

Topic: Summary of NODOS Biological Resources Surveys

Subject: **Overview and Summary of the NODOS Biological and Botanical** Surveys as They Relate to the Sites Reservoir Project Area

The information in this memo has been excised and summarized from the following documents:

- North of the Delta Offstream Storage (NODOS) Investigation Progress Report to CALFED, July 2000
- North-Of-The-Delta Offstream Storage Investigation Final Initial Alternatives Information Report, May 2006
- Preliminary Administrative Draft North-Of-The-Delta Offstream Storage Project EIR/EIS. California Department of Water Resources (DWR) and U.S Department of the Interior (DOI), Bureau of Reclamation, Mid-Pacific Region (Reclamation). December 2013

Initial surveys were performed in the NODOS "Sites and Colusa Project Area" from approximately 1997 to 2000, additional surveys by the California Department of Water Resources (DWR) and the California Department of Fish and Wildlife (CDFW) were performed from 2001 - 2004, then again in 2010 to 2011 at newer proposed Project facility locations (Delevan Pipeline and associated facilities).

Reptiles and Amphibian

Surveys for reptiles and amphibians were conducted by CDFW from August 1997 through spring 1999 in the Sites and Colusa Project areas. Amphibian and reptile surveys included night driving, dip-netting, seining, ground searches, habitat assessment, consultation with United States Fish and Wildlife (USFWS), and the use of the USFWS and CDFW's protocol guidelines for red-legged frog and California tiger salamander surveys.

The major objectives of these surveys were to search for California red-legged frogs, federally threatened; California tiger salamanders, candidate for federal listing and California Species of Special Concern; and to conduct general herpetology surveys. Four species listed as federal and California State Species of Concern that could potentially occur in the Sites and Colusa Project areas—foothill yellow-legged frogs, western pond turtles, western spadefoot toads, and California horned lizard-were also looked for during the course of this survey.

Results

A total of 2,400 hours in the spring and summer of 1998 and 1999 were spent in the Sites and Colusa Project areas looking for reptiles and amphibians. A total of 19 species, 5 amphibians and 14 reptiles, were found during this survey. Only one special species targeted by these surveys was found in the Sites Project study area, the western pond turtle. California red-legged frogs and California tiger salamanders were not found.

Mammal Surveys

A variety of field survey methods were used by CDFW biologists in 1998 and 1999 to sample the mammal populations at the Sites Project study area. These methods included small mammal trapping, mist netting, acoustical surveys, roost searches, track plates, camera stations, spotlighting, general habitat measurements and assessment, and incidental observation.

Results for Sites Project Area

No federally or state listed species were found during field surveys in the Sites Project study area. Six mammal California State Species of Special Concern were documented at the four project areas. Table 1 identifies those found within the Sites Reservoir study area.

Species	Status
American badger	SSC
Pallid bat	SSC
San Joaquin pocket mouse	SSC
Western red bat	SSC

Table 1. Special Status Mammals Observed in the Sites Project Study Area

SSC = California Species of Special Concern

Source: North-Of-The-Delta Offstream Storage Investigation Final Initial Alternatives Information Report, May 2006

Avian Surveys

Avian surveys in the Sites Reservoir study area included general line transects and focused bank swallow, yellow-billed cuckoo, and owl surveys. The most relevant studies were confined primarily to the area of the reservoir footprint. However, line transects extended up to 2.5 miles from the reservoir footprint along key drainages. In addition to the surveys in the reservoir footprint, surveys were also initiated at Funks Reservoir to document which state or federally listed avian species would use a reservoir within low elevation grassland habitats. Sites Reservoir data are most comprehensive, being surveyed monthly from March 1997 to at least March 2000.

Results for Sites Project Area

No federally or state listed species identified as potentially occurring were found during field surveys in the Sites Project study area. Eleven avian species classified as either California Species of Special Concern or federal Migratory Nongame Birds of Management Concern were observed during the surveys at Funks Reservoir and are listed in Table 2.

Species	Status					
American white pelican	SSC (breeding only)					
Common loon	SSC (breeding only)					
Golden eagle	FP					
Grasshopper sparrow	SSC (breeding only)					
Lawrence's goldfinch	MNBMC					
Loggerhead shrike	SSC (breeding only)					
Long-billed curlew	MNBMC					
Northern harrier	SSC (breeding only)					
Short-eared owl	SSC (breeding only), MNBMC					
Bald eagle	SE					
White-tailed kite	FP					
SSC = California Species of Special Concern MNBMC = Migratory Nongame Birds of Management Concern (USFWS) SE = State Endangered FP = State Fully Protected						

Table 2. Special Status Bird Species Observed at Funks Reservoir

Source: North-Of-The-Delta Offstream Storage Investigation Final Initial Alternatives Information Report, May 2006.

Valley Elderberry Longhorn Beetle (VELB)

A survey of all potential reservoir sites for the VELB and its habitat was conducted during the periods January through July 1998 and April through June 1999. Surveys focused on identifying potential habitat for VELB, the number of elderberry stems found measuring more than one inch, and the presence of exit holes. A total of 45 days was spent field surveying the drainages.

Results for Sites Project Area

Six hundred seventy-two stems were counted within the proposed Sites Project area. Emergence holes were found on 18 individual stems. The plants within this area tend to be individuals with multiple trunks and range from unhealthy stressed plants to occasional large healthy individuals. The majority of plants at this site and the riparian vegetation in general tend to be in poor condition.

|--|

Number of elderberry stem	672
Number of stems with emergence hole	18
Percentage of stems with emergence holes:	2.7

Vernal Pool Brachiopods

Surveys of potential special status shrimp habitat at the potential reservoir sites were performed in 1998 and 1999. The 1999 surveys were conducted to verify potential special status shrimp habitat mapped in 1998 and to survey in areas where access was unavailable in the previous surveys because of flooded creeks, washed-out roads, and property access limitations.

Special status shrimp include species in the following categories:

- Shrimp listed or proposed for listing as Threatened or Endangered Species under the federal Endangered Species Act (50 Code of Federal Regulations [CFR] 17.11 for listed animals and various Federal Register notices for proposed species).
- Other shrimp species meeting the definition of Rare, Threatened, or Endangered Species under the California Environmental Quality Act (CEQA) Guidelines (Section 15380).

Potential special status shrimp habitat is defined as seasonal wetlands and other temporarily ponded areas of sufficient size (depth and area) and seasonality to support specific vegetation. Grasslands and vernal pools characterize the majority of the potential landcover where special status shrimp could be found within the Sites Reservoir study area.

Results for Sites Project Area

A summary of potential special status shrimp habitat mapped in the 1998 and 1999 surveys is presented in Table 4. The majority of the areas identified as potential habitat was identified as degraded by cattle activity, erosion, and debris from cattle feeding areas.

Table 4: Total	Acreage o	f Potential	Special	Status	Shrimp	Habitat i	n the	Sites	Project
Study Area									

Survey Year	Total Extent (Acres) of Potential Habitat
1998	73
1999	71

Plant Surveys

Focused habitat-specific surveys were conducted, using wandering transect methodology, between February and October 1998 and 1999 and within potential routes for conveyances, recreation areas, and road relocations for the Sites Project area in 2000 through 2003. These months coincided with the appropriate flowering and fruiting stages necessary for the identification of most plant species occurring in the area, including all special-status species.

Results for Sites Project Area

No federally or state listed species identified as potentially occurring were found in the Sites Project study area. Five species with California Rare Plant Rank (CNPR) status

were found during field surveys that were conducted within the Primary Study Area. This status is considered for purposes of CEQA analysis.

Species	Status					
Adobe lily	CRPR of 1B.2					
Bent-flowered fiddleneck	CRPR of 1B.2					
Red-flowered bird's-foot trefoil	CRPR of 1B.1					
Brittlescale	CRPR of 1B.2					
San Joaquin spearscale	CRPR of 1B.2					
California Rare Plant Rank:						
IB = rare, threatened, or endangered in California and elsewhere						
0.1 = seriously endangered in California						
0.2 = fairly endangered in California						

Table 5. Rare Plant Species Found in the Sites Project Study Area

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix A: Botanical Resources Report

January 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

Section

<u>Page</u>

SUMMARY

INTRODUCTION

- 1 Methodology
 - 1.1. General Vegetation
 - 1.2. Sensitive Plants
 - 1.2.1. High Priority Species Background
 - 1.2.2. Priority and Low Priority Species
 - 1.3. Field Survey Methods

2 Results

- 2.1. General Vegetation: Summary of Findings
- 2.2. Sensitive Plants: Summary of Findings
 - 2.2.1. Sites and Colusa Cell Reservoirs
 - 2.2.2. Newville Reservoir
 - 2.2.3. Red Bank Reservoir
 - 2.2.4. Documentation
- 2.3. Discussion
 - 2.3.1. Sites and Colusa Cell Reservoir
 - 2.3.2. Newville
 - 2.3.3. Red Bank
 - 2.3.4. Future Needs

References Notes

Attachments

1.

- Mapped clay and Lodo shale soil
 - a. Sites Clay Soils
 - b. Colusa Cell Clay Soils
 - c. Newville Clay and Lodo Shale Soils
 - d. Red Bank Clay and Lodo Shale Soils
- 2. Botanical survey personnel
- 3. 1998-1999 botanical field survey log
- 4. ArcView mapped vegetation
 - a. Sites Vegetation
 - b. Colusa Cell Vegetation
 - c. Newville Vegetation
 - d. Schoenfield Vegetation

- e. Dippingvat Vegetation
- 5. 1998-1999 plant species observed
- 6. 1998-1999 plant voucher collection
- 7. a. Explanation of prioritized plant species name and spreadsheet column acronyms
 - b. 1998-1999 prioritized plant species population occurrence records
- 8. 1998-1999 photographs of prioritized plants and vegetation communities

<u>Tables</u>

- 1.2.1. High priority plant species with potential to occur in the vicinity of the Offstream Storage Reservoir Projects, Tehama, Glenn, and Colusa counties, California.
- 1.2.2. Probability estimates for occurrence of high priority plant species in the four Offstream Storage Reservoirs.
- 1.2.3. Priority plant species with potential to occur in the vicinity of the Offstream Storage Reservoir Projects, Tehama, Glenn and Colusa counties, California.
- 1.2.4. Low priority plant species with potential to occur in the vicinity of the Offstream Storage Reservoir Project, Tehama, Glenn and Colusa counties, California.
- 1.2.5. Acreage estimates of Lodo shale and clay soil which are associated with sensitive plant species in the Offstream Storage Reservoirs.
- 1.2.6. Total precipitation and percent of average for water year 1998 and 1999 in Red Bluff, Orland, and East Park Reservoir, California.
- 2.1. Acreage estimates for the dominant vegetation communities mapped within the Offstream Storage Reservoir alternatives, 1999.
- 2.2.1. Summary of Prioritized Plant Species found in the Offstream Storage Reservoir project, 1998-1999.
- 2.2.2. Diversity of vascular plant families, genera, and species by reservoir, and native and non-native species.

Figures

- 2.1. Percent Dominant Vegetation by Reservoir Site
- 2.2. 2.2.1. Sites Botanical Resources Survey Coverage 1998-1999
 - 2.2.2. Colusa Cell Botanical Resources Survey Coverage 1998-1999
 - 2.2.3. Newville Botanical Resources Survey Coverage 1998-1999
 - 2.2.4. Red Bank Botanical Resources Survey Coverage 1998-1999

Page

SUMMARY

This report summarizes a botanical resource assessment of the Sites, Colusa cell, Newville, and Red Bank reservoir sites in 1998 and 1999. The assessment included rare plant field surveys, mapping and analysis of vegetation communities, and an inventory of vascular plants in the reservoir inundation zone.

There were no State or federally threatened or endangered plants found in the reservoir areas during the course of the study. Populations of federal Species of Concern were identified in the Newville and Red Bank alternatives. Several rare and limited distribution species were also found in all of the alternatives. The Newville and Red Bank sites yielded the greatest number of populations of sensitive plant species.

Vegetation communities which may be affected by the proposed reservoirs include California annual grassland, valley and blue oak woodland, willow riparian scrub, cottonwood riparian woodland, foothill pine woodland, chaparral, vegetated wetlands, and vernal pools. More than 80 percent of the Sites, Colusa cell, and Newville reservoir areas support annual grassland, in contrast with Red Bank which is more than 80 percent oak and foothill pine woodland. Among the reservoir alternatives, the maximum oak woodland loss may be 1,800 acres. Vernal pool impacts vary between the sites from 0 to 23 acres.

A vascular plant inventory was prepared for each site, showing that species diversity is highest at the Newville site and lowest in the Colusa cell. Non-native species representation was also greatest at Newville. The annual grassland is dominated by non-native species such as yellow star thistle (*Centaurea solstitialis*), brome grasses (*Bromus* sp.), and medusa head (*Taeniatherum caput-medusae*). Non-native species density or cover was not quantified.

INTRODUCTION

This report is a summary of a two year botanical resource assessment for four proposed Offstream Storage Reservoir alternatives: Sites, Colusa cell, Newville, and Red Bank. Colusa cell is defined for this study as the northern half of the Colusa Reservoir. Studies included a comprehensive literature background search, rare plant surveys and inventory of the inundation zones, and analysis of the vegetative communities in the proposed project areas. These studies were conducted in compliance with statutes and guidelines set forth in the California Environmental Quality Act, the California Endangered Species Act, and the Federal Endangered Species Act to determine the extent to which sensitive botanical resources would be affected by the proposed project.

1 METHODOLOGY

1.1. General Vegetation

The California Native Plant Society and the California Department of Fish and Game have classified natural plant communities in California for broad scale resource inventory and assessment. This classification system provides parameter definition for general vegetation types and of rare communities, as set forth in the CNPS <u>Manual of California Vegetation</u> (Sawyer and Keeler-Wolf 1995). The manuals classifications were used to define the natural communities which may be affected by the Offstream Storage Reservoirs. Plant communities were delineated on aerial photos (1:6,000; 1:12,000). The photos were field verified and digitized, with computer mapping software, to obtain acreage estimates of the existing vegetation communities. These data were used to prepare a plant community profile illustrating the percent cover of

dominant vegetation types within each reservoir.

1.2. <u>Sensitive Plants</u>

The CNPS, CDFG, and U.S. Fish and Wildlife Service have all developed standard classification systems for sensitive plants. To simplify these standards for the purpose of this report, sensitive plant species are defined by DWR as high priority, priority, and low priority. High priority species are either State or federally threatened, endangered, proposed threatened, or candidate species (State). Priority species are either federal Species of Concern, or CNPS List 1A, 1B, 2, or 3 species. The CNPS categories include species that are either believed to be extinct, may become listed, or are rare throughout their California range. Low priority species are defined as plants of limited distribution: CNPS List 4 (CDFG 1997, 1998, 1999; Harlow 1998; Skinner and Pavlik 1994; White 1997; USFWS 1996, 1997).

High priority plant species either are, or will soon be designated "threatened" or "endangered" under the CESA of 1985, or "rare" or "endangered" under the National Plant Protection Act of 1977 (CDFG code 1904, 2074.2, 2075.5). High priority species may also be protected under Section 7(c) of the FESA of 1973 (50 CFR). Since 1985, "threatened" plants are protected pursuant to CESA; "endangered" plants may be protected by CESA and NPPA. However, consideration of plants listed as "rare" are directed primarily by NPPA (CDFG code 1900, 1913(c).) and by guidelines set forth in the CEQA (1970,Cal. Pub. Res. Code 21000(a), 21151(a).) (Skinner and Pavlik 1994). Protection under State and federal law requires that a full environmental impact assessment will identify means to avoid impacts to the greatest extent possible and, where a significant impact would occur, acceptable measures will be identified to minimize or mitigate the impacts to below the level of significance. References and regional specialists were consulted to identify documented occurrences of prioritized species and rare communities within the project area and adjacent USGS 7.5 minute quadrangles (Abrams 1923,1944,1951; Abrams and Ferris 1960; Griggs 1997; Isle 1998, 1999; Hickman 1993; Horenstein 1998, 1999; Lis 1998, 1999; Munz and Keck 1973; USDA Forest Service 1994):

CDFG, California Natural Diversity Data Base, 1998, 1999
A Manual of California Vegetation
CDFG List of Endangered and Threatened Species, April 1999
CNPS Electronic Inventory, 1999
United States Fish and Wildlife Service list of federally endangered, threatened, proposed and candidate species, December 1998
CDFG Region I, Redding, California
CDFG, Region 2, Sacramento, California

1.2.1. High Priority Species Background

Ten high priority plant species were identified from the literature search as previously documented within 30 miles of the proposed reservoirs (Table I.2.1). The probability for finding these species in the project was predicted by using known habitat parameters and proximity of the nearest occurrence (Table 1.2.2.).

Table 1.2.1. High Priority Plant Species with Potential to Occur in the Vicinity of the

Offstream Storage Reservoir Projects, Tehama, Glenn, and Colusa Counties, California.

Species Common Name ¹	State Status ²	USFWS listing ³	CNPS status ⁴	Distribution by County	Habitat Type (typical elevation)
<i>Brodiaea coronaria</i> ssp. <i>rosea</i> Indian Valley broadiaea	CE	SC	List 1B	COL GLE LAK TEH	chaparral, cismontane woodland, valley & foothill grassland/ serpentinite (0-100 m)
Chamaesyce hooveri Hoover's spurge	none	FT	List 1B	BUT GLE MER STA TEH TUL	vernal pools (25-250 m)
Cordylanthus palmatus palmate-bracted bird's-beak	CE	FE	List 1B	ALA COL FRE GLE MAD SJQ YOL	chenopod scrub, valley & foothill grassland/alkaline (5-155 m)
Gratiola heterosepala Bogg's Lake hedge-hyssop	CE	none	List 1B	FRE LAK LAS MAD MOD PLA SAC SHA SJQ SOL TEH OR	marshes, swamps (lake margins), vernal pools (0-1,200 m)
Lupinus milo-bakeri Milo Baker's lupine	СТ	SC	List 1B	COL MEN	cismontane woodland, valley & foothill grassland (395-430 m)
Neostaphia Colusana Colusa grass	CE	FT	List 1B	COL GLE MER SOL STA YOL	vernal pools/adobe (5-200 m)
<i>Orcuttia pilosa</i> hairy Orcutt grass	CE	FE	List 1B	BUT GLE MAD MER STA TEH	vernal pools (55-200 m)
Orcuttia tenuis slender Orcutt grass	CE	FT	List 1B	LAK LAS PLU SAC SHA SIS TEH	vernal pools (200-1,100 m)
Silene campanulata ssp. campanulata Red Mtn. catchfly	CE	FC	List 1B	COL MEN	chaparral, lower montane coniferous forest/serpentinite rocky (425-1,230 m)
<i>Tuctoria greenei</i> Greene's tuctoria	CR	FE	List 1B	BUT FRE MAD MER SHA SJQ STA THE TUL	vernal pools (<200 m)

^{Notes:1} Nomenclature corresponds to Skinner and Pavlik 1994;² CE State Listed as endangered; CR State Listed as rare (Section 1904, DFG code,1994);³ SC federal Species of Concern; FC federal candidate; FE Listed as endangered by federal government; FP federally proposed threatened; FT Listed as threatened by federal government (USFWS, December 1998);⁴ Listed 1B plants rare, threatened, or endangered in California and elsewhere (California Native Plant Society).

The following information includes the most current literature and resource knowledge of known populations, ecological requirements, range and distribution, and potential or existing threats to high priority species.

Indian valley brodiaea (*Brodiaea coronaria* ssp. *rosea*) is listed as California Endangered and a Federal Species of Special Concern. This perennial herb in the Liliaceae family flowers from May to June. Its habitat includes closed-cone coniferous forest, chaparral, cismontane woodland, and valley and foothill grasslands with serpentinite soils at elevations ranging from 0 to 100 meters.

RangeCNDDB information indicates that 14 occurrences of thisspecies have been reported in Colusa, Glenn, Lake, and Tehama counties (one ofwhich is possibly extirpated).These sites are on Bureau of Land Management, U.S.Forest Service, private, and unknown ownership properties.Potential habitat exists atall the reservoir sites and known populations occur within 6 miles of Sites, within about8 miles of Colusa cell, within about 10 miles of Red Bank, and within 2 miles ofNewville.

<u>Threats</u> Various threats to these populations have been identified, including inundation by reservoir construction, mining, off-road recreational vehicle activity, road or trail construction, horticultural collecting, vandalism, and dumping. Populations are protected in part at a BLM Area of Critical Environmental Concern in Lake County.

Hoover's spurge (*Chamaesyce hooveri*) is listed as Federally Threatened with no State status. This annual herb in the Euphorbiaceae family flowers in July and August. Its habitat is vernal pools at elevations ranging from 25 to 250 meters.

<u>Range</u> According to CNDDB records Hoover's spurge has been reported

from 30 occurrences in Butte, Glenn, Stanislaus, Merced, Tehama, and Tulare counties. These plants are on CDFG, The Nature Conservancy, USFWS, private, and unknown ownership properties. Potential habitat exists at Sites and Colusa cell and known populations occur within 7 miles of these reservoirs.

<u>Threats</u> Threats include agriculture, altered hydrology, competition from non-native plants, erosion or runoff, trampling, and grazing. Populations are protected in part at the CDFG Stone Corral Ecological Reserve, USFWS Sacramento National Wildlife Refuge, and TNC Vina Plains Preserve.

Palmate-bracted bird's beak (*Cordylanthus palmatus*) is listed as California Endangered and Federally Endangered. This annual herb in the Scrophulariaceae family flowers from May through October. Its habitat is chenopod scrub and alkaline areas in valley and foothill grassland at elevations ranging from 5 to 155 meters.

Range CNDDB information indicates that 21 occurrences of this plant are known from Alameda, Colusa, Fresno, San Joaquin, and Yolo counties. This species is thought to be extirpated from Madera and Glenn counties. These populations occur on land owned by the City of Woodland, CDFG, City of Livermore, USFWS, and private entities. Known sites occur within 5 miles of Colusa cell and 7 miles of Sites reservoirs.

<u>Threats</u> Threats include agriculture, altered hydrology, competition from exotic plants, biocides, grazing, off road vehicle use, vandalism/dumping, and road and trail construction. Populations are protected at the CDFG Alkali Sink Ecological Reserve and Mendota Wildlife Area and at the Sacramento National Wildlife Refuge.

Bogg's Lake hedge-hyssop (*Gratiola heterosepala*) is listed as California Endangered with no Federal status. This annual herb in the Scrophulariaceae family flowers from

April to June. Its habitat includes shallow water in marshes, swamps (lake margins), and vernal pools at elevations ranging from 0 to 1,200 meters.

Range CNDDB information indicates that 77 occurrences of this species (one of which is possibly extirpated) have been reported in Fresno, Lake, Lassen, Madera, Modoc, Placer, Sacramento, San Joaquin, Shasta, Solano, and Tehama counties. These sites are on land owned by the BLM, CDFG, TNC, Sacramento County, Solano County Farmlands and Open Space, The Trust for Wildland Communities, US Forest Service, private, and unknown entities. Potential habitat exists at all the reservoir sites. However, the closest known location is 12 miles northeast of the Newville Reservoir alternative.

<u>Threats</u> Threats include agriculture, altered flood regime, development, herbicide use, feral pigs, grazing, foot traffic, recreational use, road and trail construction, and landfill construction. Populations are protected in private preserves, BLM Research Areas, a USFWS Botanical Special Interest Area, and CDFG Ecological Reserves.

Milo Baker's lupine (*Lupinus milo-bakeri*) is listed as California Threatened and Federal Species of Special Concern. This annual herb in the Fabaceae family flowers from June through September. Its habitat includes cismontane woodland (often along roads) and foothill and valley grasslands at elevations from 395 to 430 meters.

RangeAccording to CNDDB records Milo Baker's lupine has beenreported from 17 occurrences in Colusa and Mendocino counties. Four MendocinoCounty sites may have been extirpated. These sites are on land under Bureau of IndianAffairs, CALTRANS, and private ownership.

<u>Threats</u> This species is threatened by biocides, grazing, and road and trail construction.

Colusa grass (*Neostapfia Colusana*) is listed as California Endangered and Federally Threatened. This annual grass flowers from May to August. Its habitat is vernal pools, alkali playas, or adobe soils at elevations ranging from 5 to 200 meters.

Range According to CNDDB records, this species is reported from 56 occurrences in Merced, Solano, Stanislaus, and Yolo counties. It has been extirpated from Colusa County and from some sites in Stanislaus, Merced, and Glenn counties. Colusa grass occurs on land owned by TNC, Solano County Farmlands and Open Space, Stanislaus County, the US Department of Defense, and private and unknown entities. Potential habitat occurs at Sites and Colusa cell reservoirs and known populations occur approximately 10 miles to the east.

<u>Threats</u> Various threats to these populations include agricultural practices and grazing, altered flood regime and surface water diversion, biocides, competition from exotics, inundation, foot traffic, off-road vehicle activity, and road construction. Some populations are protected by TNC and Solano County Farmlands and Open Space.

Hairy Orcutt grass (*Orcuttia pilosa*) is listed as California Endangered and Federally Endangered. This annual grass flowers from May to September. Its habitat is vernal pools ranging in elevation from 55 to 200 meters.

Range CNDDB information indicates that 39 occurrences of this species have been reported in Butte, Glenn, Madera, Merced, Stanislaus, and Tehama counties (11 of these occurrences have been extirpated). These populations occur on land owned by the USBR, CALTRANS, TNC, USFWS, and private parties. Potential habitat exists at Sites and Colusa cell reservoirs and known populations occur within 9 miles.

<u>Threats</u> Threats include agriculture, competition from exotic plants, development, grazing, off-road vehicle use, and road and trail construction. Some populations are protected at Vina Plains Nature Conservancy Preserve and at the Sacramento National Wildlife Refuge.

Slender Orcutt grass (*Orcuttia tenuis*) is listed as California Endangered and Federally Threatened. This annual grass flowers from May to July. Its habitat is vernal pools ranging in elevation from 200 to 1,100 meters.

Range CNDDB information indicates that 76 occurrences of this species have been found in Lake, Lassen, Plumas, Sacramento, Shasta, Siskiyou, and Tehama counties. Four of the sites in Shasta County have been extirpated. These plants occur on land under BLM, City of Redding, CDFG, USFS, TNC, Trust for Wildland Communities, and private and unknown ownership. Potential habitat occurs at all the reservoirs, but no known populations occur within 20 miles.

<u>Threats</u> Threats include altered hydrology and surface water, competition from exotics, development, trampling, grazing, landfills, logging, off-road vehicle activity, vandalism, and dumping. Populations are protected in part at TNC Vina Plains Preserve, CDFG's Dales Lake Ecological Reserve, BLM Alturas RA, and Redding RA.

Red Mountain catchfly (*Silene campanulata* ssp. *campanulata*) is listed as California Endangered and a federal candidate. This perennial herb in the Caryophyllaceae family flowers from May to June. Its habitat includes chaparral and lower montane coniferous forest with serpentinite or rocky soils at elevations ranging from 425 to 1,230 meters.

RangeCNDDB information indicates that seven occurrences of this planthave been found in Colusa and Mendocino counties. These populations occur onland under BLM and private ownership. A known population of this species grows

within 5 miles of Sites reservoir. However, the proposed reservoir maximum pool is well below the observed elevation range of the species.

<u>Threats</u> Threats include erosion or runoff and mining. One population may have been extirpated by logging activities.

Greene's tuctoria (*Tuctoria greenei*) is listed as California Rare and Federally Endangered. This annual grass flowers from May to July. Its habitat is vernal pools at elevations less than 200 meters.

Range CNDDB information indicates that 38 occurrences of this species have been found. Nineteen of those populations occur in Butte, Merced, Shasta, and Tehama counties. Other occurrences are thought to be extirpated from Fresno, Madera, Stanislaus, Tulare, and San Joaquin counties. These plants occur on private land, TNC, and unknown ownership properties. Potential habitat occurs at all of the north of the Delta offstream storage reservoir alternatives. However, the nearest known population is more than 20 miles from any of the reservoir sites.

<u>Threats</u> Threats include agriculture, altered hydrology and surface water diversions, and competition from exotic plants, grazing, and exotics. Populations are protected in part at TNC Vina Plains Preserve.

Table 1.2.2. Probability Estimates for Occurrence of High Priority Plant Species in the Four Offstream Storage Reservoirs (Probabilities are based on existing habitat and known occurrences).

Species Common Name ¹	Probability for occurrence ²							
	Sites	Colusa cell	Newville	Red Bank				
Brodiaea coronaria ssp. rosea	low	low	low	low				
Indian Valley broadiaea								
Chamaesyce hooveri	low	low	low	none				
Hoover's spurge								
Cordylanthus palmatus	low	low	low	none				
palmate-bracted bird's-beak								
Gratiola heterosepala	med	med	med	med				
Bogg's Lake hedge-hyssop								
Lupinus milo-bakeri	low	low	low	low				
Milo Baker's lupine								
Neostaphia Colusalna	low	low	low	none				
Colusa grass								
Orcuttia pilosa	low	low	low	none				
hairy Orcutt grass								
Orcuttia tenuis	low	low	low	none				
slender Orcutt grass								
Silene campanulata ssp. campanulata	none	none	low	low				
Red Mtn. catchfly								
Tuctoria greenei	low	low	low	none				
Greene's tuctoria								

Notes: ¹ Nomenclature corresponds to Skinner and Pavlik 1994. ² Probability based on closest known occurrence records and potential habitat within the reservoirs in 1998-99.

1.2.2. Priority and Low Priority Species

The literature and regional references identified 42 priority and 30 low priority species within 30 miles of the proposed reservoirs (Table 1.2.3; Table 1.2.4).

January 4, 2000 Table 1.2.3. Priority Plant Species with Potential to Occur in the Vicinity of the Offstream Storage Reservoir Projects, Tehama, Glenn and Colusa Counties, California.

Species Common Name ¹	State Status	USFWS listing ²	CNPS status ³	Distribution by County	Habitat type
Antirrhinum subcordatum dimorphic snapdragon	none	none	List 1B	COL GLE LAK THE	chaparral/sometimes serpentinite (85-800m)
Astragalus rattanii var. jepsonianus Jepson's milk-vetch	none	none	List 1B	COL GLE LAK NAP TEH YOL	woodland, grassland/often serpentiinte (320-700m)
<i>Astragalus tener</i> var. <i>ferrisiae</i> Ferris's milk-vetch	none	SC	List 1B	BUT COL GLE SOL SUT YOL	meadows, grassland, subalkaline flats (5-75m)
Atriplex cordulata heartscale	none	SC	List 1B	ALA BUT CCA FRE GLE KNG KRN MAD MER SJQ SOL STA TUL YOL	meadows, grassland, saline/alkaline (1-275m)
<i>Atriplex depressa</i> brittlescale	none	none	List 1B	ALA BUT CCA COL FRE GLE KRN MAD MER SOL STA TUL YOL	Chenopod scrub, meadows, playas, grassland, vernal pools/alkaline, clay (1-320m)
Atriplex joaquiniana San Joaquin spearscale	none	SC	List 1B	ALA CCA COL GLE MER NAP SAC SBT SCL SJQ SOL TUL YOL	Chenopod scrub, meadows, playas, grassland, vernal pools/alkaline (1-320m)
Atriplex persistens vernal pool saltbush	none	none	List 1B	GLE MER STA TUL	vernal pools/alkaline (10-115m)
Balsamorhiza macrolepis ssp macrolepis big-scale balsamroot	none	none	List 1B	ALA BUT MPA NAP PLA SCL TEH	woodland, grassland/sometimes serpentinite (< 1,400m)
Chlorogalum pomeridianum var. minus dwarf soaproot	none	none	List 1B	COL LAK SLO SON THE	chaparral/serpentinite (305-750m)
<i>Cryptantha crinita</i> silky cryptantha	none	SC	List 1B	SHA THE	woodland, riparian, grasslands/gravelly streambeds (150-300m) <i>(continued)</i>

Species <i>(Table</i> 1.2.3. <i>page 2 of 4)</i> Common Name ¹	State Status	USFWS listing ²	CNPS status ³	Distribution by County	Habitat type
Delphinium recurvatum recurved larkspur	none	SC	List 1B	ALA CCA COL FRE KNG KRN MER SLO SOL TUL	chenopod scrub, woodland, grassland, vernal pools/alkaline (3-750m)
Downingia pusilla dwarf downingia	none	none	List 1B	MER MPA NAP PLA SAC SOL SON STA TEH SA	mesic grassland, vernal pools (<u>+</u> 150m)
Eleocharis quadrangulata four-angled spikerush	none	none	List 2	BUT MER THE	freshwater marsh (<500m)
<i>Eriastrum brandegeae</i> Brandegee's eriastrum	none	SC	List 1B	COL GLE LAK SCL TEH TRI	chaparral, woodland/volcanic (315-1,030m)
<i>Eriogonum luteolum</i> var. <i>caninum</i> Tiburon buckwheat	none	none	List 3	ALA CCA COL LAK MRN NAP SCL SMT	chaparral, grassland, serpentinite (< 500m)
Eriogonum nervulosum Snow Mtn. Buckwheat	none	SC	List 1B	COL GLE LAK NAP SON YOL	chaparral, serpentinite (300-2,105m)
Eschscholzia rhombipetala diamond-petaled California poppy	none	SC	List 1A	ALA CCA COL SLO STA	grassland/alkaline (0-975m)
<i>Fritillaria pluriflora</i> adobe lily	none	SC	List 1B	BUT COL GLE LAK NAP PLU SOL TEH YOL	chaparral, woodland, grassland/often adobe (60-705m
Hesperevax acaulis var. acaulis dwarf evax	none	none	List 1B	AMA BUT COL ELD FRE MAD MNT SAC SCL SLO STA TEH TUL	woodland, grassland, vernal pools (30-1,000m)
Hesperolinon drymarioides drymaria-like western flax	none	SC	List 1B	COL GLE LAK NAP YOL	chaparral, woodland, grassland/often serpentinite (100-1,130m)
Hesperolinon tehamense Tehama Co. western flax	none	SC	List 1B	GLE THE	chaparral, woodland/often serpentinite (100-1,000m (continued)

Species <i>(Table</i> 1.2.3. <i>page 3 of 4)</i> Common Name ¹	State Status	USFWS listing ²	CNPS status ³	Distribution by County	Habitat type
Hibiscus lasiocarpus California hibiscus	none	none	List 2	COL GLE THE	freshwater marsh ((0-120m)
Juglans californica var hindsii Northern California black walnut	none	SC	List 1B	CCA NAP SAC SOL YOL	riparian forest and woodland (50-200 m)
Juncus leiospermus var. leiospermus Red Bluff dwarf rush	none	none	List 1B	BUT SHA THE	chaparral, woodland, grassland, vernal pools (35-1,020m)
Layia septentrionalis Colusayia	none	none	List 1B	COL GLE LAK MEN NPA SON SUT TEH YOL	chaparral, woodland grassland/sandy, serpentinite (100-1,095m)
Legenere limosa Legenere	none	SC	List 1B	LAK NAP PLA SAC SMT SOL SON STA TEH	vernal pools (<150)
<i>Lepidium latipes var. heckardii</i> Heckard's pepper-grass	none	none	List 1B	GLE SOL YOL	grassland/alkaline falts (10-200m)
Limnanthes floccosa ssp. floccosa woolly meadowfoam	none	none	List 2	BUT LAK SHA SIS THE TRI OR	vernally mesic woodland, grassland (<400m)
Lotus rubriflorus Red-flowered lotus	none	SC	List 1B	COL STA THE	woodland, grassland (+/-200m)
<i>Lupinus sericatus</i> Cobb Mtn. Lupine	none	none	List 1B	COL LAK NAP SON	chaparral, woodland (500-1,500m)
<i>Madia hallii</i> Hall's madia	none	SC	List 1B	COL LAK NAP YOL	chaparral/serpentinite (50-670m)
<i>Madia stebbinsii</i> Stebbin's madia	none	none	List 1B	SHA TEH TRI	chaparral,/serpentinite (400-1,580m) (continued)

Species <i>(Table</i> 1.2.3. <i>page 4 of 4)</i> Common Name ¹	State Status	USFWS listing ²	CNPS status ³	Distribution by County	Habitat type
<i>Microseris sylvatica</i> woodland microseris	none	none	List 3	BUT GLE LAX SBT	chaparral, woodland, grassland (60-1,500m)
<i>Myosurus minimus</i> ssp. <i>apus</i> little mousetail	none	SC	List 3	BUT COL KRN SOL STA OR	vernal pools/alkaline (>1,500m)
Myosurus sessilis sessile mousetail	none	none	List 3	CCA COL FRE GLE MER SBT DJQ SOL STA YOL OR	grassland, vernal pools (<150m)
Navarretia leucocephala ssp. bakeri Baker's navarretia	none	none	List 1B	COL LAK MEN MRN NAP SOL SON TEH	woodland, meadows (mesic), grassland, vernal pools (<1,700m)
Paronychia ahartii Ahart's paronychia	none	SC	List 1B	BUT SHA THE	woodland, grassland, vernal pools (<500m)
Sagittaria sanfordii Sandford's arrowhead	none	SC	List 1B	BUT DNT FRE KRN MER MRN ORA SAC SHA SJQ TEH VEN	marsh & swamp (assorted shallow freshwater) (<300m)
Sanicula tracyi Tracy's sanicle	none	SC	List 1B	BUT DNT HUM TEH TRI	woodland (100-1,000m)
Trichocoronis wrightii var. wrightii Wright's trichocoronis	none	none	List 2	COL MER RIV SJQ SUT TX	meadows, freshwater marsh, riparian, vernal pools/alkaline
Tropidocarpum capparideum caper-fruited tropidocarpum	none	SC	List 1A	ALA CCA GLE MNT SCL SJQ	grassland/alkaline hills (1-455m)
Viburnum ellipticum Western viburnum	none	none	List 3	CCA FRE ELD GLE HUM MEN NAP SHA SON	chaparral, woodland (300-1,400m)

Notes: 1. Nomenclature corresponds to Skinner and Pavlik 1994. ^{2.} SC-federal Species of Concern ^{3.} California Native Plant Society; List 1A-plants presumed to be extinct in California List 1B-plants rare, Threatened, or endangered in California and elsewhere; List 2-plants rare, threatened, or endangered in California but more common elsewhere; List 3-plants about which more information is needed.

Table 1.2.4. Low Priority Plant Species with Potential to Occur in the Vicinity of the Offstream Storage Reservoir Project, Tehama, Glenn and Colusa Counties, California (all are CNPS "Limited distribution" List 4).

Scientific Name	Common Name
Allium fimbriatum var. purdyi	Purdy's onion
Allium sanbornii var. sanbornii	Sanborn's onion
Androsace elongata ssp. acuta	rock jasmine
Antirrhinum cornutum	spurred snapdragon
Asclepias solanoana	serpentine milkweed
Astragalus breweri	Brewer's milk-vetch
Astragalus clevelandii	Cleveland's milk-vetch
Astragalus pauperculus	depauperate milk-vetch
Astragalus rattanii var. rattanii	Rattan's milk-vetch
Ceanothus jepsonii var. albiflorus	musk brush
Chamaesyce ocellata ssp. rattanii	Stony Creek spurge
Collinsia sparsiflora var. arvensis	few-flowered collinsia
Collomia diversifolia	serpentine collomia
Cryptantha excavata	deep-scarred cryptantha
Eriogonum luteolum var. caninum	Tiberon buckwheat
Eriogonum tripodum	tripod eriogonum
Erodium macrophyllum	large-leaved filaree
Helianthus exilis	serpentine sunflower
Hesperevax caulescens	hogwallow evax
Juncus articulatus	jointed rush
Linanthus latisectus	linanthus
Lomatium ciliolatum var. hooveri	ciliate biscuitroot
Mimulus glaucescens	shield-bracted monkeyflower
Navarretia eriocephala	hoary navarrettia
Navarretia heterandra	Tehama navarretia
Navarretia jepsonii	Jepson's navarretia
Navarretia subuligera	awl-leaved navarretia
Orobanche valida ssp. howellii	Howell's broom-rape
Polygonum bidwelliae	Bidwell's knotweed
Streptanthus drepanoides	sickle-fruited jewel-flower

Nomenclature corresponds to Skinner and Pavlik 1994.

Field personnel examined preserved specimens of prioritized species at the California Academy of Sciences, University of California Berkeley, U.C. Davis, and California State University Chico herbaria. <u>The Jepson Manual</u> (Hickman 1993) and <u>A</u> <u>California Flora and Supplement</u> (Munz and Keck 1973) were checked for species

habitat descriptions and flowering periods. Regional botanists were consulted about local occurrences of sensitive species. For species with known soil associations, United States Department of Agriculture Natural Resource Conservation Service data were used to generate maps of Lodo shale and clay soils to assist in narrowing the focus of the surveys (Table 1.2.5.; Attachment I.a-d.) (Harradine 1948; USDA 1965).

 Table 1.2.5.
 Acreage estimates of Lodo shale and clay soil which are associated with several prioritized plant species in the Offstream Storage Reservoirs.

Soils	Number Of Acres Of Mapped Soil Units				
	Sites	Colusa Cell	Newville	Red Bank	
Lodo Shales	0	0	7,182	3,101	
Clay	8,916	4,950	2,074	305	

1.3. Field Survey Methods

Within the reservoir inundation elevations, field surveys were conducted for prioritized species according to established guidelines and protocols (CDFG 1984; USFWS 1996; Nelson 1985, 1987). Under these guidelines, focused habitat-specific surveys were conducted, using wandering transect methodology, between February and October 1998 and 1999. These months coincided with the appropriate phenological stages (flowering and fruiting) necessary for the identification of most plant species occurring in the area, including all prioritized species (Table 1.2.1 through 1.2.4). Transects were spaced 5 to 10 meters apart except in microhabitats, such as riparian areas, where they were 1 meter apart. Dense valley stands of star thistle (*Centaurea solstitialis*), ridge tops, vertical shale slopes, and impenetrable chaparral and woodland stands were perimeter surveyed only due to the lack of potential habitat. Where access and topography allowed, potential habitat was surveyed completely. Relatively minor areas at each reservoir could not be surveyed due to lack of authorized private property access.

Field survey coverage areas were estimated for each reservoir based on the level of coverage accomplished. Survey coverage was divided into three effort classes: 0 percent, less than 50 percent, and 50-100 percent coverage. Land that was not surveyed (0 percent) included: areas that do not support suitable habitat for the prioritized species, unauthorized access properties, private residences and yards, cemeteries, bedrock stream channels, vertical slopes, ridge tops above reservoir elevation, 100 percent vegetated chaparral or scrub areas, and large solid stands of yellow star thistle (*Centaurea solstitialis*). Areas which were surveyed less than 50 percent included two types of effort. These areas were surveyed during less than half of the phenological time period for the prioritized species, or half of the area was actually surveyed. These areas consisted of marginal habitat, land lacking sensitive species habitat, or land in a degraded condition which would not warrant further surveys. In areas which were surveyed greater than 50 percent and up to 100 percent, both phenological and transect surveys were done.

Areas with high quality potential habitat were prioritized and surveyed throughout the phenological time period with more complete transect coverage. Habitat parameters, including mapped soils, aspect, and plant associates, defined the number of return visits and the level of coverage. One hundred percent coverage was accomplished only in potential habitat known to support the prioritized plant species.

Plant species were identified and recorded in the field whenever possible, or preserved in a voucher collection for identification at a later date. The voucher collection consists of plant specimens which were collected and preserved as proof for species on the plant inventory lists. A plant voucher database was prepared for collections. Previously undocumented populations of prioritized species were recorded in a DWR botanical inventory database. Data were collected about each sensitive plant population including habitat parameters, approximate number of individuals, phenological state, full location description, plant community associates, existing site conditions, and present or possible threats to the population. Population definitions in

this report follow the CNDDB occurrence reporting standard of at least one-quarter of a mile separation between stands or colonies of a prioritized species. Surveys,

inventories, and plant identification were conducted by DWR staff botanists (Attachment

2). Field survey activities were documented throughout the two year study, including

dates, location, authorized property access, and assigned personnel (Attachment 3).

Annual precipitation totals, which significantly influence annual plant species germination, were noted for the 1998 and 1999 water years (Table I.2.6.).

Table 1.2.6. Total Precipitation and Percent of Average for Water Year 1998 and 1999in Red Bluff, Orland, and East Park Reservoir, California.

	WATER YEAR ¹ Total Precipitation (inches) / Percent of Annual Average			
STATION	October 1997-September 1998	October 1998-May 1999		
Red Bluff (Red Bank)	21.51 / 213	17.02 / 83		
Orland (Newville)	20.36 / 232	15.93 / 82		
East Park Reservoir (Sites/Colusa cell)	18.98 / 232	16.46 / 90		

Notes:1 California Department of Water Resources, Division of Flood Management, 1999.

2. RESULTS

2.1. General Vegetation: Summary of Findings

The following natural communities and vegetation types occur within the reservoir sites. These classifications or series are based on the dominant vegetation of a given area. These series are recognized in the literature as occurring in portions of the inner North Coast Range and Central Valley of California including Glenn, Colusa, and Tehama counties (Keeler-Wolf 1995).

Grassland California annual (includes vernal pools and swales)

This upland plant community of herbaceous annual grasses and herbs is characteristically composed of many non-native and native species. Species composition is highly variable among stands and throughout the growing season. Vernal pools and swales, within the annual grassland, support unique assemblages of native annuals. Annual grassland occurs at all the reservoir alternatives. Red Bank reservoir is the only site that did not have vernal pools.

nodding needlegrass (Nassella cernua)

This upland series is dominated by herbaceous plants with nodding needlegrass the sole or dominant grass in the ground layer. Other native and non-native perennial grasses and emergent shrubs and trees are present but the grass layer is less than 1 meter tall. Numerous small stands (less than 5 square meters) were observed on clay soil in blue oak woodland in all reservoirs although these were not large enough to be mapped from the aerial photographs.

purple needlegrass (Nassella pulchra)

Purple needlegrass, a perennial bunchgrass, is the sole or dominant grass in this upland series which may include other native or non-native perennial and annual grasses less than 1 meter tall. It was observed in all of the reservoir sites on clay soils, generally in openings in blue oak woodland, in small unmapped units.

Chaparralchamise (Adenostoma fasciculatum)Chamise is the sole or dominant shrub (greater than 60 percent) in

continuous upland canopy in this series. Emergent trees may be

present but native shrubs such as poison oak and manzanita form a mosaic with the chamise and the ground layer is sparse. Chamise chaparral was found on the western edges of the Red Bank and Newville sites.

wedgeleaf ceanothus (Ceanothus cuneatus)

Wedgeleaf ceanothus is the dominant canopy in this upland woody series. Other native shrub species form a mosaic with *Ceanothus* which can form a continuous or intermittent canopy with a very sparsely vegetated ground layer. This series occurs sporadically in the Red Bank, Newville, and Sites reservoirs.

Riparian Riparian vegetation is associated with intermittently or seasonally flooded or saturated intermittent drainages, stream corridors or floodplain terraces. Dominant stands of Fremont's cottonwood (*Populus fremontii*), mixed willow (*Salix spp.*), and narrowleaf willow (*Salix exigua*) series were observed in the reservoir sites. Mexican elderberry (*Sambucus mexicanus*) series occurs in stands which were not large enough to be mapped as distinct vegetation units.

Woodland Valley oak (*Quercus lobata*)

Valley oak woodland is the sole or dominant tree in a continuous, intermittent, or open canopy which may include other native tree and shrub species. Associated with intermittently flooded or seasonally saturated wetlands and uplands, openings are characteristically grassy. This series occurs along the major tributaries in the reservoir sites.

Blue oak (Quercus douglasii)

Blue oak is the sole or dominant tree in this woody upland series. Canopy density may be variable and the understory may include shrubs and a grassy ground layer. This series occurs in the reservoir sites in the valleys, on slopes, and in moderately rocky to well-drained areas.

Mixed oak (Quercus spp.)

Several species of oak may be present in this upland woody series, including blue oak (*Q. douglasii*), interior live oak (*Q. wislizenii*), and/or valley oak (*Q. lobata*). Other native tree species including foothill pine (*Pinus sabiniana*) may be present in addition to native shrubs and a grassy ground layer. This series occurs in the Red Bank and Newville reservoir sites.

Foothill Pine (Pinus sabiniana)

Foothill pine is the sole or dominant canopy species, or may be an emergent tree over a continuous to intermittent shrub canopy.Other native tree and shrub species may also form a mosaic with a grassy to sparse ground layer. This series may occur in intermittent freshwater wetlands and rocky to well-drained uplands. This is the dominant vegetation community at the Red Bank site. Foothill pine community does not occur in the Sites, Colusa cell, or Newville reservoir areas.

RuderalThis category refers to weedy or disturbed conditions including
areas surrounding residences, out-buildings, and stockyards.These areas may also include non-native, ornamental varieties of

plants.

Cultivated grains/crop

Orchards, grain crops, and vineyards were observed in all the reservoirs. These include cultivar varieties of non-native plants.

Wetlands Spikerush (*Eleocharis* sp.), and vernal pools are discussed here as mapped vegetated wetland series. Spikerush wetland was observed in the Sites, Colusa cell, and Newville sites. Vernal pools occur in all the reservoirs except Red Bank. Other wetlands and water, which occur in the reservoirs, but are not discussed here, include intermittent drainages, streams, and ponds.

Acreage estimates of mapped vegetation types were calculated in each reservoir (Table 2.1.; Figure 2.2).

Vegetation ¹		l l	Acreage By Rese	rvoir	
	Sites	Colusa Cell	Colusa Reservoir ²	Thomes/ Newville	Red Bank
Grassland	12,602	13,540	26,142	14,492	565
Woodland (oak)	923	20	943	1,839	899
Woodland (foothill pine)	0	0	0	0	2826
Chaparral	5	0	5	363	98
Riparian	52	37	89	64	73
Vegetated wetland	23	15	38	0	1
Cultivated grain	277	0	277	0	0
Vegetation Subtotal	13,882	13,612	27,494	16,758	4,462
Other	280	51	331	315	142
Total reservoir acreage	14,162	13,663	27,825	17,073	4,604

Table 2.1. Acreage Estimates for the Dominant Vegetation Communities Mapped Within the Offstream Storage Reservoir Alternatives, 1999.

Notes: ¹ Other classification refers to disturbed/developed acreage within the inundation elevations. ².Colusa Reservoir is a northward extention of the Sites reservoir which expands to include the Colusa cell acreage.

2.2. Sensitive Plants: Summary of Findings

There were no high priority plant species found in the Offstream Storage Reservoir alternatives during 1998-1999 field surveys. Six priority and 8 low priority species were found within the project inundation areas, with a collective total of 143 populations (Table 2.2.1).

2.2.1. <u>Sites and Colusa Cell Reservoirs</u> There were no high priority or priority species found in the Sites or Colusa cell alternatives. Ten total occurrences of four low priority plant species were identified at Sites reservoir compared with six total occurrences of the same four species in Colusa cell (Table 2.2.1.). Thirty percent of the species identified from Sites are non-native, compared to 27 percent in Colusa cell (Table 2.2.2.). Although only approximately one-third of all the species identified for these sites are non-native, qualitatively these non-natives make up the dominant vegetative cover in the annual grassland.

2.2.2. <u>Newville Reservoir</u> Thirty-one total occurrences of 4 low priority species and 23 total occurrences of 5 priority species were identified in the Newville reservoir (Table 2.2.1.). North and south-facing shale slopes and heavy clay deposits are associated with several prioritized species in this reservoir. In comparison with Sites and the Colusa cell reservoir sites, only 24 percent of the Newville species are non-native, however; they constitute the dominant cover at this site also. Newville has the greatest vascular plant diversity and the greatest number of plant families (85), genera (259), and species (522) represented (Table 2.2.2.).

<u>Red Bank Reservoir</u> Ten prioritized plant species and 73 total populations were found in this location; 39 priority species populations and 34 populations of low priority species (Table 2.2.1.). Although 21 percent of all species identified in Red Bank are non-native, at this site non-natives are not the dominant vegetation relative to cover. Native woodland species constitute the dominant vegetative cover (78 percent) at this site (Table 2.1.).

Basanyair	Common Name (acientific name) ¹	Number of	Statua ³
Reservoir	Common Name (Scientific fiame)		Status Stato/USEWS/ CNPS
		Occurrences	
RED BANK	fairy candelabra (Androsace elongata ssp.acuta)	1	-/-/List 4
	dimorphic snapdragon (Antirrhinum subcordatum)	23*	-//1B
	Jepson's milkvetch (Astragalus rattanii var. iepsonianus)	8*	– / / 1B
	Stony Creek spurge (Chamaesyce ocellata ssp rattanii)	9	– / / List 4
	Brandegee's eriastrum (Eriastrum brandegeae)	3*	– / SC / 1B
	adobe lily (<i>Fritillaria pluriflora</i>)	5*	– / SC / 1B
	woolly meadowfoam (Limnanthes floccosa ssp. floccosa)	1	– // List 4
	Jepson's navarretia (Navarretia jepsonii)	8	-/-/List 4
	Tehama navarretia (Navarretia heterandra)	11	– / / List 4
	sickle-fruit jewel-flower (Streptanthus drepanoides)	4	/ – / List 4
THOMES-	fairy candelabra (Androsace elongata ssp. acuta)	13	- / - / List 4
NEWVILLE	dimorphic snapdragon (Antirrhinum subcordatum)	7*	– / / 1B
	Jepson's milk-vetch (Astragalus rattanii var. jepsonianus)	1*	/ / 1B
	Stony Creek spurge (Chamaesyce ocellata ssp rattanii)	7	– / / List 4
	adobe lily (Fritillaria pluriflora)	12*	-/SC/1B
	hogwallow evax (Hesperevax caulescens)	4	– / / List 4
	Tehama dwarf flax (Hesperolinon tehamense)	2*	– / SC / 1B
	N.California black walnut (Juglans californica var. hindsii)	1*	– / SC / 1B
	Tehama navarretia (Navarretia heterandra)	7	/ / List 4
SITES	fairy candelabra (Androsace elongata ssp. acuta)	3	- / - / List 4
	hogwallow evax (Hesperevax caulescens)	3	– / / List 4
	hoary navarretia (Navarretia eriocephala)	1	– / / List 4
	Tehama navarretia (Navarretia heterandra)	3	/ / List 4
COLUSA	fairy candelabra (Androsace elongata ssp. acuta)	2	-/-/List 4
CELL	hogwallow evax (Hesperevax caulescens)	2	– / / List 4
	hoary navarretia (Navarretia eriocephala)	1	– / / List 4
	Tehama navarretia (Navarretia heterandra)	1	– / / List 4

Table 2.2.1. Summary of Prioritized Plant Species found in the Offstream Storage Reservoir project, 1998-1999.

