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Extensive urbanization in coastal southern California has reduced natural habitat in this biodi-
versity hotspot. To better conserve ecological communities, state and federal agencies, along with
local jurisdictions and private stakeholders, developed regional conservation plans for southern
California. Although many protected areas exist within this region, the patchwork nature of these
protected areas might not provide good coverage for species that require multiple habitat com-
ponents, such as amphibians with complex life histories. Because of declines in the past century,
the status of the western spadefoot (Spea hammondii) in southern California is of concern to state
and federal wildlife agencies. Species distribution models (SDMs) can aid in determining the
conservation status of imperiled species by projecting where suitable habitat remains and how
much is protected from further development. We built SDMs that integrated site-occupancy data
from systematic pitfall trapping surveys and presence-only data from biodiversity databases and
citizen science platforms to project the current distribution of western spadefoots in southern
California. Western spadefoot occurrence was positively related to the cover of grassland or
shrub/scrub and the % sand in the soil within a 1000 m buffer, and was negatively related to
slope, elevation, and distance to ephemeral streams or vernal pools. Most of the remaining un-
protected habitat for western spadefoots is in the southern half of its historical range in western
San Diego and Riverside counties. A few large tracts of spadefoot habitat exist on U.S. Department
of Defense lands and smaller tracts remain on ecological reserves owned by state and local
government agencies. Only small patches of habitat remain in the northern half of this clade’s
historical range in Ventura, Orange, Los Angeles, and San Bernardino counties. Existing regional
conservation plans provide ostensible spatial coverage of the majority of extant habitatr for
western spadefoots in southern California, but most of the habitat within the jurisdiction of these
plans lacks formal protection, exposing this species to further declines as urbanization continues
in the 21st century.
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1. Introduction

Anthropogenic land cover change and habitat fragmentation has left many species to persist in small protected areas or remaining
patches of undeveloped open space. For species in fragmented habitats, the landscape context surrounding historically occupied sites
can be a primary determinant of where populations persist (Fischer and Lindenmayer, 2007), and regional conservation plans might be
needed to ensure a network of ecologically connected protected areas provide sufficient habitat. Coastal southern California presents a
challenge for conservation planning because high native biodiversity coincides with the second-most populated metropolitan region of
the United States of America (Hunter et al., 2003; Tracey et al., 2018b; Census Bureau,). Rapid urbanization and sprawl in the last
century has caused many species to be threatened with extinction within this part of the California Floristic Province biodiversity
hotspot (Myers et al., 2000). In response, the state of California initiated the Natural Communities Conservation Planning (NCCP)
program in the early 1990s to conserve California’s ecological communities. The NCCP program, along with Habitat Conservation
Plans (HCPs) under the federal Endangered Species Act, have led to the creation of many protected areas in coastal southern California
within and surrounding developed areas of high human population density (Franklin et al., 2011; Pollak, 2001). Similar to the rest of
the United States (UNEP-WCMC and IUCN 2018), many of the protected areas in southern California are small (< 1 k1112, Mitrovich
etal., 2018, Tracey et al., 2018b). The reserve system in southern California was driven by the conservation of a few umbrella species
(Franklin et al., 2011; Pollak, 2001) and therefore might not support viable populations for some non-target species with different
habitat needs (Brashares et al., 2001; Fisher et al., 2002; Mitrovich et al., 2018; Ordefiana et al., 2010).

In urbanized and fragmented landscapes, species with complex life histories, including many amphibians, can be especially sus-
ceptible to loss of genetic diversity, declines, and extirpation (No€él et al., 2007; Rubbo and Kiesecker, 2005; Semlitsch, 2000). The
susceptibility of amphibians to fragmentation is often tied to the disconnect between the different habitats required for each life stage
(Becker et al., 2007). Dependence on multiple habitats has made amphibians more susceptible to land cover change than larger
megafauna which would be predicted to be impacted more heavily (Burdett et al., 2010; Tracey et al., 2018a). Therefore, there is a
need to evaluate how well regional conservation plans designed for other taxa are protecting habitat for native amphibians. Western
spadefoots (Spea hammondii), which breed in coastal southern California’s ephemeral aquatic habitats (Baumberger et al., 2020), are a
species of conservation concern for which the utility of multi-species conservation plans is unknown. Although western spadefoots
spend the majority of their adult life in terrestrial habitats, they must return to vernal pools to breed during the rainy season
(Baumberger et al., 2019; Stebbins, 2003) and they may be particularly susceptible to habitat fragmentation and conservation design
that severs the connectivity between adult and breeding habitat (Brehme et al., 2018). Because of declines in the Central Valley (Fisher
and Shaffer, 1996) and southern California, western spadefoots are a species of special concern in California (Jennings and Hayes,
1994; Thomson et al., 2016) and are currently undergoing a status review by the U.S. Fish and Wildlife Service, 2015. The status of this
species in southern California is of particular interest because a recent study concluded that western spadefoots in this region represent
a genetically and ecologically distinct clade from the more widely distributed northern clade (Neal et al., 2018). Population viability
analysis has been used to evaluate whether species necessitate protection under the U.S. Endangered Species Act (McGowan et al.,
2017). Demographic and abundance data are not available for western spadefoots, however. When population-level data are lacking,
modeling the distribution of suitable habitat can provide an indicator of species status (Cuevas-Yanez et al., 2015; Syfert et al., 2014).
Assessing where contiguous tracts of habitat remain for declining species in heavily urbanized landscapes requires modeling habitat
suitability at a broad scale while accounting for the landscape context around habitat patches (Mitrovich et al., 2018; Neal et al., 2020;
Rose et al., 2020; Tracey et al., 2018a).

Species Distribution Models (SDMs) are commonly used for conservation decisions (Guisan et al., 2013), but like any empirical
modeling effort, SDMs are only as good as the data used to fit them. Abundant “presence-only” data on species occurrence available
from online databases are unable to provide estimates of species occurrence probabilities (Hastie and Fithian, 2013), and are often
spatially-biased (Dickinson et al., 2010), leading to improper inferences about species-environment relationships (Fithian et al., 2015).
Recent developments enable researchers to integrate abundant presence-only data with more limited, but higher quality data from
systematic detection/non-detection surveys (Fletcher et al., 2019). Integrating multiple data sources enables fitting models that reduce
the effects of spatial sampling bias in presence-only data, estimate ecologically relevant parameters such as the probability of
occurrence or expected count of individuals of the focal species, and produce better predictions than models fit to single data sources
(Fithian et al., 2015; Koshkina et al., 2017). Because decisions about future survey efforts, listing status, and identification of critical
habitat can be made based in part on the projections from SDMs, it is vital that models integrate all available data and produce un-
biased estimates of a species” distribution. SDMs previously developed for western spadefoots in southern California focused on cli-
matic determinants of the species” range (Neal et al., 2018) or were fit using a single data source (Franklin et al., 2009). A recent study
on the northern clade of the western spadefoot demonstrated how integrating multiple data sources could lead to improved projections
of remaining habitat (Rose et al., 2020). A SDM that integrates multiple data sources and includes landscape covariates on occurrence
has crucial implications for assessing the status of the genetically distinct western spadefoot clade in southern California.

