308	1.3344E-05	1.71256-01
73.2	11.1575	52.0835	2,3538	3.5820	999,61625	1.7908E-05	2.1036E-01
79.2	11.1575	52.0835	3,1905	0.0000	999.61625	0.	0.

Table 46. Day 180.

		GENFRAL,	SYSTEM INF	ORMATION			
,	F	LEVATION	BOTTOM OF	P00L 20	29.97 M		•
END OF TIM	Ê DITÊRVAL			ar a anana a sa ara ana adalan	AVEPAGE OVE	H TIME INTER	₹VAL
	. POOL DE	ртн і	R1.56 M		SURFACE	AIR TEMP	22.80 C
DEPTH OF SU		ENT	8.40 M		TOTAL SYSTE	EM OUTFLOW	14.53 CM
THEPMOCLINE DISTANC			48.8 M		TOTAL SYST	TEM INFLOW	0.00 CM 14.16 C
SURF A			11.56 C		EOUILIE	BRIUM TEMP	14.16 C
	L EVAPORAT		.093 M			TION RATE	
COMPUTED DO	WNSTREAM T	EMP]	11.34 C		OBJEC	CTIVE TEMP	4.44 C
wanganations at a second of the second se							
		SUPE	CE HEAT CO	MPONETS		•	
an and find of the first sector of the first s							annen ge a sys me er, a se er anners manner
		ONS	8.519E-02	KC/M2/S			
		QUIA	3.123E-02				
BELIEFERING BUILT IN THE V		ii W	8.705E-02	KC/M2/S			e com the confidence of a fight of an o
		0E	0.				
			0.	KC/M2/S			
	• ,						
and an are block, and an e						and the second state of the second	an energy of the second second
		1	INFLOWS AND	POSTITON	15		
	TRIB	FLOW	TEMP	DIST. FR	OM ELEM		
and the second	NO	CMS	DEG (BUTTOM (M 1		
•	1	0.00			00 0		
	-	•••••		••			
annadimeteristic territori an angeli ki a politiki ja politiki ja		· · · · · · · · · · · · · · · · · · ·			ing a second i sig of a constraint.	in the second	a na sana a di sa persera nga
			OUTFLOWS A	ND LEVELS	anganikan kanalari kanalari kanalarika darakerika debe	a bilan bilan manan sa	
OUTLET		TEMP	DIST. FROM	H ELEM			
			BOTTON (M	<u> </u>	UPPER		
1		4.85	4.57	2		0.0	
5	14.63	11.34	70.10	12	91.4	61.0	

SUMMARY OF OUTPUT FOR 29 JUN 1977 (180) EXECUTION INTERVAL ENDING 2400 HRS

DISTANCE	TEMP	TEMP	HOR7 OUT	HORZ IN	DENSITY	STABILITY	DIFFUSION
ROM BOTION	UEG. C.	DEG. E.	ÇMS	CNS	KG/CM		COEFFICIENT
9.0	4.8301	40.6942	0.0000	0.0000	999.99427	θ.	0.
5.1	4.8896	40.7995	0.0000	0.0000	999.99346	1.1978E-07	8.0000E-02
12.2	5.0247	41.0444	0.0000	0.0000	999.99136	3.0H59E-07	8.00005-02
14.3	5.2256	41.4060	0.0000	0.000	999,98775	5.3322E-07	8.0000E-02
24.4	5.4047	41.7284	0.0000	0.0000	999.98400	5.5385E-07	8.00005-02
30,5	5.7292	42.3125	0.0000	0.0400	999.97596	1,18995-05	8.0000F-02
36.6	6.3260	43.3868	0.0000	0.0000	999.95703	2.8208E-06	8.0000E-02
42.7	7.1737	44,9127	0.0000	0.0000	999.92104	5.7042E-06	9.4444F-02
44.13	5.0733	46,5319	0.0000	0.0000	909.87144	8.06396-06	1.1993E-01
54.9	8,9698	48,1456	0.0000	0.0000	999.91063	1.0050E-05	1.4040E-01
61.0	9,8445	49.7130	0.0000	0.0000	999.74095	1.10086-05	1.55865-01
67.1	10.6745	51.2141	1.2605	0.0000	999.66464	1.2739E-05	1.6574E-01
73.2	11.5594	52.8070	2.3538	0.0000	999.57366	1.4530E-05	1.8173E-01
79.2	11.5594	52.8070	3.1905	0.0000	999,57366	0.	0.

Table 47. Day 190.

GL1	ERAL SYSTE	M_INFORM4	TION		arde decises to electric to see a sub-	
FLFV	ATION HOTTO	M OF POUL	. 2029	.97 M		
END OF TIME INTERVAL			Αγ	ERAGE OVE	F TIME INTE	RVAL
POUL DEPTH					AIR TEMP	20.50 C
DEPTH OF SURFACE ELEMENT		M			V OUTFLOW	17.61 CM
HERMUCLINE DISTANCE FROM BOTTOM	67.1 4	м	т	OTAL SYSTI	EM INFLOW	0.00 CM 14.76 C
SURFACE WATER TEMP	12.79	с		EQUILIE	RIUM TEMP	14.76 C
CUML EVAPORATION	.098	М		EVAPORA	TION RATE	9.42E-02 CM
COMPUTED DOWNSTREAM TEMP	11.07	c		OBJEC	TIVE TEMP	4.44 C
	SURFACE HE	AT COMPUN	IF TS			
ann ann an ann an ann ann ann an an ann ann an a		- Minanaa andahirahapitik ayo aasaasaa aa			·	
		1E-02 KU/				
un de la company de la comp		1E-02 KC/ 1E-02 KC/				
		2E-03 KC/				
	00 -1.36	5E-02 KC/	M275			
	*					
	INFLOWS	S AND POS	ITTONS	esteniensen te MMA P	ng protesy dependents - mpara	
- ** - **						
	FLOW	FMP DIS	T. FROM	ELEM		
NŐ		G C BUT				
1	9.00 10	n • 01-9	0.00	. 0		
•						
	OUTFL	WS AND L	EVELS			
OUTLET FLOW TE	MP DIST.	FROM E	LEM W	ITHDRAWAL	LIMITS	
NO CMS DEG	G C BOTTO)N (M)	U	эрен ,	LOWER	
1 1.64 5.	.91 4	4.57	2	36.6	0.0	af Marina Mirina and Analan in Analan in an anna Anna an Anna Anna An Anna Anna Anna Anna Anna Anna Anna Anna A
2 15.97 11.	.60 7(0.10	12	91.4	61.0	

SUMMARY OF OUTPUT FOR 9 JUL 1977 (190) EXECUTION INTERVAL ENDING 2400 HRS

DISTANCE	TEMP	TEMP	HORZ OUT	HORZ IN	DENSITY	STABILITY	DIFFUSION
FROM BOTTOM	DEG. C.	DEG. F.	CM5	CMS	K6/CM		COEFFICIENT
0.0	5.4205	41.7569	0.0000 '	0.000	999.98365	0.	0.
5.1	5.5663	42.0194	.2419	0.0000	449.98020	4.87855-07	8.0000F-02
12.2	5.7714	42, 3886	.4659	0.0000	999,97480	8.1528E-07	8.0000E-02
18.3	6.0143	42.8258	.4221	0.0000	999.96758	1.1351E-06	8.0000E-02
24.4	6.2676	43.2817	.3395	0.0000	999.95912	1.3022F-06	8.0000F-02
30.5	6.7145	44.0863	.1673	0.0000	999.94184	2.6504E-06	8.0000F-02
36.0	7.4047	45.3284	0.0000	0.0000	999.90941	5.1587E-06	8.8027E-02
42.7	8.1828	46.7290	0.0000	0.0000	999.86462	7.1702E-00	1.1091F-01
43.8	9.0159	48.2287	0.0000	0.0000	999.80719	9.2597E-06	1.3257F-01
54.9	9.8776	49.7/98	0.0000	0.0000	999.73775	1.1195F-05	1.5141E-01
61.0	10.7725	51,3905	0.0000	0.0000	999.65507	1.32556-05	1.70428-01
67.1	11.7145	53.0563	1.3985	0.0000	999.55667	1.5499E-05	1.90135-01
73.2	12.7905	55.0232	2.5708	0.0000	999.43039	1.8162E-05	2.1245E-01
79.2	12,7906	55.0232	3,4845	0.0000	999.43039	0.	0.