Notes: ¹ Nomenclature corresponds to Skinner and Pavlik 1994. ² Occurrences are defined under CNPS 1999 guidelines as population findings separated by at least 0.25 miles;* = DWR Priority species. ³ USFWS 1998:SC (Species of Concern); Skinner and Pavlik 1994; CNPS IB; (Plants rare, threatened, or endangered in California and elsewhere); CNPS List 4 (Plants of limited distribution).
Table 2.2.2. Diversity of Vascular Plant Families, Genera, and Species by Reservoir, and Native and Non-native Species.

VASCULAR PLANT DIVERSITY	Sites	Colusa Cell	Thomes/ Newville	Red Bank
Number of families	62	58	85	76
Number of genera	219	193	259	229
Number of species	363	287	522	456
Native species	254	210	398	358
Nonnative species	109	77	124	98

2.2.4. <u>Documentation</u> Maps were prepared of the estimated survey coverage area and the level of survey effort (Figure 2.2.a-d). An inventory of identified vascular plants, including prioritized species, was compiled (Attachment 5). In addition, a plant voucher collection list was compiled for plants which were identified from preserved specimens (Attachment 6). Vouchers were placed in a preserved DWR collection. One hundred and fourty-three prioritized species population records were documented in the project areas (Attachment 7). Color photographs were taken of prioritized species, their habitat, and plant communities in the reservoir sites (Attachment 8).

2.3. DISCUSSION

Percent cover calculations from the aerial photographs and the plant community profile show that annual grassland is the dominant plant community in the Sites, Colusa cell, and Newville reservoir areas (Figure 2.1; attachment 4.a-e). Grassland vegetation at these sites is 89, 99, and 84 percent of the total cover, respectively. Microhabitats within these annual grasslands support unique native annual plant species; these are northern clay hardpan vernal pools, swales, and seasonal wetlands. While the annual grasslands are highly variable with respect to species composition, the dominant species are European forage grasses,

OFFSTREAM STORAGE RESERVOIR INVESTIGATION

OFFSTREAM STORAGE RESERVOIR INVESTIGATION COLUSA CELL RESERVOIR

such as Italian ryegrass (*Lolium* sp.), wild oats (*Avena* sp.), and the forb, yellow star thistle (*Centaurea solstitialis*).

2.3.1. <u>Sites and Colusa Cell Reservoirs</u> Sites and the Colusa cell receive less average annual rainfall than Newville and Red Bank, and have a predominance of annual grassland vegetation that is managed for high intensity cattle grazing. Less than 10 percent of the vegetation in these reservoirs is woodland (*Quercus* sp. or *Pinus sabiniana*), chaparral, riparian, or vegetated wetland (*Eleocharis* sp.). Only six percent (923 acres) of the total inundation area of the Sites Reservoir supports oak woodland. Some of the oak woodland includes scattered low density stands of valley oak (*Quercus lobata*) on high terrace floodplains adjacent to Funks, Grapevine, and Antelope Creeks. There are few seedlings and saplings in the existing valley oak stands, which consist of large mature and senescent trees. The blue oak stands, however, have a diverse age class representation. Oak age classes were not measured. Nine-hundred twenty-three acres of oak woodland would be lost at Sites, and 20 acres would be lost at the Colusa cell reservoir.

The Sites reservoir area and Colusa cell do not have shale soil or potential habitat for the plants associated with this soil type. However, approximately 65 percent (8,916 acres) of Sites inundation area is clay soils, and the Colusa cell is approximately 36 percent (4,950 acres) clay substrate. Three of the four prioritized plants species found in the reservoirs were on clay soil.

Approximately 5 acres of vernal pools occur in the Sites reservoir. Three acres of vernal pools occur in the Colusa cell. Although six of the potential high priority species are vernal pool endemics, the probability of finding them is low because of the existing land use conditions. Clay hardpan vernal pools and alkaline wetlands were variable in quality and species composition. Although several pools in the Sites reservoir support common vernal pool species, all of the vernal pools were grazed and no prioritized species were observed. The majority of the mapped clay substrates

support non-native annual vegetation.

Potential habitat for high priority and priority species exists in Sites and Colusa cell reservoirs, however, current management practices may not be compatible with supporting the prioritized species. Potential habitat includes vernal pools, swales and alkali wetlands, and valley and foothill grassland.

2.3.2. <u>Newville Reservoir</u> This site receives more average annual rainfall than the Sites and Colusa cell alternatives and has greater inherent topographic variability and soil conditions compatible with suitable habitat for priority and low priority species. The diversity of the vegetation communities, as well as clay and shale substrates at Newville, resulted in an increase in the total number of species and occurrences of prioritized species. Annual grassland, blue oak woodland (*Quercus douglasii*), valley oak woodland (*Quercus lobata*), mixed willow riparian (*Salix* spp.), and chaparral communities occur in the site.

Newville reservoir site supports valley and blue oak woodland vegetation over 11 percent (1,839 acres) of the inundation area. The valley oak stands are primarily along Upper Stony Creek at this site. The existing oak woodlands do not appear to be as heavily grazed as the Sites and Colusa cell woodlands. There are oak seedling and juvenile age classes in some areas, although this parameter was not quantified.

This reservoir supports more populations of priority and low priority species than Sites, Colusa cell, or Red Bank alternatives. It should be noted that the current land use practices are compatible with and sustain these prioritized plant populations. Roughly 7,000 acres of Lodo shale soil was mapped in this reservoir, but not all of this was potential habitat for the associated species. North and south-facing slopes, chaparral vegetation, and slopes with less than 50 percent vegetative cover were some of the other necessary parameters to support the shale-associated species. Although over 2,000 acres of clay soil were mapped, the observed prioritized species populations tended to occur only on the moderate north-facing slopes or flats. All clay and Lodo

shale soils were adequately surveyed.

Vernal pools and alkaline wetlands in the Newville reservoir area were variable in quality, ranging from 0 to 100 percent cover and moderate to extreme grazing effect. Twenty-three acres of vernal pools were mapped in the inundation zone. There were good quality vernal pools with representation of common vernal pool flora; however, all the pools were grazed. No high priority species were found in any of the vernal pool habitat.

2.3.3. <u>Red Bank Reservoir</u> The 4,600 acre Red Bank project area is dominated by native blue oak (*Quercus douglasii*), mixed oak (*Quercus* spp.), and foothill pine (*Pinus sabiniana*). Although oak woodlands represent approximately 20 percent (899 acres) of the project area, the total amount of woodland habitat including foothill pine woodland comprises 83 percent of vegetative cover. At this site, only 2 percent of the cover is chaparral scrub, and 12 percent (565 acres) is annual grassland. The grassland vegetation occurs on the high terrace floodplain of Red Bank Creek, and on several low hills (Attachment 4). Occasional native bunch grass (*Nassella* spp.) stands occur on moderate slopes under blue oak woodland.

The Red Bank alternative receives the most annual rainfall of the reservoir sites, has the most variable topography and vegetation, and moderate to light cattle grazing influence.

Several prioritized species were found on clay and Lodo shale soil. The 3,101 acres of mapped Lodo shale soil (67 percent) was not all potential habitat for the associated sensitive plant species. Prioritized species were found with additional microsite parameters, such as north- or south-facing aspect, moderate slope, less than 50 percent vegetative cover, or chaparral plant associates. Much of the Lodo shale soil was not suitable habitat for the prioritized species because these other microsite conditions were lacking.

Approximately 305 acres of clay soil was mapped but only three populations of a

clay-associated priority species were found. The Lodo shale and clay soil areas were adequately surveyed except where no access was allowed or where terrain or vegetation made it infeasible.

Potential habitat exists at this site for the chaparral, valley and foothill woodland, and valley and foothill grassland prioritized species. There was no vernal pool or alkaline wetland habitat observed in the Red Bank reservoir site.

2.3.4. Future Needs

Surveys will be needed in each reservoir alternative where property access was not allowed in 1998 and 1999. Secondary effect areas, or areas just around the reservoirs, which may experience environmental impacts related to the reservoir projects include power lines, road realignments, conveyance facilities, recreation areas, or mitigation lands. These areas will require rare plant and inventory surveys and vegetation community mapping. Continued surveys of vernal pools, swales, and alkaline wetlands in the reservoir inundation zones are recommended by CDFG if property access allows (Lis 1999; Horenstein 1999). January 4, 2000 REFERENCES

Abrams L. 1923. Illustrated flora of the Pacific states, vol. I. Stanford University Press, Stanford, CA.

_____. 1944. Illustrated flora of the Pacific states, vol. II. Stanford University Press, Stanford, CA.

_____. 1951. Illustrated flora of the Pacific states, vol. III. Stanford University Press, Stanford, CA.

- Abrams L. Ferris RS. 1960. Illustrated flora of the Pacific states, vol. IV. Stanford University Press, Stanford, CA.
- California Department of Fish and Game. 1984. Guidelines for assessing the effects of proposed developments on rare and endangered plants and plant communities. State of California, Resources Agency, Sacramento, CA.
- _____. 1997. State and federally listed endangered, threatened, and rare plants of California.

_____. 1998. State and federally listed endangered, threatened, and rare plants of California.

_____. 1999. State and federally listed endangered, threatened, and rare plants of California.

California Natural Diversity Data Base (CNDDB). 1998. California Department of Fish and Game. Sacramento, CA.

_____. 1999. California Department of Fish and Game. Sacramento, CA.

- Environmental Systems Research Institute, Inc. (ESRI®) 1998. ArcView GIS computer mapping software. Redlands, CA.
- Griggs MA. 1997. Fritillaria pluriflora: word processor template for animal and plant elements. The Nature Conservancy, San Francisco, CA.
- Harradine F. 1948. Soils of Colusa cell County, California. University of California College of Agriculture in cooperation with the USDA Soil Conservation Service and the Bureau of Plant Industry. Berkeley, CA.
- Hickman JC. ed. 1993. The Jepson manual: higher plants of California. University of California Press, Berkeley, CA.
- Munz PA, Keck DD. 1973. A California flora and supplement. University of California Press, Berkeley, CA.

- Nelson JR. 1985. Rare plant surveys: techniques for impact assessment. Natural Areas Journal 5:18-30.
 - _____. 1987. Rare plant surveys: techniques for impact assessment. In: Elias T, editor. Conservation and management of rare and endangered plants of California, p159-166. California native Plant Society, Sacramento, CA.
- Sawyer J, Keeler-Wolf T. 1995. A manual of California vegetation. California Native Plant Society. Sacramento, CA.
- Skinner M, Pavlik B. 1994. California native plant inventory of rare and endangered vascular plants of California. Special publication No. 1. 5th ed. California Native Plant Society.
- USDA Forest Service. 1994. Sensitive plant handbook, Mendocino National Forest. USDA Forest Service Pacific southwest Region. Willows, CA.
- USDA Soil Conservation Service. 1965. Soil Survey of Tehama County, California. USDA SCS in cooperation with California Agricultural Experiment Station.
- USDA Soil Conservation Service. 1965. Soil Survey of Glenn County, California. USDA SCS in cooperation with California Agricultural Experiment Station.
- USFWS (U.S. Fish and Wildlife Service). 1996. Guidelines for conducting and reporting botanical inventories for federally listed, proposed and candidate plants. USDI USFWS Sacramento, CA.
 - _____. 1997. Determination of endangered status for three plants and threatened status for five plants from vernal pools in the central valley of California; final rule. Federal Register vol. 62, No. 58, March 26, 1997.

NOTES

Harlow DL. 1998. Letter to Nasar Bateni; Species list for reservoir sites in Colusa cell, Glenn and Tehama counties, California. USDI USFWS, Sacramento, CA.

Horenstein J. 1998. California Department of Fish and Game, Region 1 Botanist, Sacramento, California. Personal communication with Jenny Marr.

____. 1999. California Department of Fish and Game, Region 1 Botanist, Sacramento, California. Personal communication with Jenny Marr.

Isle D. 1998. Mendocino National Forest, Forest Botanist/sensitive plant program coordinator, Willows, CA. Personal communications with Jenny Marr.

_____. 1999. Mendocino National Forest, Forest Botanist/sensitive plant program coordinator, Willows, CA. Personal communications with Jenny Marr.

Lis R. 1998. California Department of Fish and Game, Region 2 Botanist/Plant Ecologist, Redding, CA. Personal communication with Jenny Marr.

___. 1998. Letter to Jenny Marr; Special status plant species. California Department of Fish and Game, Region 1, Redding CA. November 20, 1998.

. 1999. California Department of Fish and Game, Region 2 Botanist/Plant Ecologist, Redding, CA. Personal communication with Jenny Marr.

- White W. 1997. Letter to Naser Bateni; Species lists for Colusa reservoir sites, Glenn and Colusa counties, California. USDI USFWS Sacramento, CA.
- USFWS. 1997. Letter to Naser Bateni; Species lists for Redbanks reservoir sites Tehama Counties, California. USDI USFWS Sacramento, CA.

_____. 1997. Letter to Naser Bateni; Species lists for Newville reservoir sites, Glenn and Tehama counties, California. USDI USFWS Sacramento, CA.

ATTACHMENT 1. OFFSTREAM STORAGE RESERVOIR INVESTIGATION: Mapped Lodo shale and clay soils

- a. Sites clay soil
- b. Colusa cell clay soil
- c. Newville Lodo shale and clay soil
- d. Red Bank Lodo shale and clay soil

ATTACHMENT 2.

OFFSTREAM STORAGE RESERVOIR INVESTIGATION:

Botanical survey personnel

Department of Water Resources Red Bluff, California:

Barbara Castro Fish and Wildlife Scientific Aid

Julie Cunningham Environmental Specialist III

Lawrence Janeway Fish and Wildlife Scientific Aid

Jenny Marr Environmental Specialist III

Joyce Lacey-Rickert Environmental Specialist IV

Caroline Warren Fish and Wildlife Scientific Aid

Heidi West Fish and Wildlife Scientific Aid

Natalie Wight Graduate Student Assistant

Department of Water Resources Sacramento, California:

Beth Hendrickson Environmental Specialist III

Jean Witzman Environmental Specialist III

ATTACHMENT 3.

OFFSTREAM STORAGE RESERVOIR INVESTIGATION:

1998-1999 Botanical field survey log

DATE	RESERVOIR	PERSONNEL	HOURS
3/13/98	С	JM CW HW JL	36
4/6/98	С	JM CW JM	18
4/7/98	С	JM CW	18
4/8/98	С	JM CW	18
4/21/98	С	JM HW CW NW	36
4/22/98	С	JM HW JL JC	36
6/17/98	С	JM CW HW JC	36
6/23/98	С	HW CW NW JL	36
8/28/98	С	JM HW	18
9/2/98	С	HW +?	18
3/2/99	С	CW HW	18
3/3/99	С	JM CW MG BC	36
3/4/99	С	JM BC MG NW	36
3/16/99	С	HW BC	18
3/18/99	С	HW BC	18
3/30/99	С	JM BH	18
3/31/99	С	JM BC LJ HW	36
4/1/99	С	JM BH HW NW BC LJ	54
4/2/99	С	BH CW	18
4/6/99	С	CW MG	18
4/7/99	С	CW MG	18
4/8/99	С	MG NW	18
4/13/99	С	CW LJ MG	27
7/9/99	С	BH, JW	18
2/18/98	R/B	JM CW HW JC	36
4/1/98	R/B	JM CW HW JL	36
4/2/98	R/B	JM CW HW JC JL	45
4/27/98	R/B	JC HW CW	27

DATE	RESERVOIR	PERSONNEL	HOURS
5/20/98	R/B	JM CW HW	27
5/21/98	R/B	JM HW JL	27
6/9/98	R/B	JM CW HW NW	36
6/15/98	R/B	JM HW CW NW	36
6/25/98	R/B	HW NW JC	27
7/2/98	R/B	JM HW CW NW JL	45
7/3/98	R/B	JM HW CW NW	36
7/6/98	R/B	JM HW CW JC NW	45
7/7/98	R/B	HW CW JC	27
7/8/98	R/B	JM CW	18
7/9/98	R/B	JM HW CW NW	36
8/21/98	R/B	HW CW JC NW	36
8/27/98	R/B	JM CW HW	27
9/23/98	R/B	HW CW??	18
9/24/98	R/B	JM HW CW	27
10/7/98	R/B	CW HW	18
10/8/98	R/B	CW JM	18
10/13/98	R/B	JM HW	18
10/20/98	R/B	JM HW CW	27
10/21/98	R/B	JM CW HW??	18
3/2/99	R/B	JM MG BC LJ	36
3/3/99	R/B	HW LJ	18
3/4/99	R/B	HW LJ	18
3/5/99	R/B	CW MG	18
3/16/99	R/B	LJ CW	18
3/18/99	R/B	LJ MG	18
3/22/99	R/B	LJ BC	18
3/23/99	R/B	LJ BC	18

DATE	RESERVOIR	PERSONNEL	HOURS
3/25/99	R/B	BC LJ	18
3/29/99	R/B	BC LJ BH	27
4/7/99	R/B	BC HW	18
4/20/99	R/B	LJ HW	18
4/27/99	R/B	LJ CW	18
4/28/99	R/B	CW JM	18
4/29/99	R/B	HW NW JM	27
5/12/99	R/B	JM CW	18
5/18/99	R/B	BC LJ	18
5/19/99	R/B	JW BH BC LJ	36
5/20/99	R/B	BH JW	18
5/21/99	R/B	BH JW	18
5/24/99	R/B	BC LJ	18
5/27/99	R/B	JM BH	18
5/28/99	R/B	JM BH	18
6/1/99	R/B	LJ CW	18
6/3/99	R/B	BC LJ	18
6/8/99	R/B	BC CW LJ	27
6/9/99	R/B	BC LJ HW CW	36
6/10/99	R/B	BC LJ CW HW	36
6/14/99	R/B	BC LJ	18
6/15/99	R/B	LJ CW	18
6/21/99	R/B	BC LJ	18
6/24/99	R/B	JW BH BC LJ CW	45
8/11/99	R/B	JM LJ BC CW	36
5/13 99	R/B	BC NW	18
2/17/98	S	JM HW CW JL NW	45
3/2/98	S	JM CW HW JC	36

DATE	RESERVOIR	PERSONNEL	HOURS
3/3/98	S	JM CW HW NW	36
3/6/98	S	JM CW JC	27
4/14/98	S	HW CW JM HW JL JC	54
4/15/98	S	HW JC	18
4/16/98	S	JW CW	18
5/4/98	S	JM CW JL HW	36
5/8/98	S	JM HW CW JL	36
5/26/98	S	HW CW JL JC	36
5/27/98	S	JM CW HW JC	36
6/11/98	S	JM HW CW NW	36
6/22/98	S	HW CW	18
7/1/98	S	JM HW CW	27
7/22/98	S	JM CW HW NW	36
8/3/98	S	CW HW NW	27
8/4/98	S	HW CW NW	27
8/5/98	S	HW CW JC	27
8/12/98	S	HW CW	18
8/18/98	S	HW NW	18
2/18/99	S	JM BH	18
2/22/99	S	BH CW	18
2/23/99	S	BH CW	18
2/25/99	S	JM BH JW NW	36
2/26/99	S	BH JW	18
3/2/99	S	BH JW	18
3/3/99	S	BH JW	18
3/4/99	S	BH JW	18
3/5/99	S	BH JW	18
3/8/99	S	ВН	9

DATE	RESERVOIR	PERSONNEL	HOURS
3/9/99	S	CW BH	18
3/10/99	S	CW BH	18
3/11/99	S	MG BH	18
3/12/99	S	BH MG	18
3/16/99	S	BH JW MG	27
3/17/99	S	JW BH	18
3/19/99	S	BH +?	18
3/23/99	S	BH HW	18
3/24/99	S	BH +?	18
3/25/99	S	BH HW NW	27
3/26/99	S	BH NW	18
4/7/99	S	BH JW	18
4/9/99	S	BH JW	18
4/12/99	S	BC BH LJ MG	36
4/19/99	S	JW BH	18
4/21/99	S	JW BH	18
4/22/99	S	JW BH	18
4/23/99	S	JW BH	18
5/3/99	S	BH JW	18
5/5/99	S	BH JW	18
5/6/99	S	BH JW	18
6/7/99	S	CW BH	
6/8/99	S	BH +?	18
7/7/99	S	BH JW	18
2/26/98	T/N	JM HW CW JL JC	45
2/27/98	T/N	JM CW JC	27
3/4/98	T/N	JM HW CW JC JL	45
3/5/98	T/N	JM HW CW	27

DATE	RESERVOIR	PERSONNEL	HOURS
3/9/98	T/N	HW CW JL JC	36
3/10/98	T/N	JM CW HW JC	36
3/16/98	T/N	JM CW HW JC	36
3/17/98	T/N	JM CW HW JL JC	45
3/18/98	T/N	JM CW	18
3/19/98	T/N	JM CW HW JL	36
3/20/98	T/N	JM HW CW JL	36
3/26/98	T/N	JM CW JL JW JC	45
3/30/98	T/N	CW HW JC JL	36
4/6/98	T/N	HW JC	18
4/7/98	T/N	HW JC	18
4/8/98	T/N	HW JC	18
4/15/98	T/N	JM CW	18
4/20/98	T/N	JM CW JC JL	36
4/28/98	T/N	JM CW NW JC JL	45
4/29/98	T/N	JM HW CW JL JC	45
4/30/98	T/N	JM HW	18
5/11/98	T/N	JM CW JC	27
5/14/98	T/N	HW CW JC	27
5/18/98	T/N	JM HW CW	27
5/19/98	T/N	JM CW HW JL NW JC	54
6/1/98	T/N	JM HW CW NW	36
6/2/98	T/N	JM CW HW NW	36
6/5/98	T/N	HW CW NW	27
6/16/98	T/N	JM HW CW NW	36
6/18/98	T/N	JM CW NW JC	36
6/19/98	T/N	HW NW JC	27
7/14/98	T/N	JM HW CW JC NW	45

DATE	RESERVOIR	PERSONNEL	HOURS
7/15/98	T/N	JM HW CW JL	36
7/29/98	T/N	JM CW NW	27
8/6/98	T/N	CW NW JC	27
8/11/98	T/N	HW CW NW	27
9/1/98	T/N	HW CW	18
2/23/99	T/N	JM, HW	18
2/24/99	T/N	JM, HW, CW	27
3/9/99	T/N	JM BC MG LJ	36
3/10/99	T/N	JM HW BC MG LJ	45
3/11/99	T/N	HW NW	18
3/17/99	T/N	JM CW LJ	27
3/18/99	T/N	JM NW	36
3/22/99	T/N	JM MG	18
3/23/99	T/N	JM MG CW	27
3/26/99	T/N	ЈМ	9
4/6/99	T/N	LJ HW	18
4/7/99	T/N	JM LJ	18
4/9/99	T/N	BC MG	18
4/13/99	T/N	JM HW	18
4/14/99	T/N	JM BC BH CW LJ MG HW JW	72
4/15/99	T/N	BC BH CW LJ MG JW HW NW	72
4/16/99	T/N	BH BC	18
4/20/99	T/N	JM CW	18
4/21/99	T/N	JM HW LJ BC	36
4/22/99	T/N	LJ CW BC	27
4/26/99	T/N	CW LJ	18
4/28/99	T/N	BH BC	18
4/29/99	T/N	BH BC	18

DATE	RESERVOIR	PERSONNEL	HOURS
5/4/99	T/N	CW BC LJ	27
5/5/99	T/N	HW CW BC LJ	36
5/6/99	T/N	NW HW BC LJ	36
5/10/99	T/N	BH BC LJ	27
5/11/99	T/N	BC LJ	18
5/12/99	T/N	BC LJ HW JW	36
5/13/99	T/N	LJ CW HW JW	36
6/1/99	T/N	BC HW	18
6/2/99	T/N	LJ CW BH HW	18
6/3/99	T/N	BH HW	18
6/9/99	T/N	BH JW	18
6/10/99	T/N	BH JW	18
6/14/99	T/N	BH HW 1	
6/16/99	T/N	BH CW	18
6/17/99	T/N	BH LJ HW 27	
6/18/99	T/N	HW BH	18
COLUSA	TOTAL	HOURS	621
RED BANK	TOTAL	HOURS	1467
SITES	TOTAL	HOURS	1251
THOMES- NEWVILLE	TOTAL	HOURS	2214
WORK	COMPLETED	1998 & 1999	5553

ATTACHMENT 4.

OFFSTREAM STORAGE RESERVOIR INVESTIGATION:

ArcView (ESRI 1998) mapped vegetation

- a. Sites Vegetation
- b. Colusa cell Vegetation
- c. Newville Vegetation
- d. Schoenfield Vegetation
- e. Dippingvat Vegetation

ATTACHMENT 5.

OFFSTREAM STORAGE RESERVOIR ALTERNATIVES:

1998-1999 plant species observed

FAMILY Genus species	Common Name	Origin	Listing
Sites			
ALISMATACEAE			
Alisma plantago-aquatica	Water-plantain	native	
Damasonium californicum	Fringed water-plantain	native	
AMARANTHACEAE			
Amaranthus blitoides	Mat amaranth	non	
ANACARDIACEAE			
Toxicodendron diversilobum	Poison oak	native	
APIACEAE			
Anthriscus caucalis	Bur-chervil	non	
Daucus pusillus	Rattlesnake-weed	native	
Eryngium castrense	Coyote thistle	native	
Lomatium marginatum var. purpureum	Purple Iomatium	native	
Sanicula bipinnata	Poison sanicle	native	
Sanicula bipinnatifida	Purple sanicle	native	
Scandix pecten-veneris	Shepherd's needle	non	
Torilis arvensis	Common hedge-parsley	non	
Torilis nodosa	Knotted hedge-parsley	non	<u> </u>
Yabea microcarpa	False hedge-parsley	non	<u> </u>
ASCLEPIADACEAE			
Asclepias sp.	Milkweed	native	
ASTERACEAE			
Achillea millifolium	Yarrow	native	
Achyrachaena mollis	Blow-wives	native	
Agoseris neterophylla	Agoseris		
Ancistrocarphus filagineus	VVOOIIy fishhooks	native	
Anthemis cotula	Mayweed	non	
Artemisia dougiasiana	Mugwort Neula fait	native	
Baccharis salicifolia			
Biennosperma nanum	Yellow carpet		
Calycadenia multigiandulosa	Sticky calycadenia	native	
	Few-flowered calycadenia	native	
Cartourse coloitrene	Durple stor thistle		
Centaurea calcitrapa		native	
	Vollow stor thistle	nauve	
	Pincepple wood	non	
	Plineapple-weed	non	
Circium accidentale ver venustum	Vopus thistle		
	Pull thistle		
Convza floribunda		1011	
	Rrass-buttons		
	DIASS-DULLOUS		()
Eriophyllum lanatum

Woolly sunflower

	native	
	native	
	non	
	non	
ed	native	
		ON DO 4

Eryngium castrense	Coyote thistle	native	
Filago gallica	Narrow-leaved filago	non	
Gnaphalium luteo-album	Weedy cudweed	non	
Gnaphalium palustre	Western marsh cudweed	native	
Grindelia camporum var. camporum	Valley gumplant	native	
Hemizonia congesta ssp. luzulifolia	Hayfield tarweed	native	
Hemizonia pungens ssp. pungens	Common spikeweed	native	
Hesperevax acaulis var. robustior	Robust evax	native	
Hesperevax caulescens	Hogwallow starfish	native	CNPS 4
Hesperevax sparsiflora	Sparse-flowered evax	native	
Heterotheca grandiflora	Telegraph-weed	non	
Hypochaeris glabra	Smooth cat's ear	non	
Hypochaeris radicata	Rough cat's-ear	non	
Lactuca saligna	Willow-leaved lettuce	non	
Lactuca serriola	Prickly lettuce	non	
Lagophylla glandulosa	Glandular hareleaf	native	
Lasthenia californica	California goldfields	native	
Lasthenia glaberrima	Smooth goldfields	native	
Layia chrysanthemoides	Smooth tidytips	native	
Layia fremontii	Tidytips	native	
Leontodon taraxacoides ssp. taraxacoides	Short-beaked hawkbit	non	
Lessingia nemaclada	Slender-stemmed lessingia	native	
Madia elegans ssp. densifolia	Common madia	native	
Madia exigua	Thread-stemmed madia	native	
Madia glomerata	Mountain tarweed	native	
Madia gracilis	Slender tarweed	native	
Malacothrix floccifera	Woolly malacothrix	native	
Micropus californicus var. californicus	Slender cottonweed	native	
Microseris douglasii ssp. douglasii	Douglas' microseris	native	
Microseris douglasii ssp. tenella			
Monolopia major		native	
Picris echioides	Bristly oxtongue	non	
Psilocarphus brevissimus var. brevissimus	Dwarf woolly marbles	native	
Psilocarphus tenellus var. tenellus	Slender woolly marbles	native	
Rigiopappus leptocladus	Rigiopappus	native	
Senecio vulgaris	Old-man-in-the-spring	non	
Silybum marianum	Milk-thistle	non	
Sonchus oleraceus	Sow-thistle	non	
Taraxacum officinale	Common dandelion	non	
Wyethia angustifolia	Narrow-leaved mule's ears	native	
Xanthium spinosum	Spiny cocklebur	native	
Xanthium strumarium	Cocklebur	native	
BETULACEAE			
Alnus rhombifolia	Alder	native	
BORAGINACEAE			
Amsinckia lycopsoides	Bugloss fiddleneck	native	

Amsinckia menziesii	Menzie's fiddleneck	native	
Cryptantha flaccida	Weak-stemmed cryptantha	native	
Cryptantha intermedia	Common cryptantha	native	
Heliotropium curassavicum	Wild heliotrope	native	
Heliotropium europaeum	European heliotrope	non	
Pectocarya pusilla	Little pectocarya	native	
Plagiobothrys bracteatus	Bracted popcornflower	native	
Plagiobothrys canescens	Valley popcornflower	native	
Plagiobothrys fulvus	Fulvous popcornflower	native	
Plagiobothrys greenei	Greene's popcornflower	native	
Plagiobothrys nothofulvus	Common popcornflower	native	
Plagiobothrys stipitatus var. stipitatus	Lg-flwd stalked popcornflower	native	
Plagiobothrys stipitatus var. micranthus	Sm-flwd stalked popcornflower	native	
BRASSICACEAE			
Athysanus pusillus	Petty athysanus	native	
Brassica nigra	Black mustard	non	
Capsella bursa-pastoris	Shepherd's purse	non	
Cardamine oligosperma	Western bittercress	non	
Draba verna	Spring whitlow-grass	native	
Erysimum capitatum	Western wallflower	native	
Lepidium latipes var. latipes	Dwarf peppergrass	native	
Lepidium nitidum var. nitidum	Shining peppergrass	native	
Lepidium strictum	Upright peppergrass	native	
Raphanus sativus	Radish	non	
Rorippa nasturtium-aquaticum	Water cress	native	
Thysanocarpus curvipes	Fringepod	native	
Thysanocarpus laciniatus		native	
Sisymbrium officinale	Hedge-mustard	non	
Tropidocarpum gracile	Slender tropidocarpum	native	
CALLITRICHACEAE			
Callitriche marginata	Water-starwort	native	
CAMPANULACEAE			
Downingia insignis	Harlequin downingia	native	
Githopsis specularioides	Common bluecup	native	
Nemacladus montanus	Mountain nemacladus	native	
CAPRIFOLIACEAE			
Sambucus mexicana	Blue elderberry	native	
CARYOPHYLLACEAE			
Herniaria hirsuta	Hairy herniaria	non	
Minuartia californica	California sandwort	native	
Minuartia douglasii	Douglas' sandwort	native	
Petrorhagia dubia	Grass-pink	non	
Sagina apetala	Dwarf pearlwort	native	
Sagina decumbens	Pearlwort	native	

Silene gallica

Stellaria media

Stellaria nitens

Spergularia marina

Windmill pink	non	
Salt marsh sandspurry	native	
Common chickweed	non	
Shiny starwort	native	
	native	
Tumbling oracle	non	
Lamb's-quarters	non	
California goosefoot	native	
Bindweed	non	
Alkali weed	native	

CHENOPODIACEAE native Atriplex fruticulosa native Atriplex rosea Tumbling oracle non Chenopodium album Lamb's-quarters non	
Atriplex fruticulosa native Atriplex rosea Tumbling oracle non Chenopodium album Lamb's-quarters non	
Atriplex rosea Tumbling oracle non Chenopodium album Lamb's-quarters non	
Chenopodium album Lamb's-quarters non	
Chenopodium cairornicum Cairornia goosetoot hative	
CONVOLVULACEAE	
Convolvulus arvensis Bindweed non	
Cressa truxillensis Alkali weed native	
CRASSULACEAE	
Crassula connata Pygmy weed native	
Dudleya cymosa ssp. cymosa Canyon dudleya native	
CUCURBITACEAE	
Marah fabaceus California manroot native	
CUPRESSACEAE	
Juniperus sp. Juniper	
CYPERACEAE	
Carex sp.	
Cyperus eragrostis Tall cyperus native	
Eleocharis macrostachya Spike-rush native	
Scirpus acutus var. occidentalis Hard-stemmed tule native	
Scirpus americanus American bulrush native	
Scirpus californicus California bulrush native	
Scirpus maritimus Saltmarsh bulrush native	
Scirpus tuberosus Tuberous bulrush non	
ERICACEAE	
Arctostaphylos manzanita ssp. manzanita Big manzanita native	
EUPHORBIACEAE	
Chamaesyce glyptosperma Rib-seeded spurge	
Chamaesyce ocellata Valley spurge native	
Chamaesyce servillifolia ssp. serpyllifolia Thyme-leaved spurge native	
<i>Eremocarpus setigerus</i> Turkey mullein native	
Euphorbia spathulata Warty spurge native	
FABACEAE	
Astragalus gambelianus Gambel's milkvetch native	
Cercis occidentalis Western redbud native	
Glycyrrhiza lepidota American licorice native	

Lotus corniculatus	Birdfoot trefoil	non	
Lotus humistratus	Foothill lotus	native	
Lotus purshianus var. purshianus	Spanish lotus	native	
Lupinus albifrons var. albifrons	Silver bush lupine	native	
Lupinus bicolor	Bicolored lupine	native	
Lupinus latifolius var. latifolius	Broad-leaved lupine	native	
Lupinus microcarpus	Chick lupine	native	
Lupinus succulentus	Succulent lupine	native	
Medicago polymorpha	California bur-clover	non	
Melilotus officinalis	Yellow sweetclover	non	
Trifolium bifidum var. bifidum	Notch-leaved clover	native	
Trifolium bifidum var. decipiens	Deceptive clover	native	
Trifolium depauperatum var. amplectans	Involucrate cowbag clover	native	
Trifolium depauperatum var. depauperatum	Dwarf cowbag clover	native	
Trifolium fragiferum	Strawberry clover	non	
Trifolium fucatum	Sour clover	native	
Trifolium hirtum	Rose clover	non	
Trifolium obtusiflorum	Clammy clover	native	
Trifolium willdenovii	Tomcat clover	native	
Trifolium wormskioldii	Springbank clover	native	
Vicia benghalensis	Red-flowered vetch	non	
Vicia sativa	Garden vetch	non	
Vicia villosa ssp. varia	Winter vetch	non	
Vicia villosa ssp. villosa	Winter vetch	non	
FAGACEAE			
Quercus sp. (evergreen)	Live oak	native	
Quercus douglasii	Blue oak	native	
Quercus lobata	Valley oak	native	
FRANKENIACEAE			
Frankenia salina	Alkali heath	native	
GERANIACEAE			
Frodium botrys	I ong-beaked stork's bill	non	
Frodium cicutarium	Red-stemmed filaree		
Frodiuim moschatum	White-stemmed filaree		
Geranium carolinianum		native	
Geranium dissectum			
Geranium molle			
ΗΡΡΟCASTANACEAE			
Aesculus californica	California buckeye	native	
Friedictyon californicum	California verba canta		
Nemonhila beteronhylla			
Nemophila neterophylia			
ו המספוום בקבוום			

Phacelia imbricata	Imbricate phacelia	native	
JUGLANDACEAE		<i>.</i>	
Jugians californica var. hindsii	Northern California black walnut	native	CNPS 1B
JUNCACEAE			
Juncus balticus	Baltic rush	native	
Juncus bufonius var. bufonius	Common toad rush	native	
Juncus bufonius var. congestus	Congested toad rush	native	
Juncus xiphioides	Iris-leaved rush	native	
LAMIACEAE			
Marrubium vulgare	Horehound	non	
Monardella sp.	Mint	native	
Salvia columbariae	Chia	native	
Salvia spathacea	Pitcher sage	native	
Stachys pycnantha	Short-spiked hedge-nettle	native	
Stachys ajugoides var. ajugoides	Hedge-nettle	native	
Trichostema lanceolatum	Vinegar weed	native	
LILIACEAE			
Allium amplectens	Clasping onion	native	
Allium serra	Serrate onion	native	
Brodiaea elegans ssp. elegans	Harvest brodiaea	native	
Calochortus luteus	Yellow mariposa lilly	native	
Chlorogalum pomeridianum	Soap plant	native	
Dichelostemma capitatum ssp. capitatum	Bluedicks	native	
Dichelostemma volubile	Twining ookow	native	
Muilla maritima	Common muilla	native	
Odontostomum hartwegii	Hartweg's odontostomum	native	
Triteleia hyacinthina	Wild hyacinth	native	
Triteleia laxa	Ithuriel's-spear	native	
LOASACEAE			
Mentzelia laevicaulis	Giant blazing star	native	
LYTHRACEAE			
Lythrum californicum	California loosestrife	native	
Lythrum hyssopifolium	Hyssop loosestrife	non	
Lythrum tribracteatum	Slender-fruited loosestrife	non	
Malva parviflora	Little mallow	non	
Malvella leprosa	Alkali mallow	native	
Sidalcea dinloscynha	Fringed sidalcea	native	
MARTYNIACEAE			
Proboscidea louisianica ssp. louisianica	Common unicorn plant	non	

MORACEAE		
Ficus carica	Edible fig	non
OLEACEAE		
Olea europaea	Olive	non
· · · · · · · · · · · · · · · · · · ·		
ONAGRACEAE		
Camissonia graciliflora	Hill suncup	native
Clarkia affinis		native
Clarkia purpurea ssp. quadrivulnera	Purple clarkia	native
Epilobium cleistogamum	Cleistogamous spike-primrose	native
Epilobium densiflorum	Dense-flowered spike-primrose	native
Epilobium torrevi	Torrev's spike-primrose	native
OROBANCHACEAE		
Orobanche fasciculata	Clustered broom-rape	native
PAPAVERACEAE		
Eschscholzia caespitosa	Foothill poppy	native
Eschscholzia californica	California poppy	native
Eschscholzia lobbii	Frvingpans	native
	i Tymgpano	
PINACEAE		
Pinus sabiniana	Foothill pine	native
PI ANTAGINACEAE		
Plantago coronopus	Cut-leaved plantain	non
Plantago elongata	Flongate plantain	native
Plantago erecta	Frect plantain	native
Plantago ovata	Ovate plantain	native
POACEAE		
Aegilops cylindrica	Jointed goatgrass	non
Aegilops triuncialis	Barbed goatgrass	non
Alopecurus saccatus	Vernal pool foxtail	native
Aristida ternipes var. hamulosa	Hook three-awn	native
Avena barbata	Slender wild oat	non
Avena fatua	Wild oat	non
Bromus diandrus	Ripgut grass	non
Bromus hordeaceus	Softchess	non
Bromus madritensis ssp. rubens	Foxtail chess	non
Crypsis schoenoides	Swamp pricklegrass	non
Cvnodon dactvlon	Bermuda grass	non
Cvnosurus echinatus	Hedgehog dogtail	non
Deschampsia danthonioides	Annual hairgrass	native
Distichlis spicata	Saltorass	native
	Wild rve	native
Gastridium ventricosum	Nitorass	non
Hordeum brachvantherum ssp. brachvantherum	Meadow barley	native

Hordeum marinum ssp. gussoneanum	Mediterranean barley	non	
Hordeum murinum ssp. leporinum	Hare wall barley		
Hordeum murinum ssp. murinum	Pale barley	non	
Koeleria macrantha	June grass	native	
Koeleria phleoides	Bristly Koeler's-grass	non	
Lolium multiflorum	Italian ryegrass	non	
Melica californica	California melic	native	
Muhlenbergia rigens	Deergrass	native	
Nassella cernua	Nodding needlegrass	native	
Nassella pulchra	Purple needlegrass	native	
Panicum capillare	Witchgrass	native	
Parapholis incurva	Sickle grass	non	
Paspalum dilatum	Dallisgrass	non	
Phalaris paradoxa	Paradox canary grass	non	
Poa annua	Annual bluegrass	non	
Poa bulbosa	Bulbous bluegrass	non	
Poa secunda ssp. secunda	One-sided bluegrass	native	
Polypogon maritimus	Mediterranean beardgrass	non	
Polypogon monspeliensis	Annual beardgrass	non	
Scribneria bolanderi	Scribner's grass	native	
Taeniatherum caput-medusae	Medusa-head	non	
Triticum aestivum	Bread wheat	non	
Vulpia bromoides	Six-weeks fescue	non	
Vulpia microstachys var. ciliata	Fringed fescue	native	
Vulpia myuros var. myuros	Rattail fescue	non	
POLEMONIACEAE			
Gilia tricolor	Bird's eye gilia	native	
Linanthus bicolor	Bicolored linanthus	native	
Linanthus ciliatus	Whiskerbrush	native	
Navarretia eriocephala	Hoary navarretia	native	CNPS 4
Navarretia heterandra	Tehama navarretia	native	CNPS 4
Navarretia intertexta	Needle-leaved navarretia	native	
Navarretia leucocephala ssp. leucocephala	White-flowered navarretia	native	
Navarretia nigelliformis ssp. nigelliformis	Adobe navarretia	native	
Navarretia pubescens	Downy navarretia	native	
Phlox gracilis	Slender phlox	native	
POLYGONACEAE			
Chorizanthe membranacea	Pink spineflower	native	
Eriogonum dasyanthemum	Wild buckwheat	native	
Eriogonum nudum var. nudum	Naked buckwheat	native	
Polygonum arenastrum	Common knotweed	non	
Pterostegia drymarioides	Pterostegia	native	
Rumex crispus	Curly dock	non	
Rumex salicifolius var. salicifolius	Willow dock	native	
PORTULACACEAE			
Calandrinia ciliata	Redmaids	native	

Claytonia exigua ssp. exigua	Little miner's lettuce	native	
Claytonia perfoliata	Common miner's lettuce	native	
Montia fontana	Water chickweed	native	
POTAMOGETONACEAE			
Potamogeton sp.	Pondweed		
PRIMULACEAE			
Anagallis arvensis	Scarlet pimpernel	non	
Androsace elongata ssp. acuta	Fairy candelabra	native	CNPS 4
Dodecatheon hendersonii	Henderson's shootingstar	native	
PTERIDACEAE			
Pellaea andromedifolia	Coffee fern	native	
Pentagramma triangularis ssp. triangularis	Goldbacked fern	native	
RANUNCULACEAE			
Delphinium hesperium ssp. hesperium	Pale larkspur	native	
Delphinium hesperium ssp. pallescens	Pale larkspur	native	
Delphinium variegatum ssp. variegatum	Royal larkspur	native	
Myosurus minimus	Common mousetail	native	
Ranunculus aguatilus	Water buttercup	native	
Ranunculus californicus	California buttercup	native	
Ranunculus hebecarpus	Pubescent-fruited buttercup	native	
Ranunculus muricatus	Prickle-seeded buttercup	non	
RHAMNACEAE			
Ceanothus cuneatus var. cuneatus	Buckbrush	native	
Rhamnus ilicifolia	Holly-leaved redberry	native	
ROSACEAE			
Adenostoma fasciculatum	Chamise	native	
Aphanes occidentalis	Western ladv's-mantle	native	
Cercocarpus betuloides	Mountain-mahogany	native	
Heteromeles arbutifolia	Tovon	native	
Rosa californica	California rose	native	
Rubus sp.	Blackberry		
RUBIACEAE			
Crucianella angustifolia	Crosswort	non	
Galium aparine	Cleavers	native	
Galium parisiense	Wall bedstraw	non	
Galium porrigens var. tenue	Narrow-lvd climbing bedstraw	native	
Sherardia arvensis	Field-madder	non	
			1
SALICACEAE			
Populus fremontii ssp. fremontii	Fremont cottonwood	native	
Salix exigua	Sandbar willow	native	1
Salix goodingii	Black willow	native	1

Salix laevinata	Red willow	native	
SAXIERAGACEAE			
Lithophragma affine	San Francisco woodlandstar	native	
Saxifraga californica	California saxifrage	native	
SCROPHULARIACEAE			
Bellardia trixago		non	
Castilleia affinis ssp. affinis	Lav-and-Collie's Indian paintbrus	hnative	
Castilleja attenuata	Valley-tassels	native	
Castilleja exserta	Purple owl clover	native	
Collinsia sparsiflora var. bruceae	Bruce's few-flowered collinsia	native	
Collinsia sparsiflora var. collina	Few-flowered collinsia	native	
Collinsia sparsiflora var. sparsiflora	Few-flowered collinsia	native	
Kickxia elatine	Sharp-leaved fluellin	non	
Mimulus guttatus	Seep monkeyflower	native	
Mimulus latidens	Broad-toothed monkeyflower	native	
Penstemon heterophyllus var. heterophyllus	Foothill beardtongue		
Triphysaria eriantha ssp. eriantha	Butter-and-eggs	native	
Verbascum blattaria	Moth mullein	non	
Verbascum thapsus	Woolly mullein	non	
Veronica americana	American brookline	native	
Veronica anagallis-aquatica	Water speedwell	non	
Veronica peregrina ssp. xalapensis	Purslane speedwell	native	
Veronica persica	Persian speedwell	non	
· · · · · · · · · · · · · · · · · · ·			
SIMAROUBACEAE			
Ailanthus altissima	Tree-of-heaven	non	
SOLANACEAE			
Nicotiana glauca	Tree tobacco	non	
Lycopersicon esculentum	Garden tomato	non	
Physalis lancifolia	Lance-leaved ground-cherry	non	
Solanum parishii			
TYPHACEAE			
Typha angustifolia	Narrow-leaved cattail	native	
URTICACEAE			
Urtica urens	Dwarf nettle	non	
VALERIANACEAE			
Plectritis ciliosa ssp. ciliosa	Long-spurred pink plectritis	native	
Plectritis macrocera	White plectritis	native	
VERBENACEAE			
Phyla nodiflora var. nodiflora	Creeping lippia	native	
Verbena sp.			