In this study, we created a SDM for the western spadefoot in southern California. We integrated systematic site-occupancy survey
data with presence-only data to quantify the relationships between landscape-level covariates and spadefoot occurrence while ac-
counting for spatial sampling bias in the inpurt data. Our goals were to: 1) project where habitat remains for western spadefoots in this
fragmented landscape, 2) quantify how much of this species” habitat is currently in protected areas, 3) identify unprotected tracts of
habitat that could lower the risk of extirpation if conserved, and 4) identify areas without recent observations that could be targeted for
future surveys to document western spadefoot occurrence. Qur results provide valuable information about the current distribution of
western spadefoots in southern California and highlight both the value and current limitations of regional conservation plans for
protecting this declining species.
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2, Methods
2.1. Study region and species

The southern clade of the western spadefoot is found in coastal southern California, south of the Transverse ranges in Ventura, Los
Angeles, Orange, Riverside, San Bernardino, and San Diego counties (Fig. 1). Vernal pools and associated open habitats historically
occupied by western spadefoots have been heavily affected by urbanization (Mattoni and Longcore, 1997; U.S. Fish and wildlife
Service, 2005; Bauder et al., 1998) Development in coastal southern California has converted much of the low elevation coastal and
inland valley habirtats to urban and suburban environments (e.g., Hunter et al., 2003, Bagan and Yamagata, 2014), resulting in the
extirpation of western spadefoots from large parts of their historic range, such as the Los Angeles Basin (Jennings and Hayes, 1994;
Mattoni and Longcore, 1997; Morey, 2005; Neal et al., 2020). Open habitats preferred by western spadefoots including grassland,
coastal scrub, chaparral, and oak woodland (Morey, 2005) still exist at mid-elevation outside of major urban areas (Xian et al., 2009).
Western spadefoots primarily breed in vernal pools, pools associated with ephemeral streams, and other seasonally-filled bodies of
water and larval development can take from 4 to 11 weeks (Morey, 1998). Non-native predators such as the American bullfrog
(Lithobates catesbeianus) pose a potential threat to western spadefoots, but the ephemeral nature of pools used by western spadefoots for
breeding can provide a refuge from larger predators (Morey, 2005). Western spadefoots spend the majority of the year aestivating
underground in burrows that they dig with the eponymous spades on their hind feet. Radio-tracking of western spadefoots in two sites
in southern California showed that individuals prefer to burrow in soils with higher sand and silt content and avoid sites with high clay
content (Baumberger et al., 2019). The life-history of western spadefoots necessitates both suitable breeding pools and adjacent upland
habitat for aestivation during the long, hot dry season.

2.2. Data collection

As part of a larger study of the response of small vertebrates to habitat fragmentation in southern California, pitfall traps were
placed along gradients of rainfall, elevation, and human disturbance (Amburgey et al., 2021; Case and Fisher, 2001; Franklin et al.,
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Fig. 1. Map of pitfall trap locations and presence-only records for western spadefoots (Spea hammondii) in coastal southern California. Black Xs
indicate 1 km? cells with pitfall trap arrays with no western spadefoot detections, red + symbols indicate 1 km? cells with pitfall trap arrays where
western spadefoots were detected. Square purple blocks are the spatial blocks used for model cross-validation, each with its own identifying number.
Grassland and shrub/scrub land cover data are from the 2016 National Land Cover Dataset (Yang et al., 2018). The study region is the historical
range of western spadefoots buffered by 10 km.
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2009; Fisher et al., 2008). We deployed pitfall traps in 804 drift-fence arrays distributed throughout the range of the western spadefoot
in southern California from 1995 to 2016. Because pitfall trap arrays were often spatially clustered, we compiled the
detection/non-detection data for all pitfall trap arrays within a grid of 1 km x 1 km cells, resulting in 376 sampled cells. The number of
trap arrays per cell ranged from 1 to 13 (mean = 2.1 arrays per cell, SD = 1.7 arrays), and cells were trapped from 2 to 18 years (mean
= 5.7 years, SD = 3.1 years). These pitfall trapping data can be analyzed in an occupancy framework because sites were trapped for
several years and the detection history (1 if spadefoots were detected, 0 if not) was recorded for each array on each sampling occasion.

We compiled western spadefoot occurrence records from vernal pool surveys conducted by the Western Riverside County Regional
Conservation Authority from 2008 to 2016 in western Riverside County, California; field survey data from Marine Corps Base Camp
Pendleton, San Diego; and U.S. Geological Survey (USGS) stream surveys for amphibians in Ventura, Los Angeles, San Diego, Riverside,
San Bernardino, and Orange counties from 2000 to 2016. We also compiled presence-only records of western spadefoots in the
southern range from the California Department of Fish and Wildlife’s (CDFW) California Natural Diversity Database (CNDDB; Cali-
fornia Department of Fish and Wildlife, 2020a), data developed for the California Amphibian and Reptile Species of Special Concern
analysis (Thomson et al., 2016), the citizen science platforms NAHerp (www.naherp.com) and HerpMapper (www.herpmapper.org),
and published literature (Neal et al., 2018) collected from 1995 to 2016, to match the time period of pitfall trapping. We classify all of
these data as presence-only because they lack sufficient information to characterize spatial survey effort and non-detection of western
spadefoots. When duplicate records (identical spatial coordinates) existed in the presence-only data, we retained only the most recent
western spadefoot occurrence from that location. We spatially thinned presence-only records using the “spThin” R package such that
no two records were < 1 km apart to prevent overfitting of the model to locations with more reports of western spadefoots (Aiel-
lo-Lammens et al., 2015). This thinning resulted in a final dataset of 324 presence-only records reported from 1995 to 2016 from seven
sources (Table Al). Finally, we constructed a 1 km x 1 km grid of background points (quadrature points) throughout the study area for
use as a comparison to the presence-only data in the integrated Presence-Background Site-Occupancy (PB-SO) model (see Integrated
species distribution models below). We also compiled 85 presence-only records collected from 2017 to 2020 as an independent dataset
for testing model predictions (Table A2).