Table 48. Day 200.

	. GE	NEPAL SYSTEM IN	FORMATION	
	FLEV	ATION BOTTOM OF	POOL 2029.97 M	
END OF T	THE INTERVAL		AVERAGE OVER TIM	E INTERVAL
ander a segurar a seg	HOUL DEPTH	77.82 M	SURFACE AIP	TEMP 22.20 C
	SURFACE ELEVENT	4.67 M		
THERMOCLINE DISTA				
100	FACE WATER TEMP	13.01 U	EQUIL IBRIUM EVAPORATION	10.40 C
	DOWNSTREAM TEMP	12.59 C	OBJECTIVE	TEMP 4.44 C
		QE D. QC 0.	2 KC/M2/S KC/M2/S KC/M2/S	
anana katarar tanan sa ara ara ara ar	TRIP.	FLOW TEMP	DIST. FROM ELEM	and the same approval in the second
	NO 1	0.00 16.94	BOTTOM (M) 0.00 0	
	· · · // · · · //	011751 045		
	ระว่า พระวงระดงการเวลต์ไม่เหตุ			a a second contracted and a sublimitable of other second and provide an approximate. I was
nan manananan san sa kata kata mara ang mana kata sa sa sa s	FI 1314	EMP DIST. FR		
OUTLET	FLOW			
OUTLET	CMS DE	GC ROTTOM (• 0
		OUTFLOWS EMP DIST. FR	OM ELEM WITHDRAWAL LIMI	

.....

DISTANCE	TEMP	TEMP	HOR7 DUT	HURZ IN	DENSITY	STABLLITY	DIFFUSION
FROM BOTTOM	DEG. C.	DFG. F.	CM5	CMS	KGZCM		COEFFICIENT
0.0	6.4180	43.5024	0.0000	0.0000	999.95363	0.	0.
5.1	6.6002	43,8804	.1247	0.0000	999.94654	1.18/2E-06	8.00005-02
15.5	6.8275	44,2895	.2372	0.0000	999.93701	1.4904E-06	8.0000E-02
18.3	7.0442	44.7045	.1876	0.0000	999,92486	1.8270E-06	8.0000E-02
24.4	7.3904	45.3028	.8961	0.0000	999.91015	5.5455E-06	8.00005-02
30.5	7.9090	46.2362	0.0000	0.0000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.5326E-06	"8.0405E-02"
36.0	8,5595	47.4072	0.0000	0.0000	999.83965	6.6814E-06	1.0550E-01
42.7	4.3046	48.7482	0.0000	0.0000	999.78506	8.8630E-06	1.28576-01
44.4	10.1084	50.1951	0.000	0.0000	999.71745	1.1019E-05	1.4975E-01
54.4	10.9366	51,6859	0.0000	0.0000	999.63876	1.24546-05	1.66795-01
61.0	11.8007	53,2412	0.0000	0.0000	999.54711	1,4556E-05	1.8195F-01
67.1	-12.7363	54,9254	2.6375	0.0000	999,43/12	1.6938E-05	12.0232E-01
73.2	13.6061	56.4910	2.7355	0.0000	999.32507	1.91226-05	2.2025F-01

Table 49. Day 210.

,

11						
anan mananan manan na	GENERA	L SYSTEM INF	ORMATION	an an ann an an a saonn tairte 4		
	FLEVATIO	N ROTTOM OF	POOL 202	9.97 M		
END OF TIME IN	TERVAL		A	VERAGE OVE	R TIME INTE	AVAL
	OOL OFPTH	77.37 M			AIR TEMP	18.60 C
DENTH OF SURFAC		10.31 M		OTAL SYSTE		9.01 CM
ERMUCLINE DISTANCE FR		61.0 M		TOTAL SYST		9.11 CM
	ATER TEMP	13.40 C			RIUM TEMP	
	APORATION	.110 M			TION RATE	
COMPUTED DOWNST	REAM TEMP	13.29 C		OBJEC	TIVE TEMP	4.44 C
(
n an	SURI	FACE HEAT CO	MPONETS			
	QNS QNA	8.0755-02		· .		
	QW	3.385E-02 8.931E-02				
	QE	2.9235-03				
	00	-6.123E-03				
nananana ariaha a al 2019, 1919 ilimatika 1939 ili 2010 - 1930 ilimatika 1930 ilimatika 1930 ilimatika 1930 ili				······		
		¢.		1 1		
a uta a a chara tan matri cita na anta a si cita - renta a si cita a si cita.						
•		THELOWS AND	POSITIONS			
		и ТЕМН			and second summittees which are shown that	
	NO CM					,
	1 9.1	1 15.56	70.1	0 12		
4 3 10 1			ана на мари на селото			
		OUTFLOWS A	ND LEVELS			
	011 T.C.44P4	DIST. FPO	- E1 CM			
OUTLET FLO NO CO	OW TEMP 45 DEG.C.	BOTTON (M		WITHDRAWAL	LIMIIS	
1 0.		4.57		0.0	0.0	namenalikki kanalasi oʻni oʻrgani ingar kanan ingan kana kana i
2 9.1		70.10		85.3		

WITHDRAWAL ZONE WAS COMPUTED USING WES METHOD.

DIFFUSION	STABILITY	DENSITY	HOR7 IN	HOR7 OUT	TEMP	TEMP	DISTANCE
COEFFICIENT		KG/CM	CMS	См5	DEG. F.	DEG. C.	ROM HOTTOM
0.	0.	999.91963	0.0000	0.0000	44.9045	7.2025	0.0
8.0000E-02	1.2136E-06	999.91174	0.0000	0.0009	45.2475	7.3597	5.1
8.0000E-02	2,91515-06	999.89287	0.0000	0.0000	45 H/77	7.7099	15.5
8.0000F-02	4.4J09E-06	999.86455	0.0000	0.0000	46.7310	8.1839	19.3
8.0000E-07	3.7804E-06	999,84096	0.0000	0.0000	47.3179	8.5433	24.4
9.3276F-02	5.6036E-06	999, R0672	0.0000	0.0000	48,2400	9.0222	30.5
1.1426E-01	7.4H78E-06	999,7611H	0.0000	0.0000	40,2810	9.6005	36,6
1.32975-01	9.2991E-06	999,70471	0.0000	0.0000	50.4485	10.2492	42.7
1.4860E-01	1.0899E-05	999,63819	0.0000	0.0000	51,6960	10.9422	49.8
1.6078E-01	1.2198E-05	999,56177	0.0000	0.0000	53,0029	11.0683	54.9
·1.7792E-01	1.4097E-05	999.47170	3.0441	0.0000	54.4138	12.4521	61.0
2.2263E-01	1,9418E-05	999.35279	6.0683	2,1361	56,1156	13.3975	67.1
0.	0.	999,35279	0.0000	2.2154	56,1156	13.3975	73.2

Table 50. Day 220.