FAMILY Genus species	Common Name	Origin	Listing
Colusa			
ALISMATACEAE			
Alisma plantago-aquatica	Water plantain	native	
		Tiative	
APIACEAE			
Anthriscus caucalis	Bur-chervil	non	
Daucus carota	Queen Anne's lace	non	
Daucus pusillus	Rattlesnake-weed	native	
Ervnaium castrense	Covote thistle	native	
Lomatium dasycarpum ssp. tomentosum	Woolly-fruited Iomatium	native	
Lomatium marginatum var. purpureum	Margined Iomatium	native	
Lomatium utriculatum	Bladder lomatium	native	
Sanicula bipinnata	Poison sanicle	native	
Sanicula bipinnatifida	Purple sanicle	native	
Torilis nodosa	Knotted hedge-parsley	non	
ASTERACEAE			
Achillea millifolium	Yarrow	native	
Achyrachaena mollis	Blow-wives	native	
Ancistrocarphus filagineus	Woolly fish-hooks	native	
Anthemis cotula	Mayweed	non	
Baccharis salicifolia	Mule fat	native	
Blennosperma nanum	Yellow carpet	native	
Calycadenia multiglandulosa	Sticky calycadenia	native	
Calycadenia pauciflora	Few-flowered calycadenia	native	
Carduus pycnocephalus	Italian plumeless-thistle	non	
Centaurea melitensis	Tocalote	native	
Centaurea solstitialis	Yellow star-thistle	non	
Chamomilla suaveolens	Pineapple-weed	non	
Cirsium occidentale var. venustum	Venus thistle	native	
Erigeron philadelphicus	Philadelphia daisy	native	
Eriophyllum lanatum	Woolly sunflower	native	
Filago gallica	Narrow-leaved filago	non	
Gnaphalium sp.	Cudweed		
Grindelia camporum var. camporum	Valley gumplant	native	
Helianthus annuus	Common sunflower	non	
Hemizonia pungens ssp. pungens	Common spikeweed	native	
Hesperevax acaulis var. robustior	Robust evax	native	
Hesperevax caulescens	Hogwallow starfish	native	CNPS 4
Holocarpha virgata ssp. virgata	Wand tarweed	native	
Hypochaeris glabra	Smooth cat's ear	non	
Hypochaeris radicata	Rough cat's-ear	non	
Lactuca serriola	Prickly lettuce	non	
Lagophylla glandulosa	Glandular hareleaf	native	
Lasthenia glaberrima	Smooth goldfields	native	
Layia fremontii	Tidytips	native	
Lessingia nemaclada	Slender-stemmed lessingia	native	

Madia elegans ssp. densifolia	Common madia	native	
Madia glomerata	Mountain tarweed	native	
Madia gracilis	Slender tarweed	native	
Malacothrix floccifera	Woolly malacothrix	native	
Micropus californicus var. californicus	Slender cottonweed	native	
Microseris douglasii ssp. douglasii	Douglas' microseris	native	
Psilocarphus brevissimus ssp. brevissim	Dwarf woolly-marbles	native	
Psilocarphus tenellus var. tenellus	Slender woolly-marbles	native	
Psilocarphus oregonus	Oregon woolly-marbles	native	
Rigiopappus leptocladus	Rigiopappus	native	
Senecio vulgaris	Old-man-in-the-spring	non	
Silybum marianum	Milk thistle	non	
Sonchus sp.	Sow-thistle		
Uropappus lindleyi	Silver puffs	native	
Wvethia glabra	Mule's ears	native	
Xanthium strumarium	Cocklebur	native	
BORAGINACEAE			
Amsinckia lycopsoides	Bualoss fiddleneck	native	
Amsinckia menziesii var menziesii	Menzies' fiddleneck	nativo	
Cryptantha flaccida	Weak-stemmed cryptantha	nativo	
Cryptantha intermedia	Common cn/ptantha	nativo	
Postoconyo ponicillato	Wingod postocon/o	nativo	
Peciocal ya peniciliata	Procted percentation	native	
Plagloboliniys braclealus		native	
Plaglobolinitys carlescens		native	
Plaglobothrys fulvus	Fulvous popcornilower	native	
Plaglobothrys greenel	Greene's popcorntiower	native	
Plagiobothrys nothotulvus	Common popcornflower	native	
Plagiobothrys scriptus	Scribe's popcornflower	native	
Plagiobothrys stipitatus var. micranthus	Lg-flwd stalked popcornflower	native	
Plagiobothrys stipitatus var. stipitatus	Sm-flwd stalked popcornflower	native	
BRASSICACEAE			
Athysanus pusillus	Petty athysanus	native	
Brassica nigra	Black mustard	non	
Brassica rapa	Field mustard	non	
Capsella bursa-pastoris	Shepherd's purse	non	
Draba verna	Spring whitlow-grass	native	
Erysimum capitatum	Western wallflower	native	
Guillenia lasiophylla	Hairy-leaved guillenia	native	
Lepidium dictyotum var. acutidens	Sharp-toothed peppergrass	native	
Lepidium latipes var. latipes	Dwarf peppergrass	native	
Lepidium nitidum var. nitidum	Shining peppergrass	native	
Lepidium strictum	Upright peppergrass	native	
Rorippa nasturtium-aquaticum	Watercress	native	
Thysanocarpus curvines	Fringepod	native	
Tropidocarpum gracile	Slender tropidocarpum	native	
Sisymbrium officinale	Hedge-mustard	non	
Streptanthus alandulosus sen a	Glandular jewelflower	native	
100000000000000000000000000000000000000			1

Tropidocarpum gracile	Slender tropidocarpum	native		
CALLITRICHACEAE				
Callitriche marginata	Water starwort	native		
Downingia insignis	Harlequin downingia	native		
I riodanus perfoliata	Venus'-looking-glass	native		
CAPRIFOLIACEAE				
Sambucus mexicana	Blue elderberry	native		
Symphoricarpos sp.	Snowberry	native		
CARYOPHYLLACEAE				
Cerastium glomeratum	Sticky mouse-eared chickweed	non		
Minuartia californica	California sandwort	native		
Petrorhagia dubia	Grass-pink	non		
Sagina apetala	Dwarf pearlwort	native		
Silene gallica	Windmill pink	non		
Stellaria media	Common chickweed	non		
Stellaria nitens	Shiny starwort	native		
Stellaria pallida	Pale chickweed	non		
Velezia rigida	Velezia	non		
CHENOPODIACEAE				
Chenopodium californicum	California goosefoot	native		
CONVOLVULACEAE				
Convolvulus arvensis	Bindweed	non		
Cressa truxillensis	Alkali-weed	native		
CRASSULACEAE				
Crassula connata	Pygmy weed	native		
CUCURBITACEAE				
Marah fabaceus	California manroot	native		
CUPRESSACEAE				
Juniperus occidentalis var. australis	Western juniper	native		
CYPERACEAE				
Cyperus eragrostis	Tall cyperus	native		
Eleocharis acicularis	Spike-rush	native		
Eleocharis macrostachya	Pale spike-rush	native		
Scirpus acutus var. occidentalis	Hard-stemmed tule	native		
Scirpus maritimus	Saltmarsh bulrush	native		
ERICACEAE				
Arctostaphlos manzanita ssp. manzanita	Big manzanita	native		

EUPHORBIACEAE			
Eremocarpus setigerus	Turkey mullein	native	
Euphorbia spathulata	Warty spurge	native	
FABACEAE			
Astragalus gambelianus	Gambel's milkvetch	native	
Cercis occidentalis	Western redbud	native	
Lotus humistratus	Foothill lotus	native	
Lotus purshianus var. purshianus	Spanish lotus	native	
Lupinus albifrons var. albifrons	Silver bush lupine	native	
Lupinus bicolor	Bicolored lupine	native	
Lupinus latifolius var. latifolius	Broad-leaved lupine	native	
Lupinus microcarpus var. densiflorus	White-whorled lupine	native	
Medicago polymorpha var. brevispina	California burclover	non	
Melilotus officinalis	Yellow sweetclover	non	
Trifolium bifidum var. bifidum	Notch-leaved clover	native	
Trifolium fragiferum	Strawberry clover	non	
Trifolium fucatum	Sour clover	native	
Trifolium hirtum	Rose clover	non	
Trifolium depauperatum var. d.	Dwarf cowbag clover	native	
Trifolium depauperatum var. amplectans	Involucrate cowbag clover		
Trifolium willdenovii	Tomcat clover	native	
Vicia benghalensis	Red-flowered vetch	non	
FAGACEAE			
Quercus sp. (evergreen)	Live oak		
Quercus douglasii	Blue oak	native	
Quercus lobata	Valley oak	native	
FRANKENIACEAE			
Frankenia salina	Alkali heath	native	
GERANIACEAE			
Erodium botrys	Long-beaked stork's bill		
Erodium cicutarium	Red-stemmed filaree	non	
Erodium moschatum	White-stemmed filaree		
Geranium dissectum	Cut-leaved geranium	non	
Geranium molle	Dove's foot geranium	non	
HIPPOCASTANACEAE			
Aesculus californicus	California buckeye	native	
HYDROPHYLLACEAE			
Eriodictyon californicum	California yerba santa	native	
Nemophylla heterophylla	Variable-leaved nemophylla	native	
Phacelia sp.			
IRIDACEAE			
Iris sp.	Iris		

JUGLANDACEAE				
Juglans californica var. hindsii	Northern California black walnut	native	CNPS 1B	
		1		
JUNCACEAE		1		
Juncus balticus	Baltic rush	native		
Juncus bufonius var. bufonius	Common toadrush	native		
Juncus mexicanus	Mexican juncus	native		
Juncus xiphioides	Iris-leaved rush	native		
		1		
LAMIACEAE		1		
Marrubium vulgare	Horehound	non		
Monardella sp.	Mint	native		
Salvia columbariae	Chia	native		
Stachys stricta	Sonoma hedge-nettle	native		
LILIACEAE				
Allium amplectans	Clasping onion	native		
Allium serra	Serrate onion	native		
Brodiaea elegans ssp. elegans	Elegant brodiaea	native		
Calochortus luteus	Yellow mariposa lilly	native		
Chlorogalum sp.	Soaproot	native		
Dichelostemma capitatum ssp. capitatun	Bluedicks	native		
Dichelostemma volubile	Twining ookow	native		
Muilla maritima	Common muilla	native		
Odontostomum hartwegii	Hartweg's odontostomum	native		
Triteleia laxa	Ithuriel's spear	native		
LINACEAE				
Hesperolinon spergulinum	Dwarf flax	native		
LOASACEAE				
Mentzelia albicaulis	White-stemmed blazingstar	native		
Mentzelia laevicaulis	Giant blazing star	native		
LYTHRACEAE				
Lythrum californicum	California loosestrife	native		
Lythrum hyssopifolium	Hyssop loosestrife	non		
Lythrum tribracteatum	Slender-fruited loosestrife	non		
MALVACEAE				
Malva parviflora	Little mallow	non		
Malvella leprosa	Alkali mallow	native		
Sidalcea diploscypha	Fringed sidalcea	native		
MARTYNIACEAE				
Proboscidea louisianica ssp. louisianica	Common unicorn plant	non		

MORACEAE			
Ficus carica	Edible fig	non	
OLEACEAE			
Olea europaea	Olive	non	
ONAGRACEAE			
Camissonia graciliflora	Hill suncup	native	
Clarkia affinis		native	
Clarkia concinna ssp. concinna	Red ribbons	native	
Clarkia gracilis ssp. gracilis	Slender clarkia	native	
Epilobium cleistogamum	Cleistogamous spike-primrose	native	
Epilobium densiflorum	Dense-flowered spike-primrose	native	
OROBANCHACEAE			
Orobanche fasciculata	Clustered broom-rape	native	
PAPAVERACEAE			
Eschscholzia caespitosa	Foothill poppy	native	
Eschscholzia californica	California poppy	native	
Eschscholzia lobbii	Fryingpans	native	
PINACEAE			
Pinus sabiniana	Foothill pine	native	
PLANTAGINACEAE			
Plantago coronopus	Cut-leaved plantain	non	
Plantago elongata	Elongate plantain	native	
Plantago erecta	Erect plantain	native	
Plantago ovata	Ovate plantain	native	
POACEAE			
Aegilops cylindrica	Jointed goatgrass	non	
Aegilops triuncialis	Barbed goatgrass	non	
Avena barbata	Slender wild oat	non	
Avena fatua	Wild oat	non	
Aristida ternipes var. hamulosa	Hook three-awn	native	
Briza minor	Lesser quaking grass	non	
Bromus diandrus	Ripgut grass	non	
Bromus hordeaceus	Softchess	non	
Bromus japonicus	Japanese chess	non	
Bromus madritensis ssp. rubens	Foxtail chess	non	
Cynosurus echinatus	Hedgehog dogtail	non	
Deschampsia danthonioides	Annual hairgrass	native	
Distichlis spicata	Saltgrass	native	
Gastridium ventricosum	Nitgrass	non	
Hordeum brachyantherum ssp. b.	Meadow barley	native	
Hordeum brachyantherum ssp. californic	California meadow barley	native	
Hordeum marinum ssp. gussoneanum	Mediterranean barley	non	

		1	1	1
Hordeum murinum ssp. leporinum	Hare wall barley	non		
Hordeum murinum ssp. murinum	Wall barley	non		
Koeleria macrantha	June grass	native		
Koeleria phleoides	Bristly Koeler's-grass	non		
Lolium multiflorum	Italian ryegrass	non		
Melica californica	California melic	native		
Muhlenbergia rigens	Muhly	native		
Nassella cernua	Nodding needlegrass	native		
Nassella pulchra	Purple needlegrass	native		
Parapholis incurva	Sickle grass	non		
Phalaris paradoxica	Paradox canary grass	non		
Poa annua	Annual bluegrass	non		
Poa bulbosa	Bulbous bluegrass	non		
Polypogon sp.				
Taeniatherum caput-medusae	Medusa-head	non		
Triticum aestivum	Bread wheat	non		
Vulpia bromoides	Six-weeks fescue	non		
Vulpia microstachys var. ciliata	Fringed fescue	native		
Vulpia microstachys var. confusa	Hairy-leaved fescue	native		
Vulpia myuros var. hirsuta	Foxtail fescue	non		
Vulpia myuros var. myuros	Rattail fescue	non		
POLEMONIACEAE				
Gilia tricolor	Bird's eve gilia	native		
Linanthus bicolor	Bicolored linanthus	native		
Linanthus ciliatus	Whiskerbrush	native		
Linanthus dichotomus	Evening snow	native		
Linanthus parviflorus	Cherokee linanthus	native		
Navarretia eriocephala	Hoary navarretia	native	CNPS 4	
Navarretia heterandra	Tehama navarretia	native	CNPS 4	
Navarretia nigelliformis ssp. nigelliformis	Adobe navarretia	native		
Navarretia pubescens	Downy navarretia	native		
Phlox gracilis	Slender phlox	native		
POLYGONACEAE				
Chorizanthe membranaceae	Pink spineflower	native		
Friogonum dasvanthemum	Wild buckwheat	native		
Polygonum arenastrum	Common knotweed	non		
Pterostegia drymarioides	Pterostegia	native		
Rumex crispus	Curly dock	non		
Calandrinia ciliata	Redmaids	native		
Clavtonia exigua	Little miner's lettuce	native		
Claytonia parviflora ssp. parviflora	Miner's lettice	native		
Claytonia perfoliata	Common miner's lettuce	native		
Montia fontana	Water chickweed	nativo		
			1	

Anagallis arvensis	Scarlet pimpernel	non		
Androsace elongata ssp. acuta	Fairy candelabra	native	CNPS 4	
PTERIDACEAE				
Pentagramma triangularis ssp. t.	Gold-backed fern	native		
RANUNCULACEAE				
Delphinium hesperium ssp. hesperium	Pale larkspur	native		
Delphinium hesperium ssp. pallescens	Pale larkspur	native		
Myosurus minimus	Common mousetail	native		
Ranunculus aquatilus	Water buttercup	native		
Ranunculus californicus	California buttercup	native		
Ranunculus hebecarpus	Pubescent-fruited buttercup	native		
Ranunculus muricatus	Prickle-seeded buttercup	non		
Ranunculus occidentalis	Western buttercup	native		
RHAMNACEAE				
Ceanothus cuneatus var. cuneatus	Buckbrush	native		
ROSACEAE				
Aphanes occidentalis	Western lady's mantle	native		
Holodiscus discolor	Oceanspray	native		
Rosa californica	California rose	native		
RUBIACEAE				
Crucianella angustifolia	Crosswort	non		
Galium aparine	Cleavers	native		
Galium parisiense	Wall bedstraw	non		
SALICACEAE				
Populus fremontii ssp. fremontii	Fremont cottonwood	native		
Salix sitchensis	Sitka willow	native		
SAXIFRAGACEAE				
Saxifraga californica	California saxifrage	native		
SCROPHULARIACEAE				
Bellardia trixago		non		
Castilleja attenuata	Valley-tassels	native		
Castilleja exserta	Purple owl clover	native		
Collinsia sparsifolia var. collina	Few-flowered collinsia	native		
Mimulus guttatus	Seep monkey flower	native		
Penstemon heterophyllus var. heterophy	Foothill beardtongue	native		
Triphysaria eriantha ssp. eriantha	Butter and eggs	native		
Verbascum thapsus	Woolly mullein	non		
Veronica peregrina ssp. xalapensis	Purslane speedwell	native		
SIMARUBACEAE				
Ailanthus altissima	Tree-of-heaven	non	_	

SOLANACEAE			
Nicotiana glauca	Tree tobacco	non	
TYPHACEAE			
Typha sp.	Cattail	native	
VALERIANACEAE			
Plectritis ciliosa ssp. ciliosa	Ciliate plectritis	native	
Plectritis macrocera	White plectritis	native	
VERBENACEAE			
Phyla nodiflora	Creeping lippia	native	

V	FAMILY Genus species		Common Name	Origin	Listing
	Newville				
	ACERACEAE				
	Acer macrophyllum		Big-leaved maple	native	
				nativo	
	ALISMATACEAE				
	Alisma plantago-aquatica ssp. brevipes		Water-plantain	native	
*	Damasonium californicum		Fringed water-plantain	native	
	Echinodorus berteroi		Burhead	native	
	Sagittaria montevidensis ssp. calycina		Montevideo arrowhead	native	
	AMARANTHACEAE				
*	Amaranthus albus		Tumbleweed	non	
	Amaranthus hitoides		Mat amaranth	native	
				Thative	
		-			
	ANACARDIACEAE				
	Rhus trilobata		Skunkbrush	native	
	Toxicodendron diversilobum		Western poison oak	native	
*	APIACEAE				
	Anthriscus caucalis	_	Bur-chervii	non	
*	Daucus carola		Rattlespake-weed	non	
*	Ervngium castrense		Covote thistle	native	
	Foeniculum vulgare		Fennel	non	
*	Lomatium dasycarpum ssp. dasycarpum		Hairy-fruited lomatium	native	
*	Lomatium dasycarpum ssp. tomentosum		Woolly-fruited lomatium	native	
*	Lomatium marginatum var. marginatum		Margined Iomatium	native	
*	Lomatium marginatum var. purpureum		Margined Iomatium	native	
*	Lomatium utriculatum		Bladder Iomatium	native	
*	Perideridia kelloggii		Kellogg's yampah	native	
	Sanicula bipinnata		Poison sanicle	native	
	Sanicula pipinilaunua Sanicula crassicaulis	-	Purple sanicle	native	
*	Torilis arvensis ssp. arvensis		Common hedge-parsley	non	
*	Torilis nodosa		Knotted hedge-parsley	non	
	Yabea microcarpa		California hedge-parsley	native	
	APOCYNACEAE				
-	Apocynum cannabinum		Indian-hemp	native	
	ARISTOLOCHIACEAE	+			
	Aristolochia californica	+	California pipevine	non	
	ASCLEPIADACEAE				
	Asclepias eriocarpa		Indian milkweed	native	
	Asclepias fascicularis		Narrow-leaved milkweed	native	

	ASTERACEAE			
	Achillea millifolium	Yarrow	native	
	Achyrachaena mollis	Blow-wives	native	
*	Agoseris heterophylla	Annual agoseris	native	
*	Ancistrocarphus filagineus	Woolly fishhooks	native	
	Anthemis cotula	Mayweed	non	
	Artemisia douglasiana	Mugwort	native	
	Baccharis salicifolia	Mule fat	native	
	Bellis perennis	English daisy	non	
	Blepharipappus scaber	Rough eyelash	native	
	Brickellia californica	California brickellbush	native	
*	Calycadenia multiglandulosa	Sticky calycadenia	native	
*	Centaurea melitensis	Tocalote	native	
	Centaurea solstitialis	Yellow star-thistle	non	
	Chaenactis glabriscula var. glabriscula	Yellow pincushion	native	
*	Chaenactis glabriuscula var. heterocarpha	Yellow pincushion	native	
*	Chaenactis glabriuscula var. megacephala	Yellow pincushion	native	
	Chamomilla suaveolens	Pineapple weed	non	
	Cichorium intybus	Chicory	non	
*	Cirsium occidentale var. venustum	Venus thistle	native	
	Cirsium vulgare	Bull thistle	non	
*	Crocidium multicaule	Spring gold	native	
*	Ericameria linearifolia	Interior goldenbush	native	
*	Eriophyllum lanatum var. achillaeoides	Yarrow woolly sunflower	native	
*	Eriophyllum lanatum var. aphanactis	Rayless woolly sunflower	native	
*	Eriophyllum lanatum var. grandiflorum	Large-flowered woolly sunflower	native	
*	Filago gallica	Narrow-leaved filago	non	
	Gnaphalium palustre	Everlasting	native	
*	Gnaphalium luteo-album	Weedy cudweed	non	
	Grindelia camporum var. camporum	Valley gumplant	native	
	Helianthus annuus	Common sunflower	native	
	Helianthus bolanderi	Bolander's sunflower	native	
	Hemizonia congesta ssp. luzulifolia	Hayfield tarweed	native	
*	Hemizonia fitchii	Fitch's spikeweed	native	
	Hemizonia pungens ssp. pungens	Common spikeweed	native	
*	Hesperevax caulescens	Hogwallow starfish	native	CNPS 4
*	Holocarpha obconica	Tar plant	native	
*	Holocarpha virgata ssp. virgata	Wand tarweed	native	
*	Hypochaeris glabra	Smooth cat's-ear	non	
*	Hypochaeris radicata	Rough cat's ear	non	
	Lactuca serriola	Prickly lettuce	non	
*	Lagophylla glandulosa	Glandular hareleaf	native	
*	Lagophylla minor	Lesser hareleaf	native	
*	Lagophylla ramosissima ssp. ramosissima	Slender hareleaf	native	
*	Lasthenia californica	California goldfields	native	
	Lasthenia glaberrima	Smooth goldfields	native	
*	Layia tremontii	Fremont's tidytips	native	
	Leontodon taraxacoides	Hawkbit	non	
*	Lessingia tilaginitolia var. californica	California aster	native	
*	Lessingia nana	Dwart lessingia	native	
*	Lessingia nemaclada	Slender-stemmed lessingia	native	

	Machaeranthera gracilis	Slender macheranthera	native
*	Madia elegans ssp. densifolia	Dense-leaved madia	native
*	Madia exigua	Thread-stemmed madia	native
	Madia glomerata	Mountain tarweed	native
*	Madia gracilis	Slender tarweed	native
*	Malacothrix floccifera	Woolly malacothrix	native
*	Micropus californicus var. californicus	Slender cottonweed	native
*	Microseris acuminata	Sierra foothill microseris	native
*	Microseris douglasii ssp. douglasii	Douglas' microseris	native
*	Monolopia gracilens	Slender monolopia	native
	Picris echioides	Bristly ox-tongue	non
*	Psilocarphus brevissimus var. brevissimus	Dwarf woolly-heads	native
*	Psilocarphus oregonus	Oregon woolly-heads	native
*	Psilocarphus tenellus var. tenellus	Slender woolly-marbles	native
*	Rafinesquia californica	California chicory	native
*	Rigiopappus leptocladus	Rigiopappus	native
	Senecio vulgaris	Groundsel	non
	Silybum marianum	Milk-thistle	non
*	Sonchus asper ssp. asper	Spiny-leaved sow-thistle	non
*	Stephanomeria sp.		native
	Taraxacum officinale	Dandelion	non
*	Uropappus lindleyi	Silver puffs	native
*	Wyethia angustifolia	Narrow-leaved mule's ears	native
*	Wyethia helenioides/glabra	Gray-green mule's ears	native
	Wyethia mollis	Woolly mule's-ears	native
	Xanthium strumarium	Cocklebur	native
	BETULACEAE		
	Alnus rhombifolia	White alder	native
	BLECHNACEAE		
	Blechnum spicant	Deer fern	native
	BORAGINACEAE		
	Amsinckia eastwoodiae	Eastwood's fiddleneck	native
	Amsinckia lycopsoides	Bugloss fiddleneck	native
	Amsinckia menziesii var. intermedia	Common fiddleneck	native
*	Amsinckia menziesii var. menziesii	Menzie's fiddleneck	native
*	Cryptantha flaccida	Weak-stemmed cryptantha	native
*	Cryptantha intermedia	Common cryptantha	native
	Cryptantha muricata	Prickle-seeded cryptantha	native
	Heliotropium curassavicum	Wild heliotrope	native
	Heliotropium europaeum	European heliotrope	non
	Pectocarya penicillata	Winged pectocarya	native
	Pectocarya pusilla	Little pectocarya	native
	Plagiobothrys bracteatus	Bracted popcornflower	native
*	Plagiobothrys fulvus	Fulvous popcornflower	native
*	Plagiobothrys greenei	Greene's popcornflower	native
*	Plagiobothrys nothofulvus	Perennial popcornflower	native
*	Plagiobothrys stipitatus var. micranthus	Small-flwd stalked popcornflower	native
L	Plagiobothrys stipitatus var. stipitatus	Large-flwd stalked popcornflower	native
*	Plagiobothrys tenellus	Slender popcornflower	native

*	Plagiobothrys undulatus		Coast popcornflower	native	
	BRASSICACEAE				
	Athysanus pusillus		Petty athysanus	native	
	Brassica sp.		Mustard	non	
L	Capsella bursa-pastoris	_	Shepherd's purse	non	
*	Cardamine oligosperma		Bitter-cress	native	
*	Cardaria chalapensis		Lens-podded hoarycress	non	
	Draba verna		Spring whitlow-grass	native	
	Lepidium latifolium		White-top	non	
*	Lepidium latipes var. latipes		Dwarf peppergrass	native	
*	Lepidium nitidum var. nitidum		Shining peppergrass	native	
	Lepidium nitidum var. oreganum		Oregon shining peppergrass	native	
	Lepidium oblongum var. oblongum			native	
*	Lepidium strictum		Upright peppergrass	native	
	Raphanus sp.		Wild radish	non	
*	Rorippa nasturtium-aquaticum		Watercress	native	
*	Sisymbrium officinale		Hedge-mustard	non	
*	Streptanthus glandulosus ssp. glandulosus		Jewelflower	native	
*	Thysanocarpus curvipes		Lacepod	native	
	Thysanocarpus laciniatus		Fringepod	native	
*	Tropidocarpum gracile		Slender tropidocarpum	native	
			· ·		
	CALLITRICHACEAE				
	Callitriche marginata		Water starwort	native	
	<u> </u>				
	CALYCANTHACEAE				
	Calycanthus occidentalis		Western spicebush	native	
			•		
	CAMPANULACEAE				
	Downingia insignis		Harlequin downingia	native	
*	Githopsis specularioides		Bluecup	native	
	Heterocodon rariflorum		Heterocodon	native	
*	Nemocladus montanus		Mountain nemocladus	native	
	Triodanis biflora		Small Venus'-looking-glass	native	
			~ ~ ~		
	CAPRIFOLIACEAE				
*	Lonicera hispidula var. vacillans		Hairy honeysuckle	native	
*	Lonicera interrupta		Chaparral honeysuckle	native	
	Sambucus mexicana		Blue elderberry	native	
	Symphoricarpos albus var. laevigatus		Common snowberry	native	
			•		
	CARYOPHYLLACEAE				
L	Cerastium glomeratum		Mouse-ear chickweed	non	
L	Minuartia californica		California sandwort	native	
*	Minuartia douglasii	_	Douglas' sandwort	native	
	Moenchia erecta_ssp. erecta	_	Upright chickweed	non	
	Petrorhagia dubia		Grass-pink	non	
*	Sagina apetala		Dwarf pearlwort	native	
	Sagina decumbens ssp. occidentalis		Western pearlwort	native	
*	Scleranthus annuus ssp. annuus		Knawel weed	non	
*	Silene gallica	-	Catch-fly	non	

	Spergularia bocconii	Boccone's sandspurry	non
*	Spergularia marina	Sandspurry	native
	Stellaria media	Common chickweed	non
	Stellaria nitens	Shining chickweed	native
*	Velezia rigida	Velezia	non
	CHENOPODIACEAE		
	Chenopodium foliosum	Leafy goosefoot	non
	CONVOLVULACEAE		
	Calvstegia occidentalis ssp. occidentalis	Western morning-glory	native
	Convolvulus arvensis	Field bindweed	non
	CRASSULACEAE		
*	Crassula aquatica	Water pygmyweed	native
	Crassula connata	Pygmy-weed	native
*	Crassula tillaea	Mossy pygmyweed	native
	CUCURBITACEAE		
	Marah fabaceus	California man-root	native
	CUPRESSACEAE		
*	Juniperus californicus	California juniper	native
	CYPERACEAE		
*	Carex nudata	Torrent sedge	native
*	Carex praegracilis	Clustered field sedge	native
*	Carex serratodens	Saw-toothed sedge	native
*	Carex nebrascensis	Nebraska sedge	native
	Cyperus eragrostis	Tall cyperus	native
*	Cyperus squarrosus	Awned cyperus	native
*	Eleocharis obtusa var. englemannii	Englemann's spikerush	native
	Eleocharis macrostachya	Pale spike-rush	native
*	Scirpus acutus var. occidentalis	Hard-stemmed tule	native
*	Scirpus pungens	Common threesquare	native
	DATISCACEAE		
	Datisca glomerata	Durango root	native
	DENNSTAEDTIACEAE		
	Pteridium aquilinum var. pubescens	Bracken fern	native
*			
Ë		California waterwort	native
*			
<u> </u>	Arctostaphylos manzanita ssp. manzanita	big man2anita	
-	Arciostaphylos viscida ssp. viscida		nauve
*	Equisatum hyamala sen affina	Common scouring-rush	native
	Equipotum loovigotum	Smooth coouring ruch	
l I	Lyuiseiuiii iaeviyaluiii	Smooth scouring-rush	nauve

	Equisetum telmateia ssp. braunii	Giant horsetail		
	EUPHORBIACEAE			
	Chamaesyce glyptosperma	Rib-seeded spurge	native	
*	Chamaesyce ocellata ssp. ocellata	Valley spurge	native	
	Chamaesyce ocellata ssp. ocellata x C. ocellata	ssp <i>. rattanii</i>	native	
	Chamaesyce ocellata ssp. rattanii	Stony Creek spurge	native	CNPS 4
	Eremocarpus setigerus	Turkey mullein	native	
*	Euphorbia spathulata	Warty spurge	native	
	FABACEAE			
*	Astragalus gambelianus	Gambel's milkvetch	native	
*	Astragalus rattanii var. jepsonianus	Jepson's milkvetch	native	SC/1B
	Cercis occidentalis	Western redbud	native	
	Glycyrrhiza lepidota	American licorice	native	
	Lotus corniculatus	Bird-foot trefoil	non	
*	Lotus humistratus	Foothill lotus	native	
	Lotus purshianus var. purshianus	Spanish lotus	native	
*	Lotus wrangelianus	Wrangel lotus	native	
*	Lupinus affinis	Fleshy lupine	native	
*	Lupinus albifrons var. albifrons	Silver bush lupine	native	
*	Lupinus bicolor	Miniature lupine	native	
	Lupinus latifolius var. latifolius	Broad-leaved lupine	native	
	Lupinus luteolus	Butter lupine	native	
*	Lupinus densiflorus	White-whorled lupine	native	
	Lupinus microcarpus var. microcarpus	Chick lupine	native	
	Lupinus nanus	Sky lupine	native	
*	Lupinus succulentus	Succulent lupine	native	
	Medicago polymorpha	California bur-clover	non	
*	Melilotus indicus	Sourclover	non	
	Melilotus officinalis	Yellow sweetclover	non	
	Trifolium albopurpureum var. albopurpureum	Indian clover	native	
*	Trifolium bifidum var. bifidum	Notch-leaved clover	native	
*	Trifolium bifidum var. decipiens	Deceptive clover	native	
	Trifolium campestre	Hop clover	non	
*	Trifolium ciliolatum	Foothill clover	native	
*	Trifolium depauperatum var. amplectans	Involucrate cowbag clover	native	
*	Trifolium depauperatum var. depauperatum	Dwarf cowbag clover	native	
*	Trifolium dubium	Little hop clover	non	
	Trifolium fragiferum	Strawberry clover	non	
*	Trifolium fucatum	Sour clover	native	
*	Trifolium gracilentum var. gracilentum	Slender clover	native	
*	Trifolium hirtum	Rose clover	non	
*	Trifolium microcephalum	Small-headed clover	native	
	Trifolium monanthum var. monanthum	Carpet clover	native	
	Trifolium oliganthum	Lanky clover	native	
*	Trifolium subterraneum	Subterranean clover	non	
*	Trifolium variegatum	White-tipped clover	native	
*	Trifolium willdenovii	Tomcat clover	native	
*	Trifolium wormskioldii	Springbank clover	native	
	Vicia sativa ssp. sativa	Spring vetch	non	
	Vicia villosa ssp. varia	Hairy vetch	non	

	Vicia villosa ssp. villosa	Hairy winter vetch	non	
	FAGACEAE	Corrub cold	n otiv (o	
		Scrub oak	native	
		Canyon live oak	native	
		Blue oak	native	
	Quercus lobata	Valley oak	native	
*		Alkali contaun	nativo	
			native	
*	Cientaunum venusium	Timuort	native	
		TIMWOIT	nalive	
	GERANIACEAE			
	Erodium botrys	Long-beaked stork's bill	non	
*	Erodium cicutarium	Red-stemmed filaree	non	
	Erodium moschatum	White-stemmed filaree	non	
	Geranium dissectum	Cut-leaved geranium	non	
	Geranium molle	Dove's foot geranium	non	
	HIPPOCASTANACEAE			
	Aesculus californicus	California buckeye	native	
	HYDROPHYLLACEAE			
	Eriodictyon californicum	California yerba santa	native	
*	Nemophila heterophylla	Variable-leaved nemophila	native	
	Nemophila menziesii ssp. menziesii	Baby blue eyes	native	
	Nemophila pedunculata	Meadow nemophila	native	
*	Phacelia distans	Common phacelia	native	
*	Phacelia egena	Rock phacelia	native	
	Phacelia imbricata ssp. imbricata	Imbricate phacelia	native	
	Phacelia ramosissima var. latifolia		native	
*	Phacelia ramosissima var. ramosissima	Branched phacelia	native	
	HYPERICACEAE			
	Hypericum anagalloides	Tinker's penny	native	
	ISOETACEAE			
	Isoetes sp.	Quillwort	native	
<u> </u>	JUGLANDAUERE	Northorn California black walnut	nativo	
			nauve	CINFSID
-	JUNCACEAE			
*	Juncus balticus	Baltic rush	native	
*	Juncus bufonius var. bufonius	Common toadrush	native	
*	Juncus bufonius var. congestus	Congested toadrush	native	
	Juncus capitatus	Leafy-bracted dwarf rush	non	
*	Juncus mexicanus	Mexican rush	native	
*	Juncus xiphioides	Iris-leaved rush	native	
	LAMIACEAE			

	Agastache urticifolia	Horsemint	native	
	Marrubium vulgare	Horehound	non	
*	Monardella sheltonii	Shelton's coyote-mint	native	
	Pogogyne douglasii	Douglas' pogogyne	native	
*	Pogogyne zizyphoroides	Sacramento Valley pogogyne	native	
*	Salvia columbariae	Chia	native	
	Scutellaria californica	California skullcap	native	
	Scutellaria siphocampyloides	Gray-leaved skullcap		
	Stachys ajugoides	Hedge-nettle	native	
	Stachys stricta	Sonoma hedge-nettle	native	
	LILIACEAE			
	Allium amplectens	Clasping onion	native	
*	Allium falcifolium	· · · ·	native	
*	Allium serra	Serrate onion	native	
	Brodiaea elegans ssp. elegans	Elegant brodiaea	native	
*	Calochortus luteus	Yellow mariposa-lily	native	
	Chlorogalum angustifolium	Narrow-leaved soap plant	native	
	Chlorogalum pomeridianum var. pomeridianum	Wavy-leaved soap plant	native	
	Dichelostemma capitatum ssp. capitatum	Bluedicks	native	
*	Dichelostemma congestum	Fork-toothed ookow	native	
*	Dichelostemma multiflorum	Round-toothed ookow	native	
	Dichelostemma volubile	Twining ookow	native	
	Fritillaria pluriflora	Adobe lily	native	SC/1B
	Odontostomum hartwegii	Hartweg's ookow	native	
*	Triteleia hyacinthina	Wild hyacinth	native	
*	Triteleia laxa	Ithuriel's spear	native	
	Triteleia peduncularis	Long-rayed brodiaea	native	
	Zigadenus fremontii	Fremont's zigadene	native	
	LIMNANTHACEAE			
	Limnanthes douglasii ssp. nivea	Coast Range meadowfoam	native	
	LINACEAE	Dwarf flax		
*	Hesperolinon spergulinum		native	
	Hesperolinon tehamense	Tehama dwarf-flax	native	SC/1B
	LOASACEAE			
	Mentzelia laevicaulis	Giant blazingstar	native	
<u> </u>	LYTHRACEAE			
*	Ammannia coccinea	Valley redstem	native	
	Ammannia robusta	Robust redstem	native	
*	Lythrum hyssopifolium	Hyssop loosestrife	non	
	Lythrum portula	Water purslane	non	
	Lythrum tribracteatum	Slender-fruited loosestrife	non	
*	Rotala ramosior	Lowland toothcup	native	
	MALVACEAE			
4	Malva parvitlora	Cheeseweed	non	
*	Sidaicea calycosa ssp. calycosa	Annual sidalcea	native	
	Sidalcea hartwegii	Hartweg's sidalcea	native	

*	Sidalcea hirsuta	Hairy sidalcea	native	
	MARSILEACEAE			
*	Marsilea vestita ssp. vestita	Hairy pepperwort	native	
	MARTYNIACEAE			
	Proboscidea louisianica ssp. louisianica	Common unicorn plant	non	
		•		
	MOLLUGINACEAE			
*	Mollugo verticillata	Indian chickweed	non	
	MORACEAE			
	Ficus carica	Edible fig	non	
		¥		
	MYRTACEAE			
	Eucalyptus sp.	Gum tree	non	
	ORCHIDACEAE			
	Epipactis gigantea	Stream orchid	native	
	OLEACEAE			
	Olea europea	Olive	non	
	ONAGRACEAE			
*	Camissonia graciliflora	Hill suncup	native	
*	Camissonia hirtella	Hairy evening-primrose	native	
	Camissonia intermedia		native	
*	Clarkia affinis		native	
*	Clarkia concinna ssp. concinna	Redribbons	native	
*	Clarkia gracilis ssp. gracilis	Slender clarkia	native	
*	Clarkia lassenensis/gracilis	Lassen/slender clarkia	native	
*	Clarkia modesta		native	
*	Clarkia purpurea ssp. quadrivulnera	Purple clarkia	native	
	Clarkia rhomboidea	Diamond clarkia	native	
	Epilobium brachycarpum	Tall annual willowherb	native	
	Epilobium cleistogamum	Cleistogamous spike-primrose	native	
*	Epilobium densiflorum	Dense-flowered spike-primrose	native	
*	Epilobium minutum	Chaparral willowherb	native	
*	Epilobium pygmaeum	Smooth spike-primrose	native	
*	Epilobium torreyi	Torrey's spike-primrose	native	
	Ludwigia sp.	False loosestrife		
	ORCHIDACEAE			
	Epipactis gigantea	Stream orchid	native	
	OROBANCHACEAE			
*	Orobanche fasciculata	Clustered broom-rape	native	
	Orobanche uniflora	Naked broom-rape	native	
	PAPAVERACEAE			
*	Eschscholzia caespitosa	Foothill poppy	native	
*	Eschscholzia californica	California poppy	native	

	Eschscholzia lobbii	Fryingpans	native	
	Platystemon californicus	Cream cups	native	
	-	· · ·		
	PINACEAE			
	Pinus sabiniana	Gray pine	native	
	PLANTAGINACEAE			
	Plantago coronopus	Cut-leaved plantain	non	
	Plantago elongata	Elongate plantain	native	
*	Plantago erecta	Erect plantain	native	
	Plantago lanceolata	English plantain	non	
	Plantago ovata	Ovate plantain	native	
	POACEAE			
	Aira caryophyllea	Silver European hairgrass	non	
*	Alopecurus aequalis	Short-awned foxtail	native	
L	Alopecurus saccatus	Vernal pool foxtail	native	
*	Aristida ternipes var. hamulosa	Hook three-awn	native	
*	Avena barbata	Slender wild oat	non	
	Avena fatua	Wild oat	non	
	Briza minor	Lesser quaking grass	non	
	Bromus diandrus	Ripgut grass	non	
	Bromus hordeaceus	Softchess	non	
	Bromus japonicus	Japanese brome	non	
*	Bromus madritensis ssp. rubens	Foxtail chess	non	
*	Crypsis schoenoides	Swamp pricklegrass	non	
	Cynodon dactylon	Bermuda grass	non	
	Cynosurus echinatus	Hedgehog dogtail	non	
	Deschampsia danthonioides	Annual hairgrass	native	
	Digitaria ischaemum	Smooth crabgrass	non	
	Digitaria sanguinalis	Hairy crabgrass	non	
	Distichlis spicata	Saltgrass	native	
	Echinochloa crus-galli	Barnyard grass	non	
	Elymus elymoides	Squirreltail	native	
	Elymus glaucus	Wild-rye	native	
	Festuca idahoensis	Idaho fescue	native	
*	Gastridium ventricosum	Nitgrass	non	
*	Hordeum brachyantherum ssp. brachyantherum	Meadow barley	native	
*	Hordeum marinum ssp. gussoneanum	Mediterranean barley	non	
L	Hordeum murinum ssp. leporinum	Hare wall barley	non	
L	Koeleria macrantha	Junegrass	native	
	Koeleria phleoides	Bristly Koeler's grass	non	
*	Leymus triticoides	Alkali ryegrass	native	
	Lolium multiflorum	Italian ryegrass	non	
*	Melica californica	California melic	native	
*	Melica harfordii	Harford's melica	native	
	Muhlenbergia rigens	Muhly	native	
*	Nassella cernua	Nodding needlegrass	native	
*	Nassella pulchra	Purple needlegrass	native	
L	Paspalum dilatum	Dallisgrass	non	
L	Phalaris arundinacea	Reed canarygrass	native	
*	Phalaris minor	Lesser canarygrass	non	

*	Phalaris paradoxa	Paradox canarvorass	non	
*	Piptatherum miliaceum	Smilo grass	non	
	Poa annua	Annual bluegrass	non	
	Poa hulhosa	Bulbous bluegrass	non	
*	Poa secunda ssp. secunda	One-sided bluegrass	native	
	Polypogon interruptus	Ditch beardgrass	non	
	Polypogon maritimus	Mediterranean beardorass	non	
*	Polypogon mansheliensis	Annual beardgrass	non	
	Sorabum balanansa	Johnsongrass	non	
*	Teenietherum caput-medusae	Medusa-bead	non	
*	Vulnia bromoidos	Six-wooks fosculo	non	
*	Vulpia piomoldes	Six-weeks lescue	notivo	
*		Fow flowered feeduc	nativo	
*		Fortail focus	non	
*		Pottali lescue	non	
		Ratiali lescue	non	
┣—				
*	r ULEIVIUNIAUEAE		notivo	
<u> </u>	Anophylium gilloldes ssp. gilloldes	Vallow ataining agligation	native	
*			native	
^	Gilia capitata ssp. capitata		native	
-	Gilia capitata ssp. staminea/pedemontana	Foothill globe gilia	native	
*	Gilia tricolor ssp. tricolor	Bird's-eye gilia	native	
*	Linanthus acicularis	Bristly linanthus	native	
*	Linanthus bicolor	Bicolored linanthus	native	
*	Linanthus bolanderi	Bolander's linanthus	native	
*	Linanthus ciliatus	Whiskerbrush	native	
*	Linanthus dichotomus	Evening-snow	native	
*	Linanthus parviflorus	Cherokee linanthus	native	
*	Linanthus pygmaeus ssp. continentalis	Pygmy linanthus	native	
*	Navarretia heterandra	Tehama navarretia	native	CNPS 4
	Navarretia intertexta ssp. intertexta	Needle-leaved navarretia	native	
*	Navarretia leucocephala var. leucocephala	White-flowered navarretia	native	
	Navarretia nigelliformis ssp. nigelliformis	Adobe navarretia	native	
*	Navarretia pubescens	Downy navarretia	native	
*	Navarretia tagetina	Marigold navarretia	native	
*	Phlox gracilis	Slender phlox	native	
L				
	POLYGONACEAE			
*	Chorizanthe membranacea	Pink spineflower	native	
*	Eriogonum dasyanthemum	Wild buckwheat	native	
	Eriogonum nudum	Buckwheat	native	
*	Eriogonum wrightii var. trachygonum	Wright's buckwheat	native	
	Polygonum arenastrum	Common knotweed	native	
*	Polygonum californicum	California knotweed	native	
	Polygonum douglasii	Douglas' knotweed	native	
*	Pterostegia drymarioides	Pterostegia	native	
	Rumex crispus	Curly dock	non	
*	Rumex pulcher	Fiddle dock	non	
	PORTULACACEAE			
	Calandrinia ciliata	Redmaids	non	
	Claytonia exigua ssp. exigua	Little miner's lettuce	native	

	Claytonia parviflora	Small-flowered miner's lettuce	native	
	Claytonia perfoliata	Common miner's lettuce	native	
	Lewisia rediviva	Bitter-root	native	
	Montia fontana	Water chickweed	native	
	POTAMOGETONACEAE			
	Potamogeton pectinatus	Fennel-leaved pondweed	native	
	PRIMULACEAE			
	Anagallis arvensis	Poor man's weatherglass	non	
	Androsace elongata ssp. acuta	Fairy candelabra	native	CNPS 4
	Dodecatheon clevelandii ssp. patulum	Lowland shootingstar	native	
	PTERIDACEAE			
*	Pellaea andromedifolia	Coffee fern	native	
*	Pellaea mucronata var. mucronata	Bird's-foot fern	native	
	Pentagramma triangularis ssp. triangularis	Gold-backed fern	native	
	RANUNCULACEAE			
	Clematis sp.		native	
*	Delphinium hesperium var. pallescens	Pale larkspur	native	
*	Delphinium patens ssp. patens	Spreading larkspur	native	
*	Delphinium variegatum ssp. variegatum	Royal larkspur	native	
*	Myosurus minimus	Common mousetail	native	
*	Ranunculus aquatilis var. hispidulus	Water buttercup	native	
*	Ranunculus californicus	California buttercup	native	
	Ranunculus canus	Sacramento Valley buttercup	native	
*	Ranunculus hebecarpus	Pubescent-fruited buttercup	native	
*	Ranunculus muricatus	Prickle-seeded buttercup	non	
	RHAMNACEAE			
	Ceanothus cuneatus var. cuneatus	Buck brush	native	
*	Rhamnus ilicifolia	Holly-leaf redberry	native	
	Rhamnus tomentella ssp. crassifolia	Hoary coffeeberry	native	
	ROSACEAE			
*	Aphanes occidentalis	Western lady's mantle	native	
	Cercocarpus betuloides	Mountain mahogany	native	
	Heteromeles arbutifolia	Toyon	native	
	Malus sylvestris	Apple	non	
	Prunus communis	Almond	non	
*	Rubus discolor	Hymalayan blackberry	non	
	RUBIACEAE			
*	Galium aparine	Goosegrass	native	
*	Galium parisiense	Wall bedstraw	non	
	Galium porrigens var. tenue	Narrow-leaved climbing bedstraw	native	
	Sherardia arvensis	Field madder	non	
	SALICACEAE			
	Populus fremontii ssp. fremontii	Fremont cottonwood	native	
	Salix breweri	Brewer's willow	native	

	Salix exigua	Sandbar willow	native	
	Salix laevigata	Red Willow	native	
	Salix sitchensis	Sitka willow	native	
	SAURURACEAE			
	Anemopsis californica	California anemopsis	native	
	SAXIFRAGACEAE			
*	Lithophragma affine	Woodland star	native	
	Lithophragma campanulatum	Bell-shaped woodland star	native	
*	Lithophragma parviflorum var. parviflorum	Small-flowered woodland star	native	
	Saxifraga californica	California saxifrage	native	
	-			
	SCROPHULARIACEAE			
	Antirrhinum subcordatum	Dimorphic snapdragon	native	CNPS 1B
	Bacopa rotundifolia	Water-hyssop	non	
*	Castilleja affinis ssp. affinis	Lay and Collie's Indian paintbrush	native	
*	Castilleja attenuata	Valley-tassels	native	
*	Castilleja exserta ssp. exserta	Purple owl-clover	native	
	Castilleja foliolosa	Woolly Indian paintbrush	native	
*	Collinsia sparsiflora var. bruceae	Bruce's few-flowered collinsia	native	
*	Collinsia sparsiflora var. collina	Collinsia	native	
*	Collinsia sparsiflora var. sparsiflora	Few-flowered collinsia	native	
	Gratiola ebracteata	Bractless hedge-hyssop	native	
	Kickxia elatine	Sharp-leaved fluellin	non	
	Mimulus androsaceus		native	
	Mimulus cardinalis	Scarlet monkeyflower	native	
	Mimulus douglasii	Purple mouse-ears	native	
	Mimulus guttatus	Seep monkeyflower	native	
*	Mimulus kelloggii	Kellogg's monkeyflower	native	
*	Penstemon heterophyllus var. purdyi	Purdy's beardtongue	native	
*	Tonella tenella	Small-flowered tonella	native	
	Triphysaria eriantha ssp. eriantha	Butter-and-eggs	native	
	Verbascum thapsus	Woolly mullein	non	
L	Veronica catenata	Chain speedwell	non	
*	Veronica anagallis-aquatica	Great water speedwell	non	
	Veronica peregrina ssp. xalapensis	Purslane speedwell	native	
L	SELAGINELLACEAE			
	Selaginella sp.	Spikemoss	native	
_				
	SIMARUBACEAE			
	Ailanthus altissima	Tree-of-heaven	non	
	SOLANACEAE			
L	Physalis lancifolia	Lance-leaved ground-cherry	non	
L	Solanum rostratum	Butfalo-berry	non	
L				
I	IAMARICACEAE	₊		
	Tamarıx sp.	l amarisk	non	
-				
	TYPHACEAE			

	Typha angustifolia	Narrow-leaved cattail	native
	Typha latifolia	Broad-leaved cattail	native
	VALERIANACEAE		
*	Plectritis ciliosa ssp. ciliosa	Long-spurred pink plectritis	native
*	Plectritis macrocera	White plectritis	native
	VERBENACEAE		
*	Phyla nodiflora var. nodiflora	Creeping lippia	native
	VIOLACEAE		
	Viola douglasii	Douglas' violet	native
	VISCACEAE		
	Arceuthobium occidentale	Gray pine dwarf mistletoe	native
*	Phoradendron densum	Dense mistletoe	native
	Phoradendron juniperinum	Juniper mistletoe	native
	Phorodendron macrophyllum	Big-leaved mistletoe	native
	Phoradendron villosum	Hairy mistletoe	native
	VITACEAE		
	Vitis californica	California wild grape	native

FAMILY Genus species	Common Name	Origin	Listing
Red Bank			
ACERACEAE			
Acer macrophyllum	Big-leaved maple	native	
		Thative	
Echinodorus berteroi	Burhead	native	
AMARANTHACEAE			
Amaranthus albus	Tumbleweed	non	
Amaranthus retroflexus	Red-rooted amaranth	non	
	-		
ANACARDIACEAE			
Rhus trilobata	Skunkbrush	native	
Toxicodendron diversilobum	Poison oak	native	
APIACEAE			
Anthriscus caucalis	Bur-chervil	non	
Daucus pusillis	Rattlesnake weed	native	
Levisticum officinale	Lovage	non	
Lomatium caruifolium var. denticulatum	Foothill Iomatium	native	
Lomatium dasycarpum ssp. tomentosum	Woolly-fruited lomatium	native	
Lomatium macrocarpum	Large-fruited lomatium	native	
Lomatium marginatum var. purpureum	Margined Iomatium	native	
Lomatium utriculatum	Bladder Iomatium	native	
Perideridia bolanderi ssp. bolanderi	Bolander's yampah	native	
Perideridia kelloggii	Kellogg's yampah	native	
Sanicula bipinnata	Poison sanicle	native	
Sanicula bipinnatifida	Purple sanicle	native	
Sanicula crassicaulis	Pacific sanicle	native	
Sanicula tuberosa	Turkey-pea	native	
Torilis arvensis	Common hedge-parsley	non	
Yabea microcarpa	False hedge-parsley	native	
APOCYNACEAE			
Apocynum cannabinum	Indian-hemp	native	
ASCLEPIADACEAE	-		
Asclepias californica	California milkweed	native	
Asclepias eriocarpa	Indian milkweed	native	
Asclepias fascicularis	Narrow-leaf milkweed	native	
Asclepius speciosa	Showy milkweed	native	
ASTERACEAE			
Achillea millefolium	Yarrow	native	
Achyrachaena mollis	Blow-wives	native	
Agoseris heterophylla	Annual agoseris	native	
Ambrosia sp.	Ragweed		

Madia elegans ssp. vernalis

Madia exigua

Madia gracilis

Madia minima

Malacothrix floccifera

Ancistrocarphus filagineus	Woolly fishooks	native
Antennaria sp.	Pussy-toes	native
Anthemis cotula	Mayweed	non
Artemisia douglasiana	Mugwort	native
Baccharis salicifolia	Mule's fat	native
Balsamorhiza sp.	Balsam-root	native
Blepharipappus scaber	Rough eyelash	native
Brickellia californica	California brickellbush	native
Calycadenia fremontii	Fremont's calycadenia	native
Calycadenia multiglandulosa	Sticky calycadenia	native
Calycadenia pauciflora	Few-flowered calycadenia	native
Calycadenia truncata ssp. scabrella	Rosinweed	native
Centaurea cyanus	Bachelor buttons	native
Centaurea melitensis	Tocalote	non
Centaurea solstitialis	Yellow star-thistle	non
Chaenactis glabriuscula var. heterocarpha	Yellow pincushion	native
Chamomilla suaveolens	Common pineapple-weed	non
Cirsium occidentale var. venustum	Venus thistle	native
Conyza canadensis	Horseweed	native
Erigeron divergens	Spreading daisy	notive
Erigeron philadelphicus	Philadelphia daisy	native
Eriophyllum lanatum var. achillaeoides	Woolly sunflower	native
Eriophyllum lanatum var. grandiflorum	Woolly sunflower	native
Euthamia occidentalis	Western goldenrod	native
Filago sp.	Herba impia	
Gnaphalium luteo-album	Weedy cudweed	native
Gnaphalium palustre	Western marsh cudweed	native
Gnaphalium stramineum	Cotton-batting cudweed	native
Helenium bigelovii	Sneezeweed	native
Helenium puberulum	Rosilla	native
Helianthella californica var. nevadensis	California helianthella	native
Helianthus annuus	Common sunflower	native
Helianthus bolanderi	Bolander's sunflower	native
Hemizonia congesta ssp. clevelandii	Cleveland's tarweed	native
Hesperevax acaulis var. robustior	Robust evax	native
Heterotheca oregona var. compacta	Compact oregon golden-aster	native
Heterotheca oregona var. rudis	Oregon golden-aster	native
Hvpochaeris glabra	Smooth cat's ear	non
Hypochaeris radicata	Rough cat's ear	non
Lagophvlla glandulosa	Glandular hareleaf	native
Lagophylla minor	Lesser hareleaf	native
Lagophylla ramosissima ssp. ramosissima	Slender hareleaf	native
Lessingia nemoclada	Slender-stemmed lessingia	native
Madia citriodora	Lemon-scented tarweed	native
		11 11

Spring madia

Dwarf madia

Slender tarweed

Woolly malacothrix

Thread-stemmed madia

native

native

native

native

native

Micropus californicus var. californicus	Slender cottonweed	native
Microseris douglasii ssp. douglasii	Douglas' microseris	native
Psilocarphus oregonus	Oregon woolly marbles	native
Psilocarphus tenellus var. tenellus	Slender woolly marbles	native
Rafinesquia californica	California chicory	native
Rigiopappus leptocladus	Riggiopappus	native
Senecio vulgaris	Old-man-of-spring	non
Solidago californica	California goldenrod	native
Sonchus asper ssp. asper	Spiny-leaved sow-thistle	non
Stephanomeria elata	Santa Barbara stephanomeria	native
Stephanomeria virgata ssp. pleurocarpa	Wand stephanomeria	native
Wyethia angustifolia	Narrow-leaved mule's ears	native
Wyethia glabra	Smooth mule's ears	native
Wyethia helenioides	Gray mule's ears	native
Xanthium strumarium	Cocklebur	native
BETULACEAE		
Alnus rhombifolia	White alder	native
BORAGINACEAE		
Amsinckia lycopsoides	Bugloss fiddleneck	native
Amsinckia menziesii var. intermedia	Common fiddleneck	native
Amsinkia menziesii var. menziesii	Common fiddleneck	native
Cryptantha flaccida	Weak-stemmed cryptantha	native
Cryptantha intermedia	Common cryptantha	native
Cynoglossum grande	Hound's tongue	
Heliotropium curassavicum	Wild heliotrope	native
Heliotropium europaeum	European heliotrope	non
Pectocarya pusilla	Little pectocarya	native
Plagiobothrys glyptocarpus var. glyptocarpus	Sculptured popcornflower	native
Plagiobothrys fulvus	Fulvous popcornflower	
Plagiobothrys nothofulvous	Common popcornflower	native
Plagiobothrys scriptus	Scribe's popcornflower	native
Plagiobothrys tenellus	Slender popcornflower	native
BRASSICACEAE		
Arabis breweri var. breweri	Brewer's rockcress	native
Athysanus pusillus	Petty athysanus	native
Brassica nigra	Black mustard	non
Capsella bursa-pastoris	Shepherd's purse	non
Cardamine oligosperma	Western bittercress	native
Draba verna	Spring whitlow-grass	non
Erysimum capitatum ssp. capitatum	Western wallflower	native
Lepidium latifolium	Tall white-top	non
Lepidium latipes var. latipes	Dwarf peppergrass	native
Lepidium nitidum var. nitidum	Shining peppergrass	native
Lepidium strictum	Upright peppergrass	native
Rorippa nasturtium-aquaticum	Watercress	native
Sisymbrium officianale	Hedge-mustard	non