2.3. Environmental predictors

Western spadefoots breed in seasonal and ephemeral bodies of water, including streams, vernal pools, and small ponds (Stebbins,
2003), and capturing the distribution of these breeding habitats could lead to better SDMs. We extracted GIS data on ephemeral
streams in the National Hydrography Dataset (U.S. Geological Survey 2019). We compiled GIS data on the distribution of vernal pools
in the study region from federal (Marine Corps Base and Marine Corps Air Station Camp Pendleton, 2018; U.S. Fish and Wildlife
Service, 2005; Marine Corps Air Station Miramar, 2018), state (California Department of Fish and Wildlife, 2020b), and local resource
management agencies (City of San Diego Planning Department, 2019; County of Riverside Transportation and Land Management
Agency, 2003), and supplemented vernal pool data with the distribution of seasonal and temporary palustrine wetlands from the
National Wetlands Inventory (U.S. Fish and Wildlife Service, 2019) and playas and intermittent ponds from the National Hydrography
Dataset (U.S. Geological Survey, 2019a). We calculated the distance to the nearest ephemeral stream and vernal pool or pond for each
pitfall trapping site, presence-only record, and background point using the “rgeos” package (Bivand and Rundel, 2019) in R version
3.6.3 (R Core Team, 2020). We then used the compiled vector datasets on the distribution of suitable aquatic breeding habitats
described above to create two rasters representing 1) the distance to the nearest ephemeral stream and 2) distance to the nearest vernal
pool, ephemeral pond, or seasonal pond using the Euclidean Distance tool in ArcMap version 10.7.1 (Environmental Systems Research
Institute, 2019b).

We compiled land cover data for the study region from the 2016 National Land Cover Dataset (NLCD) from the Multi-Resolution
Land Characteristics Consortium (Yang et al., 2018). We created binary rasters of the distribution of grassland and shrub/scrub land
cover: each 30 m x 30 m cell was given a value of 1 if it was classified as grassland/herbaceous or shrub/scrub, or a value of 0 if it was
any other land cover. We repeated this for each year with NLCD data available: 2001, 2004, 2006, 2008, 2011, 2013, and 2016. We
grouped grassland and shrub/serub because western spadefoots prefer these open habitats (Stebbins, 2003) and although the area of
southern California classified as grassland or shrub/scrub in the NLCD changed between years, the area classified as either grassland or
shrub/scrub was highly consistent from 2001 to 2016. Comparing NLCD data from 2016 to 2001, > 96% of 30 m cells in our study area
classified as grassland or shrub/serub in 2001 were also classified as grassland or shrub/scrub in 2016. For each spadefoot
presence-only record, pitfall trapping site, and background point, we calculated the proportion of the surrounding landscape that was
classified as grassland or shrub/scrub within six concentric buffers of increasing size (100 m, 200 m, 500 m, 1000 m, 2000 m, and
5000 m). For presence-only records, we assigned to that site the proportion of grassland or shrub/scrub land cover from the classi-
fication nearest to the year in which the spadefoot presence was recorded. For pitfall trapping sites, we used land cover data from the
median year of sampling for model fitting. For background points, we used the mean of the grassland or shrub/scrub cover over the
study period from 2001 to 2016. We did not use any other land cover covariates, such as the proportion of developed land near a site,
because they were highly correlated to the grassland and shrub/scrub land cover, and preliminary modeling showed that including
additional land cover covariates led to worse predictive ability.

Western spadefoots prefer to burrow in sandy, friable soils and most western spadefoot burrows are in the upper 50 cm of soil
(Baumberger et al., 2019). We calculated the % sand in the upper 50 cm of the soil for the study region from the gridded soil survey
geographic database (gSSURGO; Soil Survey Staff, USDA 2019), producing a raster with 30 m x 30 m cells. For each pitfall trap
sampling site, presence-only occurrence, and background point, we then calculated the % of sand in the upper 50 em of the soil within
the six buffers described above, by calculating the mean of the % sand in each 30 m raster cell. Finally, we calculated the elevation and
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slope at each pitfall trap site, presence-only occurrence, and background point from the U.S. Geological Survey’s National Elevation
Dataset (U.S. Geological Survey, 2019b). We calculated slope from a 1/3” digital elevation model, and then aggregated the slope and
elevation rasters to 1000 m resolution using the “raster” function from the raster R package (Hijmans, 2019) and calculating the mean
of the 1000 m cells, to match the other predictor rasters. We included elevation as a predictor in the integrated SDM because most
development in southern California has taken place at low elevations and open habitats favored by western spadefoots still exist at
mid-elevations (Xian et al., 2009). Likewise, we included slope as a covariate because the temporary pools used by western spadefoots
for breeding are unlikely to be found in areas with a higher degree of slope, and a previous model of the northern distribution of this
species found that occurrence was most likely at areas of intermediate slope (Rose et al., 2020).

Environmental variables could influence detection of western spadefoots as well as occurrence. Pitfall traps capture adult western
spadefoots, which are more likely to be active and moving on the surface during or after recent rainfall (Baumberger et al., 2019). In a
drought year, adults might spend little time active on the surface and therefore be unavailable for detection during surveys. We
downloaded monthly precipitation data from 1994 to 2016 from the PRISM dataset (PRISM Climate Group, 2016) and summed the
monthly precipitation for each water year, from October through September. Because occurrence records are often biased towards
accessible areas with high human population density, we included the distance to major roads and the distance to urbanized areas as
covariates of observation for presence-only data. We compiled data on primary and secondary highways from the TIGER/LINE
shapefiles produced by the U.S. Census Bureau (https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.
html). We used vector data on the location of urbanized areas (minimum population of 2500) from the U.S. National Atlas, compiled by
ESRI (Environmental Systems Research Institute, 2019a), to calculate the distance presence-only records are from human population
centers. We created distance to road and distance to urbanized area rasters using the Euclidean distance tool in ArcGIS version 10.7.1
(Environmental Systems Research Institute, 2019b).

For each 1 km? grid cell within which pitfall trapping data were compiled, we extracted environmental covariates for each indi-
vidual pitfall trap array based on its coordinates, and then calculated the mean value of each covariate for all pitfall trap arrays within
the same 1 km? cell. All environmental covariates used to fit integrated SDMs were standardized to have a mean of zero and a standard
deviation of one to improve model convergence.