7

		GENERAL	SYSTEM INF	ORMATION	y ny ingeni isaya ngampina kinana		
	EL	EVATION	BOITOM OF	POOL 20	29.97 M		
END OF TIM	E INTERVAL	9 - 100 - E- 1944 B			AVERAGE OVE	R TIME INTER	VAL
	FOOL DEP	PTH .	76.70 M		SURFACE	AIR TEMP	21.10 C
DEPTH OF SU		NT -	9.64 4		TOTAL SYSTE	N OUTFLOW	6.03 CM
THERMOCLINE DISTANC	E FROM HOTI	104	61.0 4		TOTAL SYST	FM INFLOW	0.00 CM
SURFA	CE NAIER IN		4.15 C		EQUILIE	FIUM TEMP TION RATE	21.37 C
COMPUTED DO	L EVAPORATI		.114 M 13.93 C		EVAPORA	TIVE TEMP	0. CM 4.44 C
COMPOTED DO	RHOIPEAH IF		13.43 6		URUEC	ITAC ICHA	4.44 L
		•	of the anticario	10.00 (0.11) (0.12) (0.12) (0.10)			
and the second		SURF	CE HEAT CO	MPONETS			
		0.10	-				
		QNS QNA	7.373E-02 4.957E-02				
	· · · · · · · · ·	Qie	9.0311-02				
		0E	0.	KC/M2/S			
		0C	0	KC/M2/S			
				• • ••••• • • •••••• • •••••• • •••••• ••••			
mana and a second and per spectrum and			enter son a son e	the state way to			
		3	NFLOWS AND	POSITIONS	5		
	TRIP	FLOW	TEMP	UIST. FOR	DM ELEM		
	NO	CMS		BOTTOM			
	1	0.00	16.67	0.(
genhang gifter an delte for som en unseptimerangen, so an e e			OUTFLOWS A	ND LEVELS			
OUTLET	FLOW	TEMP	DIST. FROM	H ELEM	HITHNRAWAI	1 THITS	,
N/)		DEGC	POTION (N))	UPPER	LOWER	
1		8.29	4,57	2	WITHDRAWAL UPPER 0.0	0.0	
- -		13.93		12	85.3	61.0	

DISTANCE ROM BUTTOM	TEMP DEG. C.	ТЕМР DFG. F.	HOR2 OUT CMS	HORZ IN CMS	DENSITY KG/CM	STABILITY	DIFFUSION COEFFICIENT
FROM BUTTOM	DEQ. C.	. (/E)** F * .		<u> </u>			0.0011101010
0.0	8.2074	46.7733	0.0000	0.0000	444.863(16	Π.	0.
5,1	8.4000	47.1200	0.0000	0.0000	999.85058	1.9925E-06	8.0000F-02
12.2	8.8070	47.8525	0.0000	0.0000	949,42250	4.5057E-06	8.0070E-02
13.3	9.2510	48.6519	0.0000	0.0000	999.78925	5.4036E-06	9.0932E-02
24.4	9.5893	49.2608	0.0000	0.000	999.76211	4.3921E-06	8.0000F-02
30.5	10.0140	50.0251	9.0000	0.0000	999.72584	5.9200E-06	S0-35649.6
35.0	10.5370	50.9066	0.0000	0.0000	999.67785	7.8601E-06	1.1827E-01
42.7	11.1351	52.0432	0.0000	0.0000	999.61856	9.7734E-06	1.3768E-01
44.8	11.7802	53.2043	0.0000	0.0000	999.54939	1.1449E-05	1.53805-01
54.9	12.4469	54.4045	0.0000	0.0000	999.47231	1.26386-05	1.6482E-01
51.0	13.1630	55.6933	0.0000	0.0000	999.38332	1.3670E-05	1.7413E-01
67.1	14.1515	57.4723	1.4299	0.0000	999.25009	1.8923E-05	2.1864E-01
73.2	14.1516	57.4728	1.4830	0.0000	999.25009	0.	0.

Table 51. Day 230.

GENER,	AL SYSTEM INF	URPATION				
	ON BOTTOM OF					
FND OF TIME INTERVAL			AVERAGE OVE	R TIME INTE	RVAL	raid-a fall-magn
POOL DEPTH	76.48 M		SURFACE	AIR TEMP	20.00	с
DEPTH OF SURFACE ELEMENT	9.42 M		TOTAL SYSTE	OUTFI.OW	5.47	CMS
HERMOCLINE DISTANCE FROM BOTTOM	61.0 M		TOTAL SYST	EM INFLOW	11.93	CMS
SURFACE WATER TEMP	14.47 C		EQUILIB	RIUM TEMP	10.23	CMC
CUML EVAPORATION COMPUTED DOWNSTREAM TEMP	14.34 C		OBJEC	TION RATE TIVE TEMP	4.44	C
	0. 0. INFLOWS AND	KC/M2/S KC/M2/S				
	45 - DEG C	BUILDW (4)		And Application and Application processing the second second second second second second second second second s	
1 11.9	93 15+83	70.1	10 12			
· · · · · · · · · · · · · · · · · · ·		ann a f-mérica fadair	. In the second s	amantati mantan kan da ana ani ini da ma	a ber bannet i a vers mannar na skilans ett disse förhoms	
	OUTFLOWS A	ND LEVELS	andress of state of a state of the state of	a ann an a mar ar an an an ann an ann an ann an an an an	0197999-92- 92-995-914-9	5 to ¹⁰ or head or a state
OUTLET FLOW 1EMP NO CMS DEG C	DIST. FRO Botiom (M	M ELEM	WITHDRAWAL	LIMITS		
1 0.00 9.18				11 - 12	ere destaur () also a con . anaroad	
2 5.47 14.34	70.10	12	85.3	61.0		

INDEAWAL CONE WAS CONFOLD USING WES MELINDUS

DISTANCE FROM HOTTOM	TEMP DEG. C.	TEMP DEG. F.	HORZ OUT CMS	HORY IN CMS	DENSITY KG/CM	STAHILITY	DIFFUSION COEFFICIENT
0.0	9.2925	48,7265	0.0000	0.0000	999.74601	0.	0.
5,1	9.4835	49.0705	0.0000	0.0000	999.77076	2.47J2E-06	8.00005-02
12.2	9.8522	44,7340	0.0000	0.0000	999,73994	5.0204E-06	8.6441E-02
18.3	10.2534	50.4561	0.0000	0.0000	999.70433	5.8139E-06	9.5712E-02
24.4	10,5615	51.0108	0.0000	0.0000	999.67552	4.7225E-06	8.2749E-02
30,5	10,9413	51.4944	0.0000	0.0000	999.63828	6.1449E-06	9.94955-02
35.6	11.4057	52,5302	0.0000	0.0000	999,59020	7.9774E-06	1.1944E-01
42.7	11.9335	53.4803	0.0000	0.0000	999.53217	9.63/5E-06	1.36345-01
44.8	12.5016	54.5028	0.0000	0.0000	999,46575	1.1018E-05	1.4973E-01
54.9	13,0869	55,5565	0.0000	0.0000	999.39308	1.1964E-05	1.5862E-01
61.0	13.7054	56,6697	0.0000	4.2447	999.31169	1.27996-05	1.6629E-01
67.1	14,4742	58,0536	1.2963	7.6881	999,20405	1.61258-05	1.9547E-01
73.2	14.4742	54,0536	1.3444	0.0000	999,20405	0.	0.

Table 52. Day 240.