Streptanthus drepanoides	Jewelflower	native	CNPS 4
Thysanocarpus curvipes	Fringepod	native	
Tropidocarpum gracile	Slender tropidocarpum	native	
CALLITRICHACEAE			
Callitriche marginata	Winged water-starwort	native	
CAMPANULACEAE			
Githopsis specularioides	Common bluecup	native	
Heterocodon rariflorum	Heterocodon	native	
Nemacladus montanum		native	
Triodanis biflora	Small Venus'-looking-glass	native	
CAPRIFOLIACEAE			
Lonicera interrupta	Chaparral honeysuckle	native	
Sambucus mexicana	Blue elderberry	native	
Symphoricarpus albus var. laevigatus	Common snowberry	native	
CARYOPHYLLACEAE			
Cerastium glomeratum	Sticky mouse-eared chickweed	non	
Herniaria hirsuta ssp. hirsuta	Gray herniaria	non	
Herniaria hirsuta ssp. cinerea		non	
Minuartia californica	California sandwort	native	
Minuartia douglasii	Douglas' sandwort	native	
Petrorhagia dubia	Grass pink	non	
Scleranthus annuus ssp. annuus	Knawel weed	non	
Silene californica	Indian pink	native	
Spergularia marina	Salt-marsh sandspurry	native	
Spergularia rubra	Ruby sandspurry	non	
Stellaria media	Common chickweed	non	
Stellaria nitens	Shiny starwort	native	
CHENOPODIACEAE			
Chenopodium botrys	Jerusalem-oak	non	
Chenopodium californicum	California goosefoot	native	
Chenopodium foliosum	Leafy goosefoot	non	
CONVOLVULACEAE			
Calystegia occidentalis ssp. occidentalis	Western morning-glory	native	
Convolvulus arvensis	Field bindweed	non	
CORNACEAE			
Cornus glabrata	Brown dogwood	native	
CRASSULACEAE			
Crassula connata	Pygmy weed	native	
CUCURBITACEAE			
Marah fabaceus	California manroot	native	
CUPRESSACEAE			
---	---------------------------	---------	---------
Calocedrus decurrens	Incense cedar	native	
Juniperus californica	California juniper	native	
CYPERACEAE			
Carex nudata	Torrent sedge	native	
Cyperus eragrostis	Tall cyperus	native	
Eleocharis macrostachya	Pale spikerush	native	
Scirpus pungens	Common threesquare	native	
DATISCACEAE			
Datisca glomerata	Durango root	native	
DIPSACEAE			
Dipsacus fullonum	Wild teasel	non	
-			
EQUISETACEAE			
Equisetum arvense	Common horsetail	native	
Équisetum laevigatum	Smooth scouring-rush	native	
	5		
ERICACEAE			
Arctostaphylos manzanita ssp. manzanita	Manzanita	native	
Arctostaphylos manzanita ssp. wieslanderi	Manzanita	native	
EUPHORBIACEAE			
Chamaesvce glyptosperma	Rib-seeded spurge		
Chamaesyce maculata	Spotted spurge	non	
Chamaesyce ocellata ssp. rattanii	Stony Creek spurge	native	CNPS 4
Chamaesyce serpyllifolia ssp. serpyllifolia	Thyme-leaved spurge	native	
Fremocarpus setigerus		native	
Euphorbia crenulata	Chinese cans	native	
Euphorbia spathulata	Warty spurge	native	
		Thative	
ΓΔΒΔΩΕΔΕ			
Astragalus gambelianus	Gambel's milkvetch	native	
Astragalus gambellanus	lenson's milkyetch	native	CNPS 1B
Carcis accidentalis	Western redbud	native	CNISID
	Chick pop	native	
Latus humistratus		notivo	
Lotus numistratus	Spanish latus	native	
	Bioglarad Juping	native	
Lupinus bicoloi	M/bito whorled luping	native	
		native	
Lupinus nanus Madiaaga kupulina	Sky lupine Block modio	nalive	
Medicago iupulina		non	
Medicago polymorpha		non	
IVIEIIIOTUS AIDA		non	
	Sourciover	non	
Mellotus officinalis	Yellow sweetclover	non	11

Trifolium albopurpurpeum var. albopurpureum Indian clover native				
Trifolium bifidum var. bifidum	Notch-leaved clover	native		
Trifolium bifidum var. decipiens	Deceptive clover	native		
Trifolium campestre	Hop clover	non		
Trifolium ciliolatum	Foothill clover	native		
Trifolium depauperatum ssp. depauperatum	Dwarf cowbag clover	native		
Trifolium fucatum	Sour clover	native		
Trifolium hirtum	Rose clover	non		
Trifolium monanthum var. monanthum	Carpet clover	native		
Trifolium obtusiflorum	Clammy clover	native		
Trifolium variegatum	White-tipped clover	native		
Trifolium willdenovii	Tomcat clover	native		
Trifolium wormskioldii	Springbank clover	native		
Vicia sativa ssp. sativa	Spring vetch	non		
FAGACEAE				
Quercus agrifolia var. agrifolia	Coast live oak	native		
Quercus berberidifolia	Scrub oak	native		
Quercus chrysolepis	Canyon live oak	native		
Quercus douglasii	Blue oak	native		
Quercus lobata	Valley oak	native		
Quercus wislizenii var. wislizenii	Interior live oak	native		
GARRYACEAE				
Garrya congdonii	Congdon's silk tassel	native		
Garrya elliptica	Elliptic silk tassel	native		
GENTIANACEAE				
Centaurium muhlenbergii	June centaury	native		
Centaurium trichanthum	Alkali centaury	native		
Centaurium venustum	Canchalagua	native		
GERANIACEAE				
Erodium botrys	Long-beaked stork's bill	non		
Erodium cicutarium	Red-stemmed filaree	non		
Erodium moschatum	White-stemmed filaree	non		
Geranium dissectum	Cut-leaved geranium	non		
Geranium molle	Dove's-foot geranium	non		
HIPPOCASTANACEAE				
Aesculus californica	California buckeye	native		
HYDROCHARITACEAE				
Ivajas guadalupensis	Common water-nymph	native		
Erioaictyon californicum	California yerba santa	native		
Ivemophila heterophylla	variable-leaved nemophila	native		
Nemophila pedunculata	Meadow nemophila	native		

Phacelia ramosissima var. ramosissima	Branched phacelia	native	
HYPERICACEAE			
Hypericum formosum var. scouleri	Scouler's St. John's wort	native	
Hypericum perforatum	Klamath weed	non	
IRIDACEAE			
Iris sp.	Iris	native	
Sisyrinchium bellum	Blue-eyed grass	native	
Sisyrinchium douglasii var. douglasii	Purple-eyed grass	native	
JUGLANDACEAE			
Juglans californica var. hindsii	California walnut	native	CNPS 1B
JUNCACEAE			
Juncus bufonius var. bufonius	Common toadrush	native	
Juncus xiphioides	Iris-leaved rush	native	
LAMIACEAE			
Lamium amplexicaule	Giraffehead	non	
Marrubium vulgare	Horehound	non	
Mentha arvensis var. canadensis	American wild mint	native	
Mentha pulegium	Pennyroyal	non	
Mentha spicata var. spicata	Spearmint	non	
Monardella sheltonii	Shelton's coyote-mint	native	
Salvia columbariae	Chia	native	
Scutellaria antirrhinoides	Skullcap	native	
Scutellaria siphocampyloides	Gray-leaved skullcap	native	
Stachys ajugoides var. rigida	Rigid hedge-nettle	native	
Stachys stricta	Sonoma hedge-nettle	native	
Trichostema laxum	Turpentine weed	native	
LAURACEAE			
Unbellaria californica	California bay	native	
LILIACEAE			
Allium peninsulare var. peninsulare	Mexican onion	native	
Brodiaea elegans ssp. elegans	Elegant brodiaea	native	
Brodiaea californica var. californica	California brodiaea	native	
Calochortus albus	Fairy lantern	native	
Calochortus amabilis	Diogene's lantern	native	
Calochortus luteus	Yellow mariposa lily	native	
Chlorogalum pomeridianum	Soap plant	native	
Dichelostemma capitatum ssp. capitatum	Bluedicks	native	
Dichelostemma multiflorum	Round-toothed ookow	native	
Dichelostemma volubile	Climbing brodiaea	native	
Erythronium californicum	Trout lily	native	
Fritillaria affinis var. affinis	Checkered fritillarv	native	
Fritillaria pluriflora	Adobe lilv	native	SC/1B

Odontostomum hartwegii	Hartweg's odontostomum	native	
Triteleia ixioides ssp. scabra	Golden brodiaea	native	
Triteleia laxa	Ithuriel's spear	native	
Triteleia hyacinthina	Wild hyacinth	native	
Zigadenus fremontii	Fremont's zigadene	native	
LIMNANTHACEAE			
Limnanthes douglasii ssp. nivea	Table mountain meadowfoam	native	
Limnanthes floccosa ssp. floccosa	Woolly meadowfoam	native	CNPS 4
LINACEAE			
Hesperolinon californicum	California western flax	native	
Hesperolinon disjunctum		native	
Hesperolinon micranthum	Small-flowered dwarf flax	native	
Hesperolinon spergulinum	Dwarf flax	native	
LOASACEAE			
Mentzelia laevicaulis	Giant blazingstar	native	
LYTHRACEAE			
Lythrum hyssopifolium	Hyssop loosestrife	non	
MALVACEAE			
Malacothamnus fremontii	Bush mallow	native	
Sidalcea hartwegii	Hartweg's sidalcea	native	
Sidalcea hirsuta	Hairy sidalcea	native	
OLEACEAE			
Fraxinus dipetala	California ash	native	
		a a thua	
Camissonia gracilitiora	Hill sun cup	native	
Clarkia concinna ssp. concinna	Red ribbons	native	
Clarkia gracilis ssp. gracilis	Siender clarkia	native	
Clarkia lassenensis	Mit. Lassen clarkia	native	
Clarkia modesta	Durale electric	native	
Clarkia purpurea ssp. purpurea	Purple clarkia	native	
Clarkia purpurea ssp.quadrivuinera	Purple clarkia	native	
Clarkia momboldea	Tall annual willowhark	native	
Epilobium brachycarpum		native	
Epilopium ciliatum ssp. ciliatum		native	
Epilopium cleistogamum		native	
Epilobium foliosum	Small-flowered willowherb	native	
Εριιοφιαή minutum		native	
	Diporio	nativo	
riperia sp. Spiranthas parrifalia	Wostorn ladios trassas	nativo	
		nauve	
		11	11

OROBANCHACEAE			
Orobanche fasciculata	Clustered broomrape	native	
Orobanche uniflora	Naked broom-rape	native	
PAPAVERACEAE			
Eschscholzia caespitosa	Foothill poppy	native	
Eschscholzia californica	California poppy	native	
Eschscholzia lobbii	Fryingpans	native	
Platystemon californicus	California creamcups	native	
PHILADELPHACEAE			
Philadelphus lewisii	Mock orange	native	
PINACEAE			
Pinus sabiniana	Foothills pine	native	
PLANTAGINACEAE			
Plantago erecta	Erect plantain	native	
Plantago lanceolata	English plantain	non	
POACEAE			
Achnatherum lemmonii	Lemmon's needlgrass	native	
Aegilops cylindrica	Jointed goatgrass	non	
Agrostis exarata	Spiked bentgrass	native	
Aira caryophyllea	Silver European hairgrass	non	
Avena fatua	Wild oat	non	
Briza minor	Lesser quaking-grass	non	
Bromus diandrus	Ripgut brome	non	
Bromus hordeaceus	Softchess	non	
Bromus japonicus	Japanese brome	non	
Bromus laevipes	Woodland brome	native	
Bromus madritensis ssp. madritensis	Foxtail chess	non	
Bromus madritensis ssp. rubens	Red brome	non	
Bromus tectorum	Cheatgrass	non	
Crypsis schoenoides	Swamp pricklegrass	non	
Cynodon dactylon	Bermuda grass	non	
Cynosurus echinatus	Hedgehog dogtail	non	
Deschampsia danthonioides	Annual hairgrass	native	
Echinochloa crus-galli	Barnyard grass	non	
Elymus glaucus ssp. glaucus	Blue wild-rye	native	
Elymus multisetus	Big squirreltail	native	
Elymus trachycaulis ssp. subsecundus	Wheatgrass	native	
Elytrigia elongata	Elongate wheatgrass	non	
Elytrigia pontica ssp. pontica	Tall wheatgrass	non	
Gastridium ventricosum	Nitgrass	non	
Hordeum marinum ssp. gussoneanum	Mediterranean barley	non	
Hordeum murinum ssp. leporinum	Hare wall barley	non	
Leymus sp.	Ryegrass	native	
Lolium multiflorum	Italian rvegrass	non	

Melica californica	California melic	native	
Melica torreyana	Torrey's melica	native	
Muhlenbergia rigens	Muhly	native	
Nassella cernua	Nodding needlegrass	native	
Nassella lepida	Small-flowered needlegrass	native	
Nassella pulchra	Purple needlegrass	native	
Panicum capillare	Witchgrass	native	
Phalaris aquatica	Harding-grass	non	
Phalaris minor	Lesser canary grass	non	
Piptatherum miliaceum	Smilograss	non	
Poa annua	Annual bluegrass	non	
Poa bulbosa	Bulbous bluegrass	non	
Poa secunda ssp. secunda	One-sided bluegrass	native	
Polypogon maritimus	Mediterranean beardgrass	non	
Taeniatherum caput-medusae	Medusa-head	non	
Vulpia microstachys var. ciliata	Fringed fescue	native	
Vulpia microstachys var. pauciflora	Few-flowered fescue	native	
Vulpia myuros var. hirsuta	Foxtail fescue	non	
POLEMONIACEAE			
Eriastrum abramsii	Abram's eriastrum	native	
Eriastrum brandegeae	Brandegee's eriastrum	native	SC/1B
Gilia capitata ssp. capitata	Globe gilia	native	
Gilia tricolor	Bird's-eye gilia	native	
Linanthus bicolor	Bicolored linanthus	native	
Linanthus bolanderi	Bolander's linanthus	native	
Linanthus ciliatus	Whiskerbrush	native	
Linanthus dichotomus	Evening snow	native	
Linanthus parviflorus	Cherokee linanthus	native	
Navarretia heterandra	Tehama navarretia	native	CNPS 4
Navarretia intertexta ssp. intertexta	Needle-leaved navarretia	native	
Navarretia jepsonii	Jepson's navarretia	native	CNPS 4
Navarretia pubescens	Downy navarretia	native	
Navarretia tagetina	Marigold navarretia	native	
Navarretia viscidula	Sticky navarretia	native	
Phlox gracilis	Slender phlox	native	
POLYGONACEAE			
Chorizanthe membranacea	Pink spineflower	native	
Eriogonum compositum var. compositum	Arrow-leaved buckwheat	native	
Eriogonum dasyanthemum	Wild buckwheat	native	
Eriogonum nudum var. nudum	Naked buckwheat	native	
Eriogonum nudum var. oblongifolium	Hairy-stemmed buckwheat	native	
Polygonum arenastrum	Common knotweed	non	
Rumex crispus	Curly dock	native	
Rumex salicifolius var. denticulatus	Smooth-valved willow dock	native	
PORTULACACEAE			
Calandrinia ciliata	Redmaids	native	

Claytonia exigua ssp. exigua	Little miner's lettuce	native	
Claytonia parviflora ssp. parviflora	Miner's lettuce	native	
Claytonia perfoliata	Common miner's lettuce	native	
Montia fontana	Water montia	native	
Portulaca oleracea	Common purslane	non	
	· · ·		
POTAMOGETONACEAE			
Potamogeton pectinatus	Fennel-leaf pondweed	native	
	•		
PRIMULACEAE			
Anagallis arvensis	Scarlet pimpernel	non	
Androsace elongata ssp. acuta	Fairy candelabra	native	CNPS 4
Dodecatheon hendersonii	Henderson's shootingstar	native	
PTERIDACEAE			
Adiantum jordanii	California maidenhair	native	
Pellaea andromedifolia	Coffee fern	native	
Pentagramma triangularis ssp. triangularis	Gold-backed fern	native	
RANUNCULACEAE			
Clematis lasiantha	Chaparral clematis	native	
Clematis ligusticifolia	Virgin's-bower	native	
Delphinium hansenii ssp. hansenii	Hansen's larkspur	native	
Delphinium hesperium ssp. pallescens	Pale larkspur	native	
Delphinium patens ssp. patens	Spreading larkspur	native	
Ranunculus californicus	California buttercup	native	
Ranunculus hebecarpus	Pubescent-fruited buttercup	native	
Ranunculus muricatus	Prickle-seeded buttercup	non	
Ranunculus occidentalis	Western buttercup	native	
Thalictrum fendleri var. polycarpum	Many-fruited meadow-rue	native	
RHAMNACEAE			
Ceanothus cuneatus var. cuneatus	Buckbrush	native	
Ceanothus integerrimus	Deerbrush	native	
Rhamnus californica	California coffeeberry	native	
Rhamnus ilicifolia	Holly-leaved redberry	native	
Rhamnus tomentella ssp. tomentella	Hoary coffeeberry	native	
· · · · · · · · · · · · · · · · · · ·			
ROSACEAE			
Adenostoma fasciculatum	Chamise	native	
Aphanes occidentalis	Western lady's-mantle	non	
Cercocarpus betuloides var. betuloides	Birch-leaved mountain mahogany	native	
Heteromeles arbutifolia	Toyon	native	
Prunus sp.	Cherry		
Rosa californica	California rose	native	
Rosa woodsii var. ultramontanus	Interior rose	native	
Rubus discolor	Blackberry	non	
RUBIACEAE			

Crucianella angustifolia	Crosswort	non	
Galium aparine	Cleavers	native	
Galium parisiense	Wall bedstraw	non	
Galium porrigens var. tenue	Narrow-leaved climbing bedstraw	native	
Sherardia arvensis	Field-madder	non	
SALICACEAE			
Populus fremontii ssp. fremontii	Fremont's cottonwood	native	
Salix exigua	Sandbar willow	native	
Salix laevigata	Red willow	native	
Salix lasiolepis	Arroyo willow	native	
Salix lucida ssp. lasiandra	Shining willow	native	
·			
SAXIFRAGACEAE			
Lithophragma parviflorum var. parviflorum	Small-flowered woodland star	native	
Saxifraga californica	California saxifrage	native	
SCROPHULARIACEAE			
Antirrhinum cornutum	Spurred snapdragon	native	
Antirrhinum subcordatum	Dimorphic snapdragon	native	CNPS 1B
Castilleia affinis ssp. affinis	Lav-and-Collie's Indian paintbrush	native	
Castilleia attenuata	Vallev tassels	native	
Castilleia campestris ssp. campestris	Field owl-clover	native	
Castillia foliolosa	Woolly Indian paintbrush	native	
Castilleia rubicundula ssp. lithospermoides	Cream sacs	native	
Collinsia sparsiflora var. collina	Collinsia	native	
Collinsia sparsiflora var. sparsiflora	Few-flowered collinsia	native	
Keckiella corvmbosa	Redwood keckiella	native	
Keckiella lemmonii	Lemmon's keckiella	native	
Mimulus cardinalis	Scarlet monkeyflower	native	
Mimulus floribundus	Floriferous monkeyflower	native	
Mimulus auttatus	Seep monkeyflower	native	
Mimulus kellogaji	Kellogg's monkeyflower	native	
Mimulus moschatus	Musk monkeyflower	native	
Mimulus pilosus	Downy mimetanthe	native	
Penstemon heterophyllus var. heterophyllus	Foothill beardtongue	native	
Penstemon heterophyllus var. purdvi	Foothill beardtongue	native	
Scrophularia californica	California figwort	native	
Tonella tenella	Small-flowered tenella	native	
Triphysaria eriantha ssp. eriantha	Johnnytuck	native	
Triphysaria pusilla	Dwarf owl-clover	native	
Verbascum blattaria	Moth mullein	non	
Verbascum thapsus	Woolly mullein	non	
Veronica anagallis-aguatica	Great water speedwell	non	
Veronica catenata	Chain speedwell	non	
Veronica peregrina ssp. xalapensis	Purslane speedwell	native	
SOLANACEAE		+	

Indian tobacco

Nicotiana quadrivalvis

native

10-19-99

Attachment 5: RED BANK Reservoir: Species List

Solanum nigrum	Black nightshade	non
Solanum parishii	Parish's nightshade	native
STYRACACEAE		
Styrax officinalis var. redivivus	Snowdrop bush	native
TAMARICACEAE		
Tamarix gallica	French tamarisk	non
Tamarix ramosissima	Branched tamarisk	non
VALERIANACEAE		
Plectritis ciliosa ssp. ciliosa	Long-spurred pink plectritis	native
Plectritis macrocera	White plectritis	native
VERBENACEAE		
Verbena hastata	Halberd-leaved vervain	native
Verbena lasiostachys var. scabrida	Western vervain	native
Verbena lasiostachys var. lasiostachys	Western vervain	native
VISCACEAE		
Arceuthobium occidentale	Gray pine dwarf-mistletoe	native
Phoradendron villosum	Oak mistletoe	native
VITACEAE		
Vitis californica	California wild grape	native

ATTACHMENT 6.

OFFSTREAM STORAGE RESERVOIR ALTERNATIVES:

1998-1999 plant voucher collection

Plant Voucher plant specimen collected and preserved as proof for species named on this list.				
FAMILY Genus species	Posorvoir	Voucher	Date	Collector
	ILESEI VOII	Vouchei	Date	
ACERACEAE				
Acer macrophyllum	Red Bank	99-134	14-Jun	B Castro
	rtou Barnt	00 101	11 Out	
ALISMATACEAE				
Damasonium californicum	Sites	98-1	1-Jul	J. Marr
Damasonium californicum	Newville	98-708	1-Jul	C. Warren
Echinodorus berteroi	Red Bank	98-852	7-Jul	J. Cunningham
Echinodorus berteroi	Newville	99-135	1-Jun	B. Castro
AMARANTHACEAE				
Amarathus albus	Newville	98-2	15-Jul	J. Marr
Amarathus albus	Red Bank	98-853	7-Jul	J. Cunningham
ANACARDIACEAE				
Rhus trilobata	Newville	99-40	9-Jun	J. Witzman
APIACEAE				
Undetermined	Newville	98-709	30-Mar	C. Warren
Undetermined	Newville	98-710	11-May	C. Warren
Anthriscus caucalis	Newville	98-854	27-Apr	J. Cunningham
Daucus pusillus	Newville	98-855	28-Apr	J. Cunningham
Daucus pusillus	Newville	98-856	14-May	J. Cunningham
Daucus pusillus	Newville	98-857	14-May	J. Cunningham
Daucus pusillus	Sites	98-3	4-May	J. Marr
Daucus pusillus	Newville	98-4	30-Apr	J. Marr
Eryngium castrense	Sites	99-301	1-Jul	J. Marr
Eryngium castrense	Newville	98-5	14-Jul	J. Marr
	Red Bank	98-6	9-Jun	J. Marr
Lomatium sp.	Sites	99-302	18-Feb	J. Marr
Lomatium carvifolium	Sites	99-39	23-Mar	B. Hendrickson
Lomatium carvitolium var. denticulatum	Red Bank	99-136	18-May	B. Castro
Lomatium dasycarpum ssp. dasycarpum	Newville	98-7	29-Apr	J. Marr
Lomatium dasycarpum ssp. tomentosum	Newville	98-8	20-Mar	J. Marr
Lomatium dasycarpum ssp. tomentosum	Newville Rod Rook	98-9	20-Iviar	J. Marr
	Nounvillo	90-10	2-Api 10 Mor	J. Marr
Lonatium marginatum var. marginatum	Nowvillo	90-11	19-1Vial	J. Wall
	Nowvillo	08-12	29-Api 20-Mar	J. Marr
Lomatium marginatum var. purpureum	Nowvillo	00-13 00-127	Q_Apr	B Castro
Lomatium marginatum var. purpureum	Sites	99-138	12-Anr	B Castro

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· ·				
Lomatium utriculatum	Newville	98-14	20-Apr	J. Marr
Lomatium utriculatum	Newville	98-15	28-Mar	J. Marr
Lomatium utriculatum	Newville	99-280	5-May	B. Castro
Lomatium utriculatum	Newville	99-139	4-May	B. Castro
Perideridia bolanderi ssp. bolanderi	Red Bank	98-711	27-Aug	C. Warren
Perideridia kelloggii	Red Bank	98-16	3-Jul	J. Marr
Perideridia kelloggii	Red Bank	98-17	15-Jun	J. Marr
Perideridia kelloggii	Red Bank	98-18	27-Aug	J. Marr
Perideridia kelloggii	Red Bank	98-645	27-Aug	H. West
Perideridia kelloggii	Red Bank	99-140	21-Jun	B. Castro
Sanicula crassicaulis	Red Bank	99-303	28-Apr	J. Marr
Sanicula tuberosa	Red Bank	99-141	23-Mar	B. Castro
Sanicula tuberosa	Red Bank	99-304	28-Apr	J. Marr
Torilis arvensis	Newville	98-19	29-Apr	J. Marr
Torilis arvensis	Newville	98-20	17-Apr	J. Marr
Torilis nodosa	Sites	98-21	27-May	J. Marr
Torilis nodosa	Newville	98-22	11-May	J. Marr
Torilis nodosa	Newville	98-859	4-May	J. Cunningham
Torilis nodosa	Newville	98-860	18-May	J. Cunningham
Yabea microcarpa	Red Bank	98-23	20-May	J. Marr
Yabea microcarpa	Sites	99-1	21-Apr	B. Hendrickson
Yabea microcarpa	Newville	99-142	14-Apr	B. Castro
APOCYANACEAE				
Apocyanum cannabinum	Red Bank	99-2		B. Hendrickson
Apocyanum cannabinum	Newville	99-41	9-Jun	J. Witzman
Apocyanum cannabinum	Red Bank	99-306	27-May	J. Marr
ASCLEPIADACEAE				
Asclepias eriocarpa	Red Bank	99-69	10-Apr	L. Janeway
Asclepias eriocarpa	Newville	99-143	1-Jun	B. Castro
Asclepias fascicularis	Red Bank	98-24	2-Jul	J. Marr
Asclepias fascicularis	Red Bank	98-25	8-Jul	J. Marr
Asclepias fascicularis	Red Bank	98-861	25-Jun	J. Cunningham
Asclepias speciosa	Red Bank	99-70	14-Apr	L. Janeway
ASTERACEAE				
Undetermined	Red Bank	98-26	13-Oct	J. Marr
Undetermined	Red Bank	98-651	27-Apr	H. West
Undetermined	Red Bank	98-34	9-Jun	J. Marr
Undetermined	Red Bank	98-712	27-Apr	C. Warren
Undetermined	Newville	98-862	14-Mav	J. Cunningham

FAMILY Genus species	Reservoir	Voucher	Date	Collector	
· · ·					
Undetermined	Colusa	99-307	1-Apr	J. Marr	
Undetermined	Newville	99-308	20-Apr	J. Marr	
Agoseris heterophylla	Red Bank	99-309	27-May	J. Marr	
Agoseris heterophylla	Red Bank	98-863	27-Apr	J. Cunningham	
Agoseris heterophylla	Newville	98-864	29-Apr	J. Cunningham	
Agoseris heterophylla	Newville	98-27	30-Apr	J. Marr	
Agoseris heterophylla	Red Bank	98-28	1-Apr	J. Marr	
Agoseris heterophylla	Newville	98-29	20-Mar	J. Marr	
Agoseris heterophylla	Sites	98-30	8-May	J. Marr	
Agoseris heterophylla	Sites	98-31	14-Apr	J. Marr	
Agoseris heterophylla	Sites	98-32	14-Apr	J. Marr	
Agoseris heterophylla	Newville	98-33	19-May	J. Marr	
Agoseris heterophylla	Newville	99-71	21-Apr	L. Janeway	
Ancistrocarphus filagineus	Newville	99-72	6-Apr	L. Janeway	
Ancistrocarphus filagineus	Newville	98-35	17-Apr	J. Marr	
Ancistrocarphus filagineus	Sites	98-36	14-Apr	J. Marr	
Ancistrocarphus filagineus	Red Bank	99-144	7-Apr	B. Castro	
Anthemis cotula	Red Bank	98-866	7-Jul	J. Cunningham	
Artemisia douglasiana	Red Bank	98-655	21-Aug	H. West	
Artemisia douglasiana	Red Bank	98-670	27-Aug	H. West	
Artemisia douglasiana	Red Bank	98-37	27-Aug	J. Marr	
Baccharis sp.	Red Bank	98-713	24-Sep	C. Warren	
Baccharis salicifolia	Red Bank	98-38	9-Jun	J. Marr	
Baccharis salicifolia	Red Bank	98-39	13-Oct	J. Marr	
Blennosperma nanum var. nanum	Colusa	98-40	6-Apr	J. Marr	
Brickellia californica	Red Bank	98-41	27-Aug	J. Marr	
Brickellia californica	Red Bank	99-310	9-Jul	J. Marr	
Calycadenia sp.	Red Bank	98-42	9-Jun	J. Marr	
Calycadenia sp.	Newville	98-43	2-Jun	J. Marr	
Calycadenia sp.	Red Bank	98-44	9-Jul	J. Marr	
Calycadenia fremontii	Red Bank	98-45	8-Jul	J. Marr	
Calycadenia fremontii	Red Bank	98-672	13-Oct	H. West	
Calycadenia fremontii	Red Bank	98-867	25-Jun	J. Cunningham	
Calycadenia fremontii	Red Bank	99-145	8-Jun	B. Castro	
Calycadenia fremontii	Red Bank	99-285	11-Aug	B. Castro	
Calycadenia fremontii	Red Bank	99-311	27-May	J. Marr	
Calycadenia multiglandulosa	Newville	98-46	16-Jun	J. Marr	
Calycadenia multiglandulosa	Red Bank	98-47	27-Aug	J. Marr	
Calycadenia multiglandulosa	Red Bank	98-48	9-Jun	J. Marr	
Calycadenia pauciflora	Red Bank	98-868	25-Jun	J. Cunningham	
Calycadenia pauciflora	Red Bank	98-49	2-Jul	J. Marr	
Calycadenia pauciflora	Sites	98-50	27-Mav	J. Marr	

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · · · · · · · · · · · · · · · · · ·				
Calycadenia pauciflora	Colusa	98-51	17-Jun	J. Marr
Calycadenia pauciflora	Red Bank	98-52	8-Jul	J. Marr
Calycadenia pauciflora	Red Bank	98-53	8-Jul	J. Marr
Calycadenia pauciflora	Red Bank	99-73	4-Apr	L. Janeway
Calycadenia pauciflora	Red Bank	99-146	14-Jun	B. Castro
Calycadenia truncata	Red Bank	99-147	9-Jun	B. Castro
Calycadenia truncata	Red Bank	98-54	2-Jul	J. Marr
Calycadenia truncata	Red Bank	98-55	3-Jul	J. Marr
Calycadenia truncata	Red Bank	98-714	6-Jul	C. Warren
Calycadenia truncata	Red Bank	98-715	3-Jul	C. Warren
Calycadenia truncata	Red Bank	98-56	8-Jul	J. Marr
Calycadenia truncata ssp. scabrella	Red Bank	98-57	8-Jul	J. Marr
Calycadenia truncata ssp. scabrella	Red Bank	99-74	9-Jun	L. Janeway
Carduus pycnocephalus	Sites	98-58	4-May	J. Marr
Centaurea melitensis	Colusa	98-59	17-Jun	J. Marr
Centaurea melitensis	Newville	98-60	16-Jun	J. Marr
Centaurea melitensis	Sites	98-61	4-May	J. Marr
Chaenactis glabriuscula var. heterocarpha	Red Bank	98-62	15-Jun	J. Marr
Chaenactis glabriuscula var. heterocarpha	Red Bank	98-63	3-Jul	J. Marr
Chaenactis glabriuscula var. heterocarpha	Newville	98-871	14-May	J. Cunningham
Chaenactis glabriuscula var. heterocarpha	Red Bank	99-312	29-Apr	J. Marr
Chaenactis glabriuscula var. megacephala	Newville	98-870	19-May	J. Cunningham
Cirsium occidentale var. venustum	Newville	98-64	29-Apr	J. Marr
Conyza canadensis	Red Bank	98-65	27-Aug	J. Marr
Conyza canadensis	Red Bank	99-284	11-Aug	B. Castro
Cotula coronopifolia	Sites	98-66	11-Jun	J. Marr
Cotula coronopifolia	Sites	98-716	11-Jun	C. Warren
Crocidium multicaule	Newville	98-67	19-Mar	J. Marr
Crocidium multicaule	Newville	99-313	23-Mar	J. Marr
Erigeron divergens	Red Bank	99-300	11-Aug	L. Janeway
Erigeron philadelphicus	Colusa	98-69	22-Apr	J. Marr
Erigeron philadelphicus	Red Bank	99-148	24-Jun	B. Castro
Ericameria linearifolia	Newville	98-70	28-Apr	J. Marr
Ericameria linearifolia	Newville	98-717	11-May	C. Warren
Ericameria linearifolia	Newville	98-872	19-May	J. Cunningham
Ericameria linearifolia	Newville	98-873	28-Apr	J. Cunningham
Eriophyllum lanatum	Newville	98-718	14-May	C. Warren
Eriophyllum lanatum var. achillaeoides	Newville	98-71	18-Jun	J. Marr
Eriophyllum lanatum var. achillaeoides	Newville	98-72	16-Jun	J. Marr
Eriophyllum lanatum var. achillaeoides	Newville	98-874	19-May	J. Cunningham
Eriophyllum lanatum var. achillaeoides	Red Bank	98-875	25-Jun	J. Cunningham
Eriophyllum lanatum var. achillaeoides	Red Bank	99-314	28-Mav	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· ·				
Eriophyllum lanatum var. aphanactis	Newville	99-149	12-May	B. Castro
Euthamia occidentalis	Red Bank	98-68	24-Sep	J. Marr
Euthamia occidentalis	Red Bank	98-706	13-Oct	H. West
Filago gallica	Newville	98-73	20-Apr	J. Marr
Filago gallica	Sites	98-74	7-Apr	J. Marr
Filago gallica	Colusa	98-75	8-Apr	J. Marr
Filago gallica	Newville	98-719	28-Apr	C. Warren
Gnaphalium luteo-album	Red Bank	98-76	20-May	J. Marr
Gnaphalium luteo-album	Newville	98-77	14-Jul	J. Marr
Gnaphalium luteo-album	Red Bank	98-78	9-Jul	J. Marr
Gnaphalium luteo-album	Newville	98-79	16-Jun	J. Marr
Gnaphalium luteo-album	Red Bank	98-80	2-Jul	J. Marr
Gnaphalium luteo-album	Newville	99-75	5-May	L. Janeway
Gnaphalium stramineum	Red Bank	99-76	24-Jun	L. Janeway
<i>Grindelia</i> sp.	Newville	99-150	21-Apr	B. Castro
Helenium puberulum	Red Bank	98-81	27-Aug	J. Marr
Helenium puberulum	Red Bank	98-661	27-Aug	H. West
Helenium puberulum	Red Bank	98-666	21-Aug	H. West
Helianthella californica var. nevadensis	Red Bank	99-151	3-Jun	B. Castro
<i>Hemizonia</i> sp.	Red Bank	98-82	23-Sep	J. Marr
Hemizonia congesta	Red Bank	98-652	25-Jun	H. West
Hemizonia congesta ssp. clevelandii	Red Bank	99-77	4-Jun	L. Janeway
Hemizonia congesta ssp. clevelandii	Red Bank	99-152	3-Jun	B. Castro
Hemizonia congesta ssp. clevelandii	Red Bank	99-153	24-Jun	B. Castro
Hemizonia congesta ssp. luzulifolia	Sites	98-83	22-Jul	J. Marr
Hemizonia fitchii	Newville	98-84	18-Jun	J. Marr
Hesperevax acaulis var. robustior	Colusa	98-85	18-Apr	J. Marr
Hesperevax acaulis var. robustior	Red Bank	98-707	27-Apr	H. West
Hesperevax acaulis var. robustior	Red Bank	99-315	29-Apr	J. Marr
Hesperevax caulescens	Colusa	99-316	30-Mar	J. Marr
Hesperevax caulescens	Newville	99-317	21-Apr	J. Marr
Hesperevax caulescens	Sites	98-86	14-Apr	J. Marr
Hesperevax caulescens	Newville	98-87	29-Apr	J. Marr
Hesperevax caulescens	Colusa	99-154	1-Apr	B. Castro
Hesperevax sparsiflora	Sites	98-88	8-May	J. Marr
Heterotheca oregona var. compacta	Red Bank	98-704	21-Aug	H. West
Heterotheca oregona var. compacta	Red Bank	99-287	11-Aug	B. Castro
Heterotheca oregona var. rudis	Red Bank	98-701	13-Oct	H. West
Heterotheca oregona var. rudis	Red Bank	98-89	13-Oct	J. Marr
Holocarpha obconica	Newville	98-720	18-Jun	C. Warren
Holocarpha virgata ssp. virgata	Colusa	98-90	17-Jun	J. Marr
Holocarpha virgata ssp. virgata	Newville	98-91	18-Jun	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
Hypochaeris glabra	Colusa	98-92	17-Jun	J. Marr
Hypochaeris glabra	Newville	98-93	29-Apr	J. Marr
Hypochaeris glabra	Red Bank	98-721	27-Apr	C. Warren
Hypochaeris glabra	Red Bank	98-876	27-Apr	J. Cunningham
Hypochaeris glabra	Newville	98-877	28-Apr	J. Cunningham
Hypochaeris glabra	Newville	98-878	11-May	J. Cunningham
Hypochaeris glabra	Colusa	99-318	30-Mar	J. Marr
Hypochaeris radicata	Newville	99-319	20-Apr	J. Marr
Hypochaeris radicata	Newville	98-94	7-Apr	J. Marr
Hypochaeris radicata	Red Bank	98-95	9-Jun	J. Marr
Lactuca saligna	Sites	98-96	22-Jul	J. Marr
Lactuca saligna	Sites	98-671	29-Oct	H. West
Lagophylla sp.	Newville	98-97	28-Apr	J. Marr
Lagophylla glandulosa	Newville	98-98	30-Apr	J. Marr
Lagophylla glandulosa	Newville	98-99	30-Apr	J. Marr
Lagophylla glandulosa	Newville	98-120	2-Jun	J. Marr
Lagophylla glandulosa	Newville	99-155	4-May	B. Castro
Lagophylla minor	Red Bank	98-100	15-Jun	J. Marr
Lagophylla minor	Newville	98-101	29-Apr	J. Marr
Lagophylla minor	Red Bank	98-879	7-Jul	J. Cunningham
Lagophylla minor	Newville	98-880	11-May	J. Cunningham
Lagophylla ramosissima ssp. ramosissima	Newville	98-881	11-May	J. Cunningham
Lagophylla ramosissima ssp. ramosissima	Red Bank	98-882	27-Apr	J. Cunningham
Lagophylla ramosissima ssp. ramosissima	Newville	98-883	14-May	J. Cunningham
Lagophylla ramosissima ssp. ramosissima	Red Bank	98-884	25-Jun	J. Cunningham
Lagophylla ramosissima ssp. ramosissima	Red Bank	98-102	15-Jun	J. Marr
Lagophylla ramosissima ssp. ramosissima	Red Bank	99-156	3-Jun	B. Castro
Lasthenia californica	Newville	99-157	12-Apr	B. Castro
Lasthenia californica	Newville	98-103	20-Apr	J. Marr
Lasthenia californica	Newville	98-104	29-Apr	J. Marr
Lasthenia californica	Newville	98-105	26-Mar	J. Marr
Lasthenia californica	Newville	98-106	17-Apr	J. Marr
Lasthenia californica	Newville	98-700	6-Apr	H. West
Lasthenia californica	Newville	98-722	30-Mar	C. Warren
Lasthenia californica	Newville	98-885	11-May	J. Cunningham
Lasthenia californica	Sites	99-3	7-Apr	B. Hendrickson
Lasthenia californica	Newville	99-320	23-Mar	J. Marr
Lasthenia glaberrima	Newville	98-107	28-Apr	J. Marr
Lasthenia glaberrima	Newville	99-158	1-Jun	B. Castro
Layia chrysanthemoides	Sites	98-108	8-May	J. Marr
Layia chrysanthemoides	Sites	98-109	8-May	J. Marr
Lavia fremontii	Newville	98-110	28-Apr	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · ·				
Layia fremontii	Newville	98-111	29-Apr	J. Marr
Layia fremontii	Newville	99-321	14-Apr	J. Marr
Lessingia sp.	Newville	98-112	19-May	J. Marr
Lessingia sp.	Colusa	98-114	17-Jun	J. Marr
Lessingia sp.	Newville	98-115	11-May	J. Marr
Lessingia nana	Newville	98-702	15-Jul	H. West
Lessingia nana	Newville	98-121	15-Jul	J. Marr
Lessingia nemoclada	Red Bank	98-113	27-Aug	J. Marr
Lessingia nemoclada	Red Bank	98-116	2-Jul	J. Marr
Lessingia nemoclada	Red Bank	98-117	2-Jul	J. Marr
Lessingia nemoclada	Red Bank	98-118	9-Jul	J. Marr
Lessingia nemoclada	Red Bank	98-119	9-Jul	J. Marr
Lessingia nemoclada	Red Bank	98-886	7-Jul	J. Cunningham
Lessingia nemoclada	Newville	99-159	10-May	B. Castro
Madia elegans ssp. densifolia	Newville	98-122	14-Jul	J. Marr
Madia elegans ssp. densifolia	Newville	98-123	15-Jul	J. Marr
Madia elegans ssp. densifolia	Newville	98-887	14-May	J. Cunningham
Madia elegans ssp. vernalis	Red Bank	98-124	9-Jun	J. Marr
Madia exigua	Red Bank	99-161	18-May	B. Castro
Madia exigua	Newville	99-160	4-May	B. Castro
Madia exigua	Red Bank	98-125	8-Jul	J. Marr
Madia exigua	Red Bank	98-126	8-Jul	J. Marr
Madia exigua	Newville	98-723	14-May	C. Warren
Madia exigua	Red Bank	98-888	26-May	J. Cunningham
Madia exigua	Newville	98-889	11-May	J. Cunningham
Madia exigua	Newville	98-890	11-May	J. Cunningham
Madia gracilis	Red Bank	98-891	27-Apr	J. Cunningham
Madia gracilis	Red Bank	98-892	27-Apr	J. Cunningham
Madia gracilis	Newville	98-127	19-May	J. Marr
Madia gracilis	Sites	98-128	27-May	J. Marr
Madia gracilis	Newville	98-129	30-Apr	J. Marr
Madia gracilis	Red Bank	99-162	18-May	B. Castro
Malacothrix floccifera	Newville	98-130	17-Apr	J. Marr
Malacothrix floccifera	Newville	98-131	19-Mar	J. Marr
Micropus californicus var. californicus	Sites	98-132	7-Apr	J. Marr
Micropus californicus var. californicus	Colusa	98-133	8-Apr	J. Marr
Micropus californicus var. californicus	Colusa	98-134	21-Apr	J. Marr
Micropus californicus var. californicus	Newville	98-135	20-Apr	J. Marr
Micropus californicus var. californicus	Colusa	98-136	6-Apr	J. Marr
Micropus californicus var. californicus	Sites	98-137	14-Apr	J. Marr
Micropus californicus var. californicus	Colusa	98-138	7-Apr	J. Marr
Micropus californicus var. californicus	Colusa	98-139	7-Apr	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · ·				
Micropus californicus var. californicus	Newville	98-140	28-Apr	J. Marr
Micropus californicus var. californicus	Newville	98-724	14-May	C. Warren
Microseris acuminata	Newville	98-893	29-Apr	J. Cunningham
Microseris douglasii ssp. douglasii	Newville	98-894	11-May	J. Cunningham
Microseris douglasii ssp. douglasii	Red Bank	98-895	27-Apr	J. Cunningham
Microseris douglasii ssp. douglasii	Newville	98-141	20-Apr	J. Marr
Microseris douglasii ssp. douglasii	Newville	98-142	30-Apr	J. Marr
Microseris douglasii ssp. douglasii	Colusa	98-667	22-Apr	H. West
Microseris douglasii ssp. douglasii	Newville	99-322	7-Apr	J. Marr
Microseris douglasii ssp. tenella	Sites	98-143	8-May	J. Marr
Monolopia gracilens	Newville	98-726	14-May	C. Warren
Monolopia major	Sites	98-144	8-May	J. Marr
Psilocarphus brevissimus var. brevissimus	Newville	99-163	1-Jun	B. Castro
Psilocarphus oregonus	Colusa	98-145	21-Apr	J. Marr
Psilocarphus oregonus	Newville	98-146	29-Apr	J. Marr
Psilocarphus oregonus	Newville	98-147	28-Apr	J. Marr
Psilocarphus oregonus	Newville	98-727	28-Apr	C. Warren
Psilocarphus tenellus	Sites	98-728	8-May	C. Warren
Psilocarphus tenellus var. tenellus	Sites	98-148	14-Apr	J. Marr
Psilocarphus tenellus var. tenellus	Newville	98-149	17-Apr	J. Marr
Psilocarphus tenellus var. tenellus	Newville	98-150	20-Apr	J. Marr
Psilocarphus tenellus var. tenellus	Newville	98-896	11-May	J. Cunningham
Psilocarphus tenellus var. tenellus	Red Bank	99-78	20-Apr	L. Janeway
Rafinesquia californica	Newville	98-897	19-May	J. Cunningham
Rafinesquia californica	Red Bank	98-151	20-May	J. Marr
Rafinesquia californica	Newville	99-164	10-May	B. Castro
Rigiopappus leptocladus	Newville	98-152	28-Apr	J. Marr
Rigiopappus leptocladus	Newville	98-153	20-Apr	J. Marr
Rigiopappus leptocladus	Sites	98-154	8-May	J. Marr
Rigiopappus leptocladus	Newville	98-155	30-Apr	J. Marr
Rigiopappus leptocladus	Red Bank	98-156	6-Jul	J. Marr
Rigiopappus leptocladus	Newville	98-703	19-May	H. West
Rigiopappus leptocladus	Newville	98-898	11-May	J. Cunningham
Rigiopappus leptocladus	Newville	98-899	11-May	J. Cunningham
Rigiopappus leptocladus	Newville	99-165	22-Apr	B. Castro
Rigiopappus leptocladus	Newville	99-323	20-Apr	J. Marr
Rigiopappus leptocladus	Newville	99-324	20-Apr	J. Marr
Solidago californica	Red Bank	98-705	13-Oct	H. West
Solidago californica	Red Bank	98-157	13-Oct	J. Marr
Sonchus asper ssp. asper	Newville	98-158	14-Jul	J. Marr
Sonchus asper ssp. asper	Red Bank	99-326	28-May	J. Marr
Stephanomeria sp.	Newville	98-159	18-Jun	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
Stephanomeria sp.	Red Bank	98-160	3-Jul	J. Marr
Stephanomeria elata	Red Bank	98-161	9-Jul	J. Marr
Stephanomeria virgata ssp. pleurocarpa	Red Bank	98-162	13-Oct	J. Marr
Stephanomeria virgata ssp. pleurocarpa	Red Bank	99-286	11-Aug	B. Castro
Uropappus lindleyi	Newville	99-166	15-Apr	B. Castro
Uropappus lindleyi	Newville	98-163	29-Apr	J. Marr
Uropappus lindleyi	Newville	98-164	17-Apr	J. Marr
Uropappus lindleyi	Colusa	98-165	6-Apr	J. Marr
Uropappus lindleyi	Newville	98-166	26-Mar	J. Marr
Wyethia angustifolia	Newville	98-167	28-Apr	J. Marr
Wyethia angustifolia	Newville	98-730	14-May	C. Warren
Wyethia angustifolia	Red Bank	98-900	25-Jun	J. Cunningham
Wyethia angustifolia	Newville	98-901	14-May	J. Cunningham
Wyethia angustifolia	Sites	99-42	6-May	J. Witzman
Wyethia angustifolia	Newville	99-167	12-May	B. Castro
Wyethia glabra	Colusa	99-4	1-Apr	B. Hendrickson
Wyethia helenioides	Newville	99-168	12-May	B. Castro
Wyethia helenioides	Red Bank	99-326	28-Apr	J. Marr
Xanthium spinosum	Sites	98-731	11-Jun	C. Warren
BETULACEAE				
Alnus rhombifolia	Red Bank	98-168	21-May	J. Marr
Alnus rhombifolia	Red Bank	99-327	28-May	J. Marr
BORAGINACEAE				
Undetermined	Newville	99-328	23-Mar	J. Marr
Amsinckia sp.	Colusa	98-169	6-Apr	J. Marr
Amsinckia lycopsoides	Colusa	99-169	31-Mar	B. Castro
Amsinckia lycopsoides	Colusa	99-329	31-Mar	J. Marr
Amsinckia menziesii	Newville	98-171	20-Apr	J. Marr
Amsinckia menziesii var. menziesii	Colusa	98-170	7-Apr	J. Marr
Amsinckia menziesii var. menziesii	Newville	98-902	11-May	J. Cunningham
Amsinckia menziesii var. menziesii	Newville	98-903	11-May	J. Cunningham
Cryptantha sp.	Red Bank	98-904	27-Apr	J. Cunningham
Cryptantha sp.	Red Bank	99-332	28-Apr	J. Marr
Cryptantha flaccida	Newville	98-172	28-Apr	J. Marr
Cryptantha flaccida	Newville	98-173	20-Apr	J. Marr
Cryptantha flaccida	Colusa	98-174	21-Apr	J. Marr
Cryptantha flaccida	Newville	98-175	30-Apr	J. Marr
Cryptantha flaccida	Newville	98-732	14-May	C. Warren
Cryptantha flaccida	Newville	98-905	28-Apr	J. Cunningham
Cryptantha flaccida	Newville	98-906	28-Apr	J. Cunningham