2.4. Integrated species distribution models

We fit species distribution models that integrated the results of systematic pitfall trapping surveys with presence-only records of
western spadefoots in the study region. Using the methods of Koshkina et al. (2017), we fit models that enable disentangling the
observation process (detection and reporting) from the ecological process determining where western spadefoots occur. We compiled
all rapping data within each 1 km x 1 km grid cell within a year to create a binary detected (1) or not (0) response for each year of
trapping. We then modeled the probability of spadefoot occurrence within each 1 km? cell at some point during the period in which it
was trapped using a site-occupancy (SO) model that accounts for the imperfect detection of individual surveys (Appendix Al).
Although this differs from the traditional use of single-season occupancy models, the seasonal and annual variation in spadefoot
activity and reproductive effort means that individuals can easily go undetected at a site in a given year. Effectively, our model treats
occupancy as the probability a cell was occupied by western spadefoots at some point during the survey period, following the broader
definition of Latif et al. (2016). We inspected the detection history of pitfall trapping for each cell and counted how many cells had
western spadefoot detections separated by one or more years of non-detection (i.e., a 1,0,...,1 pattern of detection) to assess if
non-detection in some years was common at occupied sites.

We included the trapping effort each year (number of trap-nights per array) and the total amount of precipitation that fell during
the corresponding water year as covariates on detection probability at site i (where site i is a 1 km? cell) in year t (p;¢) in the SO model
(Eq. 1), where yo is the intercept, yes is the effect of trapping effort at site i in year t (t.effi ) on p;,, and ypp: is the effect of total annual
precipitation at site { in year t (ann.ppt;;) on p;r

logit(pis) = 1o + Ve * t-€ff iy + ¥y + annppt;, 1)

The observation process in the presence-background (PB) model for presence-only data is different from the detection process in the
SO model: observation of presence-only records is a function of where people are most likely to survey for and report observations of
western spadefoots (Fithian et al., 2015). Instead of non-detection data, the PB model requires background points covering the entire
study region to act as quadrature points in an inhomogeneous Poisson Point Process model (Renner et al., 2015). These background
points are contrasted with presence-only records to quantify how the environmental predictors influence spadefoot occurrence and
how spatial sampling bias parameters influence presence-only reporting. We defined background points on a 1 km x 1 km grid
throughout the study area, because this spatial resolution has been found to be sufficient to stabilize model performance in other
studies (Renner et al., 2015; Warton and Shepherd, 2010) and produced good predictions in a study of western spadefoot distribution
in northern California (Rose et al., 2020). Detection in the PB model incorporates distance to major roads and urbanized areas as two
potential correlates of sampling bias (Eq. 2), where b(s) is the probability of a spadefoot presence being detected (reported), o is the
intercept, ayq is the effect of distance to road (rd.dist) on detection, and oy, is the effect of distance to urbanized area (urb.dist) on
detection.

log(b(s)) = ag + @y * rd.dist + @, + urb.dist 2

Although the SO and PB models have different detection/observation process models, both inform the ecological process model of
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species occurrence in the integrated SDM, because the likelihoods for both models include the intensity, A(s), the ecological response
variable in the integrated SDM (Eq. 3; Appendix A1). The intensity, A(s), is the expected number of individuals observed per unit area
near location s, where s is a point location within the study area. In other words, A(s) is analogous to a density, the expected count of
individuals within a defined area. The intensity for western spadefoots is a function of slope, elevation (elev), % sand (sand), grassland
or shrub/scrub cover (gs), distance to ephemeral stream (eph.dist), and distance to vernal pool or temporary pond (vp.dist) (Eq. 3).
Because the same environmental predictors of intensity are used for both the PB and SO data, both data sources inform the model’s
estimates of the f parameters and therefore the expected distribution of western spadefoots on the landscape.

log(A(s)) =Py + By * slope + B, * slope® + ., + elev + f.p, * elev® + f., * sand + f,, * sand” F By x @S+ B * 85 + By * eph.dist
+p,, * vp.dist
(3)

The detection process model for the SO data (Eq. 1) and the log-linear model of species intensity (Eq. 3) are both components of the
likelihood for the SO model (see Appendix A1). For the PB data, the observation process model (Eq. 2) and species intensity model (Eq.
3) are multiplied to obtain the expected number of detected presences at location s (Eq. 4). Eq. (4) represents a thinned Poisson process
that accounts for the fact that only a fraction of all individuals are observed in the presence-only data, and the observation process (Eq.
2) results in a smaller number of individuals being observed near location s, v(s) than would be expected based the intensity, A(s) alone
(Fithian et al., 2015). In other words, v(s) is the combined ecological and observation process that produces the presence-only data, and
with the PB model we attempt to estimate the response variable of interest, A(s), by modeling the sampling bias in the observation
process with b(s).

v(s) = A(s)b(s) (€]

Our ability to estimate A(s) separately from the detection/observation processes is further enhanced by the fact that A(s) is part of
the likelihoods for the PB and SO models (Appendix A1). To fit the integrated SDM, we modified the likelihood functions for the PB and
SO models published by Koshkina et al. (2017) and estimated parameters by maximum likelihood (see Appendix A1 for the likelihood
functions) using the “optim™ function in R version 3.6.3 (R Core Team, 2020).

To translate the intensity, A(s) into occupancy probability for each 1 km? cell in our study area (y1), we used the following equation
(Eq. 5) from Koshkina et al. (2017) which integrates intensity over the area of site i (e.g., a 1 km? cell) to calculate the occupancy
probability (y;) at that site.

v — lfexp(f/:/l(s)ds) )

Given our study’s goals, we sought to create models with simple parametric relationships to avoid overfitting, which can lead to
poor model predictions (Merow et al., 2014), such as unsampled habitat incorrectly being predicted to be unsuitable (Kramer-Schadt
et al., 2013). Because we were concerned about overfitting the model to input data and thus producing poor estimates of spadefoot
occurrence in unsampled areas, we used only linear and quadratic effects of environmental predictor variables following Rose et al.
(2020). We did not include quadratic effects of the distance to vernal pools and distance to ephemeral streams in our models because
preliminary model fitting produced unrealistic quadratic relationships for these predictors, with rapidly increasing probability of
spadefoot occurrence at very large distances from these aquatic features. We evaluated the importance of environmental covariates on
occupancy and detection by using the mean parameter estimate and standard error (SE) to calculate 95% confidence intervals
(x~ £ 1.96 *SE) and how much those confidence intervals overlapped zero.