			GENERAL	SYSTEM	INFOR	MATION					
		F.	LEVATION	воттом	OF PC	00L 20	29.97 M				
ENI)	OF TIME	INTERVAL			·		AVERAGE	OVER	TIME INT	ERVAL	
		POOL DE	РТН	76.85 M			SUR	FACE	ALR TEMP	20.0	0 C
DEPT	H OF SUR	FACE ELEM	FNT	9.80 M			TOTAL S	YSTEM	OUTFLOW	6.1	8 CM
THERMOCLINE	DISTANCE	FHOM BOT	T 0 14	61.0 M			TOTAL	SYSTE	M INFLOW	6.6	7 CM
	SURFAC	E WATEP I	EWP	15.24 C			EOU	ILIBR	IUM TEMP	15.6	
COHP		NSTREAM T	EMP	15.19 C			EVA	DIECT	IVE TEMP	U. 4.4	4 C
COMP		NOTICEAR 1	1_00	13.19 0			, U	50401	IVE REAR		ւ
				· · · · · · · · · · · · · · · · · · ·			مديد ، من عدر يري يري م				
			SURF	ACE HEAT	сомр	ONETS					
	• • • • •							· .			
				-6.953E							
	· · •	···· · ···		4.423E	-02 1	C/M2/S					
			QE	0.		C/M2/5					
			QC	0.		C/M2/S					
							······································				
				INFLOWS	AND P	OSTTION	ŝ				
		TRIB	FLOW	TE	MP D	1ST. FR	OM EL	<u>EM</u>	,,		
		NO 1	ÇMS	DEG	.С.В	0TTOM⊡(מיד	M)	1.2	•. •		÷.,
		1	0.01	15.	00	/0.	10	15	· · · ·		
				OUTFLOW	C						
				UUIFLOW	5 ANU	LEVELO					
0	UTLET	FLOW	TEMP	DIST.	FROM	ELEM	WITHDR	AWAL I	LIMITS		
	NO	C 4S	DEGC	ROTTOM	(M)		UPPER	•	LOWER		
	1	CHS 0.00 5.18	10.38	4.	57	2	0.0	D	0.0		
	2	5.18	15,19	70.	10	12	85.3	3	61.0		
NO	TË:							1.1.1.1.		, <u>, , , , , , , , , , , , , , , , </u>	
						METHOD	-				

DIFFUSION COEFFICIEN	STABILITY	DENSITY KG/CM	HORZ IN CMS	HORZ OUT CMS	TEMP DEG. F.	TEMP Deg. C.	DISTANCE FROM BOTTOM
COLITICIEN							
0.	0.	999.69961	0.0000	0.0000	50.5486	10.3048	0.0
8.0000F+0	2.5/49E-06	999.68399	0.0000	0.0000	50.8501	10.4723	6.1
8.6522E-0	5.0331E-06	999.65336	0.0000	0.0000	51.4217	10.7898	12.2
9.4756F-0	5.7311E+06	999.61840	0.0000	0.0000	52.0459	11.1365	15.3
8.1293E-0	4.6042E-06	999.59021	0.000.0	0.0000	52.5300	11.4050	24.4
9.7910F-0	6,0055F-06	999.55340	0.0000	0.0000	53.1394	11.7441	30.5
1.1882E-0	7.9189E-06	999.50488	0.0000	0.0000	53,9090	12.1711	36.6
1.3827E-0	9.A328E-06	999.44470	0.0000	0.0000	54 A145	12.6747	42.7
1.55548-0	1.1034E-05	999.37358	0.0000	0.0000	55.8291	13.2384	48.8
1.69555-0	1.3159E-05	999.29315	0.0000	0.0000	56.9148	13.8416	54.9
1.8346E-0	1.4728E-05	999.20335	2.3091	0.0000	58,0624	14.4791	61.0
2.18956-0	1.8960E-05	999.08928	4.3545	1.4661	54.4383	15.2435	67.1
0.	0.	999,08928	0.0000	1.5206	59.4383	15.2435	73.2

APPENDIX G

OXYGEN SIMULATION MODEL FOR RIDGES BASIN RESERVOIR

Table 53. Variable names for "OXYHYP".

Variable	Computer Code	Units
Sediment oxygen demand at 20°C	500	g/m ² -day
Time interval of segments	Ĵ	days
Number of intervals Day (starting May 1) Temperature of bottom	N Day TEMBOT	dimensionless dimensionless o _C
Temperature of surface	TEMSUR	°c
Diffusion coefficient	DIFCOF	m ² /sec
D.O. saturation value at surface temperature	02SAT	mg/l
D.O. saturation at surface temperature, corrected for altitude	SATO2	mg/ L
D.O. of hypolimnion	DOHYP	mg/l
Area of thermocline	AREAHP	m ²
Area of sediment under thermocline	AREABT	m ²
Volume of hypolimnion	VOLHYP	m ³
Hypolimnetic outflow	FLOWOT	m ³ /sec
Rate of oxygen utilization by sediment	MO2BOT	kg/day
Rate of oxygen transfer by diffusion	MO2DIF	kg/day
Rate of loss of oxygen to outflow	MO2OUT	kg/day
Overall rate of change of mass of oxygen in hypolimnion per unit area	DELTO2	kg/m ² -day

Table 54. "OXYHYP" computer model.

COMPILATION FE700 Fratest PARP 2.9,190 C X Y F Y P. C NENC, OF TIME INTERVALS C J=TIME INTERVAL(CAYS) C SOD(1)=SEDIMENT CXYGEN DEMAND AT 200 C SDUTESEDIMENT C2 LTILI2ATION, G/M2/DAY (ADJUSTED FOR TEMP...) C HO2HOT(IE=MASS OF C2 LTILIZED BY SEMIMENT DURING TIME INTERVAL I C MORCUT(I)=MASS OF LR LEAVING MYPOLIMNTON VIA CLIFLOW DURING INTERVALI C MC2CIFF(I)=MASSCP C2 DIFFUSING INTO FMPCLIMNICN DURING INTERVAL I. C ELSURIITEEL. OF SUFFACE (M FROM SEA LEVEL) " C TEMELR(I)=TEMP(C) OF SURFACE C TEMPHOT(I)=TEMP(C) OF HEITOM C DIFCCF(I)=DIFFUSION COEFFICIENT AT THERMOOLINE, DAV(-1) C AREABILIDEANES OF BOTTOM UNDER MYPCLIMNION C AREAHP(T)=AREA OF THEEMECLINE C FLONCI(J)=DISCHARGE C VULFYP(I)=VOLUME OF FYPOLIMNION (CUBTC METERS) C CAY(1)=CAY CF YEAR C DUHYPECCNC, LF C2 IN THE HYPLLIMNICH (A CSTR.) C C25AT(I)=CXYGEN SAT. AT TIPE INTERVAL I DIMERSION SOUT(12), MC2007(12), MC2017(12), MC201F(12), FUSUR(12), /TEMSUR(12), TEMPET(12), DIFCEF(12), AREAUT(12), AREAUF(12), FLEWET(12), (12), SATE2, (S1) TARSD, (S1) HEAD, (S1) YAD, (S1) YAD, (S1) SATE2(12) WRITE(6,40) FORMAT(11, T32, CXYGEN BALANCE FOR THE FYFOLINNION OF RIDGES BASIN 4'0 / RESERVCIA!) *RITF (6,42) FORMAT(101, T37, LUPPER VALUES FOR DIFFUSION LSEDI) 42 WRITE (6:44) FORMAT(1 1, T32'SCT #4, OG(MICOLE MALLEN') 44 WFITE(6,50) 50 FORMAT(TO +, TIS, TCHANGE IN MASS OF HYPOLINNETIC C.C., KG/D4Y1) WRITE(6,60) FORMAT(* *,*CAY*, T15,*BCTTOM*,T3+,*DLTLET*,T47,*CIFFUSICN*,T65,*M 60 /YPOLIMNETIC C.C., MG/L') READ(5,70)SCC.N.J FORMAT(F5.3,13,13) 70 DG 100 1=1,A REAC(5, BO)TENSUATI), TEMPOT(I), ARE "HT(I), AHEAME (I), VOLMYP(I), FLOWOT /(1), DAY(1), L2SAT(1), DTFCGF(1), E1 5"F(1) FORMAT(F5,2,F5.2,1X,17,1X,17,1Y,14,F4,2,13,F4.1,F8.7,F6.1) 80 CONTINUE 100 SATC2(1)=L26AT(1)+10++(((-273)++L8U+(1))/(18421+(TEMSUR(1)+273+.00 125+FLSLF(1))) SDUT(1):SCE+2,302+*(,082*(TEMBCT(*)+10)) PU2507(1)=0 M02CUT(1)=0 MU201F(1)=0 00HYP(1)=54702(1) DU 300 I=1, N-1 CALCULATION OF MARS DE LITILIZEN BY SEPTHENT C SDUT(1+1)=SCC+2,302++(.0H2+(TFMALT(1)-10)) H02801(1+1)=(SELT(1)+AFEAH1(1)/10001+(-1) C MASS OF CE GAINED BY DIFFUSION SATC2(1+1)=(254T(T)+1)+++(((+273)+FL50+(1))/(1+42+*(TE+6LF(1)+273+*

```
/0025+6151+(1))))
       HASS OF THE LOST THROUGH CUTFLOW
C
       MC2LIF(I+1)=CTFCCF(J)+4824FF(J)+(SAT02(1)-0CFYF(J))/14.2
       M020LT(I+1)=(ICFYF(I)+FLC%CT(I)*64400)+(-1)/1000
       DCHA6(1+1)=CCFA6(1)+1+1000+(4C5UL(1)+4C5C1+(1)+4C5FC1(1))/ACFAE(
      11)
300
       CONTINUE
       00 400 T=1,N
       WHITE (6,310)CAY(I), HOPHOT(I), HOPOHT(I), HORDIF(I), COHYF(I)
       FURMAT(101,13,115,F10,0,131,F10,0,147,F10,0,145,F5.2)
310
       CONTINUE
400
       LIST OF INFLT DATA
C
       661TF(6,410)
       FORMAT(111, THE, TINPLT DAT FOR ATOME BASIN FESERVCIRT)
410
      6FITE(6,412)
FORMAT('','CAY',TE,'TEMSUR, C.',TIE,'TEMBET, C.',T30,'ELSUR, M',T
/41,'VOLHYP, CLB, M.',T57,'AREAFF, SG, M.',T73,'AREAET, SG, M.',T90
/,'DIFECEF, SG, M./SEC.')
412
       A.1=1 054 00
       WRITE(6,416)UAY(1),TEMSUR(1),TEMBLT(1),ELSUF(1),VCLHYE(1),AREAMP(1
      /), AREART(1), CIFCCF(1)
       FORWATE 1, 13, 16, F5, 2, 118, F5, 2, 734, F6, 1, 141, 19, 157, 17, 173, 17, 190, F
416
      18.7)
       CONTINUE
420
       ##ITE(0,430)
FCRMAT('1','G2EAT, MG./L.',T16,'FLCACT, CLE. M./SEC.')
430
       50 460 1=1.K
       WFITF(6,440)(2547(1),FLOWCT(1)
FORMAT(1 1,F4,1,T16,F4,2)
440
       CONTINUE
460
       STOP
       END
```