FAMILY Genus species	Reservoir	Voucher	Date	Collector
Cryptantha flaccida	Newville	98-907	19-May	J. Cunningham
Cryptantha flaccida	Newville	98-908	14-May	J. Cunningham
Cryptantha flaccida	Newville	98-909	11-May	J. Cunningham
Cryptantha flaccida	Newville	98-910	19-May	J. Cunningham
Cryptantha flaccida	Red Bank	98-911	25-Jun	J. Cunningham
Cryptantha intermedia	Red Bank	98-912	25-Jun	J. Cunningham
Cryptantha intermedia	Newville	98-913	11-May	J. Cunningham
Cryptantha intermedia	Newville	98-914	19-May	J. Cunningham
Cryptantha intermedia	Red Bank	98-915	6-Jul	J. Cunningham
Cryptantha intermedia	Newville	98-176	16-Jun	J. Marr
Cryptantha intermedia	Newville	98-177	28-Apr	J. Marr
Cryptantha intermedia	Red Bank	98-178	2-Jul	J. Marr
Cryptantha intermedia	Newville	98-179	17-Apr	J. Marr
Cryptantha intermedia	Newville	98-180	20-Apr	J. Marr
Cryptantha intermedia	Red Bank	98-657	21-Aug	H. West
Cryptantha intermedia	Newville	98-699	5-Jun	H. West
Cryptantha intermedia	Newville	98-733	11-May	C. Warren
Cryptantha intermedia	Red Bank	98-734	15-Jun	C. Warren
Cryptantha intermedia	Newville	98-735	11-May	C. Warren
Cryptantha intermedia	Newville	98-736	14-May	C. Warren
Cryptantha intermedia	Newville	99-79	5-May	L. Janeway
Cryptantha intermedia	Red Bank	99-292	18-May	B. Castro
Cryptantha intermedia	Colusa	99-333	31-Mar	J. Marr
Cryptantha muricata	Newville	99-170	15-Apr	B. Castro
Heliotropium europaeum	Red Bank	98-916	7-Jul	J. Cunningham
Heliotropium europaeum	Newville	99-171	1-Jun	B. Castro
Pectocarya penicillata	Colusa	99-80	31-Mar	L. Janeway
Pectocarya pusilla	Sites	99-5	21-Apr	B. Hendrickson
Pectocarya pusilla	Sites	99-6	7-Apr	B. Hendrickson
Pectocarya pusilla	Red Bank	99-172	7-Apr	B. Castro
Pectocarya pusilla	Red Bank	99-334	28-Apr	J. Marr
Plagiobothrys sp.	Newville	98-213	26-Mar	J. Marr
Plagiobothrys sp.	Red Bank	99-330	28-Apr	J. Marr
Plagiobothrys sp.	Colusa	99-331	30-Mar	J. Marr
Plagiobothrys sp.	Colusa	99-335	1-Apr	J. Marr
Plagiobothrys bracteatus	Colusa	99-173	31-Mar	B. Castro
Plagiobothrys canescens	Sites	99-7	21-Apr	B. Hendrickson
Plagiobothrys canescens	Colusa	99-8	30-Mar	B. Hendrickson
Plagiobothrys fulvus	Red Bank	98-917	27-Apr	J. Cunningham
Plagiobothrys fulvus	Newville	98-181	26-Mar	J. Marr
Plagiobothrys fulvus	Sites	98-182	27-May	J. Marr
Plagiobothrvs fulvus	Colusa	98-183	7-Apr	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
Plagiobothrys fulvus	Newville	98-184	26-Mar	J. Marr
Plagiobothrys fulvus	Sites	98-185	8-May	J. Marr
Plagiobothrys fulvus	Newville	98-186	26-Mar	J. Marr
Plagiobothrys greenii	Newville	98-187	29-Apr	J. Marr
Plagiobothrys greenii	Colusa	98-188	6-Apr	J. Marr
Plagiobothrys greenii	Newville	98-189	29-Apr	J. Marr
Plagiobothrys greenii	Sites	98-190	14-Apr	J. Marr
Plagiobothrys greenii	Colusa	98-191	7-Apr	J. Marr
Plagiobothrys greenii	Newville	98-192	29-Apr	J. Marr
Plagiobothrys greenii	Sites	98-193	8-May	J. Marr
Plagiobothrys greenii	Newville	98-194	20-Apr	J. Marr
Plagiobothrys greenii	Colusa	98-195	7-Apr	J. Marr
Plagiobothrys greenii	Sites	98-196	16-Apr	J. Marr
Plagiobothrys nothofulvus	Colusa	98-197	7-Apr	J. Marr
Plagiobothrys nothofulvus	Newville	98-198	29-Apr	J. Marr
Plagiobothrys nothofulvus	Newville	98-199	17-Apr	J. Marr
Plagiobothrys nothofulvus	Newville	98-200	30-Apr	J. Marr
Plagiobothrys nothofulvus	Newville	98-201	30-Apr	J. Marr
Plagiobothrys nothofulvus	Colusa	98-202	7-Apr	J. Marr
Plagiobothrys nothofulvus	Newville	98-737	28-Apr	C. Warren
Plagiobothrys nothofulvus	Newville	98-738	30-Mar	C. Warren
Plagiobothrys nothofulvus	Newville	98-918	11-May	J. Cunningham
Plagiobothrys nothofulvus	Newville	98-919	28-Apr	J. Cunningham
Plagiobothrys nothofulvus	Newville	98-920	28-Apr	J. Cunningham
Plagiobothrys nothofulvus	Red Bank	98-921	27-Apr	J. Cunningham
Plagiobothrys nothofulvus	Newville	98-922	19-May	J. Cunningham
Plagiobothrys nothofulvus	Newville	98-923	14-May	J. Cunningham
Plagiobothrys nothofulvus	Newville	99-336	28-Apr	J. Marr
Plagiobothrys stipitatus	Newville	99-290	21-Apr	B. Castro
Plagiobothrys stipitatus var. micranthus	Newville	98-924	11-May	J. Cunningham
Plagiobothrys stipitatus var. micranthus	Newville	98-925	19-May	J. Cunningham
Plagiobothrys stipitatus var. micranthus	Colusa	98-203	6-Apr	J. Marr
Plagiobothrys stipitatus var. micranthus	Sites	98-204	8-May	J. Marr
Plagiobothrys stipitatus var. micranthus	Newville	98-205	14-Jul	J. Marr
Plagiobothrys stipitatus var. micranthus	Sites	98-206	1-Jul	J. Marr
Plagiobothrys stipitatus var. micranthus	Sites	98-207	11-Jun	J. Marr
Plagiobothrys stipitatus var. micranthus	Sites	98-208	16-Apr	J. Marr
Plagiobothrys stipitatus var. micranthus	Newville	98-698	6-Apr	H. West
Plagiobothrys stipitatus var. micranthus	Sites	99-9	25-Mar	B. Hendrickson
Plagiobothrys stipitatus var. micranthus	Newville	99-290	21-Apr	B. Castro
Plagiobothrys stipitatus var. micranthus	Newville	99-337	28-Apr	J. Marr
Plagiobothrys stipitatus var. micranthus	Newville	99-338	1-Jun	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
•				
Plagiobothrys stipitatus var. stipitatus	Colusa	99-10	1-Apr	B. Hendrickson
Plagiobothrys stipitatus var. stipitatus	Sites	98-209	14-Apr	J. Marr
Plagiobothrys stipitatus var. stipitatus	Sites	98-210	16-Apr	J. Marr
Plagiobothrys tenellus	Newville	98-211	20-Mar	J. Marr
Plagiobothrys tenellus	Newville	98-212	30-Apr	J. Marr
Plagiobothrys tenellus	Red Bank	98-739	27-Apr	C. Warren
Plagiobothrys tenellus	Red Bank	98-740	27-Apr	C. Warren
Plagiobothrys undulatus	Newville	99-174	1-Jun	B. Castro
BRASSICACEAE				
Undetermined	Colusa	98-214	7-Apr	J. Marr
Undetermined	Newville	98-230	17-Mar	J. Marr
Arabis breweri var. breweri	Red Bank	99-175	24-Jun	B. Castro
Athysanus pusillus	Sites	99-339	25-Feb	J. Marr
Cardamine oligosperma	Newville	98-215	26-Mar	J. Marr
Cardamine oligosperma	Sites	99-340	25-Feb	J. Marr
Cardaria chalepensis	Newville	99-81	12-May	L. Janeway
Cardaria chalepensis	Newville	99-291	12-May	B. Castro
Draba verna	Newville	99-341	14-Apr	J. Marr
Lepidium dictyotum var. acutidens	Colusa	99-82	13-Apr	L. Janeway
Lepidium latifolium	Red Bank	99-176	14-Jun	B. Castro
Lepidium latipes var. latipes	Newville	99-297	5-May	B. Castro
Lepidium latipes var. latipes	Newville	98-216	17-Apr	J. Marr
Lepidium latipes var. latipes	Sites	98-217	14-Apr	J. Marr
Lepidium latipes var. latipes	Newville	98-218	26-Mar	J. Marr
Lepidium latipes var. latipes	Newville	98-741	26-Mar	C. Warren
Lepidium nitidum var. nitidum	Newville	98-219	29-Apr	J. Marr
Lepidium strictum	Colusa	98-220	6-Apr	J. Marr
Lepidium strictum	Sites	98-221	11-Jun	J. Marr
Lepidium strictum	Colusa	98-222	21-Apr	J. Marr
Lepidium strictum	Sites	98-742	11-Jun	C. Warren
Lepidium strictum	Newville	99-83	6-May	L. Janeway
Lepidium strictum	Red Bank	99-342	29-Apr	J. Marr
Rorippa nasturtium-aquaticum	Newville	98-223	19-Mar	J. Marr
Sisymbrium officianale	Newville	98-743	14-May	C. Warren
Sisymbrium officianale	Newville	98-926	14-May	J. Cunningham
Strepthanthus sp.	Newville	98-927	19-May	J. Cunningham
Strepthanthus drepanoides	Red Bank	98-224	3-Jul	J. Marr
Strepthanthus drepanoides	Red Bank	99-84	27-Apr	L. Janeway
Strepthanthus glandulosus	Newville	98-225	26-Feb	J. Marr
Strepthanthus glandulosus ssp. glandulosus	Newville	98-226	19-Mar	J. Marr
Strepthanthus glandulosus ssp. glandulosus	Newville	98-227	17-Apr	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
•				
Strepthanthus glandulosus ssp. glandulosus	Sites	99-36	14-Apr	B. Hendrickson
Strepthanthus glandulosus ssp. glandulosus	Newville	99-177	14-Apr	B. Castro
Thysanocarpus curvipes	Newville	98-744	20-Mar	C. Warren
Tropidocarpum gracile	Newville	98-228	19-Mar	J. Marr
Tropidocarpum gracile	Newville	98-229	18-Mar	J. Marr
Tropidocarpum gracile	Newville	98-928	28-Apr	J. Cunningham
Tropidocarpum gracile	Newville	99-85	22-Apr	L. Janeway
Tropidocarpum gracile	Colusa	99-178	31-Mar	B. Castro
Tropidocarpum gracile	Red Bank	99-179	7-Apr	B. Castro
Tropidocarpum gracile	Newville	99-343	14-Apr	J. Marr
CALLITRICHACEAE				
Callitriche longipedunculata	Newville	98-929	11-May	J. Cunningham
Callitriche marginata	Red Bank	99-344	28-Apr	J. Marr
CALYCANTHACEAE				
Calycanthus occidentalis	Newville	99-43	9-Jun	J. Witzman
CAMPANULACEAE				
Downingia insignis	Sites	98-753	8-May	C. Warren
Githopsis specularioides	Newville	98-231	30-Apr	J. Marr
Githopsis specularioides	Newville	98-697	29-Apr	H. West
Heterocodon rariflorum	Red Bank	98-754	2-Jul	C. Warren
Heterocodon rariflorum	Red Bank	99-180	3-Jun	B. Castro
Nemocladus sp.	Newville	98-930	19-May	J. Cunningham
Nemocladus sp.	Red Bank	99-345	2-Apr	J. Marr
Nemocladus montanus	Red Bank	99-86	9-Jun	L. Janeway
Triodanis biflora	Red Bank	98-233	8-Jul	J. Marr
Lonicera hispidula	Newville	99-295	4-May	B. Castro
Lonicera interrupta	Newville	98-234	16-Jun	J. Marr
Lonicera interrupta	Red Bank	99-181	19-May	B. Castro
Sambucus mexicana	Newville	99-182	28-Apr	B. Castro
	Nousille	00.000	10 14	L Morr
	Red Dools	90-239	10-IVIar	
Hernaria nirsuta ssp. cinerea	Red Bank	98-039	21-AUg	
Minuartia sp.	Nousillo	99-44	JU-IVIAr	J. Witzman
	Newville	99-340	13-Apr	J. Warr
	Red Dools	99-347	1-Apr	J. Warr
iviiriuartia dougiasii	Red Bank	98-240	15-JUN	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · ·				
Minuartia douglasii	Newville	98-241	28-Apr	J. Marr
Minuartia douglasii	Newville	98-540	29-Apr	J. Marr
Minuartia douglasii	Sites	99-11	7-Apr	B. Hendrickson
Minuartia douglasii	Newville	99-348	20-Apr	J. Marr
Sagina apetala	Colusa	99-349	1-Apr	J. Marr
Sagina apetala	Newville	98-242	11-May	J. Marr
Sagina apetala	Colusa	98-243	14-Apr	J. Marr
Sagina apetala	Colusa	99-87	1-Apr	L. Janeway
Sagina apetala	Newville	99-293	21-Apr	B. Castro
Sagina decumbens ssp. occidentalis	Sites	99-12	22-Apr	B. Hendrickson
Scleranthus annuus	Newville	98-244	17-Apr	J. Marr
Scleranthus annuus	Newville	98-748	26-Mar	C. Warren
Scleranthus annuus	Red Bank	98-749	27-Apr	C. Warren
Scleranthus annuus	Red Bank	99-350	28-Apr	J. Marr
Silene gallica	Newville	98-245	20-Apr	J. Marr
Silene gallica	Newville	98-232	29-Apr	J. Marr
Silene gallica	Colusa	98-246	22-Apr	J. Marr
Silene gallica	Newville	98-750	11-May	C. Warren
Silene gallica		98-751		C. Warren
Spergularia marina	Newville	98-247	2-Jun	J. Marr
Spergularia marina	Colusa	98-248	7-Apr	J. Marr
Spergularia marina	Sites	98-752	8-May	C. Warren
Spergularia marina	Red Bank	98-931	7-Jul	J. Cunningham
Stellaria nitens	Colusa	99-88	1-Apr	L. Janeway
Stellaria nitens	Colusa	99-13	30-Mar	B. Hendrickson
Stellaria pallida	Colusa	99-183	3-Mar	B. Castro
Velezia rigida	Newville	98-932	11-May	J. Cunningham
Velezia rigida	Newville	98-933	28-Apr	J. Cunningham
Velezia rigida	Newville	98-249	28-Apr	J. Marr
Velezia rigida	Newville	98-755	11-May	C. Warren
Velezia rigida	Newville	98-653	14-May	H. West
CHENOPODIACEAE				
Chenopodium sp.	Newville	98-756	29-Jul	C. Warren
Chenopodium album	Sites	98-757	11-Jun	C. Warren
Chenopodium album	Sites	98-677	11-Jun	H. West
Chenopodium botrys	Red Bank	98-235	13-Oct	J. Marr
Chenopodium botrys	Red Bank	98-665	13-Oct	H. West
Chenopodium botrys	Red Bank	99-89	14-Jun	L. Janeway
Chenopodium californicum	Red Bank	98-236	1-Apr	J. Marr
Hernaria hirsuta ssp. hirsuta	Red Bank	98-758	21-Aug	C. Warren

FAMILY Genus species	Reservoir	Voucher	Date	Collector
CONVOLVULACEAE				
Cressa truxillensis	Sites	98-237	11-Jun	J. Marr
CORNACEAE				
Cornus glabrata	Red Bank	99-184	14-Jun	B. Castro
CRASSULACEAE				
Crassula aquatica	Newville	99-298	5-May	B. Castro
Crassula connata	Newville	99-351	28-Apr	J. Marr
Crassula tillaea	Newville	98-238	17-Mar	J. Marr
CUPRESSACEAE				
Juniperus californica	Colusa	99-294	18-Mar	B. Castro
Juniperus californica	Newville	99-296	4-May	B. Castro
Juniperus occidentalis	Colusa	99-14	30-Mar	B. Hendrickson
CUSCUTACEAE				
Cuscuta sp.	Colusa	99-352	17-Jun	J. Marr
CYPERACEAE				
Carex sp.	Newville	98-250	17-Mar	J. Marr
Carex sp.	Newville	98-251	20-Mar	J. Marr
Carex nebrascensis	Newville	98-252	17-Mar	J. Marr
Carex nudata	Newville	98-759	30-Mar	C. Warren
Carex praegracilis	Newville	98-760	30-Mar	C. Warren
Carex serratodens	Newville	98-253	16-Jun	J. Marr
	Newville	98-254	26-Mar	J. Marr
	Newville	98-761	20-Mar	
Carex serratodens	Newville	99-45	9-Jun	J. Witzman
	Colusa Ded Denk	98-255	21-JUI	J. Marr
	Red Bank	98-640	21-Aug	H. West
Cyperus squarrosus	Newville	98-934	14-Jui	J. Cunningnam
Eleocharis sp.	Newville	98-935	8-Apr	J. Cunningham
Eleocharis sp.	Newville	98-930	11-IVIAY	J. Cunningnam
Eleocharis sp.	Coluco	98-200	14-Jui	J. Marr
Eleocharis macrostachua	Sitos	90-201 08-258	0-Apr 1- Iul	J. Wall
Eleocharis macrostachya	Red Bank	90-200	27-Aug	J. Marr
Eleocharis macrostachya	Red Bank	00-209 00-00	21-Aug	
Eleocharis macrostachya		00-01	13_0nr	
Eleocharis macrostachya	Colusa	99-91	1-Δpr	B Hendrickson
Eleocharis obtusa var engelmannii	Newville	98-937	14-Jul	J Cunningham

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· ·				
Eleocharis obtusa var. engelmannii	Newville	98-696	14-Jul	H. West
Scirpus acutus var. occidentalis	Newville	98-260	2-Jun	J. Marr
Scirpus acutus var. occidentalis	Colusa	98-261	22-Jul	J. Marr
Scirpus maritimus	Sites	98-668	22-Jul	H. West
Scirpus maritimus	Sites	98-262	11-Jun	J. Marr
Scirpus maritimus	Colusa	98-263	22-Jul	J. Marr
Scirpus maritimus	Sites	98-762	11-Jun	C. Warren
Scirpus pungens	Red Bank	99-92	14-Jun	L. Janeway
Scirpus pungens	Newville	99-46	9-Jun	J. Witzman
Scirpus pungens	Newville	99-185	1-Jun	B. Castro
Scirpus pungens	Red Bank	99-353	13-Oct	J. Marr
DATISCACEAE				
Datisca glomerata	Red Bank	98-264	9-Jul	J. Marr
Datisca glomerata	Red Bank	99-186	3-Jun	B. Castro
ELATINACEAE				
Elatine californica	Newville	98-938	14-Jul	J. Cunningham
EQUISETACEAE				
Equisetum arvense	Red Bank	98-269	27-Aug	J. Marr
Equisetum arvense	Red Bank	98-656	27-Aug	H. West
Equisetum hyemale ssp. affine	Newville	98-270	20-Mar	J. Marr
Equisetum telmateia ssp. braunii	Newville	99-47	9-Jun	J. Witzman
ERICACEAE				
Arctostaphylos sp.	Colusa	98-265	8-Apr	J. Marr
Arctostaphylos sp.	Red Bank	98-266	3-Jul	J. Marr
Arctostaphylos manzanita	Colusa	98-267	17-Jun	J. Marr
Arctostaphylos manzanita ssp. manzanita	Red Bank	98-684	20-May	H. West
Arctostaphylos manzanita ssp. manzanita	Newville	99-187	4-May	B. Castro
Arctostaphylos viscida	Newville	98-268	19-May	J. Marr
EUPHORBIACEAE				
Chamaesyce sp.	Red Bank	98-271	21-May	J. Marr
Chamaesyce sp.	Red Bank	98-939	25-Jun	J. Cunningham
Chamaesyce glyptosperma	Red Bank	98-272	27-Aug	J. Marr
Chamaesyce glyptosperma	Sites	98-644	29-Oct	H. West
Chamaesyce glyptosperma	Red Bank	98-654	21-Aug	H. West
Chamaesyce maculata	Red Bank	98-273	27-Aug	J. Marr
Chamaesyce maculata	Red Bank	99-93	21-Jun	L. Janeway
Chamaesyce ocellata	Newville	98-274	15-Jul	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector	
· · · · · · · · · · · · · · · · · · ·					
Chamaesyce ocellata	Sites	98-763	21-Aug	C. Warren	
Chamaesyce ocellata	Newville	98-765	1-Sep	C. Warren	
Chamaesyce ocellata ssp. rattanii	Red Bank	98-275	3-Jul	J. Marr	
Chamaesyce ocellata ssp. rattanii	Red Bank	98-276	27-Aug	J. Marr	
Chamaesyce ocellata ssp. rattanii	Red Bank	99-94	9-Jun	L. Janeway	
Chamaesyce ocellata ssp. rattanii	Red Bank	99-188	21-Jun	B. Castro	
Chamaesyce serpyllifolia	Red Bank	99-95	21-Jun	L. Janeway	
Chamaesyce serpyllifolia ssp. serpyllifolia	Red Bank	98-277	13-Oct	J. Marr	
Euphorbia crenulata	Red Bank	99-189	21-Jun	B. Castro	
Euphorbia spathulata	Colusa	98-278	17-Jun	J. Marr	
Euphorbia spathulata	Newville	98-279	19-May	J. Marr	
Euphorbia spathulata	Red Bank	98-940	27-Apr	J. Cunningham	
FABACEAE					
Astragalus gambelianus	Colusa	98-280	7-Apr	J. Marr	
Astragalus gambelianus	Newville	98-281	19-Mar	J. Marr	
Astragalus rattanii var. jepsonianus	Newville	98-282	19-May	J. Marr	
Astragalus rattanii var. jepsonianus	Newville	98-283	17-Apr	J. Marr	
Astragalus rattanii var. jepsonianus	Red Bank	99-96	18-May	L. Janeway	
Glycyrrhiza lepidota	Newville	99-190	1-Jun	B. Castro	
Lotus corniculatus	Sites	98-284	11-Jun	J. Marr	
Lotus corniculatus	Sites	98-766	11-Jun	C. Warren	
Lotus humistratus	Newville	98-285	26-Mar	J. Marr	
Lotus humistratus	Red Bank	98-828	6-Jul	C. Warren	
Lotus humistratus	Red Bank	98-941	6-Jul	J. Cunningham	
Lotus purshianus var. purshianus	Red Bank	98-286	2-Jul	J. Marr	
Lotus purshianus var. purshianus	Red Bank	98-287	9-Jul	J. Marr	
Lotus wrangelianus	Newville	98-288	2-Jun	J. Marr	
Lotus wrangelianus	Newville	98-289	19-Mar	J. Marr	
Lupinus affinis	Newville	98-767	14-May	C. Warren	
Lupinus albifrons var. albifrons	Newville	98-694	30-Apr	H. West	
Lupinus albifrons var. albifrons	Newville	98-942	19-May	J. Cunningham	
Lupinus bicolor	Newville	98-290	19-Mar	J. Marr	
Lupinus bicolor	Newville	98-292	26-Mar	J. Marr	
Lupinus bicolor	Newville	98-695	30-Mar	H. West	
Lupinus bicolor	Red Bank	98-768	1-Apr	C. Warren	
Lupinus bicolor	Newville	98-769	26-Mar	C. Warren	
Lupinus latifolius	Colusa	98-291	8-Apr	J. Marr	
Lupinus luteolus	Newville	99-191	14-Apr	B. Castro	
Lupinus luteolus	Newville	99-192	28-Apr	B. Castro	
Lupinus microcarpus	Newville	98-770	28-Apr	C. Warren	
Lupinus microcarpus	Newville	98-771	14-Mav	C. Warren	

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · ·				
Lupinus microcarpus	Newville	98-943	11-May	J. Cunningham
Lupinus microcarpus	Newville	98-944	19-May	J. Cunningham
Lupinus microcarpus var. densiflorus	Red Bank	99-193	18-May	B. Castro
Lupinus microcarpus var. densiflorus	Red Bank	99-194	18-May	B. Castro
Lupinus microcarpus var. microcarpus	Newville	98-293	28-Apr	J. Marr
Lupinus microcarpus var. microcarpus	Newville	98-294	29-Apr	J. Marr
Lupinus microcarpus var. microcarpus	Newville	98-295	19-May	J. Marr
Lupinus nanus	Newville	98-296	26-Mar	J. Marr
Lupinus succulentus	Sites	99-48	19-Apr	J. Witzman
Lupinus succulentus	Newville	99-195	4-May	B. Castro
Medicago lupulina	Red Bank	98-647	21-Aug	H. West
Medicago lupulina	Red Bank	99-97	14-Jun	L. Janeway
Medicago polymorpha	Newville	98-772	26-Mar	C. Warren
Trifolium sp.	Red Bank	98-297	2-Jul	J. Marr
Trifolium albopurpureum var. albopurpureum	Red Bank	98-773	27-Apr	C. Warren
Trifolium albopurpureum var. albopurpureum	Red Bank	98-774	1-Apr	C. Warren
Trifolium albopurpureum var. albopurpureum	Newville	99-196	14-Apr	B. Castro
Trifolium bifidum	Newville	98-775	28-Apr	C. Warren
Trifolium bifidum var. bifidum	Colusa	99-197	18-Mar	B. Castro
Trifolium bifidum var. bifidum	Newville	98-298	28-Apr	J. Marr
Trifolium bifidum var. bifidum	Newville	98-299	20-Apr	J. Marr
Trifolium bifidum var. bifidum	Red Bank	98-945	27-Apr	J. Cunningham
Trifolium bifidum var. decipiens	Newville	98-946	11-May	J. Cunningham
Trifolium bifidum var. decipiens	Sites	98-300	14-Apr	J. Marr
Trifolium campestre	Red Bank	98-301	9-Jun	J. Marr
Trifolium campestre	Newville	98-947	11-May	J. Cunningham
Trifolium ciliolatum	Red Bank	98-948	27-Apr	J. Cunningham
Trifolium ciliolatum	Newville	98-949	28-Apr	J. Cunningham
Trifolium ciliolatum	Newville	98-302	28-Apr	C. Warren
Trifolium depauperatum	Newville	98-310	17-Mar	J. Marr
Trifolium depauperatum var. amplectans	Newville	98-303	19-Mar	J. Marr
Trifolium depauperatum var. amplectans	Newville	98-776	30-Mar	C. Warren
Trifolium depauperatum var. depauperatum	Newville	98-304	19-Mar	J. Marr
Trifolium dubium	Newville	98-305	28-Apr	J. Marr
Trifolium fragiferum	Sites	98-306	11-Jun	J. Marr
Trifolium fragiferum	Colusa	98-307	22-Jul	J. Marr
Trifolium fucatum	Newville	98-308	28-Apr	J. Marr
Trifolium fucatum	Newville	98-777	30-Mar	C. Warren
Trifolium fucatum	Newville	98-778	28-Apr	C. Warren
Trifolium gracilentum var. gracilentum	Newville	98-309	28-Apr	J. Marr
Trifolium hirtum	Newville	98-779	30-Mar	C. Warren
Trifolium hirtum	Newville	98-311	19-Mar	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · · · · · · · · · · · · · · · · · ·				
Trifolium hirtum	Newville	98-950	11-May	J. Cunningham
Trifolium microcephalum	Newville	98-312	2-Jun	J. Marr
Trifolium monanthum var. monanthum	Red Bank	98-780	6-Jul	C. Warren
Trifolium obtusiflorum	Red Bank	98-313	2-Jul	J. Marr
Trifolium obtusiflorum	Red Bank	98-314	9-Jun	J. Marr
Trifolium obtusiflorum	Red Bank	98-315	27-Aug	J. Marr
Trifolium obtusiflorum	Sites	99-49	6-May	J. Witzman
Trifolium obtusiflorum	Red Bank	99-198	3-Jun	B. Castro
Trifolium subterraneanum	Newville	98-316	29-Apr	J. Marr
Trifolium subterraneanum	Newville	98-317	19-Mar	J. Marr
Trifolium variegatum	Newville	98-318	8-May	J. Marr
Trifolium variegatum	Newville	98-951	14-May	J. Cunningham
Trifolium variegatum	Newville	98-952	14-May	J. Cunningham
Trifolium variegatum	Newville	98-953	11-May	J. Cunningham
Trifolium willdenovii	Newville	98-319	28-Apr	C. Warren
Trifolium willdenovii	Newville	98-320	8-May	J. Marr
Trifolium willdenovii	Newville	98-321	29-Apr	J. Marr
Trifolium willdenovii	Newville	98-322	20-Apr	J. Marr
Trifolium wormskioldii	Newville	98-781	11-May	C. Warren
Trifolium wormskioldii	Newville	98-954	11-May	J. Cunningham
Trifolium wormskioldii	Newville	98-955	28-Apr	J. Cunningham
Trifolium wormskioldii	Newville	98-956	28-Apr	J. Cunningham
Vicia benghalensis	Sites	98-782	11-Jun	C. Warren
Vicia villosa ssp. villosa	Sites	98-323	14-Apr	J. Marr
FAGACEAE				
Quercus sp.	Red Bank	98-957	25-Jun	J. Cunningham
Quercus sp.	Red Bank	98-328	9-Jul	J. Marr
Quercus agrifolia var. agrifolia	Red Bank	98-324	20-May	J. Marr
Quercus agrifolia var. agrifolia	Red Bank	98-325	9-Jul	J. Marr
Quercus agrifolia var. agrifolia	Red Bank	98-326	3-Jul	J. Marr
Quercus berberidifolia	Red Bank	98-327	15-Jun	J. Marr
Quercus berberidifolia	Red Bank	98-329	2-Jul	J. Marr
Quercus berberidifolia	Red Bank	98-330	2-Jul	J. Marr
Quercus berberidifolia	Newville	99-98	4-May	L. Janeway
Quercus berberidifolia	Newville	99-199	5-May	B. Castro
Quercus chrysolepis	Red Bank	98-331	9-Jul	J. Marr
Quercus chrysolepis	Red Bank	98-332	9-Jul	J. Marr
Quercus chrysolepis	Newville	99-50	9-Jun	J. Witzman
Quercus chrysolepis	Newville	99-51	9-Jun	J. Witzman

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · ·				
FRANKENIACEAE				
Frankenia salina	Sites	98-783	11-Jun	C. Warren
Frankenia salina	Sites	98-784	21-Jun	C. Warren
Frankenia salina	Colusa	99-99	13-Apr	L. Janeway
GARRYACEAE				
<i>Garrya</i> sp.	Red Bank	98-958	25-Jun	J. Cunningham
Garrya congdonii	Red Bank	99-100	19-May	L. Janeway
Garrya congdonii	Red Bank	99-200	19-May	B. Castro
Garrya elliptica	Red Bank	98-333	20-May	J. Marr
Garrya elliptica	Red Bank	98-334	20-May	J. Marr
GENTIANACEAE				
Centaurium muehlenbergii	Colusa	98-785	24-Jun	C. Warren
Centaurium trichantum	Red Bank	98-786	7-Jul	C. Warren
Centaurium trichantum	Red Bank	98-335	3-Jul	J. Marr
Centaurium trichantum	Red Bank	98-648	21-Aug	H. West
Centaurium trichantum	Red Bank	99-201	3-Jun	B. Castro
Centaurium venustum	Red Bank	98-336	2-Jul	J. Marr
Centaurium venustum	Red Bank	98-959	6-Jul	J. Cunningham
Cicendia quadrangularis	Newville	98-337	1-Jun	J. Marr
GERANIACEAE				
Erodium sp.	Red Bank	98-339	15-Jun	J. Marr
Erodium cicutarium	Newville	98-338	17-Mar	J. Marr
Geranium carolinianum	Sites	99-16	22-Apr	B. Hendrickson
HYDROCHARITACEAE				
Najas guadalupensis	Red Bank	98-960	7-Apr	J. Cunningham
HYDROPHYLLACEAE	a 1			_
Nemophila sp.	Sites	99-18	21-Apr	B. Hendrickson
Nemophila heterophylla	Newville	98-340	19-May	J. Marr
Nemophila heterophylla	Colusa	99-101	1-Apr	L Janeway
Nemophila menziesii ssp. menziesii	Newville	99-202	28-Apr	B. Castro
Nemophila pedunculata	Red Bank	98-787	1-Apr	C. Warren
Nemophila pedunculata	Newville	99-17	29-Apr	B. Hendrickson
Nemophila pedunculata	Newville	99-203	10-Mar	B. Castro
Ivemophila pulchella var. fremontii	Sites	99-38	23-Mar	B. Hendrickson
Phacella distans	Newville	98-788	11-May	C. vvarren
Phacella egena	Newville	98-341	28-Apr	J. Marr
Phacelia egena	Sites	99-19	12-Apr	B. Hendrickson

FAMILY Genus species	Reservoir	Voucher	Date	Collector
•				
Phacelia imbricata ssp. imbricata	Newville	99-102	12-May	L Janeway
Phacelia ramosissima var. ramosissima	Newville	98-342	29-Apr	J. Marr
Phacelia ramosissima var. ramosissima	Newville	98-804	14-May	C. Warren
Phacelia ramosissima var. ramosissima	Newville	98-961	14-May	J. Cunningham
Phacelia ramosissima var. ramosissima	Newville	99-204	12-May	B. Castro
Phacelia ramosissima var. ramosissima	Newville	99-205	14-Apr	B. Castro
HYPERICACEAE				
Hypericum sp.	Red Bank	98-346	20-May	J. Marr
Hypericum formosum var. scouleri	Red Bank	98-343	27-Aug	J. Marr
Hypericum formosum var. scouleri	Red Bank	98-344	2-Apr	J. Marr
Hypericum formosum var. scouleri	Red Bank	98-345	2-Jul	J. Marr
Hypericum formosum var. scouleri	Red Bank	99-282	11-Aug	B. Castro
Hypericum perforatum	Red Bank	98-662	27-Aug	H. West
JUGLANDACEAE				
Juglans californica var. hindsii	Newville	99-206	28-Apr	B. Castro
JUNCACEAE				
Juncus sp.	Colusa	98-350	7-Apr	J. Marr
Juncus balticus	Newville	98-962	29-Apr	J. Cunningham
Juncus balticus	Sites	98-347	4-May	J. Marr
Juncus balticus	Newville	98-348	16-Jun	J. Marr
Juncus balticus	Sites	98-349	11-Jun	J. Marr
Juncus bufonius	Sites	98-789	14-Apr	C. Warren
Juncus bufonius var. bufonius	Sites	98-351	11-Jun	J. Marr
Juncus bufonius var. bufonius	Red Bank	98-352	2-Jul	J. Marr
Juncus bufonius var. bufonius	Newville	98-353	2-Jun	J. Marr
Juncus bufonius var. bufonius	Colusa	98-354		J. Marr
Juncus bufonius var. bufonius	Sites	98-355	14-Apr	J. Marr
Juncus bufonius var. congestus	Newville	98-356		J. Marr
Juncus xiphioides	Red Bank	98-357	9-Jun	J. Marr
Juncus xiphioides	Colusa	98-358	22-Jul	J. Marr
Juncus xiphioides	Red Bank	98-359	27-Aug	J. Marr
Juncus xiphioides	Newville	98-790	14-May	C. Warren
Juncus xiphioides	Newville	99-207	1-Jun	B. Castro
LAMIACEAE				
Undetermined	Red Bank	98-360	9-Jun	J. Marr
Menthe pulegium	Red Bank	98-361	21-Oct	J. Marr
Menthe spicata var. spicata	Red Bank	98-362	24-Sep	J. Marr
Monardella sheltonii	Newville	98-692	5-Jun	H. West

FAMILY Genus species	Reservoir	Voucher	Date	Collector
Monardella sheltonii	Red Bank	98-363	27-Aug	J. Marr
Monardella sheltonii	Red Bank	98-963	25-Jun	J. Cunningham
Monardella sheltonii	Red Bank	99-210	24-Jun	B. Castro
Pogogyne zizyphoroides	Newville	98-364	1-Jun	J. Marr
Pogogyne zizyphoroides	Newville	98-365	29-Apr	J. Marr
Salvia columbariae	Newville	98-366	17-Apr	J. Marr
Salvia columbariae	Red Bank	98-367	3-Jul	J. Marr
Salvia columbariae	Newville	98-368	19-Mar	J. Marr
Salvia columbariae	Colusa	99-208	1-Apr	B. Castro
Scuttelaria antirrhinoides	Red Bank	98-369	21-May	J. Marr
Scuttelaria californica	Newville	99-52	9-Jun	J. Witzman
Scuttelaria siphocampyloides	Newville	99-53	9-Jun	J. Witzman
Scuttelaria siphocampyloides	Red Bank	98-370	3-Jul	J. Marr
Scuttelaria siphocampyloides	Red Bank	98-371	2-Jul	J. Marr
Scuttelaria siphocampyloides	Red Bank	98-964	7-Jul	J. Cunningham
Scuttelaria siphocampyloides	Red Bank	99-211	3-Jun	B. Castro
Stachys ajugoides	Newville	99-64	10-Jun	J. Witzman
Stachys ajugoides var. ajugoides	Sites	98-791	11-Jun	C. Warren
Stachys ajugoides var. rigida	Red Bank	98-649	9-Jul	H. West
Stachys pycnantha	Colusa	98-372	22-Jul	J. Marr
Stachys stricta	Newville	99-103	17-Jun	L. Janeway
Stachys stricta	Newville	99-212	6-May	B. Castro
Trichostemma lanceolatum	Sites	98-650	29-Oct	H. West
Trichostemma laxum	Red Bank	98-643	21-Aug	H. West
Trichostemma laxum	Red Bank	99-213	9-Jun	B. Castro
Trichostemma laxum	Red Bank	99-214	24-Jun	B. Castro
Trichostemma laxum	Red Bank	99-215	10-Jun	B. Castro
LILIACEAE				
Allium sp.	Colusa	98-376	6-Apr	J. Marr
Allium amplectans	Sites	98-673	15-Apr	H. West
Allium amplectans	Newville	98-690	6-Apr	H. West
Allium amplectans	Newville	98-792	26-Mar	C. Warren
Allium falcifolium	Newville	98-373	26-Mar	J. Marr
Allium falcifolium	Newville	98-374	26-Mar	J. Marr
Allium peninsulare var. peninsulare	Red Bank	98-375	20-May	J. Marr
Allium peninsulare var. peninsulare	Red Bank	98-965	25-Jun	J. Cunningham
Allium serra	Colusa	98-377	21-Apr	J. Marr
Allium serra	Sites	98-378	4-May	J. Marr
Allium serra	Newville	99-104	22-Apr	L. Janeway
Allium serra	Newville	99-216	4-May	B. Castro
Calochortus amabilis	Red Bank	99-217	18-May	B. Castro

FAMILY Genus species	Reservoir	Voucher	Date	Collector
•				
Calochortus luteus	Newville	98-379	30-Apr	J. Marr
Calochortus luteus	Sites	98-380	8-May	J. Marr
Calochortus luteus	Newville	99-218	4-May	B. Castro
Chloragalum angustifolium	Newville	99-219	29-Apr	B. Castro
Chloragalum angustifolium	Newville	99-20	29-Apr	B. Hendrickson
Dichelostemma congestum	Newville	98-381	19-May	J. Marr
Dichelostemma multiflorum	Newville	98-382	19-May	J. Marr
Dichelostemma multiflorum	Newville	98-383	29-Apr	J. Marr
Triteleia hyacinthina	Newville	98-384	2-Jun	J. Marr
Triteleia hyacinthina	Sites	98-385	8-May	J. Marr
Triteleia laxa	Newville	98-691	30-Mar	H. West
Triteleia laxa	Newville	98-693	6-Apr	H. West
Triteleia peduncularis	Newville	99-55	10-Jun	J. Witzman
LIMNANTHACEAE				
Limnanthes douglasii ssp. nivea	Newville	99-105	6-Apr	L. Janeway
Limnanthes douglasii ssp. nivea	Red Bank	99-21		B. Hendrickson
LINACEAE				
Hesperolinon californicum	Red Bank	99-106	8-Jun	L. Janeway
Hesperolinon disjunctum	Red Bank	98-386	6-Jul	J. Marr
Hesperolinon disjunctum	Red Bank	98-966	25-Jun	J. Cunningham
Hesperolinon disjunctum	Red Bank	98-967	7-Jul	J. Cunningham
Hesperolinon micranthum	Red Bank	98-793	2-Jul	C. Warren
Hesperolinon spurgulinum	Newville	98-794	11-May	C. Warren
LOASACEAE				
Mentzelia laevicaulis	Red Bank	98-388	13-Oct	J. Marr
LYTHRACEAE				.
Ammania coccinea	Newville	98-795	15-Jul	C.Warren
Ammania coccinea	Newville	98-968	14-Jul	J. Cunningham
Lythrum californicum	Colusa	98-389	22-Jul	J. Marr
Lythrum hyssopitolium	Red Bank	98-390	3-Jul	J. Marr
Lythrum hyssopifolium	Sites	98-391	1-Jul	J. Marr
Lythrum hyssopitolium	Newville	98-392	14-Jul	J. Marr
Lythrum hyssopitolium	Red Bank	98-393	2-Jul	J. Marr
Lythrum hyssopitolium	Sites	98-394	11-Jun	J. Marr
Lythrum hyssopitolium	Sites	98-395	11-Jun	J. Marr
Lythrum hyssopitolium	Red Bank	99-220	3-Jun	B. Castro
Lythrum tribracteatum	Sites	98-796	22-Jun	C.Warren
Lythrum tribracteatum	Sites	98-396	1-Jul	J. Marr

Lythrum tribracteatumNewville99-2211-JunB. CastroRotala ramosiorNewville98-79715-JulC.WarrenRotala ramosiorNewville98-79814-JulC.WarrenMALVACEAE98-39814-JulC.WarrenMalacothamnus fremontiiRed Bank99-2229-JunB. CastroMalvella leprosaColusa98-39721-JulJ. MarrSidalcea aluzotaRed Bank98-3992-JunJ. MarrSidalcea aluzotaRed Bank98-3992-JunJ. MarrSidalcea aluzotaRed Bank98-4009-JunJ. MarrSidalcea hirsutaNewville98-4012-JunJ. MarrSidalcea hirsutaNewville98-4022-JulJ. MarrSidalcea hirsutaNewville98-40319-MayJ. MarrSidalcea hirsutaNewville98-40319-MayJ. MarrMarsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMarsilea vestita ssp. vestita.Newville98-40615-JulJ. MarrMolLuGONACEAEImage: State aluzotaNewville98-40615-JulJ. MarrMollugo verticillataRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroCamissonia gracilifloraNewvill	FAMILY Genus species	Reservoir	Voucher	Date	Collector
Lythrum tribracteatum Newville 99-221 1-Jun B. Castro Rotala ramosior Newville 98-797 15-Jul C.Warren Rotala ramosior Newville 98-798 14-Jul C.Warren MALVACEAE	· · ·				
Rotala ramosior Newville 98-797 15-Jul C.Warren Rotala ramosior Newville 98-798 14-Jul C.Warren MALVACEAE	Lythrum tribracteatum	Newville	99-221	1-Jun	B. Castro
Rotala ramosior Newville 98-798 14-Jul C.Warren MALVACEAE	Rotala ramosior	Newville	98-797	15-Jul	C.Warren
MALVACEAE Alacothamnus fremontii Red Bank 99-222 9-Jun B. Castro Malvella leprosa Colusa 98-397 21-Jul J. Marr Malvella leprosa Sites 98-398 1-Jul J. Marr Sidalcea alycosa ssp. calycosa Newville 98-399 2-Jun J. Marr Sidalcea hirsuta Red Bank 98-400 9-Jun J. Marr Sidalcea hirsuta Red Bank 98-402 2-Jun J. Marr Sidalcea hirsuta Red Bank 98-402 2-Jul J. Marr Sidalcea hirsuta Newville 98-403 19-May J. Marr MARSILEACEAE Marsilea vestita ssp. vestita. Newville 98-404 30-Apr J. Marr MolLUGONACEAE Mollugo verticillata Newville 98-406 15-Jul J. Marr OLEACEAE Golaceala Red Bank 99-225	Rotala ramosior	Newville	98-798	14-Jul	C.Warren
MALVACEAE Red Bank 99-222 9-Jun B. Castro Malvella leprosa Colusa 98-397 21-Jul J. Marr Malvella leprosa Sites 98-398 1-Jul J. Marr Sidalcea calycosa ssp. calycosa Newville 98-398 1-Jul J. Marr Sidalcea hirsuta Red Bank 98-400 9-Jun J. Marr Sidalcea hirsuta Newville 98-401 2-Jun J. Marr Sidalcea hirsuta Red Bank 98-402 2-Jul J. Marr Sidalcea hirsuta Newville 98-403 19-May J. Marr Sidalcea hirsuta Newville 98-404 30-Apr J. Marr Marsilea vestita ssp. vestita. Newville 98-404 30-Apr J. Marr Marsilea vestita ssp. vestita. Newville 98-406 16-Mar J. Marr MolLUGONACEAE Image: Sites Newville 98-406 15-Jul J. Marr OLEACEAE Image: Sites 9-223 10-Jun B. Castro Fraxinus dipetala Red Bank 9-223 10-Jun B. Castro					
Malacothamnus fremontii Red Bank 99-222 9-Jun B. Castro Malvella leprosa Colusa 98-397 21-Jul J. Marr Malvella leprosa Sites 98-398 1-Jul J. Marr Sidalcea calycosa Newville 98-398 1-Jul J. Marr Sidalcea hirsuta Red Bank 98-400 9-Jun J. Marr Sidalcea hirsuta Newville 98-401 2-Jun J. Marr Sidalcea hirsuta Red Bank 98-402 2-Jul J. Marr Sidalcea hirsuta Newville 98-403 19-May J. Marr Sidalcea hirsuta Newville 98-404 30-Apr J. Marr MARSILEACEAE Marrie 98-404 30-Apr J. Marr MARSILea vestita ssp. vestita. Newville 98-404 30-Apr J. Marr Mollugo verticillata Newville 98-406 15-Jul J. Marr OLEACEAE Image: State	MALVACEAE				
Malvella leprosa Colusa 98-397 21-Jul J. Marr Malvella leprosa Sites 98-398 1-Jul J. Marr Sidalcea alycosa ssp. calycosa Newville 98-399 2-Jun J. Marr Sidalcea hirsuta Red Bank 98-400 9-Jun J. Marr Sidalcea hirsuta Newville 98-401 2-Jun J. Marr Sidalcea hirsuta Red Bank 98-402 2-Jul J. Marr Sidalcea hirsuta Newville 98-403 19-May J. Marr Sidalcea hirsuta Newville 98-404 30-Apr J. Marr MARSILEACEAE Newville 98-404 30-Apr J. Marr MArsilea vestita ssp. vestita. Newville 98-404 30-Apr J. Marr MOLLUGONACEAE Newville 98-406 15-Jul J. Marr OLEACEAE Newville 98-406 15-Jul J. Marr Fraxinus dipetala Red Bank 99-224 10-Jun B. Castro Fraxinus dipetala Red Bank 99-225 9-Jun B. Castro Camissonia gracilif	Malacothamnus fremontii	Red Bank	99-222	9-Jun	B. Castro
Malvella leprosaSites98-3981-JulJ. MarrSidalcea calycosa ssp. calycosaNewville98-3992-JunJ. MarrSidalcea hirsutaRed Bank98-4009-JunJ. MarrSidalcea hirsutaNewville98-4012-JunJ. MarrSidalcea hirsutaRed Bank98-4022-JulJ. MarrSidalcea hirsutaRed Bank98-4022-JulJ. MarrSidalcea hirsutaNewville98-40319-MayJ. MarrMARSILEACEAENewville98-40430-AprJ. MarrMarsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMOLLUGONACEAENewville98-40515-JulJ. MarrMOLLUGONACEAENewville98-40615-JulJ. MarrOLEACEAENewville99-22310-JunB. CastroFraxinus dipetalaRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroCamissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraRed Bank99-10920-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraRed Bank99-2313-AprB. HendricksonCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia graciliflora	Malvella leprosa	Colusa	98-397	21-Jul	J. Marr
Sidalcea calycosa ssp. calycosaNewville98-3992-JunJ. MarrSidalcea hirsutaRed Bank98-4009-JunJ. MarrSidalcea hirsutaRed Bank98-4022-JulJ. MarrSidalcea hirsutaRed Bank98-4022-JulJ. MarrSidalcea hirsutaNewville98-40319-MayJ. MarrSidalcea hirsutaNewville98-40430-AprJ. MarrMARSILEACEAENewville98-40430-AprJ. MarrMarsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMOLLUGONACEAENewville98-40615-JulJ. MarrMOLLUGONACEAENewville98-40615-JulJ. MarrMOLLUGONACEAENewville98-40610-JunB. CastroFraxinus dipetalaRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroCamissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraRed Bank99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia graciliflor	Malvella leprosa	Sites	98-398	1-Jul	J. Marr
Sidalcea hirsutaRed Bank98-4009-JunJ. MarrSidalcea hirsutaNewville98-4012-JunJ. MarrSidalcea hirsutaRed Bank98-4022-JulJ. MarrSidalcea hirsutaNewville98-40319-MayJ. MarrMARSILEACEAENewville98-40430-AprJ. MarrMarsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMarsilea vestita ssp. vestita.Newville98-40615-MarrMarrMolLUGONACEAENewville98-40615-JulJ. MarrMolLugo verticillataNewville99-22310-JunB. CastroFraxinus dipetalaRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroCamissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraRed Bank99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraRed Bank99-10920-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. Hendrickson<	Sidalcea calycosa ssp. calycosa	Newville	98-399	2-Jun	J. Marr
Sidalcea hirsutaNewville98-4012-JunJ. MarrSidalcea hirsutaRed Bank98-4022-JulJ. MarrSidalcea hirsutaNewville98-40319-MayJ. MarrMARSILEACEAEImage: Sidalcea hirsutaNewville98-40430-AprJ. MarrMarsilea vestita ssp. vestita.Newville98-40430-AprJ. MarrMolLUGONACEAEImage: Sidalcea hirsutaNewville98-40516-MarJ. MarrMOLLUGONACEAEImage: Sidalcea hirsutaNewville98-40615-JulJ. MarrMOLLUGONACEAEImage: Sidalcea hirsutaNewville98-40615-JulJ. MarrOLEACEAEImage: Sidalcea hirsutaRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroCamissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraColusa99-10712-AprL. JanewayCamissonia gracilifloraRed Bank99-22330-MarB. HendricksonCamissonia gracilifloraSites99-10920-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraRed Bank99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-	Sidalcea hirsuta	Red Bank	98-400	9-Jun	J. Marr
Sidalcea hirsuta Red Bank 98-402 2-Jul J. Marr Sidalcea hirsuta Newville 98-403 19-May J. Marr MARSILEACEAE Newville 98-404 30-Apr J. Marr Marsilea vestita ssp. vestita. Newville 98-405 16-Mar J. Marr Marsilea vestita ssp. vestita. Newville 98-406 15-Mar J. Marr MOLLUGONACEAE Newville 98-406 15-Jul J. Marr MOLLUGONACEAE Newville 98-406 15-Jul J. Marr OLEACEAE Newville 98-406 15-Jul J. Marr OLEACEAE Newville 98-406 15-Jul J. Marr OLACEAE Newville 98-406 15-Jul J. Marr GUEACEAE Newville 98-406 15-Jul J. Marr GUEACEAE Newville 98-407 10-Jun B. Castro Fraxinus dipetala Red Bank 99-225 9-Jun B. Castro Camissonia graciliflora Newville 98-407 28-Apr J. Marr Camissonia graciliflora N	Sidalcea hirsuta	Newville	98-401	2-Jun	J. Marr
Sidalcea hirsutaNewville98-40319-MayJ. MarrMARSILEACEAEImage: Marsilea vestita ssp. vestita.Newville98-40430-AprJ. MarrMarsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMarsilea vestita ssp. vestita.Newville98-40615-MarJ. MarrMOLLUGONACEAEImage: Marries of the state stat	Sidalcea hirsuta	Red Bank	98-402	2-Jul	J. Marr
MARSILEACEAEMarsilea vestita ssp. vestita.Newville98-40430-AprJ. MarrMarsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMOLLUGONACEAEInterpretein StrateInterpretein StrateInterpretein StrateMOLLUGONACEAEInterpretein StrateInterpretein StrateInterpretein StrateMOLLUGONACEAEInterpretein StrateInterpretein StrateInterpretein StrateMOLLUGONACEAEInterpretein StrateInterpretein StrateInterpretein StrateMollugo verticillataNewville98-40615-JulJ. MarrOLEACEAEInterpretein StrateInterpretein StrateInterpretein StrateFraxinus dipetalaRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroONAGRACEAEInterpretein StrateInterpretein StrateInterpretein StrateCamissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraColusa99-10712-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraNewville98-40918-Jun	Sidalcea hirsuta	Newville	98-403	19-May	J. Marr
MARSILEACEAENewville98-40430-AprJ. MarrMarsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMarsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMOLLUGONACEAENewville98-40615-JulJ. MarrMOLLUGONACEAENewville98-40615-JulJ. MarrOLEACEAEImage: State Sta					
Marsilea vestita ssp. vestita.Newville98-40430-AprJ. MarrMarsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMOLLUGONACEAENewville98-40615-JulJ. MarrMOllugo verticillataNewville98-40615-JulJ. MarrOLEACEAENewville98-40615-JulJ. MarrFraxinus dipetalaRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-22410-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroComissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraNewville98-84918-JunC. WarrenClarkia sp.Newville98-40929-AprJ. Marr	MARSILEACEAE				
Marsilea vestita ssp. vestita.Newville98-40516-MarJ. MarrMOLLUGONACEAE </td <td>Marsilea vestita ssp. vestita.</td> <td>Newville</td> <td>98-404</td> <td>30-Apr</td> <td>J. Marr</td>	Marsilea vestita ssp. vestita.	Newville	98-404	30-Apr	J. Marr
MOLLUGONACEAENewville98-40615-JulJ. MarrMollugo verticillataNewville98-40615-JulJ. MarrOLEACEAEImage: Construction of the structure of the struct	Marsilea vestita ssp. vestita.	Newville	98-405	16-Mar	J. Marr
MOLLUGONACEAENewville98-40615-JulJ. MarrMollugo verticillataNewville98-40615-JulJ. MarrOLEACEAEInterventionInterventionInterventionInterventionFraxinus dipetalaRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroONAGRACEAEInterventionInterventionInterventionCamissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraColusa99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-40918-JunC. WarrenClarkia affinisNewville98-40929-AprJ. Marr					
Mollugo verticillataNewville98-40615-JulJ. MarrOLEACEAEImage: Stress of the s	MOLLUGONACEAE				
OLEACEAERed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-22410-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroONAGRACEAEImage: Camissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraRed Bank99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia in gracilifloraNewville98-84918-JunC. WarrenCamissonia gracilifloraNewville98-84918-JunC. WarrenCamissonia gracilifloraNewville98-84918-JunC. WarrenCamissonia in hirtellaNewville98-840929-AprJ. MarrClarkia affinisNewville98-40929-AprJ. Marr	Mollugo verticillata	Newville	98-406	15-Jul	J. Marr
OLEACEAERed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-22410-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroONAGRACEAEImage: Comparison of the stress of the s					
Fraxinus dipetalaRed Bank99-22310-JunB. CastroFraxinus dipetalaRed Bank99-22410-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroONAGRACEAEImage: Camissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-40929-AprJ. Marr	OLEACEAE				
Fraxinus dipetalaRed Bank99-22410-JunB. CastroFraxinus dipetalaRed Bank99-2259-JunB. CastroONAGRACEAEImage: Camissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr	Fraxinus dipetala	Red Bank	99-223	10-Jun	B. Castro
Fraxinus dipetalaRed Bank99-2259-JunB. CastroONAGRACEAEImage: Camissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraRed Bank99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr	Fraxinus dipetala	Red Bank	99-224	10-Jun	B. Castro
ONAGRACEAENewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr	Fraxinus dipetala	Red Bank	99-225	9-Jun	B. Castro
ONAGRACEAENewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraColusa99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraColusa99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr					
Camissonia gracilifloraNewville98-40728-AprJ. MarrCamissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraRed Bank99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr	ONAGRACEAE	NI 'II	00.407	00.4	
Camissonia gracilifloraNewville98-40829-AprJ. MarrCamissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraRed Bank99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr	Camissonia graciliflora	Newville	98-407	28-Apr	J. Marr
Camissonia gracilifloraSites99-10712-AprL. JanewayCamissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraRed Bank99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr	Camissonia graciliflora	Newville	98-408	29-Apr	J. Marr
Camissonia gracilifloraColusa99-1081-AprL. JanewayCamissonia gracilifloraRed Bank99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr		Sites	99-107	12-Apr	L. Janeway
Camissonia gracilifloraRed Bank99-10920-AprL. JanewayCamissonia gracilifloraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr		Colusa	99-108	1-Apr	L. Janeway
Camissonia gracilifioraColusa99-2230-MarB. HendricksonCamissonia gracilifloraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr		Red Bank	99-109	20-Apr	L. Janeway
Camissonia gracilitioraSites99-2313-AprB. HendricksonCamissonia hirtellaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr		Colusa	99-22	30-Mar	B. Hendrickson
Camissonia hirteliaNewville98-84918-JunC. WarrenClarkia sp.Newville98-96914-MayJ. CunninghamClarkia affinisNewville98-40929-AprJ. Marr		Sites	99-23	13-Apr	B. Hendrickson
Clarkia sp.Newville98-96914-MayJ. CunningnamClarkia affinisNewville98-40929-AprJ. Marr	Camissonia hirtella	Newville	98-849	18-Jun	C. Warren
Ciarkia aminis Newville 98-409 29-Apr J. Marr	Clarkia sp.	Newville	98-969	14-May	
	Clarkia affinis	Newville	98-409	29-Apr	
Clarkia allinis INEWVIIIE 98-410 28-Apr J. Marr		Newville	98-410	∠o-Apr	
Clarkia allinis Siles 98-411 4-May J. Marr	Clarkia allillis	Sites	90-411	4-IVIAY	J. Wall
Clarkia alliniis Siles 98-412 8-May J. Marra	Clarkia allIIIIS	Nousillo	90-412	o-iviay	J. Warron
Clarkia allinis inewville 98-799 14-iviay C. Warren	Clarkia allIIIIS	Newville	90-199	14-IVIAY	