There is much uncertainty in the input data and predictions from SDMs, and some authors have argued that studies should provide
an estimate of the spatial distribution of uncertainty to aid in interpretation of predicted species distributions (Rocchini et al., 2011).
To visualize uncertainty in predicted probability of western spadefoot occupancy from the integrated SDM, we produced a map of the
width of the 95% confidence interval (CI) of the predicted value of y. We took 1000 bootstrapped samples of model coefficients based
on the mean parameter estimates and the variance-covariance matrix from the integrated SDM. We then calculated 1000 predictions of
y for the study area and took the 2.5th and 97.5th percentile estimates of y for each cell to calculate the 95% CI for predicted oc-
cupancy probability.

2.5. Model projection and evaluation

To project the predictions of western spadefoot occupancy from the integrated SDM, we used the “predict.pbso” function from
Koshkina et al. (2017) to calculate y using the coefficients from the best model (as defined below) and rasters containing the envi-
ronmental covariate for the study region. We used the distance to aquatic feature rasters for projecting the distribution of spadefoot
occupancy. Distance to urbanized areas and major roads were not included in model projections because these were covariates of the
reporting of presence-only records. To prevent overfitting to training data and evaluate the integrated SDM’s ability to project into
novel environments, we used blocked cross-validation to choose the best performing model (Roberts et al., 2017). We divided the study
area into five square blocks each measuring 135 km x 135 km. Then we performed a five-fold cross-validation in which all data sources
(detection/non-detection, presence-only records, and background points) from four blocks were used to fit the model, and all data
sources from the fifth block were withheld from training. The detection/non-detection data from the withheld block was then used for
testing model predictions. This process was repeated with each block withheld in turn, and the predictive performance averaged over



J.P. Rose et al. Global Ecology and Conservation 33 (2022) e01944

the five testing blocks. For comparison, we also evaluated predictions on training detection/non-detection data used to fit the model (i.
e., the detection/non-detection data from four blocks) and five-fold random cross-validation. We evaluated model predictions and
chose optimal buffer distances and weighting of data sources using the predictive log-likelihood. The predictive log-likelihood is a
measure of model calibration, or the relationship between model predictions (continuous probability of occurrence, between 0 and 1)
and observed data (binary detected or not, 1 or 0) (Fithian et al., 2015; Lawson et al., 2014). To evaluate model discrimination, the
ability of the model to distinguish presences from absences, and to provide an alternative metric for comparison to the predictive
log-likelihood we also calculated the area under the receiver operating characteristic curve (AUC). We compared integrated SDMs that
varied in two parameters: 1) the buffer distance for landscape-level covariates (% sand and grassland/shrub land cover), and 2) the
relative weighting of PB vs. SO data in the joint likelihood. We first fit models using different buffer distances for landscape-level
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Fig. 2. Marginal response curves displaying the probability of western spadefoot (Spea hammondii) occurrence, y;, vs. varying levels of environ-
mental predictors. For each plot, the value of the predictor is varied on the x-axis, and all other predictors are held constant at their average value.
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covariates (land cover and % sand in the upper 50 cm of soil), and selected the best model based on its ability to predict withheld SO
data in the blocked cross-validation, giving equal weight to each data type. Because presence-only data and systematic SO data might
differ in their quality (e.g., precision of location, certainty of identification), we then used the optimal buffer distance and tested how
preferentially weighting these two data sources in the integrated SDM affected the quality of predictions, following Fletcher et al.
(2019). The weight given to SO data in the joint likelihood was varied from 0.05 to 0.95 in increments of 0.05 and the predictive ability
of the SDM in blocked cross-validation was evaluated for each weighting. We chose the best model based on the buffer distance and
data weighting that produced the highest predictive log-likelihood, and used the best model to project the predicted probability of
occurrence (y, ranging from 0 to 1) of western spadefoots in southern California. Finally, we evaluated the ability of the best model to
predict presence-only records reported from 2017 to 2020 (that were not used to fit the model) using presence-background AUC,
because no non-detection data was available to calculate log-likelihood, a prevalence-dependent metric (Lawson et al., 2014). All
SDMs were fit in R version 3.6.3 (R Core Tean, 2020) and code to reproduce SDM analyses are available on GitLab (DOI: https://doi.
org/10.5066/P9YYKW1H ) and data are available on Science Base (htips://doi.org/10.5066/P907MC7M).

2.6. Conserved lands

We used the best model’s projection of spadefoot occurrence in southern California to estimate the area of extant habitat that falls
within 1) “protected areas” that currently have conservation protections (e.g., federal, state, or regional parks), 2) lands owned by the
U.S. Department of Defense (“DoD lands™), and 3) “unprotected” spaces that currently have no conservation protections. We classified
the continuous occupancy probability into discrete classes for this analysis because it enabled us to present a simple comparison of how
much extant habitat for western spadefoots remains in protected areas, DoD lands, and unprotected lands. We classified the continuous
prediction of spadefoot occupancy probability into four occupancy categories using natural breaks (Jenks, 1967) rounded to the
nearest tenth: very low (y = 0-0.1), low (>>0.1-0.3), medium (>>0.3-0.5), and high probability of occurrence (>>0.5-1.0). We compiled
data on protected areas and DoD lands in southern California from the California Protected Areas Database (CPAD; www.CALands.
org), spatial data on U.S. DoD lands in the study region, as well as records developed by the San Diego Monitoring and Management
Program (SDMMP; www.sdmmp.com). We then overlaid protected areas and DoD lands (Fig. A1) onto the classified occupancy surface
and extracted 1 km? grid cells within and outside of protected areas and DoD lands within each occupancy class. We calculated how
much of the western spadefoots’ current distribution is in protected areas and DoD lands. We also visually assessed where large tracts
of putatively suitable habitat exist that are currently unprotected.

To evaluate the coverage of spadefoot habitat by regional conservation plans, we quantified the area within each occupancy class
that fell within 1) an implemented conservation plan (NCCP or HCP) covering all areas within a region, 2) an implemented conser-
vation plan that covers discrete linear or energy projects within a broader region (hereinafter a “discrete plan™), 3) an in-progress
conservation plan, and 4) no conservation plan (Table A3, Fig. A2). Within areas covered by implemented or discrete conservation
plans, we also assessed how much habitat had conservation protections.