		LPFEH V°LHES SCC#2.0 ^d (1.Cw	FOR CIFFLSICH LSEE VALLE)	C .
DAY	CHANGE IN MASS BOTTOM	CF FYPOLINNETI CUTLET		FYFCLIPNETIC C.C., MG/L
130	0.	۰.	С.,	9,39
140	-939,	۰.	с.	9.39
150	×939.	-1241,	с.	9.34
160	-837.	۰,	-1.	9,20
170	- 837.	^ .	С.	9,14
180	• # # 4 0 ·	· •	*ĉ.	9 ,09
190	-530.	· ^•	· - U .	8.95
200	¥859,	-1267.	-3.	8,91
210	- E\$5.	-50r.	-4.	6,77
055	- €43.	^ ,	-4.	A.68
230	-28ª.	^*	-3,	8,62
240	×952.	^ .	-4.	8.56

Table 55. Oxygen balance for the hypolimnion of Ridges Basin Reservoir.

. . . .

LOWER V[#]L¹¹FS FOR CIFFLEION USED Son#4,00("ICOLE VALUE)

	CHANGE IN MAS	S CF HYPOLINNETI	C P.C., KOZCAN	
DAY	801104	CLILET	CIFFLSICK	FYFCLIMAFTIC D.C., MG/L
130	n.	.^ .	۲.	9,39
140	=1879,	^.	C.,	9,39
150	×1879,	-1241.	с.	9,29
160	-1675.	۰.	Q .	9.09
170	-1675,	°.	0.	8,97
180	-1£80,	۰.	C .	8,86
190	-1060.	о,	Ĉ .	8,58
200	-1719.	=1216.	Ð .	£,51
210	-1790.	-47P.	¢.	5.32
055	#1086.	۰.	¢,	£.17
230	-1778.	n .	С.,	8.0¢
240	-1404.	о .	۲.	7.94

104

•

		LCNER V ^R LUES SCC=2.0"(LCN	FCH CIFFLSICN LSE Value)	c
DAY	CHANGE IN MAS Ection	S OF HYPOLIMAFTIC CUTLET	C.C., KC/CAY Cifflsicn	MYPOLIMNETIC D.C., MO/L
130	. 0 .	۰.	с.	\$,3 <u></u> \$
140	-434,	۰.	с.	9,3¢
150	-c3G.	-1241.	6.	9.34
160	-837.	° •	с.	9.20
170	37.	۰.	¢.,	9,14
180	- P40.	۰.	с.	4.09
190	~530 .	۰.	с.	8.95
200		-1267.	с.	8,91
210	-895.	₩500 .	٢.	8.77
220	• 8 4 3 .	۰.	¢,	8,68
230	-889.	۰.	¢.	6.65
200	#952.	n .	¢ .	8,56

MICOLE MALLES FOR DIFFUSION LEED Sode2.0"(For value)

Ω Δ Υ		CF HYPOLIMNETIC CUTLET	D.C., KC/DAY DIFFUSION	FYFCLIMNETIC C.C., FG/L
130	Λ,	۰.	• •	9,35
140	-533,	۰.	С.	9,39
150	×939.	-1241,	0.	9,34
160	-e37,	^.	ζ.	9:20
170	-837.	n ,	с.	9.14
180	-E40.	t	-1.	5.05
190	- <u>530</u> ,	۰.	- ĉ .	£,95
200	* K 2 4 .	-1267.	-1.	8,91
210	-895.	-50A,	• ē .	8.77
550	E 4 3 .	ê .	-2.	£.6Ê
230	* 989,	^.	-1.	8.62
240	• 952 •	۰.	- ž .	\$. 5 t

105

.

,

FIDDLE VALUES FOR DIFFLENCE USED SCD=4.00(MIDDLE VALUE) -								
DAY	CHANGE IN MAS BUITCH	S OF HYPOLIMNETIC CUTLET	D.C., KG/DAY CIFFLEICN	FYFCLIMNETIC D.C., MG/L				
130	т . Л.	fi	С.	q,3q				
140	-1E74.	۰ .	¢.	9.39				
150	-1279.	-1241.	Ģ ".	9,29				
1 ë 0	-1675.	٥.	¢ ,	9,05				
170	-1675.	n .	e .	8,97				
180	-1680,	, ^ ,	с.	8,86				
190	-1760.	۰.	-1.	8,58				
200	-1719.	1215.	С.	8,51				
210	-1790.	=478,	с.	8.32				
220	-1686.	^	C .	f: , 17				
230	-1778.	٥.	0.	8.04				
240	-1984.	۰.	G,	7.94				
		•						

• -

LEPER VALUES FLP DIAFUSION USED Sodew.or(Mindle Value)

ن ۵ پ	CHANGE IN PASS (BCTTCM		C L.C., KE/DAY CIFFLEICN	HYPOLIPHETIC D.C., MG/L
130	О .	۰.	с.	9,34
140	-1879.	۰,	٢.	9,39
150	-1879.	-1241,	с.	9,29
160	-1675 ,	^ .	ε.	9.05
170	=1675 _*	۰.	٢.	8,97
180	-1680.	^. .	-1.	8,86
190	-1060.	۰.	-2.	8,58
200	-1719,	-1216.	с.	8,51
210	-1790.	-478.	-1,	8,32
220	-1686.	۰.	с.	8,17
230	-1778.	۰ .	۲.	8.05
240	-1504.	۰.	۰.	7.94