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· ·				
Clarkia affinis	Newville	98-972	28-Apr	J. Cunningham
Clarkia concinna ssp. concinna	Newville	98-973	18-May	J. Cunningham
Clarkia concinna ssp. concinna	Red Bank	98-413	20-May	J. Marr
Clarkia gracilis ssp. gracilis	Newville	98-414	30-Apr	J. Marr
Clarkia gracilis ssp. gracilis	Colusa	98-415	17-Jun	J. Marr
Clarkia gracilis ssp. gracilis	Newville	98-416	29-Apr	J. Marr
Clarkia gracilis ssp. gracilis	Newville	98-974	14-May	J. Cunningham
Clarkia gracilis ssp. gracilis	Newville	99-226	4-May	B. Castro
Clarkia gracilis ssp. gracilis	Newville	99-228	28-Apr	B. Castro
Clarkia lassenensis	Newville	99-227	14-Apr	B. Castro
Clarkia modesta	Newville	98-975	14-May	J. Cunningham
Clarkia modesta	Newville	98-800	14-May	C. Warren
Clarkia purpurea ssp. quadrivulnera	Newville	98-801	4-May	C. Warren
Clarkia purpurea ssp. quadrivulnera	Newville	98-417	18-May	J. Marr
Clarkia purpurea ssp. quadrivulnera	Red Bank	98-418	9-Jun	J. Marr
Clarkia purpurea ssp. quadrivulnera	Sites	98-419	8-May	J. Marr
Clarkia purpurea ssp. quadrivulnera	Newville	98-971	11-May	J. Cunningham
Clarkia purpurea ssp. quadrivulnera	Newville	98-976	19-May	J. Cunningham
Clarkia purpurea ssp. quadrivulnera	Newville	98-977	28-Apr	J. Cunningham
Clarkia rhomboidea	Red Bank	98-420	2-Jul	J. Marr
Clarkia rhomboidea	Red Bank	98-421	9-Jun	J. Marr
Epilobium brachycarpum	Red Bank	98-422	23-Sep	J. Marr
Epilobium brachycarpum	Red Bank	98-423	23-Sep	J. Marr
Epilobium ciliatum ssp. ciliatum	Red Bank	98-424	27-Aug	J. Marr
Epilobium ciliatum ssp. ciliatum	Red Bank	98-641	21-Aug	H. West
Epilobium cleistogamum	Red Bank	98-425	2-Jul	J. Marr
Epilobium cleistogamum	Sites	98-426	1-Jul	J. Marr
Epilobium cleistogamum	Colusa	98-427	22-Jul	J. Marr
Epilobium cleistogamum	Red Bank	98-802	7-Jul	C. Warren
Epilobium densiflorum	Colusa	98-428	21-Jul	J. Marr
Epilobium densiflorum	Newville	98-851	5-Jun	C. Warren
Epilobium foliosum	Red Bank	98-683	20-May	H. West
Epilobium minutum	Red Bank	98-429	15-Jun	J. Marr
Epilobium minutum	Newville	98-430	16-Jun	J. Marr
Epilobium minutum	Red Bank	98-431	9-Jun	J. Marr
Epilobium minutum	Red Bank	98-432	8-Jul	J. Marr
Epilobium minutum	Newville	98-433	19-May	J. Marr
Epilobium pygmaeum	Newville	98-434	2-Jun	J. Marr
Epilobium torreyi	Newville	98-803	5-Jun	C. Warren
ORCHIDACEAE				
Epipactis gigantea	Newville	99-56	9-Jun	J. Witzman

FAMILY Genus species	Reservoir	Voucher	Date	Collector
Spiranthes porrifolia	Red Bank	99-110	24-Jun	L. Janeway
OROBANCHEACEAE				
Orobanche fasciculata	Newville	98-435	29-Apr	J. Marr
Orobanche fasciculata	Red Bank	98-978	25-Jun	J. Cunningham
PAPAVERACEAE				
Eschscholzia sp.	Newville	98-979	28-Apr	J. Cunningham
Eschscholzia caespitosa	Sites	98-436	4-May	J. Marr
Eschscholzia caespitosa	Newville	98-437	19-Mar	J. Marr
Eschscholzia californica	Newville	98-438	28-Apr	J. Marr
Eschscholzia californica	Red Bank	98-980	27-Apr	J. Cunningham
Platystemon californicis	Red Bank	98-981	27-Apr	J. Cunningham
PHILADELPHACEAE				
Philadelphus lewisii	Red Bank	99-258	21-Jun	B. Castro
PLANTAGINACEAE				
Plantago coronopus	Colusa	98-439	6-Apr	J. Marr
Plantago coronopus	Sites	98-440	11-Jun	J. Marr
Plantago elongata	Colusa	98-441	21-Apr	J. Marr
Plantago elongata	Sites	98-442	16-Apr	J. Marr
Plantago elongata	Colusa	98-443	7-Apr	J. Marr
Plantago erecta	Sites	98-444	14-Apr	J. Marr
Plantago erecta	Colusa	98-445	6-Apr	J. Marr
Plantago erecta	Colusa	98-446	14-Apr	J. Marr
Plantago erecta	Newville	98-447	20-Apr	J. Marr
Plantago erecta	Sites	98-448	8-May	J. Marr
Plantago erecta	Sites	98-449	4-May	J. Marr
POACEAE				
Undetermined	Red Bank	98-805	2-Jul	C. Warren
Achnatherum lemmonii	Red Bank	98-450	23-Sep	J. Marr
Achnatherum lemmonii	Red Bank	98-986	25-Jun	J. Cunningham
Achnatherum lemmonii	Red Bank	99-229	10-Jun	B. Castro
Aegilops cylindrica	Sites	98-806	8-May	C. Warren
Agrostis exarata	Red Bank	98-865	25-Jun	J. Cunningham
Aira caryophyllea	Red Bank	98-451	1-Apr	J. Marr
Alopecurus aequalis	Newville	98-452	1-Jun	J. Marr
Alopecurus saccatus	Sites	98-453	16-Apr	J. Marr
Alopecurus saccatus	Newville	99-230	5-May	B. Castro
Aristida ternipes var. hamulosa	Sites	98-454	27-May	J. Marr
FAMILY Genus species	Reservoir	Voucher	Date	Collector
--	-----------	---------	--------	---------------
· · ·				
Aristida ternipes var. hamulosa	Newville	98-987	14-May	J. Cunningham
Avena barbata	Colusa	98-455	17-Jun	J. Marr
Avena barbata	Newville	98-456	28-Apr	J. Marr
Avena barbata	Colusa	98-457	7-Apr	J. Marr
Avena fatua	Sites	98-458	14-Apr	J. Marr
Bromus diandrus	Red Bank	98-459	2-Jul	J. Marr
Bromus japonicus	Red Bank	98-460	21-May	J. Marr
Bromus japonicus	Colusa	98-461	6-Apr	J. Marr
Bromus laevipes	Red Bank	98-462	9-Jul	J. Marr
Bromus madritensis ssp. rubens	Newville	98-463	16-Jun	J. Marr
Bromus madritensis ssp. rubens	Newville	98-464	19-Mar	J. Marr
Bromus madritensis ssp. rubens	Sites	98-465	14-Apr	J. Marr
Crypsis schoenoides	Newville	98-466	15-Apr	J. Marr
Crypsis schoenoides	Red Bank	98-467	21-Jul	J. Marr
Crypsis schoenoides	Sites	98-660	29-Oct	H. West
Cynodon dactylon	Red Bank	99-111	24-Jun	L. Janeway
Cynosurus echinatus	Red Bank	98-988	25-Jun	J. Cunningham
Deschampsia danthonioides	Sites	98-468	8-May	J. Marr
Deschampsia danthonioides	Sites	98-469	8-May	J. Marr
Deschampsia danthonioides	Newville	99-231	5-May	B. Castro
Elymus glaucus	Newville	99-57	9-Jun	J. Witzman
Elymus multisetus	Red Bank	99-232	14-Jun	B. Castro
Elymus trachycaulis ssp. subsecundus	Red Bank	98-807	9-Jul	C. Warren
Elytrigia pontica ssp. pontica	Red Bank	98-470	24-Sep	J. Marr
Elytrigia pontica ssp. pontica	Red Bank	98-471	24-Sep	J. Marr
Gastridium ventricosum	Colusa	98-472	17-Jun	J. Marr
Gastridium ventricosum	Newville	98-473	16-Jun	J. Marr
Gastridium ventricosum	Red Bank	98-474	9-Jun	J. Marr
Gastridium ventricosum	Newville	98-475	15-Jul	J. Marr
Gastridium ventricosum	Sites	98-476	8-May	J. Marr
Gastridium ventricosum	Newville	98-989	11-May	J. Cunningham
Hordeum brachyantherum ssp. brachyantherum	Newville	98-477	14-Jun	J. Marr
Hordeum brachyantherum ssp. californicum	Colusa	98-478	21-Apr	J. Marr
Hordeum marinum ssp. gussoneanum	Sites	98-808	8-May	C. Warren
Hordeum marinum ssp. gussoneanum	Newville	98-990	11-May	J. Cunningham
Hordeum murinum ssp. leporinum	Colusa	98-479	8-Apr	J. Marr
Hordeum murinum ssp. murinum	Sites	98-480	16-Apr	J. Marr
Hordeum murinum ssp. murinum	Colusa	99-233	18-Mar	B. Castro
Koeleria macrantha	Colusa	98-481	7-Apr	J. Marr
Koeleria phleoides	Colusa	98-482	7-Apr	J. Marr
Leymus triticoides	Newville	98-483	16-Jun	J. Marr
Lolium multiflorum	Colusa	98-484	8-Apr	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · ·				
Melica californica	Red Bank	98-485	15-Jun	J. Marr
Melica californica	Newville	98-486	1-May	J. Marr
Melica californica	Newville	98-487	29-Apr	J. Marr
Melica californica	Colusa	98-488	17-Jun	J. Marr
Melica californica	Sites	98-489	27-May	J. Marr
Melica californica	Newville	98-490	30-Apr	J. Marr
Melica harfordii	Newville	98-991	14-May	J. Cunningham
Melica harfordii	Newville	98-995	28-Apr	J. Cunningham
Melica torreyana	Red Bank	98-491	9-Jul	J. Marr
Muhlenbergia rigens	Sites	99-24	25-Mar	B. Hendrickson
Nasella cernua	Sites	98-492	27-May	J. Marr
Nasella cernua	Colusa	98-493	17-Jun	J. Marr
Nasella cernua	Sites	98-494	8-May	J. Marr
Nasella cernua	Newville	98-809	11-May	C. Warren
Nasella cernua	Newville	99-234	4-May	B. Castro
Nasella cernua	Newville	99-235	11-May	B. Castro
Nasella lepida	Red Bank	98-993	27-Apr	J. Cunningham
Nasella pulchra	Newville	98-994	11-May	J. Cunningham
Nasella pulchra	Newville	98-810	14-May	C. Warren
Nasella pulchra	Sites	98-495	4-May	J. Marr
Nasella pulchra	Newville	98-496	16-Jun	J. Marr
Nasella pulchra	Newville	98-497	16-Jun	J. Marr
Nasella pulchra	Sites	98-498	16-Apr	J. Marr
Nasella pulchra	Red Bank	98-499	15-Jun	J. Marr
Nasella pulchra	Newville	98-500	30-Apr	J. Marr
Panicum capillare	Red Bank	98-501	24-Sep	J. Marr
Panicum capillare	Red Bank	98-658	21-Aug	H. West
Panicum capillare	Red Bank	98-659	27-Aug	H. West
Parapholis incurva	Sites	98-502	1-Jun	J. Marr
Paspalum dilatatum	Newville	99-112	17-Jun	L. Janeway
Phalaris aquatica	Red Bank	98-503	9-Jun	J. Marr
Phalaris minor	Newville	98-504	14-Jul	J. Marr
Phalaris minor	Red Bank	98-505	9-Jul	J. Marr
Phalaris paradoxa	Colusa	98-506	17-Jun	J. Marr
Phalaris paradoxa	Sites	98-507	11-Jun	J. Marr
Phalaris paradoxa	Newville	98-508	2-Jun	J. Marr
Phalaris paradoxa	Sites	98-509	11-Jun	J. Marr
Phalaris paradoxa	Sites	98-510	8-May	J. Marr
Phalaris paradoxa	Sites	98-811	8-May	C. Warren
Piptatherum miliaceum	Red Bank	98-812	21-Aug	C. Warren
Piptatherum miliaceum	Red Bank	99-113	24-Jun	L. Janeway
Poa sp.	Newville	99-58	9-Jun	J. Witzman

FAMILY Genus species	Reservoir	Voucher	Date	Collector
Poa secunda ssp. secunda	Red Bank	98-813	27-Apr	C. Warren
Poa secunda ssp. secunda	Newville	98-814	20-Mar	C. Warren
Poa secunda ssp. secunda	Newville	98-511	30-Apr	J. Marr
Poa secunda ssp. secunda	Red Bank	98-512	1-Apr	J. Marr
Poa secunda ssp. secunda	Red Bank	98-994	27-Apr	J. Cunningham
Poa secunda ssp. secunda	Newville	98-996	29-Apr	J. Cunningham
Polypogon interruptus	Newville	99-59	9-Jun	J. Witzman
Polypogon maritimus	Red Bank	98-513	2-Jul	J. Marr
Polypogon maritimus	Red Bank	98-815	7-Jul	C. Warren
Polypogon maritimus	Sites	98-816	8-May	C. Warren
Polypogon monspeliensis	Sites	98-514	1-Jul	J. Marr
Polypogon monspeliensis	Sites	98-515	11-Jun	J. Marr
Polypogon monspeliensis	Sites	98-669	27-May	H. West
Polypogon monspeliensis	Sites	98-674	29-Oct	H. West
Polypogon monspeliensis	Newville	98-687	2-Jun	H. West
Scribneria bolanderi	Sites	98-729	11-Jun	C. Warren
Taeniatherum caput-medusae	Newville	98-997	29-Apr	J. Cunningham
Taeniatherum caput-medusae	Newville	98-998	11-May	J. Cunningham
Vulpia bromoides	Newville	98-999	29-Apr	J. Cunningham
Vulpia bromoides	Newville	98-1000	11-May	J. Cunningham
Vulpia bromoides	Colusa	98-516	6-Apr	J. Marr
Vulpia bromoides	Colusa	98-517	7-Apr	J. Marr
Vulpia microstachys var. ciliata	Newville	98-518	20-Apr	J. Marr
Vulpia microstachys var. ciliata	Sites	98-519	8-May	J. Marr
Vulpia microstachys var. ciliata	Newville	98-520	28-Apr	J. Marr
Vulpia microstachys var. ciliata	Newville	98-521	29-Apr	J. Marr
Vulpia microstachys var. ciliata	Newville	98-522	20-Apr	J. Marr
Vulpia microstachys var. ciliata	Newville	98-1001	29-Apr	J. Cunningham
Vulpia microstachys var. confusa	Colusa	98-523	7-Apr	J. Marr
Vulpia microstachys var. pauciflora	Newville	98-524	28-Apr	J. Marr
Vulpia microstachys var. pauciflora	Newville	98-525	20-Apr	J. Marr
Vulpia microstachys var. pauciflora	Newville	98-526	17-Apr	J. Marr
Vulpia microstachys var. pauciflora	Newville	98-817	26-Mar	C. Warren
Vulpia microstachys var. pauciflora	Red Bank	98-818	27-Apr	C. Warren
Vulpia myuros var. hirsuta	Newville	98-527	26-Mar	J. Marr
Vulpia myuros var. hirsuta	Newville	98-528	19-Mar	J. Marr
Vulpia myuros var. hirsuta	Colusa	98-529	7-Apr	J. Marr
Vulpia myuros var. hirsuta	Red Bank	98-530	1-Apr	J. Marr
Vulpia myuros var. myuros	Colusa	98-531	6-Apr	J. Marr
Vulpia myuros var. myuros	Newville	98-1002	11-May	J. Cunningham

FAMILY Genus species	Reservoir	Voucher	Date	Collector
POLEMONIACEAE				
Allophyllum gilioides	Newville	98-1003	28-Apr	J. Cunningham
Eriastrum abramsii	Red Bank	98-541	6-Jul	J. Marr
Eriastrum brandegeae	Red Bank	99-114	4-Jun	L. Janeway
Gilia capitata ssp. capitata	Newville	98-819	28-Apr	C. Warren
Gilia capitata ssp. capitata	Newville	98-688	30-Mar	H.West
Gilia capitata ssp. capitata	Newville	98-1004	14-May	J. Cunningham
Gilia capitata ssp. staminea	Newville	99-236	14-Apr	B. Castro
Gilia tricolor ssp. tricolor	Newville	98-827	26-Mar	C. Warren
Linanthus acicularis	Newville	98-820	26-Mar	C. Warren
Linanthus bicolor	Newville	98-821	26-Mar	C. Warren
Linanthus bolanderi	Red Bank	98-533	15-Jun	J. Marr
Linanthus bolanderi	Newville	98-1005	11-May	J. Cunningham
Linanthus bolanderi	Newville	98-1006	28-Apr	J. Cunningham
Linanthus ciliatus	Newville	98-1007	28-Apr	J. Cunningham
Linanthus ciliatus	Newville	98-1008	11-May	J. Cunningham
Linanthus ciliatus	Colusa	98-534	7-Apr	J. Marr
Linanthus ciliatus	Newville	98-535	20-Apr	J. Marr
Linanthus ciliatus	Sites	98-536	14-Apr	J. Marr
Linanthus ciliatus	Newville	98-537	28-Apr	J. Marr
Linanthus dichotomous	Newville	98-538	29-Apr	J. Marr
Linanthus dichotomous	Red Bank	99-237	25-Mar	B. Castro
Linanthus dichotomous	Newville	99-238	14-Apr	B. Castro
Linanthus parviflorus	Newville	98-822	15-Apr	C. Warren
Linanthus parviflorus	Red Bank	98-1009	27-Apr	J. Cunningham
Linanthus parviflorus	Newville	98-387	20-Mar	J. Marr
Linanthus pygmaeus ssp. continentalis	Newville	98-539	11-Apr	J. Marr
Navarretia eriocephala	Colusa	98-542	17-Jun	J. Marr
Navarretia eriocephala	Sites	98-543	8-May	J. Marr
Navarretia heterandra	Newville	98-544	2-Jun	J. Marr
Navarretia heterandra	Sites	98-545	8-May	J. Marr
Navarretia heterandra	Newville	98-823	11-May	C. Warren
Navarretia heterandra	Newville	99-239	4-May	B. Castro
Navarretia intertexta ssp. intertexta	Red Bank	98-824	7-Jul	C. Warren
Navarretia intertexta ssp. intertexta	Red Bank	98-1010	7-Jul	J. Cunningham
Navarretia jepsonii	Red Bank	98-681	6-Jul	H.West
Navarretia jepsonii	Red Bank	99-115	21-Jun	L. Janeway
Navarretia jepsonii	Red Bank	99-240	3-Jun	B. Castro
Navarretia jepsonii	Red Bank	99-241	9-Jun	B. Castro
Navarretia jepsonii	Red Bank	99-242	14-Jun	B. Castro
Navarretia leucocephala	Sites	98-825	1-Jul	C. Warren
Navarretia leucocephala ssp. leucocephala	Newville	98-546	1-Jun	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
·				
Navarretia leucocephala ssp. leucocephala	Newville	98-547	14-Jul	J. Marr
Navarretia leucocephala ssp. leucocephala	Sites	98-548	1-Jul	J. Marr
Navarretia leucocephala ssp. leucocephala	Newville	98-549	30-Apr	J. Marr
Navarretia leucocephala ssp. leucocephala	Newville	98-1011	14-Jul	J. Cunningham
N. nigelliformis ssp. nigelliformis	Colusa	98-550	17-Jun	J. Marr
N. nigelliformis ssp. nigelliformis	Sites	98-551	8-May	J. Marr
Navarretia prolifera ssp. prolifera	Red Bank	98-552	6-Jul	J. Marr
Navarretia pubescens	Red Bank	98-553	15-Jun	J. Marr
Navarretia pubescens	Sites	98-554	8-May	J. Marr
Navarretia pubescens	Newville	98-685	1-Jun	H.West
Navarretia pubescens	Newville	98-826	11-May	C. Warren
Navarretia pubescens	Red Bank	99-243	9-Jun	B. Castro
Navarretia pubescens	Red Bank	99-244	10-Jun	B. Castro
Navarretia tagetina	Red Bank	98-555	2-Jul	J. Marr
Navarretia tagetina	Red Bank	98-556	8-Jul	J. Marr
Navarretia tagetina	Newville	98-557	1-Jun	J. Marr
Navarretia viscidula	Red Bank	98-558	8-Jul	J. Marr
Navarretia viscidula	Red Bank	98-682	6-Jul	H.West
Navarretia viscidula	Red Bank	98-680	25-Jun	H.West
Navarretia viscidula	Red Bank	98-829	6-Jul	C. Warren
Navarretia viscidula	Red Bank	98-1012	25-Jun	J. Cunningham
Navarretia viscidula	Red Bank	98-1013	6-Jul	J. Cunningham
Navarretia viscidula	Red Bank	99-116	15-Jun	L. Janeway
Phlox gracilis	Colusa	99-25	30-Mar	B. Hendrickson
POLYGONACEAE				
Chorizanthe membranacea	Newville	98-560	28-Apr	J. Marr
Chorizanthe membranacea	Sites	98-676	26-May	H. West
Chorizanthe membranacea	Newville	98-982	14-May	J. Cunningham
Chorizanthe membranacea	Newville	98-983	19-May	J. Cunningham
Chorizanthe membranacea	Newville	99-245	12-May	B. Castro
Eriogonum dasyanthemum	Red Bank	99-246	9-Jun	B. Castro
Eriogonum dasyanthemum	Newville	98-984	14-May	J. Cunningham
Eriogonum dasyanthemum	Sites	98-675	26-May	H. West
Eriogonum dasyanthemum	Colusa	98-561	17-Jun	J. Marr
Eriogonum dasyanthemum	Red Bank	98-562	15-Jun	J. Marr
Eriogonum dasyanthemum	Newville	98-563	16-Jun	J. Marr
Eriogonum dasyanthemum	Red Bank	98-564	3-Jul	J. Marr
Eriogonum dasyanthemum	Red Bank	98-565	3-Jul	J. Marr
Eriogonum dasyanthemum	Red Bank	98-566	21-May	J. Marr
Eriogonum dasyanthemum	Red Bank	98-646	21-Aug	H. West
Eriogonum dasvanthemum	Red Bank	98-830	6-Jul	C. Warren

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · ·				
Eriogonum dasyanthemum	Red Bank	99-247	24-Jun	B. Castro
Eriogonum nudum var. nudum	Red Bank	98-567	13-Oct	J. Marr
Eriogonum nudum var. oblongifolium	Red Bank	98-568	3-Jul	J. Marr
Eriogonum nudum var. oblongifolium	Red Bank	98-569	9-Jul	J. Marr
Eriogonum wrightii var. trachygonum	Red Bank	99-248	3-Jun	B. Castro
Eriogonum wrightii var. trachygonum	Red Bank	99-249	9-Jun	B. Castro
Eriogonum wrightii var. trachygonum	Red Bank	99-250	21-Jun	B. Castro
Eriogonum wrightii var. trachygonum	Red Bank	99-289	11-Aug	B. Castro
Polygonum sp.	Red Bank	98-573	3-Jul	J. Marr
Polygonum arenastrum	Sites	98-559	4-May	J. Marr
Polygonum arenastrum	Sites	98-570	11-Jun	J. Marr
Polygonum arenastrum	Red Bank	99-299	11-Aug	L. Janeway
Polygonum californicum	Newville	98-571	15-Jul	J. Marr
Polygonum californicum	Newville	98-572	2-Jun	J. Marr
Pterostegia drymarioides	Newville	98-574	29-Apr	J. Marr
Pterostegia drymarioides	Newville	98-575	18-Jun	J. Marr
Pterostegia drymarioides	Sites	98-831	4-May	C. Warren
Pterostegia drymarioides	Newville	98-985	14-May	J. Cunningham
Pterostegia drymarioides	Newville	99-251	12-May	B. Castro
Rumex pulcher	Newville	98-576	18-May	J. Marr
Rumex salicifolius var. denticulatus	Red Bank	98-832	21-Oct	C. Warren
Rumex salicifolius var. denticulatus	Red Bank	98-577	21-Oct	J. Marr
Rumex salicifolius var. denticulatus	Red Bank	99-252	1-Jun	B. Castro
PORTULACACEAE				
Claytonia exigua ssp. exigua	Newville	99-117	22-Apr	L. Janeway
Lewisia rediviva	Newville	99-118	6-Apr	L. Janeway
Montia fontana	Newville	98-532	16-Mar	J. Marr
Portulaca oleraceae	Red Bank	98-642	21-Aug	H. West
PRIMULACEAE				
Androsace elongata ssp. acuta	Newville	99-119	22-Apr	L. Janeway
Androsace elongata ssp. acuta	Colusa	99-120	13-Apr	L. Janeway
Androsace elongata ssp. acuta	Newville	99-253	4-May	B. Castro
Androsace elongata ssp. acuta	Newville	99-254	16-Apr	B. Castro
PTERIDACEAE				
Adiantum jordanii	Red Bank	99-255	21-Jun	B. Castro
Pellaea andromedifolia	Red Bank	98-578	9-Jun	J. Marr
Pellaea andromedifolia	Newville	98-1014	19-May	J. Cunningham
Pellaea andromedifolia	Newville	99-26	14-Apr	B. Hendrickson
Pellaea andromedifolia	Sites	99-27	16-Mar	B. Hendrickson

FAMILY Genus species	Reservoir	Voucher	Date	Collector
Pellaea andromedifolia	Newville	99-60	9-Jun	J. Witzman
Pellaea andromedifolia	Newville	99-256	10-May	B. Castro
Pellaea mucronata var. mucronata	Newville	98-1015	14-May	J. Cunningham
Pentagramma triangularis ssp. triangularis	Newville	99-61	9-Jun	J. Witzman
RANUNCULACEAE				
Undetermined	Newville	98-593	19-Mar	J. Marr
Clematis sp.	Red Bank	98-580	9-Jul	J. Marr
Clematis ligusticifolia	Red Bank	98-579	27-Aug	J. Marr
Delphinium patens ssp. patens	Newville	98-581	26-Mar	J. Marr
Delphinium hesperian ssp. pallescens	Colusa	98-582	21-Apr	J. Marr
Delphinium variegatum ssp. variegatum	Sites	98-583	14-Apr	J. Marr
Delphinium variegatum ssp. variegatum	Sites	98-584	14-Apr	J. Marr
Delphinium variegatum ssp. variegatum	Newville	98-689	29-Apr	H. West
Delphinium variegatum ssp. variegatum	Newville	98-1016	11-May	J. Cunningham
Myosaurus minimus	Newville	98-833	26-Mar	C. Warren
Myosaurus minimus	Newville	99-259	21-Apr	B. Castro
Ranunculus aquatilis	Newville	98-585	18-Mar	J. Marr
Ranunculus californicus	Newville	98-586	17-Mar	J. Marr
Ranunculus californicus	Newville	98-834	16-Mar	C. Warren
Ranunculus canus	Newville	99-121	6-Apr	L. Janeway
Ranunculus hebecarpus	Newville	98-587	20-Mar	J. Marr
Ranunculus hebecarpus	Newville	98-588	17-Mar	J. Marr
Ranunculus muricatus	Newville	98-589	26-Mar	J. Marr
Ranunculus muricatus	Colusa	98-590	8-Apr	J. Marr
Ranunculus occidentalis	Colusa	98-591	6-Apr	J. Marr
Thalictrum fendleri	Red Bank	98-592	3-Jul	J. Marr
Thalictrum fendleri var. polycarpum	Red Bank	99-260	9-Jun	B. Castro
Thalictrum fendleri var. polycarpum	Red Bank	99-305	28-Apr	J. Marr
RHAMNACEAE				
Rhamnus ilicifolia	Newville	99-122	11-May	L. Janeway
Rhamnus tomentella ssp. crassifolia	Newville	99-62	9-Jun	J. Witzman
Rhamnus tomentella ssp. tomentella	Red Bank	98-594	2-Jul	J. Marr
Rhamnus tomentella ssp. tomentella	Red Bank	99-288	11-Aug	B. Castro
ROSACEAE				
Aphanes occidentalis	Newville	98-595	26-Feb	J. Marr
Cercocarpus betuloides	Red Bank	98-835	27-Apr	C. Warren
Cercocarpus betuloides var. betuloides	Red Bank	98-596	2-Jul	J. Marr
Cercocarpus betuloides var. betuloides	Newville	99-261	5-May	B. Castro
Heteromeles arbutifolia	Red Bank	98-597	9-Jul	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
•				
Heteromeles arbutifolia	Red Bank	98-598	2-Jul	J. Marr
Heteromeles arbutifolia	Red Bank	98-1017	25-Jun	J. Cunningham
Rosa californica	Sites	98-599	4-May	J. Marr
Rosa californica	Red Bank	99-262	14-Jun	B. Castro
RUBIACEAE				
Crucianella angustifolia	Red Bank	98-600	21-May	J. Marr
Galium sp.	Newville	99-63	9-Jun	J. Witzman
Galium aparine	Newville	98-836	30-Mar	C. Warren
Galium aparine	Colusa	98-601	8-Apr	J. Marr
Galium parisiense	Newville	98-602	11-May	J. Marr
Galium parisiense	Sites	98-603	27-May	J. Marr
Galium parisiense	Newville	98-837	26-Mar	C. Warren
Galium parisiense	Newville	98-838	11-May	C. Warren
Galium parisiense	Newville	98-1018	28-Apr	J. Cunningham
Galium parisiense	Red Bank	99-263	21-Jun	B. Castro
Galium porrigens var. tenue	Newville	99-264	10-May	B. Castro
SALICACEAE				
Salix sp.	Newville	99-64	9-Jun	J. Witzman
Salix exigua	Red Bank	98-604	9-Jul	J. Marr
Salix exigua	Red Bank	98-605	3-Jul	J. Marr
Salix laevigata	Red Bank	98-606	13-Oct	J. Marr
Salix laevigata	Red Bank	98-607	27-Aug	J. Marr
Salix laevigata	Red Bank	98-608	21-Oct	J. Marr
Salix laevigata	Red Bank	98-839	24-Sep	C. Warren
Salix laevigata	Newville	99-123	6-Apr	L. Janeway
Salix laevigata	Sites	99-28	12-Apr	B. Hendrickson
Salix laevigata	Newville	99-65	10-Jun	J. Witzman
Salix laevigata	Red Bank	99-265	10-Jun	B. Castro
Salix lasiolepis	Red Bank	98-609	13-Oct	J. Marr
Salix lasiolepis	Red Bank	98-663	29-Oct	H. West
Salix lucida ssp. lasiandra	Red Bank	98-610	9-Jul	J. Marr
Salix lucida ssp. lasiandra	Red Bank	98-611	13-Oct	J. Marr
SAXIFRAGACEAE				
Lithofragma affine	Newville	98-612	30-Apr	J. Marr
Lithofragma heterophylla	Sites	99-37	23-Mar	B. Hendrickson
Saxifraga californica	Colusa	99-124	1-Apr	L. Janeway
SCROPHULARIACEAE				
Antirrhinum subcordatum	Red Bank	99-125	15-Jun	L. Janeway

FAMILY Genus species	Reservoir	Voucher	Date	Collector
· · ·				
Bellarida trixago	Sites	98-613	8-May	J. Marr
Castilleja affinis	Sites	99-30	17-Mar	B. Hendrickson
Castilleja affinis ssp. affinis	Newville	99-126	10-Mar	L. Janeway
Castilleja affinis ssp. affinis	Newville	99-266	4-May	B. Castro
Castilleja affinis ssp. affinis	Newville	99-267	14-Apr	B. Castro
Castilleja attenuata	Sites	98-614	14-Apr	J. Marr
Castilleja attenuata	Newville	98-615	26-Mar	J. Marr
Castilleja attenuata	Newville	98-840	26-Mar	C. Warren
Castilleja exerta ssp. exerta	Newville	98-616	19-Mar	J. Marr
Castilleja foliolosa	Red Bank	98-618	9-Jul	J. Marr
Castilleja foliolosa	Newville	98-686	19-May	H. West
Castilleja foliolosa	Red Bank	99-127	10-Jun	L. Janeway
Castilleja rubicundula ssp. lithospermoides	Red Bank	98-619	8-Jul	J. Marr
Castilleja rubicundula ssp. lithospermoides	Red Bank	98-1019	25-Jun	J. Cunningham
Collinsia sparsiflora var. bruceae	Newville	99-268	10-Mar	B. Castro
Collinsia sparsiflora var. collina	Newville	98-841	26-Mar	C. Warren
Collinsia sparsiflora var. collina	Newville	98-842	26-Mar	C. Warren
Collinsia sparsiflora var. collina	Newville	99-128	10-Mar	L. Janeway
Collinsia sparsiflora var. collina	Colusa	99-29	2-Apr	B. Hendrickson
Collinsia sparsiflora var. sparsiflora	Newville	98-620	20-Mar	J. Marr
Collinsia sparsiflora var. sparsiflora	Colusa	99-31	30-Mar	B. Hendrickson
Keckiella corymbosa	Red Bank	99-269	21-Jun	B. Castro
Keckiella corymbosa	Red Bank	99-283	11-Aug	B. Castro
Keckiella lemmonii	Red Bank	98-621	3-Jul	J. Marr
Keckiella lemmonii	Red Bank	99-270	10-Jun	B. Castro
Mimulus androsace	Newville	98-1020	28-Apr	J. Cunningham
Mimulus douglasii	Newville	99-271	15-Apr	B. Castro
Mimulus floribundus	Red Bank	98-617	27-Aug	J. Marr
Mimulus latidens	Sites	98-843	4-May	C. Warren
Mimulus moschatus	Red Bank	99-281	11-Aug	B. Castro
Mimulus pilosus	Red Bank	99-273	21-Jun	B. Castro
Mimulus kelloggii	Red Bank	98-622	1-Apr	J. Marr
Mimulus kelloggii	Newville	98-623	29-Apr	J. Marr
Penstemon sp.	Newville	98-624	29-Apr	J. Marr
Penstemon heterophyllus var heterophyllus	Red Bank	98-625	9-Jul	J. Marr
Penstemon heterophyllus var heterophyllus	Sites	98-626	4-May	J. Marr
Penstemon heterophyllus var. purdyi	Red Bank	98-627	3-Jul	J. Marr
Penstemon heterophyllus var. purdyi	Newville	99-129	13-May	L. Janeway
Penstemon heterophyllus var. purdyi	Red Bank	99-274	9-Jun	B. Castro
Penstemon heterophyllus var. purdyi	Red Bank	99-275	3-Jun	B. Castro
Tonella tenella	Red Bank	99-276	23-Mar	B. Castro
Tonella tenella	Newville	98-628	17-Apr	J. Marr

FAMILY Genus species	Reservoir	Voucher	Date	Collector
•				
Triphysaria eriantha	Red Bank	98-844	27-Apr	C. Warren
Triphysaria pusilla	Red Bank	99-130	27-Apr	L. Janeway
Verbascum thapsus	Red Bank	98-664	27-Aug	H. West
Veronica anagallis-aquatica	Red Bank	98-845	9-Jul	C. Warren
Veronica anagallis-aquatica	Newville	98-846	5-Jun	C. Warren
Veronica anagallis-aquatica	Red Bank	98-1021	7-Jul	J. Cunningham
Veronica anagallis-aquatica	Newville	99-131	5-May	L. Janeway
Veronica anagallis-aquatica	Newville	99-277	1-Jun	B. Castro
Veronica catenata	Red Bank	98-679	9-Jul	H. West
Veronica persica	Sites	99-32	25-Mar	B. Hendrickson
SOLANACEAE				
Nicotiana guadrivalvis	Red Bank	98-629	13-Oct	J. Marr
Physalis lancifolia	Sites	98-847	1-Jul	C. Warren
Solanum sp.	Sites	99-33	17-Mar	B. Hendrickson
Solanum nigrum	Red Bank	98-630	13-Oct	J. Marr
Solanum parishii	Red Bank	98-631	20-May	J. Marr
Solanum rostratum	Newville	99-66	10-Jun	J. Witzman
URTICACEAE				
Urtica urens	Sites	98-635	14-Apr	J. Marr
VALERIANACEAE				
Plectritis sp.	Colusa	98-632	21-Apr	J. Marr
Plectritis ciliosa	Newville	98-633	20-Mar	J. Marr
Plectritis ciliosa ssp. ciliosa	Newville	98-634	26-Mar	J. Marr
Plectritis macrocera	Newville	98-1022	7-Apr	J. Cunningham
Plectritis macrocera	Colusa	99-34	30-Mar	B. Hendrickson
Plectritis macrocera	Colusa	99-35	1-Apr	B. Hendrickson
Plectritis macrocera	Newville	99-278	22-Apr	B. Castro
VERBENACEAE				
Phyla nodiflora var. nodiflora	Newville	98-848	18-Jun	C. Warren
Phyla nodiflora var. nodiflora	Sites	98-638	4-May	J. Marr
Verbena lasiostachys var. lasiostachys	Red Bank	98-636	9-Jul	J. Marr
Verbena lasiostachys var. lasiostachys	Red Bank	98-678	21-Aug	H. West
Verbena lasiostachys var. scabrida	Red Bank	98-850	21-Aug	C. Warren
Verbena lasiostachys var. scabrida	Red Bank	98-637	13-Oct	J. Marr
Verbena lasiostachys var. scabrida	Red Bank	99-279	3-Jun	B. Castro
VISCACEAE				
Arceuthobium occidentale	Red Bank	99-132	18-Mar	L. Janeway

10/19/99

FAMILY Genus species	Reservoir	Voucher	Date	Collector	
Arceuthobium occidentale	Newville	99-67	9-Jun	J. Witzman	
Phoradendron densum	Newville	98-1023	28-Apr	J. Cunningham	
Phoradendron villosum	Newville	99-133	10-Mar	L. Janeway	

ATTACHMENT 7.

OFFSTREAM STORAGE RESERVOIR INVESTIGATION:

a. Explanation of prioritized plant species name and spreadsheet column acronyms

b. 1998-1999 prioritized plant species population occurrence records

10-19-00 ATTACHMENT 7A. Explanation of Acronyms for Prioritized Plant Species Names Page and Attachment B Column Headings

Acronyms found in Attachment B, 1998-1999 Prioritized Plant Species Population Occurrence Records, are spelled out below.

1) Prioritized Plant Species Names

Androsace elongata ssp. acuta
Antirrhinum subcordatum
Astragalus rattanii var. jepsonianus
Chamaesyce ocellata ssp. rattanii
Eriastrum brandegeae
Fritillaria pluriflora
Hesperevax caulescens
Hesperolinon tehamense
Juglans californica var. hindsii
Limnanthes floccosa ssp. floccosa
Navarretia eriocephala
Navarretia heterandra
Navarretia jepsonii
Streptanthus drepanoides

Species name

2) Attachment B Column Headings

Column Heading

Acronym

Explanation

1. Site 2. Sp	Proposed reservoir sites; C=Colusa, N=Newville, RB=Red Bank, S=Sites Species
3. Date	Date of discovery
Other Dates	Revisit or other discovery dates
5. Co.	County
6. Quad	USGS &.5' quadrangle map
7. T	Township
8. R	Range
9. Elev	Elevation (ft.)
10. Veg	# of plants in Vegetative state
11. Fl	# of plants in Flower
12. Fr	# of plants in Fruit
13. Tot	Total # of plants in occurrence
14. Rep	Reporter
15. Habitat	Plant community
16. Soil	General soil type
17. Slope	Angle of hillside in degrees
18. Aspect	Direction of exposure
19. Dom	Dominant plant species within occurrence
20. Assoc	Associated plant species within occurrence

Page 1 of 1

APPENDIX 7B. 1998-1999 Prioritized Plant Species Population Occurrence Records

				OTHER					ELEV								SLOPE			
SI	TE	SP	DATE	DATES	CO.	QUAD	Т	R	(ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	(°)	ASPECT	DOM	ASSOC
	5	ANELA	03/30/99		GLENN	RAIL CYN	19N	5W	500	unk	unk	unk	unk	BH JM	annual grassland	shale	60	N	none	DRVE, HECA, PHGR,Plagiobo- thrys sp., STNI, Vulpia sp.
																				ANFI,
(5	ANELA	04/13/99		GLENN	LOGAN RIDGE	18N	4W	650	0	0	50	50	MAG LJ CW	annual grassland	shale	steep	NW	none	Eriogonum spp., LIBI, PHGR, TRWI, Vulpia sp.
	5	HECA	03/30/99		GLENN	RAIL CYN	19N	5W	580	0	50	0	50	вн јм	annual grassland	clay	65	N	TACAM	ANELA, Bromus sp., COSP
(5	HECA	04/01/99		GLENN	RAIL CYN	19N	5W	540	200	800	0	1000	BC LJ	blue oak woodland	clay	45-60	ESE/ENE	QUDO	Erodium spp., CAGR, CESO, CLGR, LIBI
	5	NAER	06/17/98		GLENN	RAIL CYN	19N	5W	520	unk	unk	unk	100	JM HW	annual grassland	clay	15	E, NE	CESO, Avena sp.	LOMU, Bromus spp., Erodium spp., NANI, KOMI
	5	NAHE	06/17/98		GLENN	RAIL CYN	19N	5W	550	unk	unk	unk	250	JM HW	blue oak woodland	clay	20	NE	Avena sp., Erodium spp.	CESO, Clarkia affinis, NAPU
r	N	ANELA	03/18/99		GLENN	NEWVILLE	22N	6W	770	0	100	0	100	JM NW	annual grassland	clay- shale	70	N	none	COSPS, DRVE, Plagiobothrys sp., STNI, Vulpia sp.
,	N	ANELA	03/23/99		GLENN	NEWVILLE	22N	6W	720- 800	0	400-500	0	400-500	JM MAG CW	annual grassland/ blue oak savanna	shale	65-70	N	none	COSP, DRVE, Plagiobothrys sp., Vulpia sp
1	N	ANELA	04/13/99	04/14/99	TEH	NEWVILLE	23N	7W; 6W	800- 1000	0	50	950	1000 [19 colo-nies]	JM HW	annual grassland/ blue oak savanna	shale	60-80	N	none	BRMAR, GITR, LUNA, DRVE, TRER, MICA, PLER, VERI, LICI, CECU, Arctostaphylos sp., Cerco- carpus sp.
r	N	ANELA	04/14/99		GLENN	CHROME	22N	6W	1040	0	0	3	3	LJ MAG CW	annual grassland	pebbly conglom- erate	steep	NW	QUDO, annual grasses	ATPU, CENI, Erodium sp., Galium sp., LUBI, PHGR, MICA, SEVU

APPENDIX 7B. 1998-1999 Prioritized Plant Species Population Occurrence Records

	ите	e D	DATE	OTHER			т	в	ELEV	VEG	EI	ED	тот	DED		5011	SLOPE	ASPECT	DOM	45500
-	911 E	31	DATE	DATES	00.	QUAD		ĸ	(1)	VLG			101	NLF	HADITAT	3012	()	ASPECT	DOM	A3300
	N	ANELA	04/14/99		ТЕН	NEWVILLE	23N	6W	760	0	0	150	150	JM HW	grassland/ chaparral/ foothill pine woodland	crumbly shale	80	N	none	LUNA, GITR, TRER, LENI, Plagiobothrys sp.
	N	ANELA	04/15/99		GLENN	CHROME	22N	6W	1040	0	0	1000	1000	MAG	annual grassland	shale	50	N	none	CLEX, GITR, LAFR,PHGR, Plantago sp.
	N	ANELA	04/16/99		GLENN	NEWVILLE	22N	6W	840	0	0	250	250	BH BC	annual grassland	shale	steep	N	none	LOMA,TRER, PHGR, DRVE, ANFI, MICA, SNI, CLEX, ATPU,CAGR, LIBI, PEPU
	N	ANELA	04/20/99		GLENN	NEWVILLE	22N	6W	960	0	0	50	50	JM CW	annual grassland	clay	slope	N	none	CHMO, Avena sp., COSPC, MICA, Plectritis sp., TRER
	N	ANELA	04/21/99		GLENN	CHROME	22N	6W	915	5	0	270	275 [9 colo-nies]	JM HW	annual grassland	shale	45	N, NE, NW	Clarkia sp., Vulpia sp.	ANFI, BRMA, DRVE, Erodium spp., HECA, LICI
	N	ANELA	04/21/99		GLENN	NEWVILLE	22N	6W	740; 840- 880	0; 0; 0	0; 0; 0	>1000; 100; >100	>1000; 100; >100	BC LJ	blue oak woodland	shale	steep	N	QUDO	ANFI, CAGR, Clarkia sp.,CLEX, COSP, Erodium sp., LUAL, MICA, Phacelia sp., TRLA
	N	ANELA	04/22/99		GLENN	NEWVILLE	22N	6W	800- 850; 920- 980	0	0	1000's	1000's	LJ BC	annual grassland/ blue oak savanna	shale	steep	N. NE	none	APOC, CAGR, COSPB, GITR, LIBI, MICA, RILE, TRER
	N	ANELA	05/04/99		ТЕН	NEWVILLE	23N	6W	920- 1020	0	0	300-400	300-400	BC LJ	annual grassland/s hrubby blue oak savanna	shale	60	N	QUDO	MIDO, DRVE, COSP, RILE, CAGR
	N	ANELA	05/12/99		TEH	NEWVILLE	23N	6W	820- 880	0	0	<600	<600	HW, JW	annual grassland	shale	40	N, NE	Avena sp., ERNU	ANFI, Clarkia sp., Erodium sp., PLER, Vulpia sp.
	N	ANSU	05/19/98	05/13/99	ТЕН	NEWVILLE	23N	6W	920- 960	18	30	0	48; 0 in 1999 revisit	JL-R HW	blue oak woodland	shale/ other soil	45-55	SW	Avena sp.	ERLA, ESCA, BRMA, MAFL, LOHU, LUMI

			OTHER					FI FV								SLOPE			
SITE	SP	DATE	DATES	co.	QUAD	т	R	(ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	(°)	ASPECT	DOM	ASSOC
N	ANSU	05/19/98		ТЕН	NEWVILLE	23N	6W	950	unk	unk	unk	160	JC NW	chaparral	shale	35-40	SSE	Quercus sp.	ACMO, Avena sp., DACA, Chia, fern
N	ANSU	06/16/98		GLENN	CHROME	22N	6W	1060	>1000	>1000	0	>2000 [in 4 colonies]	JM NW	foothill pine/ chaparral ecotone, annual grassland	shale	slopes	E, S	PISA, CECU, Quercus sp.	CAOCOC, CLGRGR, Eriogonum sp., ESCA,VERI, MAFL, LOHU, SACO, GICA
N	ANSU	06/18/98		TEH	NEWVILLE	23N	6W	1000	0	3	0	3	JC NW	open blue oak woodland	gravelly clay	40	W, NW	QUDO, CECU	Avena sp., VERI, TACAM, ACMI, Galium sp.
N	ANSU	06/18/98		GLENN	NEWVILLE	22N	6W	880- 950	0; 2	1; 10	0; 0	1; 12	JM CW	open blue oak woodland	shale	45	W	QUDO	sp., SACO, VERI, VUMY, PHRA
N	ANSU	06/19/98		GLENN	CHROME	22N	6W	1200- 1240	230- 295	115- 150	0	345- 445	JC HW NW	foothill pine/ chaparral ecotone, annual grassland	reddish gravelly clay	30- 45	S, SE	PISA, scrub oak	ERLA, Arctostaphylos sp., Avena sp., CESO, Melica sp., PISA
N	ANSU	05/10/99	05/11/99	ТЕН	NEWVILLE	23N	6W	880- 1000	140	69	0	209 (partial revisit, Sec. 21)	BC LJ BH	chaparral	crumbly clay/ shale	50	SE - SW	QUBE	PHEG, GAPO, PEAN, SACO, CEME, MECA, Marah
N	ASRAJ	04/15/98	05/19/98	ТЕН	NEWVILLE	23N	7W	1000	0	500	0	500	JM CW	chaparral/ foothill pine woodland	shale	slope	S	ASRAJ	MAFL,LOHU, ASGA, VERI
Ν	CHOCR	07/15/98		GI ENN	NEWVILLE	22N	6W	800	0	15	15	30	.IM	annual	clav	0	0	grasses	Lessingia nana
N	CHOCR	08/11/98		GLENN	NEWVILLE	22N	6W	760	unk	unk	unk	unk	CW HW NW	dried VP in annual grassland	gravelly bare soil	0	0	none	Lythrum, Trifolium, grass spp.
N	CHOCR	06/01/99		ТЕН	NEWVILLE	23N	6W	665	unk	unk	unk	unk	HW	creek bank in annual grassland	lodo shale	steep	S	unk	unk
N	CHOCR	06/02/99	06/03/99	GLENN; TEH	NEWVILLE	22N; 23N	6W; 7W	800- 920	250- 300	600	0	850-900	HW BH	annual grassland/ foothill pine woodland	shale	50	S, SE	grasses and QULO; PISA	Avena sp.
N	CHOCR	06/09/99		GLENN	NEWVILLE	22N	7W	950	60	540	0	600	JW BH	annual grassland	shale	45-70	S,SSW	none	AVFA, BRMAR, CESO, Cryptantha sp.