3. Results

Western spadefoots were detected by pitfall trapping in 68 out of 376 surveyed 1 km? cells. Of these 68 1 km? cells with spadefoot
detections, 63 were trapped in three or more years, 23 of which had a pattern of initial detection, followed by one or more years of non-

Table 1

Parameter estimates from the best integrated species distribution model for western spadefoot (Spea hammondii) occurrence in southern California,
USA. CI = confidence interval, SE = standard error, PB = presence-background, SO = site-occupancy. Parameters were estimated by maximum
likelihood using Eqs. 1-4.

CI
Model Parameter Description Mean SE 2.5% 97.5%
Occurrence po Intercept of occurrence probability -2.44 0.41 -3.24 -1.64
psl Slope (degrees) -1.03 0.17 -1.36 -0.70
ps1Z -0.26 0.22 -0.69 0.17
pel Elevation (km) -0.76 0.19 -1.13 -0.39
pel® -0.40 0.20 -0.79 -0.01
Psn % Sand in the soil within 1000 m buffer 0.48 0.12 0.24 0.72
psn> -0.31 0.11 -0.53 -0.09
Pgs Proportion of grassland/shrub within 1000 m 1.14 0.17 0.81 1.47
Bgs? -0.07 0.17 -0.40 0.26
peph Distance to ephemeral stream -1.51 0.73 -2.94 -0.08
pvp Distance to vernal pool or pond -0.93 0.23 -1.38 -0.48
PB sampling bias oo Intercept of presence-only probability -2.80 0.20 -3.19 -2.41
Uurp Distance to urban center (km) -0.22 0.15 -0.51 0.07
g Distance to major road (km) -0.18 0.11 -0.40 0.04
SO detection Yo Intercept of detection probability -1.48 0.11 -1.70 -1.26
Yetr Trapping effort 0.49 0.07 0.35 0.63
Yppt Water year precipitation -0.14 0.10 -0.34 0.06
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detection, followed by a subsequent detection of western spadefoots (i.e, a 1,0,...,1 pattern). Also, 43 out of 68 cells had one or more
years of trapping without detecting a western spadefoot before the first detection, indicating that non-detection at occupied sites was
CONIMON.

The modern occurrence of western spadefoots in southern California was positively related to the amount of grassland or shrub/
scrub land cover surrounding a location, and positively related to the sandiness of the soil up to a peak (approximately 60% sand in the
upper 50 cm of soil), after which occupaney probability plateaued or declined. Western spadefoots were more likely to occur at lower
elevations, on flatter slopes, and near ephemeral bodies of water (Fig. 2). There was some evidence of sampling bias in the presence-
only data, with western spadefoot records more likely to be reported near urban centers and major roads, albeit with 95% confidence
intervals that overlapped zero for these parameters (Table 1, Fig. A3). The detection probability of western spadefoots in pitfall trap
arrays was positively related to the trapping effort that year, with weaker support for a negative relationship with annual precipitation
(Table 1, Fig. A3).

The integrated SDM performed best in the blocked cross-validation when landscape-scale covariates were characterized within a
1000 m buffer of spadefoot occurrences (according to both predictive log-likelihood and AUC), with 500 m and 2000 m buffers
performing only slightly worse (Fig. 3). The predictive ability of the integrated SDM for withheld SO data generally increased as the
weight given to SO data increased, but the predictive log-likelihood declined when SO data was weighted > 0.9. The optimal weighting
of each data source in the model likelihood was 0.85 for SO data compared to 0.15 for PB data according to predictive log-likelihood,
whereas for AUC the optimal weighting was 0.95 for SO and 0.05 for PB data (Fig. 3). Results from the random cross-validation were
similar, with a 1000 m buffer producing the best predictions, and an optimal data weighting of 0.8 or 0.85 for SO data according to
both AUC and predictive log-likelihood (Fig. 3). Model discrimination was higher on training data (detection/non-detection data from
the four blocks used to fit the model; AUC = 0.81) and in random cross-validation (mean AUC = 0.76) than blocked cross-validation
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(mean AUC = 0.69), as expected. When predictions were evaluated on presence-only records from 2017 to 2020, the model performed
well at discriminating recent western spadefoot occurrences from background points (AUC = 0.81).

The majority of remaining habitat with high occupancy probability for western spadefoots in southern California is in the southern
half of the historical range (Fig. 4). The best integrated SDM predicts large regions with a high probability of spadefoot occurrence in
western Riverside County, northwest and west central San Diego County, and southeastern Orange County. There is low probability of
western spadefoot occurrence throughout most of the species’ historical range in Los Angeles County, where low elevation habitats
have been developed into urban and suburban land uses. In Ventura and San Bernardino counties, some small patches of high predicted
spadefoot occurrence remain, but these regions appear isolated from the rest of the current distribution of the species (Fig. 4). The
uncertainty in predicted western spadefoot occupancy probability was highest in western Riverside County and eastern San Diego
County, in areas with high predicted probability of occupancy but few or no pitfall trapping arrays (Fig. A4).

Implemented and discrete conservation plans combine to cover most of the area predicted to have a medium or high probability of
western spadefoot occurrence. Implemented conservation plans cover 46.8% of the area classified as medium probability of spadefoot
occurrence and 44.1% of the area classified as high probability of spadefoot occurrence (Table 3; Figs. 5,6, A3). Discrete conservation
plans also cover a large proportion of the areas classified as having a medium (35.6%) or high (49.1%) probability of spadefoot
occurrence. Although implemented and discrete conservation plans ostensibly provide spatial coverage of most of the areas in southern
California predicted to have medium to high probability of spadefoot occurrence, less than half of the total area in these two occupancy
classes currently have protected status or are within DoD lands. Just 28.9% of all 1 km? cells classified as medium occupancy prob-
ability are currently protected and an additional 5.2% are on DoD land. Similarly, 24.7% of all high occupancy cells are in protected
lands. Notably, an additional 17.4% of high occupancy probability cells are on DoD land, despite DoD land making up only 2.7% of the
study region (Table 2). Three DoD bases in San Diego County with extant vernal pool complexes, Marine Corps Base Camp Pendleton,
Fallbrook Naval Weapons Station, and Marine Corps Air Station Miramar (Fig. A1), cover most of the high occupancy western spa-
defoot habitat on DoD lands (Fig. A5).