		SEC=6,0^("IG	H VALLE)	
UAY	CHANGE IN MASS C BCTTCH		C D.C., HC/CAY DIFFLEICN	FYFCLIPNETIC C.C., FUL
130	0 🖕	۰.	С,	9.39
140	-2819,	۰.	¢.,	9,39
150	-2819.	-1241.	Ç .	9.24
160	·2513.	۸.	С.	8,97
170	-2513.	۸,	C.	8,81
100	-5250,	٥.	Ĉ.	8.64
190	-1591.	۰.	, C .	8,22
200	-2579.	-116 [#] .	с.	e.11
210	-5682.	-455.	¢.	7,87
850 8	-5256*	ń.,	û .	7.et
230	-2667.	٥.	¢ .	, 7.49
240	-2856.	۰.	G .	7,31

LUWER V⁴LHES FOR CIFFLEICH LSED SLC=6.00(HIGH VALLE)

Ŷ

NIPOLE MALLES FOR FIFFLEICH LEED Scheb, n^(migh value)

0 A Y		CF FYFCLIMNFTI CUTLFT	C C.C., KG/DAY Cifflsion	HYPCLIHNETIC D.C., MG/L
130	0.	٠.	C .	२,3 9
140	-7519.	۰.	۴,	9,39
150	-2-19.	-1241,	с.,	9.24
160	-2513.	^.	С.,	8.97
170	-2513.	^,	с.	ê.81
180	-5550-	<u>^</u>	Ċ.	8,64
190	-1-91,	۰.	С.	f.??
200	-2579.	-116 ⁰ .	1.	8.11
210	*2+83 .	-455 .	1.	1.87
550	-2524.	۰.	1.	7.66
230	-2667.	۰,	ž.	7,05
249	-2°56.	۰.	Ē .	7.31

		500=6,00(HIGH	VALUE)	
DAY .	CHANGE IN MAS BOTTOM	S CF FYPGLIFNFTIC GLTLET	C.C., REFCAY Diffusion	FYPCLIPNETIC D.C., PG/
130	. 0.	^ .	с.	9,39
140	-2819,	^.	с.	9.39
150	-2219,	-1241,	Ċ.	9,24
160	-2513.	r,	Ċ,	8,97
170	-2513.	۰,	1.	8.81
180.	-2520.	· ^.	¢.	8,64
190	=1591.	۰.	C.	8,22
200	-2579.	-1164.	1.	8,11
510	-2645.	₩45°,	1.	7.87
220	-2525.	۰.	2.	7.66
230	-2567,	· • •	3.	7,49
240	-225t.	۰.	4 .	7.31

а ^т

. .

APPENDIX H

METAL RETENTION DATA FROM LITERATURE

Metal Retention Data from Literature

To determine values for V_m in Equation 27 data on metal retention coefficients and areal loading from a number of lakes were needed. Data on metal retention were extracted from the literature for a number of lakes for which metals loadings (inflow and outflow) were presented or for which the available data permitted computations of metals loadings. Data from six lakes and reservoirs were used: Bighorn Lake (Montana), Pueblo Reservoir (Colorado), Lake Washington (Washington), Coeur D'Alene Lake (Idaho), Derwent Reservoir (England), and Alpnachersee (Switzerland). In some cases more than one year's data existed and several data points could be generated for a single water body. The methods used to obtain data and a description of each water body studied follows.

Pueblo Reservoir, Colorado

Pueblo Reservoir is a 535,269 A.F. (6.58 x 108 m^3) impoundment located on the Arkansas River in Pueblo County, Colorado. The reservoir was created by an earthfill dam whose crest extends 200 ft (61 m) above the streambed (el. 4,725 ft). The reservoir formed is long (approx. 10 mi) and narrow (max. width approx. 1.5 mi) and covers 8,027 acres when filled. The primary purposes of the reservoir are flood control and irrigation. The hydraulic residence time for the time period studied was very short, less than 0.1 yr. Filling began on January 9, 1974.

In a study performed by Herrmann and Mahan (1977), water quality data were collected from the Arkansas River above the pool of the reservoir, from several locations in the pool, and from the Arkansas River immediately below the dam site. Concentrations of most suspended and dissolved inorganic constituents were measured on a monthly basis from June 1974 through March 1976. Data on metals concentrations were collected during this study, but the absence of the study period precludes use of these data. Data were compiled for iron, zinc, and lead in the inflow and outflow for the study period (see Tables 56 and 57). For dates on which data are missing, an estimate of the concentration was made by averaging the data from the preceding and following months. The incompleteness of data during 1976 made loading calculations impossible. The data loading calculations impossible. The data were divided into two time segments: June -September 1974 and October 1974 - September 1975. During the entire period, data for iron were missing four times, for zinc once, and for lead once. Since two of the missing data points for iron were in the first time segment, loading calculations for iron were possible only during the second time segment. Thus, for loading calculations, the data were always more than 80 percent complete.

Flow data were obtained from the USBR Pueblo, Co. Office (W. C. Kregger, per. comm.). The hydraulic retention times for Pueblo Reservoir were calculated on a monthly basis using the hydraulic data provided by Mr. Kregger (Table 58). The average hydraulic retention time and total areal water load for each study period (June -September 1974 and October 1974 - September 1975) are presented in Table 23. Loadings (input and output) were calculated for each month using the reported concentration of each constituent and the total monthly discharge. Data on monthly loadings of Zn, Fe, and Pb for the entire period are presented in Tables 56 and 57. The loading of each constituent (inflow and outflow) and the calculated retention coefficient (Equation 22) are presented for the June - September, 1974 and the October, 1974 - September, 1975 sample periods in Table 66.

Derwent Reservoir, England

Derwent Reservoir is a 5.06 x 106 m³ impoundment located in Durham (Consett Co.), England. It was constructed between 1960 and 1966 to provide water for domestic and industrial purposes. It is also used for sailing and trout fishing. The inflow water is soft and frequently contains humic substances that often cause a brown color (Harding and Whitton 1978).

Harding and Whitton (1978) studied Derwent Reservoir in 1976 with respect to the movement of zinc, lead, and cadmium in the reservoir. They sampled the Derwent River above the reservoir from March -December, 1976 (50 collections) and the Derwent River below the reservoir during March, 1976 (daily collections). The authors conclude, apparently on the basis of these sketchy data, that zinc, lead, and cadmium concentrations decreased by 70.3 percent, 98.3 percent, and 89.2 percent, respectively. Assuming evaporation to be negligible, a decrease in concentration equals a decrease in loading (continuity equation).

Area loading (q_s) was calculated using Figure 4 from Harding and Whitton (1978), a plot of depth vs. time, and Table 2 from Harding and Whitton (1978), a compilation of area vs. depth. The outflow was estimated to be 1.2 m³/sec (Harding and Whitton 1978). Thus, areal loading was calculated on the basis of the average surface area and the average outflow for 1976. The hydraulic

Date	Flow ^a (1000 ac ft)	[Zn] ^b (mg/L)	[Fe] ^b (mg/l)	[Pb] ^b (mg/l)	Zn (kg)	Fe (kg)	Pb (kg)
6/27/74	86.3	0.039	0.546	0.0	4,152	58,132	0
7/11	71.7	0.056	0.520	0.0	4,954	45,997	0
8/8	37.8	0.036	-	0.026	1,679	-	1,212
9/7	18.5	0.035	-	0.023	799	-	524
10/19	13.4	0.011	0.514	0.0	182	8,497	0
11/16	17.3	0.030	1.204	0.003	640	25,697	64
12/6	14.6	0.010	0.372	0.0	180	6,700	0
1/01/75	14.6	0.020	0.400	0.0	360	7,205	0
		est.	est.	est.			
2/02/75	12.7	0.028	0.431	0.0	439	6,753	0
3/17	15.4	0.012	0.174	0.0	228	3,306	0
4/19	20.2	0.354	1.086 est.	0.052	8,822	27,064	1,296
5/23	43.4	0.166	1.998	0.002	8,888	106,978	107
6/18	131.1	0.073	1.247	0.002	11,807	201,687	323
7/28	169.2	0.017	0.257	0.000	3,549	53,647	0
8/09	61.2	0.019	0.242	0.000	1,435	18,272	Ō
9/26	27.7	0.005	0.011	0.000	171	376	ō

Table 56. Loading of Fe, Zn, and Pb into Pueblo Reservoir, June 1974 - September 1975.