			OTHER					ELEV								SLOPE			
SITE	SP	DATE	DATES	CO.	QUAD	Т	R	(ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	(°)	ASPECT	DOM	ASSOC
м	CHOCR	06/10/99		GI ENN	NEWVILLE	22N	6W	880	0	0	8	8	BH .IW	unk	shale	very	SW	none	Avena sp
	onoon	00/10/00		OLENIN		2211	011	000	v	•	0	0	BITOW	unix	onalo	otoop	011	none	none (very low
Ν	CHOCR	06/16/99		TEH	NEWVILLE	23N	7W	920	0	202	202	4; 400	BH CW	creek banks	shale	slope	S	none	veg cover)
			02/26/98					640:				6: 1000-	JM CW	annual					
Ν	FRPL	02/27/98	03/10/99	GLENN	NEWVILLE	22N	6W	755	1;500	5; 500	0; 0	2000	HW	grassland	clay	slope	Ν	ZIFR	graminoid spp.
								880-					JC JM	annual				grasses, Frodium	ZIFR, LENI,
Ν	FRPL	03/04/98		GLENN	CHROME	22N	6W	1000	115	115	0	230	HW	grassland	clay	0	0	spp.	Plagiobothrys sp.
													CW						
									61; 15	2; 6 in		63; 21 in	MAG	annual				grasses	
Ν	FRPL	03/17/98	04/14/99	GLENN	CHROME	22N	6W	850	in 1999	1999	0	1999	CW	grassland	clay	10	E, SW	CESO	TRER
												125-150;		annual					graminoid spp
Ν	FRPL	03/30/98		GLENN	NEWVILLE	22N	6W	680	unk	unk	unk	230-300, 10	HW	grassland	clay	30-40	NE, NW	none	ZIFR
														annual					graminoid spp.,
Ν	FRPL	04/06/98		GLENN	NEWVILLE	22N	6W	840	3	1	1	5	HW JC	grassland	clay	25	N, NE	ZIFR	TRER, TRLA
														annual					BRELEL,
Ν	FRPL	04/07/98		GLENN	NEWVILLE	22N	6W	720	unk	unk	unk	21	JC HW	grassland	unk	30	Ν	unk	graminoids, ZIFR
									100										Avena sp.,
									300 in	0; 100 in	2; 0 in	168; 400	JM HW	annual	Meyers			CESO,	GEMO, PHGR,
Ν	FRPL	04/30/98	03/26/99	TEH	NEWVILLE	23N	6W	680	1999	1999	1999	in 1999	GP	grassland	clay	25-35	Ν	TACAME	Lupinus sp.
													BC LJ					Arcto- staphylos	
													JM	blue oak				sp., JUCA,	Chlorogalum sp.,
Ν	FRPL	03/10/99		TEH	NEWVILLE	23N	6W	1000	2	2	0	4	MAG	woodland	clay	50	N	QUDO	ZIFR
								680-				221 (range		annual					CESO, TACA,TRLA
Ν	FRPL	04/07/99		TEH	NEWVILLE	23N	6W	720	217	4	0	ext)	LJ JM	grassland	clay	35- 45	Ν	grasses	Bromus sp.
м	EDDI	04/14/00				22N	6\W	800	475	0	25	500	MAGLI	annual	clay	gentle	N	unk	CESO
N	FRFL	04/14/33		GLENN		2211	000	030	4/5	0	25	500		grassianu	Cidy	gentie	IN	UNK	CEGL, CHPO,
														annual					GAVE, TACAM,
Ν	FRPL	04/22/99		GLENN	NEWVILLE	22N	6W	970	85	0	0	85	BC LJ	grassland	clay	0-5	N	grasses	ZIFR
													BC CW	blue oak					Micropus spp
Ν	FRPL	05/04/99		TEH	NEWVILLE	23N	6W	940	3	0	0	3	LJ	woodland	clay	0-5	NNW	QUDO	AVBA, CLPU
								050					014/114						NEME, Phacelia
N	HECA	02/27/98		GLENN	NEWVILLE	22N	6W	050- 750	unk	unk	unk	unk		annuai grassland	shale	slope	N	none	SP., PLCA, STNI, CLEX

			OTHER					ELEV								SLOPE			
SITE	SP	DATE	DATES	co.	QUAD	т	R	(ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	(°)	ASPECT	DOM	ASSOC
N	HECA	03/17/98	03/16/98	GLENN	NEWVILLE	22N	6W	840- 880	all	0	0	unk	HW CW	annual grassland	unk	0-20	w	unk	grasses, occ. QUDO
N	HECA	04/29/98		GLENN	NEWVILLE	22N	6W	760	50	50	0	100	JM	annual grassland	crumbly clay/ shale	45	w	none	BRMAR, Clarkia sp., Plagiobothrys sp.
N	HECA	04/21/99		GLENN	CHROME	22N	6W	950	0	50	0	50	JM	annual grassland	clay	60	N	none	ANELA, ANFI, Bromus sp., MICA, MIDOD, TRER
N	НЕТЕ	06/16/98	06/19/98	GLENN	CHROME	22N	6W	1060; 1280	135; unk	15; 1333	0; unk	150; 4000	JM NW; JC HW NW	foothill pine woodland/ chaparral with annual grassland	heneke shale; reddish rocky clay and shale	50-60	E; ENE	PISA, QUDO, Arctosta- phylos sp.	LEFI, ERCA, HEAR, Monardella sp., grasses, Cryptantha sp.
N	HETE	06/19/98		GLENN	CHROME	22N	6W	1280	900	450	0	1350	JC HW NW	foothill pine woodland	rocky clay	45-55	E, NE	ERCA, PISA, TODI	Avena sp., Clarkia sp., Eriogonum sp., Lessingia sp.
N	JUCAH	04/28/99		GLENN	NEWVILLE	22N	6W	780	0	4	0	4	BC BH	riparian floodplain within annual grassland	clay/silt	0	0	JUCAH, QULO, cotton- wood	graminoids
N	NAHE	05/11/98		TEH	NEWVILLE	23N	6W	850- 950	unk	unk	unk	unk	CM JW	annual grassland	unk	unk	unk	unk	Cirsium sp., Hesperolinon sp., NAPU
N	NAHE	06/01/98		GLENN	NEWVILLE	22N	6W	740	0	300	0	300	JM CW HW	annual grassland	gravelly clay	30	NE to NW	Avena sp., BRHO	Clarkia sp., TACAME, Vulpia sp.,CALU, NAPU, HOMU
N	NAHE	06/16/98		ТЕН	NEWVILLE	23N	6W	920	0	500- 1000	0	500- 1000	CW HW	blue oak woodland	gravelly clay with shale	15	S	Avena sp., QUDO	GAVE, Lessingia sp., NATA, TACAME, VERI
N	NAHE	06/19/98		GLENN	CHROME	22N	6W	1200	0	500- 1000	0	500- 1000	JC HW NW	annual grassland	clay	45	NE	BRHO, LOMU	Avena sp., CULU, Lessingia sp.
N	NAHE	05/04/99		TEH	NEWVILLE	23N	6W	920	0	100	0	100	BC	woodland	clay	40-50	NNW	QUDO	FRPL
Ν	NAHE	05/06/99		TEH	NEWVILLE	23N	6W	970	0	500-1000	0	500-1000	BC	grassland	clay	0-20	NNW	low grasses	Castilleja exserta

			OTHER					ELEV								SLOPE			
SITE	SP	DATE	DATES	CO.	QUAD	т	R	(ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	(°)	ASPECT	DOM	ASSOC
N	NAHE	05/12/99	05/06/99	TEH	NEWVILLE	23N	6W	720- 760	98;10	2;10	0;0	100; 20 [2 colonies]	HW NW ; HW JW	annual grassland	lodo shale and clay	0-10	0 to E	TACAM	Amsinckia sp., ANFI, Avena sp., BRHO, HYGL, NAPU
RB	ANELA	04/29/99		ТЕН	LOWREY	26N	6W	920	0	0	4	4	JM	blue/valley oak woodland	shale	70	N	QUDO QULO	COSP, RAHE, Vulpia sp.
RB	ANSU	05/20/98		ТЕН	COLD FORK	27N	7W	1300; 1120	unk	unk	unk	112	JM CW HW	blue oak woodland	shale	40-50	SW	QUDO	Avena sp., Bromus spp., CESO, ERLA, LOHU, Lupinus sp., Madia sp., MECA
RB	ANSU	05/21/98		ТЕН	OXBOW BRIDGE, COLD FORK	27N	7W	1300, 1160	200; unk	0; unk	0; unk	200; 40	JL JM HW	blue oak woodland	shale	40-50	SW	QUDO	Avena sp., Bromus spp., CESO, ERLA, LOHU, Lupinus sp., Madia sp., MECA
RB	ANSU	06/09/98		TEH	LOWREY	26N	6W	975	unk	unk	unk	1173	CW HW	foothill pine woodland	gravelly clay, shale	25-35	NE	PISA, TODI, Avena sp.	Arctostaphylos sp., CESO, Ceanothus sp., PEDU, QUDO
RB	ANSU	06/15/98		ТЕН	LOWREY	26N	6W	1000	0	1000	0	1000	CW HW	foothill pine woodland/ chaparral interface	shale	30-45	SW	Avena sp., Nasella sp., PEDU	Bromus spp., ESLO, LOHU, MECA, MEFL
RB	ANSU	06/15/98		TEH	LOWREY	26N	6W; 7W	1000	0	0	100	100	JM CW HW	chaparral/ foothill pine woodland	crumbly shale	steep	SW	none	unk
RB	ANSU	06/25/98		ТЕН	OXBOW BRIDGE	27N	7W	1100 - 1200	1290	3010	0	4300	JC HW NW	blue oak/ foothill pine woodland/ chaparral	loamy shale	45-55	W/SW	QUDO, Avena sp., CECU, TODI	CEOC, CESO, HESP, PISA
RB	ANSU	07/02/98		TEH	LOWREY	26N	6W	940	650	1850	0	2500	CW NW	blue oak woodland	shale	55-60	S	PISA	CECU, QUBE, HEAR, ERLA, MOSH
													JM HW	foothill pine woodland/				Scrub oak, Arcto- staphylos	Avena sp., Cryptantha sp., Eriogonum sp., MAFL, PEDU, TODI, ERLA,

850-

1200

LOWREY 26N 6W

220;

unk

1080; unk 0; unk

CW

NW

chaparral

interface

shale

40-60 S/SE/SW

1300;

22250

sp., CESO,

PISA

BRHO,

Ceanothus sp.

RB

ANSU 07/02/98 07/03/98

TEH

			OTHER					ELEV								SLOPE			
SITE	SP	DATE	DATES	CO.	QUAD	Т	R	(ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	(°)	ASPECT	DOM	ASSOC
RB	ANSU	07/06/98		ТЕН	COLD FORK	27N	7W	1280	unk	unk	unk	50	JM JC CW HW	chaparral	shale	slope	s	CECU, CEOC, TODI	Scrub oak, ERAB, HEDI, ERCA
RB	ANSU	07/08/98		ТЕН	LOWREY	26N	6W	950- 1000	unk	unk	unk	624	JM CW	chaparral	shale	slope	S	Cercocar- pus sp., Quercus sp. (scrub)	Calycadenia sp., Hemizonia sp., PISA, Salvia sp.
RB	ANSU	07/09/98		ТЕН	LOWREY	26N	6W	1060; 960	unk	unk	unk	150- 200	JM CW	chaparral/ foothill pine woodland	crumbly tan shale	slope	S	PISA, Scrub oak, Arcto- staphylos sp.	CESO, ADFA
RB	ANSU	05/12/99		TEH	LOWREY	26N	6W	1000	1	0	0	1	JM CW	chaparral/ foothill pine woodland	tan crumbly shale	45	NW	CECU, PISA	unk
RB	ANSU	05/13/99		ТЕН	LOWREY	26N	7W	1000	11	0	0	11	BC NW	chaparral/ blue oak woodland	crumbly clay/ shale	steep	S	PISA QUDO, CECU, ARMA	QUBE, GAPO, PEAN, CLRH, YAMI, ERLA, Marah
RB	ANSU	05/20/99		ТЕН	COLD FORK	27N	7W	1100	360	40	0	400	JW BH	chaparral	shaley soil	steep	S,SW, SE, W	QUBE	CEBE, GACO,QUDO, STDR, CHOCR, ASRAJ, Eriophyllum sp.
RB	ANSU	05/21/99		TEH	COLD FORK	27N	7W	1150	200	200	0	400	JW BH	chaparral	shaley clay	slope	S	CECU, Arcto- staphylos sp.	BRMAR, VUMY, SACO, ERCA, QUBE
RB	ANSU	05/24/99	06/01/99 06/08/99	ТЕН	OXBOW BRIDGE	27N	7W	1150- 1200	40+	60+	0	100+	BC LJ CW	chaparral	loose shale	steep	S-SW	QUBE, CECU, RHIL, GACO	DIVO,GAPO, TODI, Phacelia sp., Nasella sp., ERNU, annual grasses
RB	ANSU	05/27/99		TEH	LOWREY	26N	7W	1040	150	150	0	300+ ["100's"]	JM BH	chaparral/ riparian	tan crumbly shale	very steep	S	Chamise, willow	ERBR
RB	ANSU	06/03/99		ТЕН	COLD FORK	27N	7W	1200	18	4	2	24	BC LJ	chaparral/ blue oak woodland	crumbly clay/ shale	steep	S-SW	QUBE	QUBE, TODI, AVBA, CRAN, FICA, Daucus sp.
RB	ANSU	06/09/99		TEH	LOWREY	26N	7W	1040	unk	unk	unk	unk	LJ BC	chaparral	loose shale	steep	SW	QUDO, PISA	QUBE, GACO, near CHOCR

SITE	SP	DATE	OTHER DATES	CO.	QUAD	т	R	ELEV (ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	SLOPE	ASPECT	DOM	ASSOC
RB	ANSU	06/10/99		TEH	LOWREY	26N	7W	1040	0	15	135	150	HW, CW	foothill pine woodland/ch aparral	shale	40	S	PISA, ADFA	Interior live oak, Arctostaphylos sp., Avena sp., ERLA
RB	ANSU	06/14/99	06/15/99	ТЕН	COLD FORK	27N	7W	1120- 1200	0	1000+	0	1000+	LJ BC CW	open chaparral	crum- bly clay/ shale	steep	S	QUBE	CECU, ARMA
RB	ANSU	06/21/99	06/24/99	ТЕН	COLD FORK	27N; 26N	7W	1150- 1200	0	100+	0	100+	LJ BC	open chaparral	crum- bly clay/ shale	steep	S	QUBE	JUCA, GACO, CEBE, CECU, CHOCR
RB	ANSU	06/24/99		TEH	COLD FORK	27N	7W	1160	0	15	60	75	JW BH	chaparral	shale	steep	S	QUBE	CESO, BRMAR,AVFA
RB	ASRAJ	04/27/98		ТЕН	LOWREY	26N	6W	815	unk	unk	unk	25	JC HW CW	foothill pine wood-land	shale	5	S	PISA	Arctostaphylos sp., graminoids, PEDU, QUDO
RB	ASRAJ	05/21/98		ТЕН	COLD FORK/OX- BOW BRIDGE	27N	7W	960	unk	unk	unk	2	JL JM HW	blue oak woodland	shale	20	S	none	ASGA, LOHU, CESO,PEDU
RB	ASRAJ	06/09/98		ТЕН	LOWREY	26N	6W	940	1	33	0	34	CW HW	foothill pine woodland	shale	0	0	PISA, TODI	Arctostaphylos sp., Avena sp., CESO, PEDU, QUDO
RB	ASRAJ	07/02/98		TEH	LOWREY	26N	6W	880	0	1	0	1	JM HW	floodplain	sand/ gravel	0	0	CESO, LUMI	BRDI, LOHU, PEDU
RB	ASRAJ	04/27/99	05/18/99	TEH	LOWREY	26N	6W	1040	0	17	17	34	CW LJ BC	blue oak/ foothill pine woodland	shale	mod. steep	SW	PISA	MAFL, STGL, ESCA, LUMID, BRHO
RB	ASRAJ	04/28/99		ТЕН	LOWREY	26N	6W	940	5	5	0	10	LJ JM CW	creek, gravel bed	shale	0-5	0	none	Cryptantha sp., SAEX, SALA, SIBE, WYHE, ERCA
	40041	05/40/00		TEU		000	CIM	1000	0		4	4			stony cobbles/g	0			
КВ	ASRAJ	05/12/99		IEH	LOWREY	20IN	600	1000	0	1	1	1	JIVI CVV	npanan	ravei	0	0	POIR, SALA	BRHO, POBU,
RB	ASRAJ	05/20/99		TEH	COLD FORK	27N	7W	1050	2	10	3	15	JW BH	grassy creekside	unk	flat	NE	CECU	CESO, PLER, Lupinus sp.
RB	CHOCR	05/21/98		ТЕН	COLD FORK	27N	7W	1020	30	24	6	60	JM HW CW	chaparral/ foothill pine woodland	shale	steep	S	none	ANSU
RB	CHOCR	07/03/98		ТЕН	LOWREY	26N	7W	1020	<25	<20	5	<50	JM CW HW	chaparral/ foothill pine woodland	crumbly pale shale	70	S	none	none (very low veg cover)

			OTHER					ELEV								SLOPE			
SITE	SP	DATE	DATES	CO.	QUAD	Т	R	(ft)	VEG	FL	FR	TOT	REP	HABITAT	SOIL	(°)	ASPECT	DOM	ASSOC
RB	CHOCR	08/27/98		TEH	LOWREY	26N	7W	1000	<35	13	2	<50	JM HW CW	shale slope in grassy area	shale	80	S	none	ERDA, MAFL, BRMAR
RB	CHOCR	05/20/99		ТЕН	COLD FORK	27N	7W	1180	6	1	0	7	JW BH	chaparral	shale	slope	SW	none	Crucianella angustifolia, Avena barbata
RB	CHOCR	06/09/99		ТЕН	LOWREY	26N	6W	1150	unk	unk	unk	unk	нw	unk	shale	45	s	unk	unk
RB	CHOCR	06/09/99	06/10/99	ТЕН	LOWREY	26N	6W	960- 1040	50	200	0	250	HW LJ BC CW	foothill pine woodland nr creek	shale	45-60	S-SW	PISA, ARMA, QUDO, GACO	graminoids, ERLA,ERNU, MAFL, SACO
RB	CHOCR	06/21/99		ТЕН	COLD FORK	27N	7W	1150- 1200	0	32	0	32	LJ BC	chaparral/ foothill pine woodland	shale	35-50	s	PISA, QUBE	ERNU, ERLA, ERDA, CLEX, ERCA, grasses
RB	CHOCR	06/24/99		TEH	COLD FORK	27N	7W	1080	0	4	0	4	BH JM CW	creek bank	shale	slope	s	unk	unk
RB	CHOCR	08/11/99		ТЕН	COLD FORK	27N	7W	1100	0	16	16	16	LJ BC CW JM	high creek bank	crumbly shale	very steep	S	none	MELA, CHBO, ERNU, ERDA, STVI
RB	ERBR	05/27/99		ТЕН	LOWREY	26N	7W	1040	150+	150+	0	300+	ЈМ ВН	disturbed area in chaparral/ riparian	shale	0-5	S	Chamise, willow	ANSU
RB	ERBR	06/03/99		ТЕН	COLD FORK	27N	7W	1200	0	12	8	20	LJ BC	grassy opening in chaparral/ foothill pine woodland	hard shaley soil	gentle	SW	QUDO, PISA, CECU, ARMA	short annual grasses, PLER, Lessingia sp.
RB	ERBR	06/24/99		ТЕН	COLD FORK	27N	6W	1160- 1200	0	1	14	15	LJ BC	grassy opening in chaparral/ foothill pine woodland	hard clay/ shale soil	0-20	E	PISA, QUBE, CEBE, GACO, ADFA	AICA, BRMA, PLER, Filago sp.
RB	FRPL	04/01/98		ТЕН	LOWREY	26N	6W	960	unk	unk (grazed)	unk (grazed)	17	JL-R CW	opening nr blue oak woodland	clay	slope	N	CECU	ZIFR, MICA
RB	FRPL	03/05/99		тен	LOWREY	26N	6W	940	29	1	0	30	MAG CW	open blue oak woodland	unk	slope	w	Arcto- staphylos	Quercus sp. (live), graminoids

			OTHER					ELEV								SLOPE			
SITE	SP	DATE	DATES	CO.	QUAD	Т	R	(ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	(°)	ASPECT	DOM	ASSOC
RB	FRPL	03/05/99	04/27/99 revisit	TEH	LOWREY	26N	6W	1010- 1040	1000+	unk	unk	1075	CW MAG LJ	meadow in blue oak woodland	clay	0	0	QUDO, PISA	CESO, Perlagrass, Nasella sp., Sisyrhynchium
RB	FRPL	03/29/99		ТЕН	LOWREY	26N	6W	820	35	2	0	37 (revisit/ exten-sion of 040198 site)	MAG BC LJ	grassy opening nr blue oak savanna	clay	20-40	SE to NE	QUDO	ZIFR, CESO, TACA,RAOC, SIBE, CLEX, Lupinus sp., Nasella sp.
RB	FRPL	04/27/99		TEH	LOWREY	26N	6W	1100	17	0	3	20	CW LJ	grass by blue oak woodland	unk	slope	N	ZIFR	CESO,RAOC, TRLA, grasses
RB	LIFLF	04/29/99		ТЕН	LOWREY	26N	6W	890- 910	0	10	990	1000	JM HW NW	valley oak woodland	shale	5	w	QULO, Arctosta- phylos sp.	PISA, TACAME, Vulpia sp.
RB	NAHE	05/21/98		ТЕН	COLD FORK	27N	7W	1120	unk	unk	unk	1000	нw	open grass in blue oak woodland	clav	15	SE	none	unk
RB	NAHE	06/09/98		ТЕН	LOWREY	26N	6W	950	unk	unk	unk	100	CW HW	blue oak woodland	clay	0	0	QUDO, BRHO	CESO, MICA, PEDU
RB	NAHE	06/15/98		ТЕН	LOWREY	26N	6W	950	unk	unk	unk	500	HW	annual grassland	clay	0	0	Avena sp., Bromus spp.	ANAR, CLAF, NAPU
RB	NAHE	07/03/98		ТЕН	LOWREY	26N	6W	850- 900	unk	unk	unk	200	HW	foothill pine woodland	unk	0	0	PISA, Arcto staphylos sp., CESO	- Avena sp., Bromus spp., PEDU
RB	NAHE	07/06/98		ТЕН	COLD FORK	27N	7W	1100- 1200	unk	unk	unk	1400	JC JM CW HW	chaparral, blue oak woodland	gravelly clay	0	0	QUDO, CECU, PISA	BLSC,NAPU, PEDU, NAJE, Clarkia sp.
RB	NAHE	07/07/98		ТЕН	OXBOW BRIDGE	27N	7W	1020- 1040	unk	unk	unk	400; 700	JC CW	blue oak woodland	clay	0-25	S/SE	QUDO, CESO, TECA	Bromus spp., LYHY, MICA, NAPU
RB	NAHE	07/09/98		ТЕН	LOWREY	26N	7W	1000	unk	unk	unk	100	HW	foothill pine woodland	shale	15	E	Arcto- staphylos sp., CESO, PISA	Avena sp., BRHO, CECU,PEDU, QUDO
RB	NAHE	05/24/99		ТЕН	COLD FORK	26N; 27N	7W	1160- 1370	0	500	0	500	BC LJ	old roadbed, blue oak savanna	clay	0-5	SE	QUDO	Erodium sp., Hordeum sp., other grasses

			OTHER					FI FV								SLOPE			
SITE	SP	DATE	DATES	CO.	QUAD	т	R	(ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	(°)	ASPECT	DOM	ASSOC
					OXBOW									grassy edge, blue oak					
RB	NAHE	06/08/99		TEH	BRIDGE	27N	7W	1070	20	60	20	100	BC	woodland	clay	0-5	SW	QUDO	Vulpia spp.
RB	NAHE	06/09/99		ТЕН	LOWREY	26N	6W	920	0	30-60	20-40	50-100	BC LJ	open foothill pine woodland	clay	0	0	PISA	CECU, NAPU, Eriogonum wrightii var. trachygonum
												179 [3	HW	grassy opening in foothill pine	gravelly	_			Bromus sp,
RB	NAHE	06/09/99		TEH	LOWREY	26N	6W	1100	63	116	0	colo- nies]	CW	woodland	clay	0	0 to W	PISA	Avena sp.
DB		07/06/98		тен	COLD	27N	7\//	1100-	unk	unk	unk	500- 1000	нм	chaparral	gravelly	0	0	CECU, PISA	NAHE, NAPU, Clarkia sp
RB	NAJE	05/20/99		ТЕН	COLD FORK	27N	7W	1160	0	15	0	15	JW BH	grassland	clay	gentle	s	none	BRHO, TACAM, CLPU, BRMAR
RB	NAJE	06/03/99		ТЕН	COLD FORK	27N	7W	1000- 1050	240- 300	320-400	240-300	800-1000	BC LJ	grassy opening in chaparral/ blue oak woodland	shaley clay	0-10	0	PISA, QUDO, GACO, QUBE, CEBE	HEAR, CAPA, LENE, BRHO
RB	NAJE	06/09/99		ТЕН	LOWREY	26N	6W	880	0	50-60	0	50-60	BC LJ	old roadbed, riparian/ foothill pine savanna	hard stony clay	0	0	PISA, PofR	AICA
RB	NAJE	06/10/99		ТЕН	LOWREY	26N	7W	1000	unk	unk	unk	120	BC LJ	grassy terrace, chaparral/ foothill pine woodland	clay	0-5	S	PISA, ADFA	BRHO, PLER, Calycadenia sp.
RB	NAJE	06/14/99		TEH	COLD FORK	27N	7W	1140	0	100	100	200	BC LJ	grassy flat, chaparral/ foothill pine woodland	clay	0-5	S/0	PISA, JUCA, QUBE	short annual grasses, SABI, CAPA, Lessingia sp.
RB	NAJE	06/21/99		ТЕН	COLD FORK	27N	7W	1160	0	200	0	200	LJ BC	grassy ridge, chaparral/ foothill pine woodland	clay/ shale	gentle	N	QUDO, PISA	short grasses, scattered shrubs
RB	NAJE	06/24/99		ТЕН	COLD FORK	27W	7W	1180	0	135	15	150	JW CW BH	opening in chaparral/ foothill pine woodland	unk	gentle	E	none	dried grasses, CAPA,CESO, Sanicula sp.

SITE	SP	DATE		60		т	R	ELEV	VEG	FI	FR	тот	RED	μαριτάτ	SOIL	SLOPE	ASPECT	DOM	ASSOC
5112	01	DATE	DATES	00.	QUAD	•	Ň	(14)	VLO			101	NLI	ILADITAT	OOIL	()	AGILOI	DOM	A0000
														chaparral/					
пр	etop	07/03/08		тец		26N	6\//	880	unk	unk	unk	~50	JM HW	foothill pine	shalo	very	N	none	
КD	SIDK	01/03/90		1211	LOWINET	2011	000	000	UIIK	UTIK	UTIK	<50	011	wooulariu	Silaie	sieep	IN	none	ANGO
								1020-					LJ CW	foothill pine		very		PISA,	ESCA, MAFL,
RB	STDR	04/27/99	05/18/99	TEH	LOWREY	26W	6W	1040	21; 0	9; 30+	0; 30+	30; 60+	BC	woodland	shale	steep	S/SW	QUDO	Cryptantha sp.
													HW (in						ERNU, BRMAR,
RB	STDR	05/20/99	05/20/98	TEH	FORK	27N	7W	1000	8	72	0	80	JW BH	unk	shale	steep	S	none	MAFL
														creek bank					
													HW	foothill pine		very			
RB	STDR	06/10/99		TEH	LOWREY	26N	6W	880	3	0	0	3	CW	savanna	shale	steep	S	none	CHOCR
																			STNI, CLEX,
														annual	crumbly				LIBI, PLER, COSP, Clarkia
s	ANELA	04/19/99		COL	SITES	18N	4W	500	0	0	200- 300	200- 300	JW BH	grassland	shale	slope	N	none	sp., Galium sp.
														creek bank					ANFI, LUBI,
														in annual grassland/	crumbly clay/				CLPE, DRVE, ATPU PLER
								440;				17; 150 [2		oak	rocky				LIBI, STNI,
s	ANELA	04/23/99		COL	LODOGA	17N	5W	480	0	0	17; 150	colonies]	JW BH	savanna	shale	steep	Ν	none	Pectocarya sp.
														onnuol	crumbly				
s	ANELA	05/05/99		COL	SITES	17N	4W	500	0	0	6	6	JW BH	grassland	shale	slope	N	none	MICA, ANFI
-														0		•			DRVE, HOBR,
		00/00/00		001	0.750	401	-	400	05	05		50	JC JM	annual			-		PLST, NAER,
S	HECA	03/06/98		COL	SILES	16N	500	400	25	25	0	50	Cw	grassiand	ciay	20	E	Bromus sp.	NAHE
																			FRBO I FNI
																			LOMU, AVFA,
~		04/44/00			100004	401	_ \\\/	500	0	50	0	50		annual		0			Lupinus sp.,
S	HECA	04/14/98		COL	LODOGA	18N	500	520	0	<50	0	<50	JIM	grassiand	ciay	0	0	grasses	
													JM CW	annual					PLST, NAER,
S	HECA	05/08/98		COL	SITES	17N	5W	400	25	25	0	50	HW	grassland	clay	20	E	Bromus sp.	NAHE
e		05/08/98		COL	SITES	17N	5W/	375- 420	unk	unk	unk	unk	ім нім	annual	unk	aentle	NE	none	NAPU, NANI,
3	NAER	03/00/30		COL	51125	1711	300	420	UIIK	UTIK	UTIK	UTIK	5101 1100	grassiariu	UIIK	gentie	INL.	none	NALLE, CEAL
							5W;							annual					NAPU, NANI,
s	NAHE	05/08/98		COL	SITES	17N	4W	375	unk	unk	unk	unk	JM HW	grassland	unk	gentle	NE	none	NAER, CLAF
																			SD., CALU
						17N;		400-					CW	annual			W, N,		MICA, ACMO,
s	NAHE	05/26/98	05/27/98	COL	SITES	16N	4W	480	unk	unk	unk	>1000	HW	grassland	clay	5-35	NW	grasses	BRHO, NANI

SIT	E SP	DATE	OTHER DATES	CO.	QUAD	т	R	ELEV (ft)	VEG	FL	FR	тот	REP	HABITAT	SOIL	SLOPE (°)	ASPECT	DOM	ASSOC
																			QUDO, TECAM,
												"large	HW JM	annual					CESO, BRRU,
S	NAHE	05/27/98		COL	SITES	17N	5W	400	unk	unk	unk	pop"	JC CW	grassland	clay	10-15	E	grasses	Micropus sp.

January 4, 2000

ATTACHMENT 7

OFFSTREAM STORAGE RESERVOIR INVESTIGATION:

c. Explanation of prioritized plant species name and spreadsheet column acronyms

d. 1998-1999 prioritized plant species population occurrence records

NOT FOR GENERAL DISTRIBUTION

FILE CONTENTS CONFIDENTIAL

CONTACT:

DWR NORTHERN DISTRICT ENVIRONMENTAL SERVICES

Ralph Hinton

Stacy Cepello

Barbara Castro

Caroline Warren

Lawrence Janeway

ATTACHMENT 8.

OFFSTREAM STORAGE RESERVOIR INVESTIGATION:

1998-1999 Photographs of prioritized plants and vegetation communities

Antirrhinum subcordatum

Antirrhinum subcordatum habitat under scrub oak

Astragalus rattanii var. jepsonianus

Astragalus rattanii var. jepsonianus habitat

Chamaesyce occellata spp. rattanii

CHOCR habitat on south-facing, bare shale slopes

Eriastrum brandegeae

ERBR habitat on bare, rocky open slope

Valley oak (Quercus lobata) at Thomes-Newville Reservoir

Salt Creek and associated wetland vegetation at Thomes-Newville Reservoir

Grasslands and grazing cattle at Thomes-Newville Reservoir

Riparian willow scrub vegetation at Thomes-Newville Reservoir

Blue oak woodland and north-facing shale slope at Thomes-Newville Reservoir

Native bunchgrasses at Thomes-Newville Reservoir

Grassland opening on valley floor at Red Bank Reservoir

Blue oak woodlands at Red Bank Reservoir

Chamise chaparral vegetation at Red Bank Reservoir

Blue oak and grey pine woodland at Red Bank Reservoir

Steep Lodo Shale slope at Red Bank Reservoir

Red Bank Creek with associated riparian vegetation

State of California, Gray Davis, Governor The Resources Agency, Mary D. Nichols, Secretary for Resources Department of Water Resources, Thomas M. Hannigan, Director

> Steve Macaulay, Chief Deputy Director Raymond D. Hart, Deputy Director L. Lucinda Chipponeri, Assistant Director for Legislation Susan N. Weber, Chief Counsel

William J. Bennett, Chief, Division of Planning and Local Assistance

This report was prepared under the direction of Naser J. Bateni, Chief, Integrated Storage Investigations

In coordination with CALFED

by

Charlie Brown, Department of Fish and Game Brad Burkholder, Department of Fish and Game Jenny Marr*, Department of Fish and Game Frank Wernette, Department of Fish and Game

David J. Bogener, Department of Water Resources Gerald Boles, Department of Water Resources Koll Buer, Department of Water Resources Doug Denton, Department of Water Resources K. Glyn Echols, Department of Water Resources Gary Hester, Department of Water Resources Ralph Hinton, Department of Water Resources Gail Kuenster, Department of Water Resources Joyce Lacey-Rickert, Department of Water Resources Glen Pearson, Department of Water Resources Doug Rischbieter, Department of Water Resources Waiman Yip, Department of Water Resources

Robert Orlins, Department of Parks and Recreation

assisted by

Nikki Blomquist, Department of Water Resources Linton Brown, Department of Water Resources Barbara Castro, Department of Water Resources Julia Culp, Department of Water Resources Jennifer Davis, Department of Water Resources Mark Dombrowski, Department of Water Resources Lawrence Janeway, Department of Water Resources Sandy Merritt, Department of Water Resources Shawn Pike, Department of Water Resources Carole Rains, Department of Water Resources April Scholzen, Department of Water Resources Michael Serna, Department of Water Resources Susan Tatayon, Department of Water Resources Caroline Warren, Department of Water Resources

State of California The Resources Agency Department of Water Resources Division of Planning and Local Assistance

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix E: Amphibian and Reptile Survey Summary

April 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

North of the Delta Offstream Storage Investigation

Progress Report Appendix E: Amphibian and Reptile Survey Summary

Report prepared by: Charlie Brown Department of Fish and Game

Assisted by: Waiman Yip Department of Water Resources Division of Planning and Local Assistance

April 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

Table of Contents

Introduction	1
Contract with DFG	1
Report Organization and Content	3
Methodology	3
California Red-legged Frog	4
California Tiger Salamander	5
Western Pond Turtle	6
General Amphibian and Reptile	6
Sites and Colusa Projects	7
Results	7
Discussion	10
Red Bank Project	11
Results	11
Discussion	12
Thomes-Newville Project	13
Methods	14
Results	15
Discussion	19
Summary of Special Species Findings	19
Literature Cited	21

Tables

Table 1. Special Species of Amphibians and Reptiles in Project Areas	3
Table 2. Amphibian and Reptile Species Observed in the Sites and Colusa	
Project Areas	8
Table 3. Species Found in Each Habitat Type	9
Table 4. Catch Per Hour Effort for Each Survey Method	10
Table 5. Amphibians and Reptiles Observed in the Red Bank Project Area	12
Table 6. Relative Abundance of Amphibians and Reptiles Observed in the	
Red Bank Project Area	13
Table 7. Amphibians and Reptiles Observed in the Thomes-Newville Project	
Area in 1982	16
Table 8. Amphibian and Reptile Species Found in the Thomes-Newville Project	
Area in 1982	17
Table 9. Observation and Capture Methods for Amphibian and Reptile	
Species in the Thomes-Newville Project Area in 1982	18
Table 10. Special Species of Amphibians and Reptiles Observed in Project Areas	20

Figures

Figure 1. North of Delta Offstr	eam Storage Investigation	
---------------------------------	---------------------------	--

Amphibian and Reptile Survey Summary

Introduction

In late 1997, the Department of Water Resources began a two-year reconnaissance level study of North of the Delta Offstream Storage, authorized by Proposition 204—the Safe, Clean, Reliable Water Supply Act approved by voters in 1996. In early 1999, CALFED consolidated all storage investigations under a comprehensive program called Integrated Storage Investigations. The North of the Delta Offstream Storage Investigation was incorporated into one of seven ISI program elements.

The North of the Delta Offstream Storage Investigation analyzes engineering, economic, and environmental impact to determine the feasibility of four north-of-the-Delta storage projects. The four potential alternatives are Sites Reservoir, Colusa Project, Thomes-Newville Project, and Red Bank Project (Figure 1). Phase I, currently underway, includes preliminary field surveys of environmental resources and extensive field surveys of cultural resources, geological, seismic, and foundation studies, and engineering feasibility evaluation. Phase II will start when CALFED's Record of Decision and Certification for the Programmatic EIR/EIS is completed and if North of Delta Offstream Storage is consistent with CALFED's preferred program alternative. Phase II will include completion of necessary fish and wildlife surveys, evaluations of potential mitigation sites, preparation of project-specific environmental documentation, final project feasibility reports, and the acquisition of permits necessary to implement the project.

Under Phase I, the Department of Fish and Game conducted studies of fish and wildlife resources in each project area. This appendix summarizes surveys of amphibians and reptiles in the four proposed project areas. The information gathered will be used to describe impacts on fish and wildlife resources during the planning process.

Contract with DFG

Amphibian and reptile studies were initiated in 1997 for Red Bank, Sites, and Colusa Projects. DFG collected data on occurrence, distribution, and relative abundance of amphibians and reptiles at the proposed reservoir inundation areas for these projects. DFG also reviewed past amphibian and reptile studies for Red Bank and Thomes-Newville Projects.

Report Organization and Content

Results and findings of past studies and recently conducted surveys of amphibians and reptiles in the proposed project areas are discussed in this appendix. The general survey procedures used in the recent surveys at Sites, Colusa, and Red Bank Project areas are discussed below. The specific sampling data and results of these surveys and past studies are discussed in respective sections for each proposed project area. Findings of species with special status are summarized at the end of this appendix.

Methodology

DFG staff conducted surveys for amphibians and reptiles from August 1997 through spring 1999 in Sites, Colusa, and Red Bank Project areas. The surveys included threatened or endangered species, Species of Concern, and common species of amphibians and reptiles.

The Stebbins field guide (1985) was used to determine historic ranges of the species. DFG staff also used physical observation of the present habitat, historic records, and DFG's Natural Diversity Data Base to establish the list of potential species that could occur in the project areas (Table 1). The major focus of field surveys was to locate the special species listed in Table 1 that could potentially occur in the project area. Survey techniques used included night driving, dip netting, seining, and day and night ground searches in all weather conditions and seasons to find species of common amphibians and reptiles.

		Project Area		
Species	Status	Sites and Colusa	Red Bank	Thomes- Newville ¹
Amphibians				
California red-legged frog	Federally threatened	Х	Х	Х
California tiger salamander	Candidate for federal listing; State Species of Concern	х		х
Foothill yellow-legged frog	Federal and State Species of Concern	Х	Х	Х
Western spadefoot toads	Federal and State Species of Concern	Х	Х	х
Reptiles				
California horned lizard	Federal and State Species of Concern	х		
Western pond turtle	Federal and State Species of Concern	Х	х	х

Table 1. Special Species of Amphibians and Reptiles in Project Areas

¹ Results from surveys of Thomes-Newville Project area conducted in 1981-82

Appendix E: Amphibian and Reptile Survey Summary

All habitats at the selected survey sections were identified and categorized as to type of water body (e.g., pond, farm impoundment, vernal pool, or creeks). All ponds were measured for length, width, and depth during the initial assessment in fall 1997. Aquatic vegetation, root-wads, water turbidity, and characterization of the surrounding terrain (e.g., degree of degradation, canopy, embankment, and soil type) were recorded during the initial assessment period and on all subsequent surveys. Staff visually inspected ponds at the time of the preliminary assessment to determine the presence of, and the ability to support, amphibians, reptiles, and fish. Once the ponds were located and assessed, they were assigned an identification code. Vernal pools were surveyed during spring 1998 and assigned an identification code. All ponds and vernal pools were marked on a topographical quad map by their appropriate code.

Creeks were divided into a maximum of three regions, depending on the length of each habitat type contained in the reservoir footprint. A total of eight transects were established to encompass vernal pools and support California tiger salamander surveys at the Sites and Colusa Project areas. California tiger salamander transects were assigned an identification code and marked on a topographic map. Other transects were established throughout the potential Sites, Colusa, and Red Bank Reservoir areas to encompass a variety of habitat types for general herpetology surveys. Photocopies of topographical maps were made of the specific areas to be surveyed for workers to take out into the field. Staff obtained permission to survey on private property from the property owners at least a week in advance of all surveys.

Survey data were collected in a standard 5 to 7 inch "write in the rain" notebook. At the end of the day, data for the California red-legged frog, California tiger salamander, and general herpetology surveys were transferred to a standardized data sheet from *A Standardized Protocol for Surveying Aquatic Amphibians, Technical Report NPS/WRUC/NRTRP-95-01.* All other data was photocopied and inserted into the appropriate binder. For general herpetology surveys, data was also transferred onto a CALFED Herpetology Investigation Field Observation Report. All data was transferred to a computer spreadsheet program. A photocopy of the topographical map with the area surveyed was highlighted and the location of any Species of Concern found marked on it was stapled to the data sheet. The surveyors present, the time of survey, environmental, and weather conditions were all recorded. The condition and type of the habitat were noted, including emergent and aquatic vegetation, and substrate. Land use or alteration was noted as well.

California Red-legged Frog

Surveys for the California red-legged frog (*Rana aurora draytonii*), a federally threatened species, were conducted from August 1997 to January 1998 and from May through October 1998 in Sites, Colusa, and Red Bank Project areas. Surveys were not conducted during the breeding or rearing period of red-legged frogs to avoid disturbing breeding frogs, eggs, or larvae. All ponds and

creeks in the study area were surveyed a minimum of four times during the fivemonth period in 1998. Day surveys were performed on clear, sunny days with minimal wind. Night surveys were conducted on warm, still nights from an hour past sunset until midnight (U.S. Fish and Wildlife 1997).

Crews of two to nine people conducted surveys. The surveyors would often break up into teams or work as individuals to either walk the perimeter of the ponds or the length of the stream for both day and night surveys. Taking care not to disturb habitat, the shoreline of each pond or creek section was thoroughly inspected, with particular care to examine overhangs, root-wads, emergent vegetation, or other structures that are used as shelter by red-legged frogs. Two surveyors would walk in opposite directions at the water's edge, while two other surveyors would walk opposite directions at a distance of 17 to 33 feet from the water's edge. During night surveys, 6-volt battery lamps were used to scan the water surface for eye-shine (U.S. Fish and Wildlife 1997). Day surveyors used binoculars to scan ahead up to 50 feet to spot frogs before they jumped into the water. The survey team also used auditory identification of frog calls during day and night surveys. A single lens reflex camera was used to photograph any species of interest for future identification verification. Photographs were also taken of the environment in which animals were found, to confirm field notes and to document the state of the habitat when it was surveyed (Bury and Corn 1991).

California Tiger Salamander

California tiger salamanders (*Ambystoma californiense*) are candidate species for federal listing, currently DFG Species of Concern, and are fully protected. The historic range of California tiger salamanders in the Sites and Colusa Project areas was determined using Stebbins field guide (1985). As in the California redlegged frog survey, a preliminary survey of the study area was done to assess the potential of California tiger salamander habitat. Grasslands, vernal pools, and farm pond impoundments that contained water for only part of the year were all examined as potential California tiger salamander habitat sites. All ponds, vernal pools, and the surrounding territory were examined for burrows, log debris, and type of terrestrial vegetation. Each pond was then seined. Transects were laid out within potential breeding habitat and grassland terrain (Brode 1993). Eight transects averaging about 0.62 by 0.31 miles were established.

Transect and visual pond inspections were conducted at night, during storms that continued from the day into the night, or when the air temperature was between 45-50° F or warmer between the months of November and March for both the 1997-98 and 1998-99 seasons.

For transects, the team members formed a line, keeping a distance of at least 17 feet between them. Six-volt flashlights were used to scan the terrain. All mammal burrows, cracks, logs, and debris in the transect were inspected for California tiger salamanders. A camera was brought to photograph adult specimens for future identification verification and to photograph the area in which they were found.

Appendix E: Amphibian and Reptile Survey Summary

Visual pond surveys were performed by biologists who walked concentric circles around the pond starting with an inner circle at the water's edge, with walkers spanning out about 33 feet. Surveyors would walk in opposite directions around the pond, utilizing 6-volt flashlights to scan back and forth for animals. Any surrounding burrows or logs were inspected.

Dip netting and seining aquatic surveys were done twice a year for each vernal pool and intermittent pond, at least 15 days apart. The first survey was done between March 15 and April 15, and the second between April 15 and May 15. Only ponds that would hold water for at least 10 weeks during the survey time interval were inspected.

Initial samples were made using a 12-inch dip net with a 1/8-inch mesh. Each pond was divided so that the dip net sweeps would sample 50 percent of the surface area. Seining was done using one of three seines depending on the size of the pond, the largest seine being 60 feet long, 5 feet high, with a 1/4-inch mesh, and a 7 foot by 7 foot pocket. A medium sized seine was 29 feet long, 6 feet high, with a 1/4-inch mesh, and a pocket size of 7 feet by 5 feet. The third seine, used only for small ponds, was 12 feet long, 4 feet high, with a 1/4-inch mesh, and a 7 feet by 5 feet pocket. When possible, the seine would be pulled through the pond, arcing from one point around and back again, sweeping the whole pond at once. Large ponds had to be seined in sections.

Western Pond Turtle

DFG biologists looked for western pond turtles (*Clemmys marmorata*), a federal and State Species of Concern, when seining or during daytime visual surveys in the project areas. Carapaces (shells) of dead turtles were also noted and measured. During periods of warm weather, biologists watched the creek when possible while traveling to and from work stations, which yielded positive results in locating western pond turtles. A general lookout for western pond turtles was established while driving or walking near creeks.

General Amphibian and Reptile

General herpetology surveys were done by ground, searching ponds and transects, by seining, or by night driving studies in the Sites, Colusa, and Red Bank Project areas. Ground searches were done both day and night. Seining was done during the day. Driving surveys were only done at night. General amphibian and reptile surveys were conducted year-round throughout these project areas, when the weather was appropriate for amphibian and reptile activity.

Transects were walked by team members in a line, 17 feet apart. All logs, trees, burrows, rocks, and crevices were inspected for animals. Transect areas included riparian, grasslands, and oak woodlands. Binoculars were used to scan ahead for animals such as turtles and frogs (Bury and Corn 1991). Night transects were walked in the same manner, using 6-volt flashlights for

illumination. During the warmer seasons, biologist going to and from transects kept a general watch for reptiles and amphibians.

Ponds were inspected by both ground searches and seining. Teams of two to nine members spread out from the pond's edge to 33 feet away to conduct ground searches. Frog calls were noted as an auditory identification of species. A fine mesh minnow seine was pulled from one bank to the other to seine ponds. Trapped animals were identified by species and tallied. Hand-held dip nets were used to capture animals near the shore.

Night-driving surveys were conducted from a motor vehicle traveling at speeds between 15-25 mph (Brown et al 1987). Specimens found on the shoulder were identified and counted. Night drive routes included roads both within and surrounding the project area. These roads were traveled in both directions. During the warmer seasons, a general watch was made on the roadsides whenever surveyors were driving in the study area. A camera was used to photograph specimens for species verification and to maintain a general record of the find. Roads interior to the reservoir sites and immediately surrounding the project areas were driven a total of eight times in 1997 in the Sites and Colusa Project areas.

Sites and Colusa Projects

Surveys for reptiles and amphibians were conducted by DFG employees from August 1997 through spring 1999 in the Sites and Colusa Project areas. The major objectives of these surveys were to search for California red-legged frogs, federally threatened; California tiger salamanders, candidate for federal listing and State Species of Concern; and to conduct general herpetology surveys. Four species listed as federal and California State Species of Concern that could potentially occur in the Sites and Colusa Project areas—foothill yellow-legged frogs, western pond turtles, western spadefoot toads, and California horned lizard—were also looked for during the course of this survey (DFG 1998).

Results

A total of 2,400 hours were spent in the Sites and Colusa Project areas looking for reptiles and amphibians. A total of 19 species, 5 amphibians and 14 reptiles, were found during this survey (Table 2). Only one special species listed in Table 1 was found, the western pond turtle. These turtles are listed by the Natural Diversity Data Base as occurring in Colusa County. California redlegged frogs and California tiger salamanders were not found.

The most prevalent species found was the bullfrog. Bullfrogs, Pacific tree frogs, and western toads were the most commonly observed amphibians (Table 4). Western fence lizards were the most prevalent reptiles, with a catch per hour effort ratio of 0.17 (Table 4).

Common Name	Scientific Name
Amphibians	
Bullfrog	Rana catasbieana
California newt	Taricha torosa
California slender salamander	Batrachoseps attenuatus
Pacific treefrog	Hylla regilla
Western toad	Bufo boreas
Reptiles	
Aquatic garter snake	Thamnophis couchii
Common garter snake	Thamnophis sirtalis
Common king snake	Lampropeltus getula
Gopher snake	Pituohpis catenifer
Ring neck snake	Diadophis punctatus
Sharp tailed snake	Contia tenuis
Southern alligator lizard	Elgaria muliticoranata
Western fence lizard	Sceloporus occidentalis
Western pond turtle ¹	Clemmys marmorata
Western racer	Coluber constrictor
Western rattlesnake	Crotalus viridus
Western sagebrush lizard	Sceloporus graciosus gracilis
Western skink	Eumeces skiltonianus
Western terrestrial garter snake	Thamnophis elegans

Table 2. Amphibian and Reptile Species Observed in the Sites and
Colusa Project Areas

Seven-hundred-and-fifty hours were spent searching riparian habitat, which yielded the greatest diversity of species. Fourteen of the nineteen total species of reptiles and amphibians, all three frog species, and all but three reptile species were found in this type of habitat (Table 3). Bullfrogs and western total larvae were also found in pools of the riparian zone.

Fourteen species of reptiles and amphibians were also found in the oak woodland habitat. Adults of all five species of amphibians and all but five species of reptiles were found in the oak woodlands.

A total of 2,060 hours was spent in ground searches. Ground searching was the most productive method of locating a variety of reptiles and amphibians, with an overall catch per hour effort ratio of 8.1 (Table 4). Representatives of all species found during the study were located via ground searches. Dip netting and seining were particularly effective in capturing semi-aquatic reptiles and amphibians, especially larval amphibians (Table 4).

¹ State and federal Species of Concern

During the winter and early spring of 1999, the vernal pools of the Sites and Colusa Project areas either remained dry or only held water for a week's time. The protocol for dip netting vernal pools for California tiger salamanders could not be met as a result.

		Oak		Farm	Vernal	
Common Name	Riparian	Woodland	Grassland	Pond	Pool	Roads
Amphibians						
Bullfrog	Х	Х	Х	Х		
Bullfrog larvae	Х	Х		Х		
California newt		Х		Х		
California slender salamander		Х		Х		
Pacific treefrog	Х	Х	Х	Х	Х	
Pacific treefrog larvae				Х	Х	
Western toad	Х	Х	Х	Х		
Western toad larvae	Х			Х	Х	
Reptiles						
Aquatic garter snake	Х				Х	
Common garter snake	Х	Х	Х	Х	Х	
Common king snake	Х		Х	Х		
Gopher snake	Х	Х	Х	Х	Х	
Ring neck snake					Х	
Sharp tailed snake	Х					
Southern alligator lizard	Х	Х	Х	Х		
Western fence lizard	Х	Х	Х	Х	Х	
Western pond turtle ¹	Х					
Western racer	Х	Х				
Western rattlesnake	Х	Х	Х	Х		Х
Western sagebrush lizard		Х				
Western skink		х				
Western terrestrial garter snake	Х	х		Х		

Table 3. Species Found in Each Habitat Type

¹ State and federal Species of Concern

	Ground	Dip	Coining	Night
	Searching	Netting	Seining	Driving
Rullfrog	1 9	0.7	1	0
Builitog	4.0	0.7	2.0	0
	1.1	0	2.9	0
	0.003	0	0	0
California slender salamander	0.009	0	0.3	0
Pacific tree frog	1.2	3.8	0.6	0
Pacific tree frog larvae	0	27.6	0	0
Western toad	0.5	0.02	0.04	0
Western toad larvae	0.2	13.4	7.1	0
Reptile				
Aquatic garter snake	0.0005	0.009	0	0
Common garter snake	0.02	0.04	0.02	0
Common king snake	0.003	0	0	0
Common racer	0.0002	0	0	0
Gopher snake	0.007	0.009	0	0
Ring neck snake	0.0005	0	0	0
Sharp tailed snake	0.0005	0	0	0
Southern alligator lizard	0.005	0	0	0
Western fence lizard	0.17	0	0	0
Western pond turtle ¹	0.0009	0	0	0
Western rattlesnake	0.02	0.009	0.06	0.2
Western sagebrush lizard	0.0005	0	0	0
Western skink	0.006	0	0	0
Western terrestrial garter snake	0.05	0	0.02	0
Totals	8.1	45.6	12.1	0.2

Table 4. Catch Per Hour Effort for Each Survey Method

Discussion

The foothill yellow-legged frog, which occurs in both Glenn and Colusa counties and is listed by the DFG as a Species of Concern, was not observed in the project area. These frogs prefer the running waters of mid-sized streams.

Several reptile and amphibian species whose historic range may include the Sites and Colusa Project areas that were not observed include the Oregon salamander (*Ensatina escholtzii oregonense*), the black salamander (*Aneides flavipunctatus*), and the mountain king snake (*Lampropeltis zonata*). These species tend to prefer shaded oak woodlands of the arroyos to the west side of the project area.

Western spadefoot toad, rubber boas (*Charina bottea bottae*), and the California night snake (*Hypsiglena torquata nuchalata*) were expected to be found in the grasslands of the Antelope Valley, but were not.

Western pond turtles were found in the project area, as well as outside the reservoir footprint, both upstream and downstream. California red-legged frogs, which generally have a similar habitat preference as western pond turtles and are frequently found occupying the same areas (Jennings, Hayes, and Holland 1985), were not, however, found during these surveys. Further surveys of the streams and pools surrounding the reservoir inundation area will be conducted.

Red Bank Project

DFG initiated studies of amphibians and reptiles in the Red Bank Project area in 1997. DFG also reviewed past studies as part of the Red Bank Investigations (Bill et al 1975, Smith 1987, Brown et al 1987). This summary briefly describes the results of current and past studies of amphibians and reptiles conducted on Cottonwood Creek and Red Bank Creek.

DFG staff conducted surveys for reptiles and amphibians from August 1997 through spring 1999 in the Red Bank Project area. The major objectives of these surveys were to search for California red-legged frogs (federally listed as threatened) and to conduct general herpetology surveys. Three species listed as federal and State Species of Concern that could potentially occur in the Red Bank Project area—foothill yellow legged frogs, western pond turtles, and western spadefoot toads)—were also looked for during the course of these surveys (DFG 1998).

Results

Cottonwood Creek

DFG conducted one-year reconnaissance-level studies of the Red Bank Project in 1986 (Brown et al 1987). Biologists spent about 25 hours searching the banks of Cottonwood Creek in the study area in 1986 and 125 hours searching in 1998. Two species listed as Species of Concern were found, foothill yellow-legged frogs and western pond turtles (Table 5). These two species were distributed throughout the study area.

During these studies, fourteen species of amphibians and reptiles were found. The most common species of amphibians observed in the Cottonwood Creek study area were foothill yellow-legged frogs (14.80/hr) and western toads (13.10/hr) (Table 6). The most common species of reptiles observed were common garter snakes (0.39/hr) and western pond turtles (0.17/hr) (Table 6).