Contiguous blocks of unprotected habitat with a high probability of spadefoot occurrence are found in central San Diego County
(Fig. 6, A6). Likewise, unprotected areas with high predicted probability of spadefoot occurrence are found in western Riverside
County (Fig. 6, A6). Fewer areas of highly suitable but unprotected land are present elsewhere in the historical range of the western
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Fig. 4. Predicted probability of occurrence, y(s) of western spadefoots (Spea hammondii) in southern California. Warmer colors indicate a higher
probability of western spadefoot occurrence. The prediction is from the best performing integrated SDM projected onto 2016 National Land Cover
Data. For some regions, including the Los Angeles Basin, soil data were not available, and the model was projected assuming the % sand in the soil
was equal to the average for the study region. The study region is the historical range of western spadefoots buffered by 10 km.
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Table 3

Proportion of the western spadefoot (Spea hammondii) range in southern California that is covered by 1) an implemented conservation plan, an in-
progress conservation plan, an implemented conservation plan covering discrete linear or energy projects within a wider region (“Discrete™), or no
conservation plan (“None™) within each occupancy probability class. The “Total Area” column presents the total area in km? of that occupancy class.

Conservation plan status Total Area
QOccupancy class Implemented In-progress Discrete None (km?)
Very low 0.20 0.14 0.15 0.51 17,841
Low 0.44 0.08 0.26 0.23 6434
Medium 0.47 0.06 0.36 0.12 2567
High 0.44 0.03 0.49 0.04 2072
Total 0.30 0.11 0.21 0.38 28,914
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Fig. 5. Classification of spadefoot occupancy probability for areas in the southern range of the western spadefoot (Spea hammondii) that are
currently U.S. Department of Defense lands o1 protected by local, state, or federal government or non-governmental organizations. Areas in panel A
are within an implemented or discrete regional conservation plan, areas in panel B are within an in-progress regional conservation plan, and areas in
panel C are not currently within a regional conservation plan. A very low occupancy classification corresponds to a predicted probability of spa-
defoot occuirence between 0 and 0.1; a low classification corresponds to a probability of spadefoot occuirence between 0.1 and 0.3; a medium
classification corresponds to a probability of spadefoot occuirence between 0.3 and 0.5; a high classification corresponds to a probability of spa-
defoot occurrence > 0.5.

spadefoot. Extreme southern Orange County has one contiguous patch of medium to highly suitable habitat, but few recent spadefoot
records have been reported in this region (Fig. A6). Similarly, there are scattered and smaller patches of unprotected putatively
suitable spadefoot habitat in Ventura County, and in western Los Angeles County along the Santa Clara River watershed (Fig. A6).

4. Discussion

The majority of remaining habitat for western spadefoots in southern California is found in the southern half of its historical range.
The model projections in this study, with patchy areas with a high probability of spadefoot occupancy surrounded by larger expanses of
unsuitable habitat within the historical range, confirm the decline evidenced in spatiotemporal patterns of western spadefoot
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Fig. 6. Classification of spadefoot occupancy probability for areas in the southern range of the western spadefoot (Spea hammondii) that are
currently unprotected by local, state, or federal government or non-governmental organizations. Areas in panel A are within an implemented or
discrete regional conservation plan, areas in panel B are within an in-progress regional conservation plan, and areas in panel C are not currently
within a regional conservation plan. A very low occupancy classification corresponds to a predicted probability of spadefoot occurrence between
0 and 0.1; a low classification corresponds to a probability of spadefoot occurrence between 0.1 and 0.3; a medium classification corresponds to a
probability of spadefoot occurrence between 0.3 and 0.5; a high classification corresponds to a probability of spadefoot occurrence > 0.5.

Table 2

Proportion of the western spadefoot (Spea hammondii) range in southern California that is in protected areas, on U.S. Department of Defense (DoD)
lands, or not currently protected, by occupancy probability class. Occupancy class is based on predicted probability of occupancy from the integrated
SDM. Protected areas are based on data from the California Protected Areas Database (www.CALands.org) and the San Diego Monitoring and
Management Program (www.sdmmp.com). Total area is the area in square kilometers that falls within that occupancy class within our defined study
area.

QOccupancy class Protected areas DoD lands Unprotected Total Area (km?)
Very low 0.43 0.01 0.56 17,862

Low 0.35 0.02 0.63 6445

Medium 0.29 0.05 0.66 2568

High 0.25 0.17 0.58 2073

observations in this region (Jennings and Hayes, 1994; Thomson et al., 2016). The occurrence of western spadefoots was primarily
related to the distribution of open canopy grassland or shrub/scrub habitat and the proximity to suitable breeding habitat including
ephemeral streams and vernal pools. Summarizing the amount of grassland/shrub land cover and the sandiness of the soil within a
1000 m buffer of spadefoot occurrences resulted in the best performing models, with 500-2000 m buffers also performing well. This
finding highlights the value and extent of “core” terrestrial habitat surrounding breeding pools for western spadefoots (Halstead et al.,
2021). The spatial extent at which terrestrial habitat influences western spadefoot occurrence is unsurprising given that adults spend
the majority of the year aestivating underground and can move hundreds of meters from breeding sites to their burrows (Baumberger
et al.,, 2019; Halstead et al., 2021). The importance of the landscape surrounding breeding sites has been documented for many
pond-breeding amphibians (e.g., Gibbs, 1998, Trenham and Shaffer, 2005). Habitat fragmentation might have particularly acute ef-
fects in species with life cycles that require annual migrations between breeding and non-breeding habitat (Becker et al., 2007) and
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those that spend a longer time in the non-breeding habitat (Kadoya et al., 2008). Grassland and shrubland habitat greatly decreased in
area in California in the late 20th century (Sleeter et al., 2011), and this habitat loss and fragmentation is likely to have contributed to
the reduced distribution of the western spadefoot in southern California.

Comparing the modeled distribution of western spadefoot occupancy to the spatial coverage of regional conservation plans reveals
both apparent positive outcomes and shortcomings for conservation planning. The vast majority of areas predicted to have a high
probability of western spadefoot occupancy fall within the footprint of regional conservation plans implemented during the past 25
years, whereas little high occupancy habitat exists in areas lacking a conservation plan. Still, within the regions covered by an
implemented or discrete conservation plan, 61% of the habitat classified as having a medium or high probability of western spadefoot
occurrence is not currently protected (or within DoD land). This highlights that the existence of a conservation plan on paper does not
guarantee protection of habitat for all species that occur within the geographic footprint for that plan. Habitat within a conservation
plan area might not be protected yet because the planned conservation network is not completed (i.e., not all land has been acquired)
and in the meantime the habitat is at risk of disturbance and degradation from activities like off-highway vehicle use. Similarly,
because extant habitat on DoD land is not necessarily protected and managed for conservation goals, a change in mission needs on a
given DoD base could lead to changes to existing spadefoot habitat. Even for areas with a high probability of western spadefoot oc-
cupancy that do have conservation protections, we cannot conclude from our SDM results alone whether those conservation pro-
tections are working to sustain healthy populations of this species. Evaluating the effectiveness of conservation protections for local
and meta-population viability will require long-term data on the demographic vital rates and genetic structure (e.g., Neal et al., 2020)
of western spadefoot populations.