.....

^aW.C. Kregger, USBR (personal communication).

^bMetals data: Herrmann and Mahan (1977).

Table 57. Discharge loading of Fe, Zn, and Pb from Pueblo Reservoir, June 1974 - September 1975.

Date	Flow ^a (1000 ac ft)	[Zn] ^b (mg/L)	[Fe]b (mg/l)	[Pb] b (mg/l)	Zn (kg)	Fe (kg)	Pb (kg)
6/27/74	86.5	0.006	0.168	0.0	640	17,928	0
7/11	71.7	0.017	0.130	0.0	1,504	11,499	0
8/8	38.0	0.008	0.310	0.0	375	14,533	0
9/7	18.4	0.000	0.112	0.0	0	2,542	0
10/19	13.5	0.002	0,492	0.0	33	8,194	0
11/16	17.2	0.001	0.232	0.003	21	4,923	64
12/6	14.6	0.000	0.132	0.0	0	2,378	0
,	14.4	est.	est.	est.			
1/1/75	14.4	0.004	0.226	0.0	71	4,015	0
2/2	12.7	0.007	0.320	0.0	110	5,014	0
3/17	15.4	0,000	0.043	0.0	0	817	0
4/19	20.2	0.500	0.651	0.007	12,460	16,223	174
5/23	43.4	0.047	1.570	0.0	2,517	84,062	0
6/18	131.1	0.052	1.112	0.001	8,410	179,853	162
7/28	169.2	0.013	0.246	0.0	2,714	51,350	0
- ,		est.	est.	est.	-	•	
8/9	61.3	0.010	0.196	0.001	756	14,823	76
9/26	27.6	0.007	0.146	0.0	238	4,971	0
			19	75 W.Y. =	= 27,330	376,623	476

^a W.C. Kregger, USBR (personal communication).

^b Metals data: Herrmann and Mahan (1977).

	Outflow	Volume	0	b h
Period	(1000 ac-ft)	(1000 ac-ft)	Yr.	Days
6/74	86.5	24.2	0.023	8.4
7/74	71.7	23.6	0.027	9.9
8/74	38.0	23.4	0.051	18.7
9/74	18.4	23.2	0.105	38.3
10/74	13.5	23.7	0.146	53.4
11/74	17.2	22.7	0.110	40.1
12/74	14.6	23.6	0.135	49.2
1/75	14.4	23.8	0.138	50.2
2/75	12.7	23.8	0.156	57.0
3/75	15.4	23.6	0.128	46.6
4/75	20.2	30.5	0.126	46.0
5/75	43.4	32.6	0.063	22.8
6/75	131.1	33.2	0.021	7.7
7/75	169.2	33.2	0.016	6.0
8/75	61.3	32.3	0.044	16.0
9/75	27.6	31.5	0.095	34.7

Table 58. Hydraulic retention times for Pueblo, Colorado, by month.

^a Hydraulic data from W.C. Kregger, USBR (personal communication). $b_{\theta_h} = \frac{\text{end of month volume}}{\text{monthly discharge (12)}} = \text{yr.}$

Table 59. Retention of Fe, Zn, and Pb in Pueblo Reservoir, Colorado.^{a,b}

	June - September, 1974 ^C							
	Inflow (kg)	Outflow (kg)	% Retention					
Fe	_	46,502	_					
Zn	11,584	2,519	78.3					
Pb	1,736	0	100.0					

October,	1974 -	September,	1975	(1975	W. Y.) ^d

	Inflow (kg)	Outflow (kg)	% Retention
Fe	466,182	376,623	19.6
Zn	36,701	27,330	25.5
РЪ	1,790	476	73.4

^a Data on metals concentrations from Herrmann and Mahan (1977).

^b Flow data from W. C. Kregger, USGS (personal communication)

^c Hydraulic retention time = 0.052 yr

^d Hydraulic retention time = 0.098 yr

retention time was calculated on the basis of the average volume and the average discharge.

The data on metals retention, morphology, and hydraulic characteristics of Derwent Reservoir are presented in Table 23.

Alpnachersee, Switzerland

Alpnachersee is a natural, eutrophic lake located in the foothills of the Alps (e1. = 430 m) near Luzern, Switzerland. The lake basin is roughly oval, with an area of 4.76 km^2 and a volume of $100 \times 106 \text{ m}^3$. The lake is fed by two glacier-fed rivers and has a hydraulic retention time of 0.28 years (Baccini 1976).

Baccini (1976) studied the lake with respect to the fate of metals in the system. Samples of the inflow, outflow, freshly deposited sediment, plankton, and lake water were collected each month for a year. Based on the inflow and outflow loadings, retention times for Fe, Zn, Cu, and Cd were 92 percent, 50 percent, 42 percent, and 17 percent, respectively. The retention of each metal corresponded well with the fraction of that metal that was in particulate form in the inflow. Calculations of the hydrologic retention time and areal loading were made on the basis of reported values for hydraulic and morphological parameters. Data for Alpnachersee are summarized in Table 16.

Lake Washington

Lake Washington, adjacent to Seattle, Washington, is a large $(2.91 \times 10^9 \text{ m}^3)$ lake that has a history of cultural eutrophication. In order to reverse the trend toward eutrophy, municipal sewage outfalls have been diverted from the lake.

Barnes and Schell (1972) composed a crude metals budget for the lake. The budget calculations included aeolian and fluvial inputs, a sedimentary sink, and fluvial output. It is unclear whether metals concentrations in the inflow and outflow were measured directly or calculated on the basis of sediment load and assumed composition of the sediment. Annual sedimentation was measured. Aeolian inputs were assumed to be insoluble and were calculated as the difference between net fluvial input and the annual sediment input.

The data used by Barnes and Schell are presented in Table 60 (adapted from Barnes and Schell 1972, Table 3) together with the calculated retention coefficient. For this lake, input was considered to be the sum of aeolian inputs and fluvial inputs. The data on aeolian inputs is probably inaccurate, as illustrated by a check on aeolian iron and sodium deposition using dustfall data. Barnes and Schell (1972) found on the basis of this check that their aeolian inputs were probably high by a factor of four but state that this error is still not large due to the relative magnitude of fluvial and aeolian inputs. Nevertheless, if this degree of error is associated with calculated aeolian inputs of the heavy metals, considerable error in calculated retention coefficients would occur, since aeolian inputs are relatively more important.

Coeur D'Alene Lake

Coeur D'Alene Lake, a natural lake, in northern Idaho is elongate (38.6 km), narrow (ave. width = 1.6 km), and shallow (ave. depth = 2.3 m) (USEPA 1975b). Inflows to Coeur D'Alene Lake include Coeur D'Alene River and the St. Joe River. The Coeur D'Alene River is polluted with heavy metals resulting from mining activity and smeltering in the Coeur D'Alene mining district. The St. Joe River is considered unpolluted with respect to mine waters but is affected to some extent by loading, farming, and sewage disposal (Funk et al. 1975).