Given the reduced range of the western spadefoot in southern California, protecting remaining habitat, even within existing
conservation plans, could be vital for ensuring this species persists in this heavily fragmented landscape. Our analysis shows that some
unprotected but potentially high-quality habitat exists in parts of northern and central San Diego County for which regional con-
servation plans are in progress. Only small patches of habitat with a high probability of spadefoot occupancy exist outside of regions
with a conservation plan at any stage, largely in the northwestern part of the historical range, in eastern Ventura County and northern
Los Angeles County. Some of the areas predicted to have a high probability of occurrence do not have recent records of western
spadefoot presence, possibly due to accessibility of private lands, and would be good targets for future surveys. For example, central
San Diego County east and north of the city of Escondido, south-central San Diego County just north of the border with Mexico, and
western Riverside County in the hills east of the city of Temecula. These potentially suitable sites could be considered for mitigative
strategies to improve the habitat through breeding site creation (Baumberger et al., 2020) thus enhancing the regional population
resiliency (Neal et al., 2020).

To best leverage the available data on the occurrence of western spadefoots in southern California, we fit a SDM that integrated
spatially limited site-occupancy data with more widespread presence-only data into a joint likelihood weighted towards the higher-
quality occupancy data (Fletcher et al., 2019; Koshkina et al., 2017). In fitting this model to our data, we assumed that the occu-
pancy of western spadefoots within 1 km cells was fixed during the period in which they were sampled (the “closure assumption™) and
used the estimated relationships between environmental predictors (including contemporary land cover) and spadefoot occurrence to
project this species’ distribution onto 2016 land cover. Although the closure assumption is likely to be violated in reality, we believed it
was a necessary trade-off in order to integrate multiple data sources to produce the most informative model about areas potentially
occupied by western spadefoots. Violation of the closure assumption can lead to biased estimates of y (Rota et al., 2009); however,
some authors have advocated for a broader definition of occupancy that includes species presence at some point during the relevant
time period (Latif et al., 2016). This more inclusive definition of occupancy was appropriate for our goal of identifying areas potentially
occupied by western spadefoots on the modern landscape. The implementation of regional conservation plans could have resulted in
changes in occupancy during the sampling period if the amount of habitat for western spadefoots increased as a result. These con-
servation plans primarily protected remaining open spaces and native habitats rather than increasing the amount of habitat for western
spadefoots, and therefore would be expected to stabilize rather than increase occupancy. Despite the amount of land cover change that
took place in southern California in the late 20th century, the grassland and shrub/scrub cover in our study area did not change much
from 2001 to 2016. The area of grassland or shrub/scrub land cover within 1000 m of pitfall traps exhibited < 10% change for 354 out
of 376 of 1 km cells (94.1%), which indicates that our static modeling approach likely did not obscure dramatic changes in western
spadefoot occupancy during our study period. In contrast, grassland and shrubland habitats are the two natural land cover types
predicted to exhibit the largest proportional declines in California in the 21st century, with southern California projected to exhibit the
highest rates of future urbanization (Sleeter et al., 2017).

As land cover change continues in southern California, capturing the dynamics of western spadefoot occupancy will be essential for
future conservation planning and management. Future work could expand upon our approach by explicitly modeling the dynamics of
western spadefoot occupancy in response to changing land cover and climatic conditions. For example, a relevant question might be
how the probability of spadefoot extirpation changes as the amount of grassland and shrub land cover surrounding breeding habitat
changes. Dynamic occupancy and species distribution models can explicitly model the processes that produce changes in species’
ranges over time (Evans et al., 2016; Royle and Kéry, 2007). A dynamic modeling approach was not possible with the data available for
this study, because the SO data alone did not capture the extent of western spadefoots in southern California, and the presence-only
data for western spadefoots were not consistently distributed in space and time. Therefore, if we attempted to model the change in
spadefoot occurrence by fitting integrated SDMs to data from multiple time periods, any apparent changes in western spadefoot
distribution would likely be an artifact of spatiotemporal patterns in sampling and not true range dynamics. Given the potential
synergy between future climate change (Diffenbaugh et al., 2015) and land cover change (Sleeter et al., 2017) in southern California,
projecting future western spadefoot viability in the long term will require a model that captures the interaction between the dynamic
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processes of land cover change, climate change, and population extirpation and colonization.
4.1. Summary and conclusions

Our study integrated multiple data sources to project the current distribution of western spadefoots in southern California to model
where this species persists in a highly altered landscape and how much of the remaining habitat has conservation protections. Suitable
habitat for western spadefoots in southern California is now largely restricted to the southern half of its historical range, where regional
conservation plans have been implemented. Within regions covered by regional conservation plans, some large patches of spadefoot
habitat are currently protected by federal, state, local, or non-governmental organizations, or owned by the U.S. Department of De-
fense. However, even within areas covered by conservation plans, the majority of habitat with a medium to high probability of western
spadefoot occupancy lacks any formal conservation protections. Conservation ownership for such parcels can be lacking because
although the plan is approved, the conservation network of protected lands is not yet completed. Further, it remains unknown how
well conservation protections ensure the viability of extant populations within the plans. Our model projections and comparison of the
distribution of remaining habitat and protected lands provides valuable information for decision-makers who must assess the con-
servation status of the western spadefoot in southern California. We identified additional unprotected areas that are predicted to have
high probability of spadefoot occurrence and occur within areas covered by conservation plans that could be targets for conservation
acquisitions in the future. Given the loss of grasslands and shrublands in California in the late 20th century (Sleeter et al., 2011) and the
projected continuing expansion of human-dominated land uses as the state’s population grows (Sleeter et al., 2017), implementation of
in-progress land use plans, the protection of remaining habitat, and active management where conservation plans are in effect could be
vital for the continued persistence of western spadefoots in southern California.
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