Although abundant metals data exist for the Coeur D'Alene River above Coeur D'Alene Lake, there is little comparable data for the St. Joe River, making it difficult to calculate total loading of various constituents into Coeur d'Alene Lake. USEPA (1975b) presents data for zinc concentrations and flow for the St. Joe River, the Coeur D'Alene River at Rose Lake (~ 15-20 miles above Coeur D'Alene), and the Spokane River at Post Falls with the exception of January, in which there was a flood on the Coeur d'Alene River making flow measurement impossible. Loading of zinc into Coeur d'Alene Lake was calculated by month for 1974 (Table 61). Outflow loading of zinc was calculated for the Spokane River at Post Falls, immediately below the outlet of Coeur d'Alene Lake (Table 62).

Hydraulic residence time was computed using the flow data for February - December 1974 together with the average volume data presented in USEPA (1975b). This analysis indicates that 2,426,820 kg of Zn entered Coeur D'Alene Lake in the period February -December 1974 and that 2,002,574 kg left the lake via the Spokane River. Thus, 424,246 kg of Zn were trapped in the lake (17.5 percent of the total inflow load).

Data on lake morphology, hydraulic parameters, and zinc retention are presented in Table 16.

Yellowtail Reservoir

Bighorn Lake, formed by the Yellowtail Dam was completed in 1967 (filling began in 1965). The reservoir extends 61 miles along the Bighorn River and has a volume of 176 x 107 m^3 .

The Bighorn River and the Shoshone River form the major tributaries into the reservoir, although numerous small tributaries enter the reservoir along its length.

Element		Ann	ual Tran			
	Input	Fluvial Output	Net	Aeolian Input	- Annual Deposition	Retention %
Fe, tons	2570	40	2530	2200 ^b	4700	99.2
Na, tons	5420	5440	-20	180 ^c	160	2.9
Pb, tons	1.3	1.0	0.3	29.8	30	96.8
Zn, tons	34	27	7	15	22	44.9
Cu, tons	5.7	3.5	2.2	2.8	5	58.8
Hg, kg	62	58	4	56	60	50.8

Table 60. Trace metal budget for Lake Washington.^a

^a Table and footnotes ^b and ^c adapted from Barnes and Schell (1972).

^b Based on an average dustfall from Seattle of 38.92 U.S. tons/m1²/mo.
 = 14.8 × 10⁶ kg/yr over L. Washington, and using an iron concentration of 3,400 ppm iron for urban dust, the iron input for aeolian transport would be 500 tons/yr. (See references for dustfall data in *Barnes and Schell* 1972).

^c Based on ^b above, Na output is 45 tons/yr from aeolian transport. Even if a higher Na concentration is assumed due to marine aerosols, the aeolian input is still very small compared to the fluvial.

^d $R = \left(\frac{\text{aeolian input + fluvial input - fluvial output}}{\text{aeolian input + fluvial input}}\right) \times 100$

Table 61. Zinc loading into Coeur D'Alene Lake.^a

	Coeur	D'Alene H	liver	St. Joe River			
	Flow	Conc.	Load	Flow (cfs)	Conc. (µg/l)	Load ^b	
Jan.	>100,000	1,800	h-4	6,000	0	0	
Feb.	2,000	2,000	293,621	2,900	15	3,193	
March	3,200	1,120	263,085	3,000	0	0	
April	4,900	540	194,231	12,000	· 0	. 0	
May	18,000	390	515,306	17,000	0	0	
June	15,000	385	423,916	20,000	30	44,043	
July	1,800	1,250	165,162	31,000	40	91,023	
Aug.	900	2,000	132,130	1,000	9	661	
Sept.	300	2,500	55,054	700	14	719	
Oct.	310	2,533	57,640	800	0	0	
Nov.	400	2,050	60,192	900	20	1,321	
Dec.	900	1,900	125,523	700	Ò.	0	
Total ^b			2,285,860			140,960 k	

^a Source: USEPA (1975b).

^b January omitted from total loading calculation. See text for explanation.

Table 62. Zinc loading at Spokane River at Post Falls.^a

Month	Flow (cfs)	Conc. (µg/l)	Load (kg/mo)
Jan.	15,000	325	357,852
Feb.	10,000	345	253,249
March	8,000	370	217,280
April	21,000	405	624,313
May	23,000	227	383,250
June	26,000	160	305,367
July	2,500	130	23,857
Aug.	1,600	125	14,681
Sept.	1,600	125	14,681
Oct.	2,050	160	24,077
Nov.	2,100	715	110,218
Dec.	2,100	205	31,601
Total ^b			2,002,574

^a Source: USEPA (1975b)

^b January omitted from total loading calculation. See text for explanation.

Wright and Soltero (1973) sampled the Bighorn River and the Shoshone River (inflows), the reservoir outflow, and the reservoir water (6 stations) from February -December 1968 and from January - August 1969. Samples were analyzed for Zn, Fe, Mn, and Cu.

Since monthly data for metals were not available, loading of these metals was calculated by multiplying mean concentration of each metal (Tables VI and VII in Wright and Soltero 1973) for each sampling period by the total discharge during the sampling period for each year. For the 1968 sampling period 19 samples of inflow and outflow waters were collected (1 - 3 samples/month) and for the 1969 sampling period 27 samples were collected (2 - 5/month).

Data for average metals concentrations, total discharge, and total loading for the

Bighorn River, Shoshone River and reservoir outlet for the 1968 and 1969 sampling periods are presented for Fe, Mn, Zn, and Cu in Tables 63 and 64. The retention of iron, manganese, zinc, and copper were calculated for 1968 (Table 64) and 1969 (Table 65).

Average exchange rates (water renewal times) were calculated by dividing total reservoir outflow during the sampling period (Tables IV and V, Wright and Soltero 1973) by average reservoir volume during the sampling period. Average volume and surface area were calculated for each sampling period using the water surface vs time graph (Figure 9, Wright and Soltero 1973) and Wright and Soltero's water surface elevation vs. volume and surface area plot (Figure 1, in Wright and Soltero 1973). These data are presented in Table 65.

Stream	Ave. Discharge (m ³ /sec) FebDec.	[Fe]	Fe Loading (kg)	[Mn]	Mn Load (kg)	[Zn] (mg/l)	Zn Load	[Cu ⁺⁺] (µg/l)	Cu Load (kg)
Bighorn R.	77.06	.138	335,134	.021	50,999	.094	228,281	1.60	3,886
Shoshone R.	29.01	.129	117,701	.025	22,810	.084	76,643	1.40	1,278
Discharge	116.6	.009	33,193	.004	14,754	.057	210,242	1.10	4,057
% Change (Inflow vs. Outflow)			92.7%		80.0%		31.1%		21.4%

Table 63. Metals loading data for Yellowtail Reservoir,^a Feb. - Dec. 1968.

^a Source: Wright and Soltero (1973).

Stream	Ave. Discharge (m³/sec) JanAug.	[Fe] (mg/l)	Fe Load (kg)	[Mn]	Mn Load (kg)	[Zn] (mg/l)	Zn Load (kg)	[Cu] (µg/l)	Cu Load (kg)
Bighorn	65.68	1.290	2,677,895	0.265	548,056	0.048	99,271	3.1	6,411
Shoshone	28.34	1.390	1,244,203	0.182	162,909	0.038	34,014	2.6	2,327
Discharge	91.25	0.052	149,798	0.030	86,423	0.022	63,370	1.3	3,745
% Change			96.2%		87.8%		52.5%		57.1%

Table 64. Metals loading data for Yellowtail Reservoir,^a Jan. - Aug. 1969.

^a Source: Wright and Soltero (1973).

Table 65. Morphological data for Yellowtail Reservoir.^a

	FebDec., 1968	JanAug., 1969
Average Volume (× 10 ⁶ m ³)	970	1048
Average Area (× 10 ⁶ m ²)	30.2	37.9
Hydraulic Retention Time, θ_h (yr.)	0.313	0.407
Areal Water Load, q _g (m/yr.)	103	67.9
Average Water Surface Elevation (m)	1100	1104

^aSource: Wright and Soltero (1973).