Common Name	Scientific Name	Cottonwood Creek	Red Bank Creek
Amphibians			
Bullfrog	Rana catesbeiana	Х	Х
California red-legged frog ¹	Rana aurora draytonni		Х
Foothill yellow-legged frog ²	Rana bolei	Х	х
Pacific tree frog	Hyla regilla	Х	х
Western toad	Bufo boreas	Х	Х
Reptiles			
Common garter snake	Thamnophis sirtalis	Х	Х
Common kingsnake	Lampropeltis getulus	Х	Х
Gopher snake	Pituophis malanoleucus	Х	
Southern alligator lizard	Elgaria multicarinata	Х	Х
Western fence lizard	Sceloperus occidentalis	Х	Х
Western pond turtle ²	Clemmys marmorata	Х	Х
Western racer	Coluber constrictor		Х
Western rattlesnake	Crotalus viridis	Х	Х
Western sagebrush lizard	Sceloperus graciousus gracilis	Х	Х
Western skink	Eumeces skiltonianus	Х	х
Western terrestrial garter snal	ke Thamnophis elegans	Х	х

Table 5. Amphibians and Reptiles Observed in the **Red Bank Project Area**

Red Bank Creek

Biologists spent 75 hours searching Red Bank Creek and surrounding areas in 1986 and 300 hours in 1998. Biologists found two species listed as Species of Concern, the foothill yellow-legged frog and the western pond turtle (Table 5). These two species were distributed throughout the Red Bank Project study area. Biologists also observed a threatened species, the California red-legged frog, in 1986 and 1998 at Sunflower Gulch, a tributary to Red Bank Creek. Biologists found sixteen species of amphibians and reptiles (Table 5).

Discussion

The most common species of amphibians observed in the Red Bank study area were western toads (5.65/hr.) and foothill yellow-legged frogs (3.91/hr.) (Table 6). The most common species of reptiles observed were western terrestrial garter snakes (0.13/hr.) and western pond turtles (0.09/hr.) (Table 6).

¹ Listed as federally threatened species ² State and federal Species of Concern

	Catch per hour					
Species	Cottonwood Creek	Red Bank Creek				
Amphibians						
Bullfrog	0.02	1.06				
California red-legged frog ¹		<0.01				
Foothill yellow-legged frog ²	14.8	3.91				
Pacific tree frog	0.01	1.58				
Western toad	13.1	5.65				
Reptiles						
Common garter snake	0.39	0.03				
Common king snake	0.01	0.01				
Gopher snake	0.05	0.01				
Southern alligator lizard	0.02	0.01				
Western fence lizard	0.14	0.08				
Western pond turtle ²	0.17	0.09				
Western racer		0.01				
Western rattlesnake	0.12	0.01				
Western sagebrush lizard	0.02	0.01				
Western terrestrial garter snake	0.15	0.13				

Table 6. Relative Abundance of Amphibians and ReptilesObserved in the Red Bank Project Area

The most significant finding in the current investigation is the confirmation of the presence of a California red-legged frog in Sunflower Gulch. One was observed in the same location in 1986 (Brown et al 1987). Extensive searches failed to find other red-legged frogs in the study area. It is probable that the population of red-legged frogs is very small at the site of the proposed Red Bank Project.

Two Species of Concern are plentiful throughout the Red Bank Project study area: the foothill yellow-legged frog and the western pond turtle. They were found in both Red Bank Creek and the South Fork of Cottonwood Creek.

Thomes-Newville Project

DFG initiated studies of the impacts on fish and wildlife of a Thomes-Newville Project in 1979 as part of DWR's Thomes-Newville Reservoir planning studies. However, the planning studies were halted in 1982. DFG completed a report of its abbreviated studies in 1983 (Brown et al 1983). This section recapitulates the effort and results of DFG's 1981-82 field studies. No new studies of amphibians or reptiles at the Thomes-Newville Project area were undertaken during the recent investigations of offstream storage.

¹ Listed as federally threatened species

² State and federal Species of Concern

Methods

Surveys for amphibians and reptiles in the Thomes-Newville Project area were conducted from April 1981 through May 1982. Before surveying began, it was necessary to determine the historic range and available suitable habitat of the threatened California red-legged frog and Species of Concern that might be present in the project area, such as the California tiger salamander, western pond turtle, foothill yellow-legged frog, and western spadefoot toad. This evaluation was made by physically observing the present habitat in conjunction with historic records, reviewing previous field data, and consulting professional and amateur organizations such as the Natural Diversity Database, the DFG Natural Heritage Division, and others involved in consulting or amateur herpetology in the study area. Biologists and herpetologists from State and federal agencies and environmental groups, as well as university and museum personnel, were also consulted on possible indigenous reptiles and amphibians in the study area.

Pitfall trapping was done in the Thomes-Newville Project area surveys. Square plywood roofs supported by wooden legs approximately 4.3 inches above the soil surface covered plastic 5.0 gallon buckets or 3 pound coffee cans that were buried so their open top was level with the soil surface. Animals seeking shelter would run under the roofs, fall into the can or bucket, and be trapped. The roofs prevented livestock and people from stepping into the traps.

Buckets measured 10.8 inches on the inside diameter and varied from 12.0 inches to 14.0 inches in depth. Their plywood roofs had 16.0-inch sides. Coffee cans measured 6.1 inches on the inside diameter and were 6.9-inches deep. Coffee can traps were constructed by burying one can with both lids removed above another with its bottom lid intact. This resulted in doubling the trap depth to 13.8 inches. The plywood roofs for these traps had 12.0-inch sides.

Two-hundred-and-nine traps were installed during the course of the survey, including 79 bucket traps and 130 can traps. The trapping effort included placing traps within each of the major habitat types found within the project site and surrounding areas. Grassland, oak savannah, pine-oak woodland, chaparral, and riparian areas comprised the major habitat types selected for pitfall trap installation.

Pitfall traps were checked four times per week from spring through early fall. During late fall and winter, traps were checked at least once per week. The increased frequency of trap checking during the warmer seasons coincided with increased terrestrial activity of many amphibian and reptile species. Captured amphibians and lizards were marked by clipping their toes in a predetermined sequence to obtain population estimates based on recaptures of marked individuals. These species regenerate their lost limbs.

Team members walked 16 feet apart in a line to search for amphibians and reptiles. All logs, trees, burrows, rocks, and crevices were inspected for animals. Areas searched included riparian, grasslands, and oak woodlands. Binoculars were used to scan ahead for animals such as turtles and frogs. This method was most effective for snakes, lizards, toads, slender salamanders, and tree frogs. Night searches were walked in the same manner, using 6-volt flashlights for illumination. During the warmer seasons, a general watch for reptiles and amphibians was made by staff going to and from transects.

Searches of aquatic habitat in the Thomes-Newville area included visual observations of animals on shore or in shallow water. Hand-held dip nets were used to capture animals near the shore. The study also included seining stock ponds and ephemeral pools in the project area, using a 50-foot beach seine.

Night drives occurred an average of six times per month in the Thomes-Newville area. Night drives followed roads both within and surrounding the project boundaries. These roads were traveled in both directions. Night surveys were very successful in locating snakes, lizards, and toads. During the warmer seasons, a general watch was made on the roadsides whenever surveyors were driving in the study area. A camera was used to photograph specimens for species verification and to maintain a general record of the find.

Results

This 1981-82 survey produced observations of 22 amphibian and reptile species that occur within the habitats in the project area and surrounding areas (Table 7). No estimate of population sizes was possible because of the small number of recaptures that occurred during the pitfall trapping.

Common Name	Scientific Name
Amphibians	
Black salamander	Aneides flavipunctatus
Bullfrog	Rana catesbeiana
California slender salamander	Batrachoseps attenuatus
Foothill yellow-legged frog ²	Rana boylei
Pacific tree frog	Hyla regilla
Western spadefoot toad ²	Spea hammondi
Western toad	Bufo boreas
Reptiles	
Common garter snake	Thamnophis sirtalis
Common king snake	Lampropeltis getulus
Gopher snake	Pituophis malanoleucus
Sagebrush lizard	Sceloperus graciosus
Sharp-tailed snake	Contia tenuis
Southern alligator lizard	Elgaria multicarinata
Striped racer	Masticophis lateralis
Western aquatic garter snake	Thamnophis couchi
Western fence lizard	Sceloperus occidentalis
Western pond turtle ²	Clemmys marmorata
Western racer	Coluber constrictor
Western rattlesnake	Crotalus viridis
Western skink	Eumeces skiltonianus
Western terrestrial garter snake	Thamnophis elegans
Western whiptail	Cnemidophorus tigris

Table 7. Amphibians and Reptiles Observed in the Thomes-
Newville Project Area in 1982¹

Western toads, Pacific tree frogs, and western fence lizards were found in all habitat types. Gopher snakes and western rattlesnakes were also found in most habitat types. Some species such as black salamanders and western sagebrush lizards were much more limited in their distribution (Table 8).

¹ Scientific names are taken from Collins 1997

² State and federal Species of Concern

			Oak	Oak			Standing
Species	Grassland	Chaparral	Savannah	Woodland	Riparian	Stream	Water
Amphibians							
Black salamander				Х			
Bullfrog					Х	Х	Х
California slender salamander	Х	Х	Х	Х			
Foothill yellow-legged frog ¹					Х	Х	Х
Pacific tree frog	Х	Х	Х	Х	Х	Х	Х
Western spadefoot toad ¹	Х		Х				
Western toad	Х	Х	Х	Х	Х	Х	Х
Reptiles							
Common garter snake	Х				Х	Х	Х
Common king snake	Х	Х	Х	Х			
Gopher snake	Х	Х	Х	Х	Х		
Sagebrush lizard		Х					
Sharp-tailed snake	Х	Х					
Southern alligator lizard	Х	Х	Х	Х	Х		
Striped racer	Х	Х					
Western aquatic garter snake					Х	Х	
Western fence lizard	Х	Х	Х	Х	Х	Х	Х
Western pond turtle ¹					Х	Х	Х
Western racer	Х	Х	Х		Х		
Western rattlesnake	Х	Х	Х	Х	Х		
Western skink	Х	х	Х				
Western terrestrial garter snake	Х		Х		Х	Х	Х
Western whiptail		Х	Х	Х			
Total number of species observed	15	14	13	10	13	8	8

Table 8. Amphibian and Reptile Species Found in theThomes-Newville Project Area in 1982

Ground searching proved to be the most successful method of observation in terms of the number of species it produced. This method accounted for 90.9 percent of all species found. Night driving yielded 63.6 percent, followed by pitfall trapping and searches of aquatic habitats, each of which produced 40.9 percent of all species found.

Pitfall traps tended to trap amphibians, lizards, and smaller snakes, such as the sharp-tailed snake (*Contia tenuis*). Larger snakes, because of their length, could easily avoid falling into the traps. This trapping method failed to provide any amphibian or reptile species not found by at least one other collection method.

¹ State and federal Species of Concern

Time limitations and lack of access prevented use of the beach seine except on one occasion in April 1982. A stock pond with a surface area of approximately 0.1 acre, located adjacent to Newville Road and about 0.25 mile south of the bridge near the Tehama-Glenn County line, was seined in April 1982. One seine haul yielded 13,761 Pacific tree frog tadpoles and two western spadefoot toad tadpoles. Several adult bullfrogs (*Rana catesbeiana*) were observed, but no adult or larval salamanders were found (Table 9).

	Observation or Capture Method					
Species	Pitfall Trapping	Night Drivina	Ground Searching	Aquatic Survevs		
Amphibians		J				
Black salamander			Х			
Bullfrog		Х		Х		
California slender salamander	Х		Х			
Foothill yellow-legged frog ¹		Х	Х	Х		
Pacific tree frog	Х	Х	Х	Х		
Western spadefoot toad ¹	Х	Х	Х	Х		
Western toad		Х		Х		
Reptiles						
Common garter snake		Х	Х	Х		
Common king snake		Х	Х			
Gopher snake		Х	Х			
Sagebrush lizard			Х			
Sharp-tailed snake	Х		Х			
Southern alligator lizard	Х	Х	Х			
Striped racer		Х	Х			
Western aquatic garter snake			Х	Х		
Western fence lizard	Х	Х	Х			
Western pond turtle ¹			Х	Х		
Western racer		Х	Х			
Western rattlesnake		Х	Х			
Western skink	Х		Х			
Western terrestrial garter snake	Х	Х	Х	Х		
Western whiptail	Х		Х			
Total number of species observed	9	14	20	9		

Table 9. Observation and Capture Methods for Amphibian andReptile Species in the Thomes-Newville Project Area in 1982

Although no amphibian or reptile species listed as rare or endangered occurred in the project area, three species considered of special concern to the State of California because of habitat losses complete their reproductive cycle in

¹ State and federal Species of Concern

both temporary and permanent ponds found throughout the inundation area. western spadefoot toads, foothill yellow-legged frogs, and western pond turtles occur in the streams coursing through the reservoir site.

Discussion

DFG believe this survey found most, if not all, of the different amphibian and reptile species occurring within the reservoir site and surrounding areas. Two notable exceptions, the ringneck snake (*Diadophis punctatus*) and the night snake (*Hypsiglena torquata*), may occur here, based on habitat descriptions and range maps presented in Stebbins (1966). The survey failed to find either of these species.

The combination of survey methods proved adequate for their purpose. These methods seem well suited for a short-term survey such as this, since they allow a great deal of territory to be covered in a brief period of time. Although accurate estimates of amphibian and reptile species are difficult or impossible to make using these methods, they do appear to provide reliable qualitative inventory of which species are present.

The pitfall trapping method required a relatively large amount of preparation time compared to the results it produced. Approximately three person-months were spent obtaining materials and installing traps. Had the survey continued through summer 1982 and spring 1983, enough recaptures of marked individuals may have occurred to allow population estimates to be made. In general, it appears that studies of this sort, faced with uncertain funding, should concentrate on finding species present using methods that require less preparation time.

Summary of Special Species Findings

Table 10 summarizes the observations of species with special status in each project area. The findings for Sites, Colusa, and Red Bank Project areas are a result of recent surveys, while those of Thomes-Newville Project area are the result of past surveys.

Western pond turtles, a federal and State Species of Concern, was found in the Sites and Colusa Project area. No other Species of Concern were found in the potential project area during these surveys. However, California red-legged frogs, a federally threatened species, generally have a similar habitat preference as western pond turtles and are frequently found occupying the same areas. Further surveys of the area surrounding the proposed inundation area will be conducted.

In comparison, a California red-legged frog and several Species of Concern were found at the proposed Red Bank Project area. Foothill yellow-legged frogs and western pond turtles were found in both Red Bank and Cottonwood Creeks. A number of Species of Concern were also found at the Thomes-Newville project area in earlier surveys. Foothill yellow-legged frogs, western spadefoot toads, and western pond turtles were all found in 1981-82 field studies.

		Project Area		
Species	Status	Sites and Colusa	Red Bank	Thomes- Newville ¹
Amphibians				
California red-legged frog	Federally threatened		х	
California tiger salamander	Candidate for federal listing; State Species of Concern			
Foothill yellow-legged frog	Federal and State Species of Concern		Х	Х
Western spadefoot toads	Federal and State Species of X Concern		Х	
Reptiles				
California horned lizard	Federal and State Species of Concern			
Western pond turtle	Federal and State Species of Concern	х	Х	Х

Table 10. Special Species of Amphibians and ReptilesObserved in Project Areas

¹ Results from surveys of Thomes-Newville Project area conducted in 1981-82

Literature Cited

- Bill, A. J., L. A. Brown, and R. A. Steel. 1975. Major Surface Water Development Opportunities in the Sacramento Valley. California Department of Water Resources. 53 p.
- Brown, C. J., J. R. Garcia, and A. Woesner. 1987. *Final Report on Reconnaissance Level Studies at the Dippingvat and Schoenfield Reservoir Site*. California Department of Fish and Game. 89 p.
- Bury, B. B. and P. S. Corn. 1991. Sampling Methods for Amphibians in Streams in the Pacific Northwest. Gen. Tech. Rep. PNW-GTR-275. Portland, OR. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 29 p.
- Collins, J. T. 1997. Standard Common and Current Scientific Names for North American Amphibians and Reptiles. 15 p.
- Department of Fish and Game. 1999. *State and Federally Listed Endangered and Threatened Animals of California*. California Department of Fish and Game. 12 p.
- Smith, B. J. 1987. State Water Project Future Supply, Cottonwood Creek Reformulation: The Dippingvat-Schoenfield Project. California Department of Water Resources. 40 p.
- Stebbins, R. C. 1985. *A Field Guide to Western Reptiles and Amphibians.* Houghton Mifflin Company, New York, New York. 336 p.
- U.S. Fish and Wildlife Service. 1997. Guidance on Site Assessment and Field Surveys for California Red-legged Frogs. U.S. Fish and Wildlife Service. 9 p.
- Brown, C. J., E. D. Smith, J. M. Siperek, N. A. Villa, H. H. Reading, and J. P. Finn. *Thomes-Neuville Unit Fish and Wildlife Evaluation*. California Department of Fish and Game. 207 p.
- Collins, J. T. 1997. Standard Common and Current Scientific Names for North American Amphibians and Reptiles. 14 p.
- Department of Fish and Game. 1999. *State and Federally Listed Endangered and Threatened Animals of California*. California Department of Fish and Game. 12 p.
- Stebbins, R. C. 1966. *A Field Guide to Western Reptiles and Amphibians.* Houghton Mifflin Co. Boston. 279 p.

Brode, J. M. 1993. Survey Protocol for California Tiger Salamander. California

DRAFT

Department of Fish and Game.

- California Department of Fish and Game. 1998. *Natural Heritage Division, Natural Diversity Databases Special Status Animals.* California Department of Fish and Game. 12 p.
- California Department of Fish and Game. 1999. *Natural Diversity Databases Special Status Plants Animals and Natural Communities of Colusa County.* California Department of Fish and Game.
- California Department of Fish and Game. 1999. *Natural Diversity Databases Special Status Plants Animals and Natural Communities of Glenn County.* California Department of Fish and Game.
- Stebbins, R. C. 1985. *A Field Guide to Western Reptiles and Amphibians.* Houghton Mifflin Company, New York, New York. 279 p.
- U.S. Fish and Wildlife Service. 1997. *Guidance on Assessment and Field Surveys* for California Red-legged Frogs. U.S. Fish and Wildlife Service.

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix B: Wetland Delineation Field Studies Report

April 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix B: Wetland Delineation Field Studies Report

Report prepared by: Joyce Lacey Rickert Environmental Specialist IV

Graphics prepared by: Mark Dombrowski Junior Engineering Technician

California Department of Water Resources Division of Planning and Local Assistance, Northern District

April 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

Table of Contents

Introduction	. 1
Methods	. 1
Results	. 2
Discussion	. 2
Sites Reservoir and Colusa Cell	. 2
Newville Reservoir	. 9
Red Bank Project	11

Tables

Table 1. Sites Reservoir Waters of the U.S.	3
Table 2. Colusa Cell Waters of the U.S.	4
Table 3. Newville Reservoir Waters of the U.S.	5
Table 4. Red Bank Project Waters of the U.S	6
Table 5. Offstream Storage Waters of the U.S.	6
Table 6. Sites Reservoir Seasonal Wetlands Soil Type	7
Table 7. Colusa Reservoir Seasonal Wetlands Soil Type	8
Table 8. Newville Reservoir Seasonal Wetlands Soil Type	. 10
Table 9. Red Bank Project Seasonal Wetlands Soil Type	. 11
, , , , , , , , , , , , , , , , , , , 	

Wetland Delineation Field Studies Report

Introduction

Section 404 of the Clean Water Act requires the U.S. Army Corps of Engineers' authorization for projects involving the placement of "fill" material into any "waters of the United States." The decision to grant such a permit is based on a review of the project's impacts to a number of economic and environmental factors, including the quantity and types of wetlands. The Corps defines wetlands as "areas that are periodically or permanently inundated by surface or groundwater and support vegetation adapted for life in saturated soil."

This report summarizes the two-year survey of wetlands and other waters of the U.S. within the footprint of the four potential offstream storage reservoir locations: Sites Reservoir, Colusa Cell, Thomes-Newville Reservoir, and the Red Bank Project (Figure 1).

Methods

Stereo pairs of 1:12,000 and 1:6,000 scale color aerial photos were reviewed for wetland types prior to field studies. All aerial photography used in the wetland identifications were taken in late spring to differentiate seasonal wetlands from annual grassland cover. Wetland types were identified on the photographs, and representative types were selected throughout each reservoir for field verification. Selection of representative types was based on soil types and aerial photo wetland vegetation "signatures." Field visits were conducted during and after rainfall events in order to observe hydrology conditions. These representative sites and additional sites were revisited later in the season when wetland vegetation was identifiable to the species level. Wetland delineations were made using the "routine method," as described in the 1987 *Corps of Engineers Wetland Delineation Manual*. This method involves a field review of the hydrology conditions, plant species' composition, and hydric soil indicators. The Corps' regulatory specialists were also consulted for guidance on field sampling and data presentation.

Results of the wetland delineations and field verifications were used to produce a draft map of jurisdictional wetlands. Stereo pairs of aerial photos for the inundation areas of each reservoir were studied, and all areas that matched signatures of field-verified wetland types were mapped as jurisdictional wetlands. Questionable areas were also identified as wetlands and marked for future field verification. All wetland polygons were mapped and acreage was calculated.

Other waters of the U.S. were also identified on the aerial photos. These included stock ponds, small reservoirs, and tributaries. All drainages were identified as either main tributaries (i.e., width of streambed equal to or wider

than 15 feet and generally perennial) or tributaries (i.e., width of streambed less than 15 feet and drainages usually ephemeral, possibly perennial). Stream width measurements were made throughout the project sites. Drainages with wetlands or jurisdictional riparian areas were classified as wetlands.

All waters of the U.S. were mapped using the procedure outlined above. The acreages for all waters of the U.S. and linear distances (miles) of all drainages were then calculated. Attachment A shows the stream width measurement data for drainages within the proposed reservoir sites.

The Corps' regulatory specialists have not verified these maps. Field verification of these maps will involve site visits to each wetland delineation site by the Corps' regulatory specialist.

Results

Areas identified as jurisdictional wetlands represent approximately 2 percent of the surface area of each reservoir footprint. The acreage and wetland types within each reservoir area are presented in Tables 1 through 4. Information on other waters of the U.S. is also included in these tables. The waters of the U.S. acreage for all reservoir locations are summarized in Table 5. Throughout this report, all data are presented with the most southern reservoir location first (i.e., Sites Reservoir) and the northern reservoir last (i.e., Red Bank Project).

Discussion

The wetland type, quality, and quantity within a given location are dependent on a number of factors, including soil types, site geology (evidence of faulting and springs), and land management. The three southern reservoir locations were similar in dominant wetland types and distribution patterns. The Red Bank Project is dominated by steep, well-drained slopes, which supported few seasonal or emergent wetland areas. Wetland types will be addressed in general terms and site-specific information given for each reservoir area.

Sites Reservoir and Colusa Cell

Seasonal wetlands account for over 75 percent of the jurisdictional wetlands identified within the Sites Reservoir footprint and 84 percent of the Colusa Cell jurisdictional wetlands (Tables 1 and 2). This very common wetland type is inundated by surface water or saturated by groundwater during the winter and spring months. Most of these seasonal wetlands were dry by early summer and are strongly associated with low-lying areas of clay or clay loam soils (Tables 6 and 7). Many of the plants found in these wetlands are dry and brown during the summer months, making the wetlands almost indistinguishable from the surrounding annual grasslands. Dominant plant species include *Eleocharis*

macrostachya (spike rush), *Hordeum marinum* ssp, *Gussoneanum* (Mediterranean baryle), and *Rumes* spp (dock).

Wetlands and		Linear Distance
Other Waters	Acres	(Miles)
Wetlands	201	
Other Waters	175	
Total Waters of the U.S.	376	
Total Reservoir Area	14,162	
Wetland Types		
Alkaline	19	
Emergent	2	
Riparian	22	
Seasonal	153	
Vernal Pools	5	
Total	201	
Other Waters		
Major Tributaries	82	25
Tributaries	77	123
Ponds/Small Reservoirs	16	
Total	175	148

Table 1. Sites Reservoir Waters of the U.S.
Wotlands and		Linear Distance
Other Waters	Acres	(Miles)
Wetlands	312	
Other Waters	135	
Total Waters of the U.S.	447	
Total Reservoir Area	13,664	
Wetland Types		
Alkaline	35	
Emergent	0	
Riparian	11	
Seasonal	263	
Vernal Pools	3	
Total	312	
Other Waters		
Major Tributaries	30	15
Tributaries	81	143
Ponds/Small Reservoirs	24	
Total	135	158

Table 2. Colusa Cell Waters of the U.S.

Wotlands and		Linear
Other Waters	Acres	(Miles)
Wetlands	413	. , ,
Other Waters	231	
Total Waters of the U.S.	644	
Total Reservoir Area	17,073	
Wetland Types		
Alkaline	3	
Emergent	6	
Riparian	77	
Seasonal	304	
Vernal Pools	23	
Total	413	
Other Waters		
Major Tributaries	59	17
Tributaries	106	223
Ponds/Small Reservoirs	66	
Total	231	148

Table 3. Newville Reservoir Waters of the U.S.

Wetlands and		Linear Distance
Other Waters	Acres	(Miles)
Wetlands	83	
Other Waters	152	
Total Waters of the U.S.	235	
Total Reservoir Area	4,905	
Wetland Types		
Emergent/Seasonal	7	
Riparian	76	
Total	83	
Other Waters		
Major Tributaries	71	17
Tributaries	47	110
Ponds/Small Reservoirs	34	
Total	152	127

Table 4. Red Bank Project Waters of the U.S.

Table 5. Offstream Storage Waters of the U.S.

Reservoir Site	Reservoir Size (Acres)	Waters of the U.S. (Acres)	Wetlands (Acres)
Sites	14,162	376	201
Colusa Cell	13,664	447	312
Newville	17,073	644	413
Red Bank Project	4,905	235	83

	Date		Soil Sample
Pool	Pool		Color
Number	Visited	Soil Name	
S-1	4/14/98	Altamont-Contra Costa clay loam	
S-2	5/8/98	Altamont-Contra Costa clay loam, slightly eroded, hilly, 16-30% slopes	5Y 3/1
S-3	5/8/98	Altamont clay loam, slightly eroded; hilly	5Y 4/1
S-3	5/8/98	Altamont clay loam, slightly eroded; hilly	5Y 3/1
S-4	5/26/98	Contra Costa clay loam, slightly eroded, very steep	
S-5	5/26/98	Forgeus clay, undulating	5Y 3/1
S-5	5/26/98	Forgeus clay, undulating	5Y 4/1
S-6	6/5/98	Myers clay, 0-3% slopes	5Y 4/1
S-6	6/5/98	Myers clay, 0-3% slopes	10YR 3/3
S-6	6/5/98	Myers clay, 0-3% slopes	10YR 6/6
S-6	6/5/98	Myers clay, 0-3% slopes	5Y 4/1
S-6	6/5/98	Myers clay, 0-3% slopes	5Y 4/1
S-7	6/5/98	Antone clay loam, strong alkali	2.5Y 4/0
S-7	6/5/98	Antone clay loam, strong alkali	5Y 4/1
S-7	6/5/98	Antone clay loam, strong alkali	10YR 5/8
S-8	6/5/98	Antone clay loam, strong alkali	10YR 5/8
S-8	6/5/98	Antone clay loam, strong alkali	10YR 4/1
S-8	6/5/98	Antone clay loam, strong alkali	10YR 3/3
S-9	6/9/98	Myers clay loam, 0-3% slopes	
S-10	6/9/98	Altamont-Contra Costa clays, 15-30% slopes	
S-11	6/9/98	Zamora silty clay loam, 0-2% slopes	10 YR 4/2
S-11	6/9/98	Zamora silty clay loam, 0-2% slopes	10 YR 3/2
S-11	6/9/98	Zamora silty clay loam, 0-2% slopes	10 YR 5/6
S-12	10/15/98	Altamont clay loam, slightly eroded; undulating to rolling	10 YR 3/2+3
S-13	10/15/98	Altamont clay loam, slightly eroded; undulating to rolling	10 YR 3/2
S-13	10/15/98	Altamont clay loam, slightly eroded; undulating to rolling	10 YR 2/2
S-13	10/15/98	Altamont clay loam, slightly eroded; undulating to rolling	5 YR 5/8
S-14	10/15/98	Altamont-Contra Costa clay loam, slightly eroded, hilly, 16-30% slopes	5 Y 4/2
S-14	10/15/98	Altamont-Contra Costa clay loam, slightly eroded, hilly, 16-30% slopes	5 YR 5/8
S-15	10/15/98	Myers clay loam, gently undulating, 0-2% slopes	10 YR 3/2
S-15	10/15/98	Myers clay loam, gently undulating, 0-2% slopes	10 Y 5/8
S-16	3/4/99	Altamont clay loam, slightly eroded; undulating to rolling	2.5 Y 4/2
S-17	3/4/99	Contra Costa clay loam, slightly eroded, steep	2.5 YR 4/2
S-18	3/5/99	Altamont clay loam, slightly eroded; hilly	10 YR 3/2
S-18	3/5/99	Altamont clay loam, slightly eroded; hilly	10 YR 6/8
S-18	3/5/99	Altamont clay loam, slightly eroded; hilly	10 YR 4/2
S-18	3/5/99	Altamont clay loam, slightly eroded; hilly	5 YR 5/8
S-18	3/5/99	Altamont clay loam, slightly eroded; hilly	10 YR 3/2
S-19	3/5/99	Contra Costa clay loam, slightly eroded, steep	10 YR 3/1
S-20	3/25/99	Myers clay, gently undulating, 0-2% slopes	10 YR 4/1
S-20	3/25/99	Myers clay, gently undulating, 0-2% slopes	10 YR 4/2
S-20	3/25/99	Myers clay, gently undulating, 0-2% slopes	10 YR 7/6

Table 6. Sites Reservoir Seasonal Wetlands Soil Type

Pool Number	Date Pool Visited	Soil Name	Soil Sample Color
C-1	4/22/98	Myers clay, 0-3% slopes	
C-2	4/22/98	Kimball gravelly loam, 2-10% slopes	10YR 5/2
C-2	4/22/98	Kimball gravelly loam, 2-10% slopes	10YR 4/1
C-3	6/9/98	Altamont soils, 30-65% slopes	
C-4	6/9/98	Capay clay, 0-2% slopes	2.5 Y 4/2
C-4	6/9/98	Capay clay, 0-2% slopes	2.5Y 6/4
C-4	6/9/98	Capay clay, 0-2% slopes	5Y 4/1
C-4	6/9/98	Capay clay, 0-2% slopes	2.5 Y 3/2
C-4	6/9/98	Capay clay, 0-2% slopes	5Y 4/1
C-5	6/15/98	Yolo clay loam, shallow over clay	5 YR 2.5/1
C-5	6/15/98	98 Yolo clay loam, shallow over clay	
C-5	6/15/98	Yolo clay loam, shallow over clay	10 YR 3/2
C-5	5 6/15/98 Yolo clay loam, shallow over clay		10 YR 6/8
C-6	C-6 6/15/98 Zamora silty clay loam, 2-8% slopes		10 YR 3/3
C-6	6/15/98	Zamora silty clay loam, 2-8% slopes	10 YR 3/1
C-6	6/15/98	Zamora silty clay loam, 2-8% slopes	10 YR 3/1
C-6	6/15/98	Zamora silty clay loam, 2-8% slopes	10 YR 3/3
C-7	6/23/98	Myers clay, 0-3% slopes	5Y 4/1
C-7	6/23/98	Myers clay, 0-3% slopes	5Y 4/2
C-8	4/1/99	Nacimiento soils, 30-50% slopes	
C-9	4/1/99	Nacimiento soils, 30-50% slopes	
C-10	4/1/99	Nacimiento-Contra Costa association, 15-30% slopes	

Table 7. Colusa Reservoir Seasonal Wetlands Soil Type

Most of the alkaline wetlands are also seasonal but are vastly different in plant species composition. The annual and perennial species in these areas are tolerant of alkali conditions. The majority of these wetlands are dominated by *Distichlis spicata* (salt grass), with a varity of other species including *Parapholis incurva* (sickle grass), *Frankenia salina* (alkali heath), *Cressa truxillensis* (alkali weed), and *Scirpus martimus* (slat marsh bulrush). The alkaline wetlands within the Sites Reservoir and Colusa Cell are along a linear zone of deformation potentially associated with the Salt Lake fault.

Impacts to the alkaline wetlands may be considered significant by regulatory agencies during the environmental review of these projects. These alkaline areas could provide habitat for a number of sensitive plant and animal species, although no sensitive species were identified during the current field studies. The Colusa Cell alkaline wetlands could serve as potential mitigation for the alkaline wetlands inundated by the Sites Reservoir. These wetlands could be enhanced using various land management methods.

A very small quantity (2 acres) of emergent wetlands was identified within the Sites Reservoir; this wetland type was present within the Colusa Cell in several small areas, but these were not measurable using aerial photo interpretation. Emergent wetlands have typical wetland species, such as *Scirpus acutus* (hard-stemmed tule), *Scirpus californicus* (California bulrush) and *Typha angustifolia* (cattails), and are associated with existing reservoir shorelines and drainages. Drainages with emergent wetlands were often protected from grazing animals by fences.

The riparian areas found within these two reservoir alternatives are rarely well developed or large in size. Many of the drainages are downcut and do not support wetland species along the banks. Small strands of *Populus fremintii* (cottonwood), *Quercus lobata* (valley oak), and *Salix* spp (willows) occur as isolated units throughout the area. The largest concentration of riparian habitat is within the southern portion of the Sites Reservoir. Potential riparian creation sites occur throughout the surrounding area.

Many of the vernal pools found within these reservoir alternatives are "manmade" (e.g., drainages blocked by roads or disturbed areas within heavy clay soils) and have very low plant species diversities. Pools occurring along the northeastern edge of the Sites Reservoir tended to be larger in size and higher in plant species diversity. One similar area also occurs within the Colusa Cell. Typical species include *Eryngium castrense* (coyote thistle), *Plagiobothrys* ssp (popcorn flower), and *Lythrum hussopifolium* (loosestrife).

Newville Reservoir

Seasonal wetlands also dominate the wetlands of the Newville Reservoir inundation area (Table 3). Some of the wetland areas are very large in size and may form complexes with other types of wetlands, including riparian. This area also has significant quantities of other wetland types. The seasonal wetlands are closely associated with clay soils (Table 8). The seasonal wetlands within this area tended to be more diverse in both subtypes and plant species composition. Common species included those listed under the Sites/Colusa discussion, as well as *Trifolium* ssp (clovers), *Juncus* ssp (rushes), *Mimulus guttatus* (monkeyflower), and *Rorippa nasturium-aquaticum* (watercress).

Riparian areas account for over 18 percent of the reservoir area's wetlands. Well-developed riparian habitat occurs along a number of the main tributaries, although patches of the invasive non-native *Ailanthus altissima* (tree of heaven) occur within some of these strands. Riparian wetlands in this reservoir area cover about 77 acres, which may be considered significant by regulatory agencies.

One small area of alkaline wetland was identified within the Salt Creek drainage. Other areas adjacent to Salt Creek and some of its tributaries supported alkaline species, but were too narrow to map. The areas identified as alkaline are within a zone, which was identified as an inferred fault area during a 1980 geological study of the area (*Seismic and Fault Activity Study, Proposed Glenn Reservoir Complex.* Prepared for DWR by Earth Sciences Associates). The alkaline wetlands of this area have not been site checked.

Table 8. Newville Reservoir Seasonal Wetlands Soil Type

Pool Number	Date Pool Visited	Soil Name	Soil Sample Color
N-1	3/4/98	Altamont clay, 3-15% slopes	
N-2	3/17/98	Altamont clay, 3-15% slopes	
N-3	3/19/98	Lodo-Millsholm complex, 30-50% slopes	
N-4	3/19/98	Zamora loam, 0-3% slopes	
N-5	3/19/98	Lodo-Millsholm complex, 10-30% slopes	
N-6	3/20/98	Lodo-Gullied land complex, 10-30% slopes	
N-7	3/20/98	Tehama clay loam, 2-10% slopes	
N-8	3/26/98	Terrace escarpments	
N-9	4/7/99	Zamora loam, 0-3% slopes	
N-10	4/7/99	Hillgate loam, 0-3% slopes	
N-11	4/7/99	Hillgate loam, 0-3% slopes	
N-12	4/7/99	Lodo-Millsholm complex, 10-30% slopes	
N-13	4/20/98	Zamora loam, 0-3% slopes	5Y 4/1
N-14	4/20/98	Zamora loam, 0-3% slopes	5Y 4/1
N-15	4/20/98	Lodo-Millsholm complex, 10-30% slopes	
N-16	4/20/98	Lodo-Millsholm complex, 10-30% slopes	
N-17	4/20/98	Hillgate loam, 0-3% slopes	5Y 4/1, 5Y 3/2
N-18	4/20/98	Lodo-Millsholm complex, 10-30% slopes	5Y 4/1
N-19	4/20/98	Pleasanton gravelly loam, 1-10% slopes	5Y 4/1
N-20	4/20/98	Tehama loam, 3-8% slopes	
N-21	4/20/98	Pleasanton gravelly loam, 1-10% slopes	
N-22	4/28/98	Hillgate-Millsholm complex, 3-30% slopes	5Y 4/1
N-23	4/28/98	Lodo-Milsholm complex, 30-50% slopes	5Y 4/1
N-24	4/28/98	Clear Lake clay	N4/
N-25	4/28/98	Clear Lake clay	5Y 4/1
N-26	4/29/98	Hillgate-Gullied land complex, 2-10% slopes	
N-27	4/29/98	Corning gravelly loam, 0-2% slopes	
N-28	4/29/98	Clear Lake clay	5Y 4/1
N-29	4/29/98	Millsholm clay loam-Gullied land complex, 10-30% slopes	5Y 4/1
N-30	5/19/98	Hillgate-Millsholm complex, 3-30% slopes	
N-31	5/19/98	Hillgate-Millsholm complex, 3-30% slopes	
N-32	6/1/98	Zamora loam, 0-3% slopes	5Y 3/2
N-33	6/2/98	Zamora loam, 0-3% slopes	5Y 4/1
N-34	6/2/98	Zamora loam, 0-3% slopes	5Y 2.5/1-2
N-35	6/2/98	Zamora loam, 0-3% slopes	10YR 3/2
N-36	6/2/98	Zamora loam, 0-3% slopes	5Y 3/2
N-36	6/2/98	Zamora loam, 0-3% slopes	5Y 3/1
N-36	6/2/98	Zamora loam, 0-3% slopes	5Y 6/2-3
N-37	6/11/98	Lodo-Tehama-Gullied land complex, 10-30% slopes	5Y 4/1
N-38	6/12/98	Terrace escarpments	
N-39	6/12/98	Lodo-Tehama-Gullied land complex, 10-30% slopes	5Y 4/1
N-40	6/12/98	Lodo-Tehama-Gullied land complex, 30-50% slopes	5Y 4/1
N-40	6/12/98	Lodo-Tehama-Gullied land complex, 30-50% slopes	10YR 5/8

Vernal pool complexes, areas of concentrated pools and connecting swales, were found in several locations within the reservoir area. They were usually associated with terrace deposits occurring between streambeds. The pools of this reservoir alternative were of an overall higher quality than those of the Sites/ Colusa Cell location.

Red Bank Project

Seasonal and emergent wetlands make up less than 9 percent of the wetland total for the Red Bank Project (Table 4). Many of these wetlands are located within or adjacent to small stockponds or are associated with saturated spring-fed areas. Clay soils are relatively rare within the steep terrain that dominates both the Schoenfield and Dippingvat Reservoirs (Table 9).

Pool Number	Date Pool Visited	Soil Name	Soil Sample Color
R-1	4/1/98	Hillgate loam, shaly substrate, 0-8% slopes	Soil saturated
R-2	4/1/98	Hillgate loam, shaly substrate, 0-8% slopes	
R-3	5/21/98	Zamora clay loam, 0-3% slopes	
R-4	5/21/98	Riverwash	
R-5	5/21/98	Zamora clay loam, 0-3% slopes	
R-6	7/2/98	Lodo and Maymen shaly loams, 10-30% slopes, eroded	10 YR 3/2
R-7	7/2/98	Lodo and Maymen shaly loams, 10-30% slopes, eroded	
R-8	7/3/98	Cortina gravelly fine sandy loam	
R-9	7/3/98	Cortina gravelly fine sandy loam	

Table 9. Red Bank Project Seasonal Wetlands Soil Type

Riparian areas dominate the wetlands of this area. Riparian areas can be found throughout the larger reservoirs of the project but are best developed along the South Fork of Cottonwood and Red Bank Creeks. The typical species are similar to the species outlined in the Sites/Colusa discussion, except many of the riparian stands are dominated by *Alnus rhombifolia* (white alder).

State of California, Gray Davis, Governor

The Resources Agency, Mary D. Nichols, Secretary for Resources

Department of Water Resources, Thomas M. Hannigan, Director

Steve Macaulay, Chief Deputy Director

Raymond D. Hart, Deputy Director

Stephen L. Kashiwada, Deputy Director

L. Lucinda Chipponeri, Assistant Director for Legislation

Susan N. Weber, Chief Counsel

Division of Planning and Local Assistance, William J. Bennett, Chief

This bulletin was prepared under the direction of

Integrated Storage Investigation, Naser J. Bateni, Chief Offstream Storage Investigation, Glen S. Pearson, Chief

by David J. Bogener, Environmental Specialist IV

assisted by

Michael Serna, Senior Delineator Mark Dombrowski, Junior Engineering Techician Don Schroeder, Fish Wildlife Scientific Aide

State of California The Resources Agency Department of Water Resources Division of Planning and Local Assistance

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix C: Survey for the Valley Elderberry Longhorn Beetle at Four Proposed Offstream Storage Reservoir Locations

June 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix C: Survey for the Valley Elderberry Longhorn Beetle at Four Proposed Offstream Storage Reservoir Locations

Report prepared by: Gail Kuenster Environmental Specialist II

With assistance from: MaryAnn Griggs Fish and Wildlife Scientific Aid

Ryan Martin Fish and Wildlife Scientific Aid

Michael Serna Senior Delineator

California Department of Water Resources Division of Planning and Local Assistance, Northern District

June 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

Summary

This report summarizes an assessment of the valley elderberry longhorn beetle within the Sites, Colusa Cell, Newville, and Red Bank reservoir sites in 1998 and 1999.

The valley elderberry longhorn beetle is listed by the U.S. Fish and Wildlife Service as "threatened, with Critical Habitat". Although there were no known populations within the proposed reservoir sites, habitat exists and known populations occur nearby.

Surveys focused on identifying potential habitat for VELB, the number of elderberry stems found measuring 1 inch or more, and the presence of exit holes. Aerial photos were used to determine which drainages should be field checked within the grassland habitats of the Sites, Colusa Cell, and Newville reservoir areas. All drainages were field checked within the Red Bank Reservoir site.

Habitat for VELB occurs at each of the four proposed reservoir sites. VELB emergence holes were found within the proposed Sites and Newville reservoir areas. No emergence holes were found within the proposed Colusa and Red Bank project areas. No adult beetles were observed at any of the proposed reservoir sites.

Surveys are valid for a two-year period according to U.S. Fish and Wildlife guidelines. Potential reservoir sites will need to be resurveyed before a final report is produced. Areas not surveyed prior to this report, such as areas with restricted access, conveyance routes, road relocations, recreational areas etc., will need to be surveyed. Analyses will also be needed to predict how possible changes in flow regimes within the channels and associated savannas downstream will affect elderberry survival and distribution.

Contents

Summary	i
Contents	iii
Introduction	.1
Methods	.4
Results	.5
Sites Proiect Area	.5
Colusa Project Area	.6
Newville Project Area	.6
Red Bank Project Area	.6
Mitigation Guidelines	.7
Discussion	.7
References	.9

Tables

Table 1. Number of Elderberry Stems and Emergence Holes Found	
Within Each Proposed Reservoir Site	6

Figures

Figure 1. North of Delta Offstream Storage Investigation	.2
Figure 2. Valley Elderberry Longhorn Beetle	.3
Figure 3. Elderberry Plant With a Single Trunk	.3
Figure 4. Elderberry Stand	.4
Figure 5. Valley Elderberry Longhorn Beetle Emergence Hole	.4

Introduction

The Department of Water Resources is currently evaluating the feasibility of constructing an offstream water supply reservoir at one of four locations on the west side of the Sacramento Valley in cooperation with CALFED. These locations include Sites Reservoir in western Colusa County, Colusa Reservoir in western Glenn and Colusa Counties, Thomes-Newville Project in western Tehama and Glenn Counties, and the Red Bank Project in western Tehama County (Figure 1).

The valley elderberry longhorn beetle, Desmocerus californicus dimorphus Fisher, was listed by the U.S. Fish and Wildlife Service as "threatened, with Critical Habitat" on August 10, 1980 (Federal Register 45:52803-52807) (Figure 2). The beetle is endemic to riparian systems along the margins of rivers and streams, occasional seeps, and in adjacent grassy savannas in the Sacramento and San Joaquin Valleys. VELB feeds on two species of elderberry (Sambucus mexicana Presl. - Figure 3 and 4, and S. racemosa L. var. microbotrys Rydb.). The adult female beetle deposits eggs in the crevices of the bark of living plants. The larvae bore into the pith of the larger elderberry stems where the majority of the animal's life span is spent. Following pupation in the spring, the adult beetle opens an emergence hole in the bark through which it exits (Figure 5). Adults feed on foliage and are present from March through early June. Because the adult stage is short lived, surveys techniques focus on the presence of emergence holes for evidence of VELB. VELB emergence holes have been observed in shoots or branches with diameters as small as 0.5 inches (13mm) but are more common in older branches (Barr 1991, USFWS 1984). Barr (1991) found exit holes most often in older mature healthy plants and rarely in young or stressed individuals. Exit holes are circular or slightly oval and are usually 7-10 mm in diameter. VELB is the only insect species known to inhabit live elderberry wood and/or make exit holes of a similar size and shape in the Central Valley (Barr 1991).

The VELB is known to occur throughout the California Central Valley and it is associated foothills from the valley floor up to 3,000-foot elevation. Although there were no known VELB populations within the proposed reservoirs, habitat was known to exist within the project area and known VELB locations were recorded nearby. According to Jones and Stokes (1986) "potential VELB habitat is defined by the presence of mature and immature elderberry shrubs (*Sambucus* spp.)."

The State and federal Endangered Species Acts require that any analysis of a project that could result in a "take " of a State or federally "listed" species include an evaluation of alternatives, consultation with the respective regulatory agencies, and the development of mitigation and avoidance measures. This not only includes the individual species but their habitats as well. Surveys for VELB are valid for a period of two years. All beetle habitat that cannot be avoided will be considered impacted and appropriate mitigation, as set forth in the Mitigation Guidelines for the Valley Elderberry Longhorn Beetle (USFWS 1996) and in consultation with the USFWS, must be implemented.

Appendix C: Survey for the Valley Elderberry Longhorn Beetle at Four Proposed Offstream Storage Reservoir Locations

Figure 3. Elderberry Plant With a Single Trunk

Figure 4. Elderberry Stand

Figure 5. Valley Elderberry Longhorn Beetle Emergence Hole

Methods

A survey of all potential reservoir sites for the VELB and its habitat was conducted during the periods January through July 1998 and April through June 1999. Surveys focused on identifying potential habitat for VELB, the number of elderberry stems found measuring more than one inch, and the presence of exit holes. A total of 45 days was spent field surveying the drainages.

Sites, Colusa, and Newville proposed reservoir areas are comprised mainly of non-native grassland with scattered oak woodland on the upland areas. Riparian vegetation along stream channels is sparse, especially within the Colusa Reservoir. The larger streams at Sites and Newville reservoir areas are bordered by scattered stands of mature cottonwood, oak, willow, and elderberry. However, the majority of stream channels lacks any riparian vegetation and consists mainly of grassland vegetation with an occasional cottonwood or willow. Aerial photographs were used to identify the drainages, or portions thereof, in the proposed project areas with potential VELB habitat. All drainage areas and the adjacent savannas were walked and checked for the presence of VELB habitat, with the exception of those drainages bordered solely by grasslands and those areas restricted by landowners.

Within the proposed Red Bank Project area, foothill woodland habitat, with moderate to dense canopy cover, comprises 81 percent of the area. Riparian habitat along the major stream channels is more continuous than that at the proposed Sites, Colusa, and Newville reservoir areas. Vegetation along the lesser channels consists of scattered oaks, cottonwoods, willows, or elderberries. All the stream channels and adjacent savannas within the Red Bank Project area were walked and checked for the presence of VELB habitat except for portions where access was restricted by landowners.

According to VELB survey procedures outlined in the USFWS 1996 report on mitigation guidelines, all stems measuring 1 inch or more at ground level were recorded and checked for emergence holes. The elderberry plants were examined by scanning the foliage and branches for adult beetles and the trunks and branches for exit holes. Growth forms of elderberry plants throughout the project area are varied. A stand may consist of a single individual with multiple trunks, several individuals growing in close proximity, or a tree-like individual with a single large trunk. Multiple trunks were counted as individual stems if it was apparent that the branching was off the root mass and exposed due to recent erosion.

Results

Habitat for VELB occurs at each of the four proposed reservoir sites. VELB emergence holes were found within the proposed Sites and Newville reservoir areas. No emergence holes were found within the proposed Colusa and Red Bank project areas. No adult beetles were observed, although the majority of surveys were conducted during the time the adult beetles would be present. The physical condition of the elderberry plants varied from poor to good. Table 1 lists the number of stems counted at each reservoir site, and the number and percentage of stems with emergence holes.

Sites Project Area

Six hundred seventy-two stems were counted within the proposed Sites Project area. Emergence holes were found on 18 individual stems. The plants within this area tend to be individuals with multiple trunks and range from unhealthy stressed plants to occasional large healthy individuals. The majority of plants at this site and the riparian vegetation in general tend to be in poor condition.

Colusa Project Area

Only one stand of elderberry was found within the proposed Colusa Cell. This stand consisted of 38 stems and was found near a seep on a steep slope at the reservoir's eastern edge. Drainages where elderberry plants would typically be found were too dry and degraded due to natural causes or downcutting to support elderberry plants. Very few associated riparian species (cottonwood and willow) were found along the drainages.

Newville Project Area

Five hundred fifty-two stems have been counted in the proposed Newville project area. Emergence holes have been found in 42 stems. The plants at this site tend to be large healthy individuals with single or multiple trunks. Most occurred along the major drainages, but some individuals were found at the edges of associated grassy savannas and even upslope along the dryer margins.

Reservoir Site	Number of elderberry stems	Number of stems with emergence holes	Percentage of stems with emergence holes
Sites	672	18	2.7
Colusa	38	0	0
Newville	552	42	7.6
Red Bank	1,001	0	0
Schoenfield	791	0	0
Lanyan	0	0	0
Bluedoor	0	0	0
Dippingvat	210	0	0

Table 1. Number of Elderberry Stems and Emergence HolesFound Within Each Proposed Reservoir Site

Red Bank Project Area

Dippingvat. Two hundred ten individuals were found at the proposed Dippingvat reservoir area. No emergence holes were found. Individuals at this site tend to be older with a single trunk and in good condition.

Bluedoor and Lanyan. No elderberry plants were found at either of these proposed reservoir sites; however, potential elderberry habitat does exist at both areas.

Schoenfield. Seven hundred ninety-one individual stems were counted at the proposed Schoenfield Reservoir site. No emergence holes were found. The majority of plants are healthy and consist of both single individuals with multiple trunks and tree-like individuals. They tend to occur along the savannas and edges of Red Bank Creek but some were found upslope on the dryer hillsides and drainages.

Mitigation Guidelines

Guidelines have been issued by USFWS to assist in developing measures to mitigate adverse effects on VELB if complete avoidance is not possible. Surveys are valid for a period of two years. Elderberry plants are to be transplanted if they cannot be avoided. However, at the discretion of the USFWS, a plant that would be extremely difficult to move because of access problems may be exempted from transplantation (USFWS 1996). Planting of additional seedling or cuttings may be required under the mitigation guidelines, depending upon the absence or percentage of elderberry plants with emergence holes found in the project area. Elderberry plants with no beetle exit holes are planted at a ratio of 2:1. Elderberry plants with beetle holes in 50 percent or fewer of the plants are planted at a ratio of 3:1. And elderberry plants with beetle holes in more than 50 percent of the plants are planted in the ratio of 5:1. In addition, a mix of native plants (cottonwood, willow, etc.) associated with the elderberry shrubs at the project site are to be planted at a ratio of at least one specimen of native tree and shrub species for every elderberry plant (seedling or cutting).

Discussion

Off-site mitigation for elderberry plant impacts will be required for any of the proposed reservoirs. This mitigation will include acquisition of suitable land, transplantation of existing elderberry bushes, and planting of cuttings of both elderberries and associated native plants. The USFWS requires the mitigation area provide at least 1,800 square feet for each transplanted elderberry shrub, with as many as five elderberry cuttings or seedlings and up to five associated natives. This planting density is primarily for riparian forest habitats. If the mitigation site is an open habitat, as is the case for the proposed Sites, Colusa, and Newville Reservoirs, more area may be needed. Watering basins will also be needed at each site. The mitigation area should be protected in perpetuity as habitat for the valley elderberry longhorn beetle, which would require continuing funding, management, protection, and monitoring.

The proposed Colusa Project area had the least number of individual elderberry plants and less suitable elderberry habitat, thus mitigation would be minimal for this site. Sites, Newville, and Red Bank reservoir sites would require extensive replanting of elderberry plants as well as planting of seedlings and cuttings of both elderberries and associated species such as cottonwood and willow. Many of the plants within the Sites and Newville reservoir areas are accessible and could be transplanted. However, because of the steepness of the terrain within the Red Bank project area, transplantation of the elderberry shrubs would be more difficult.

The elderberry plants within the proposed Newville and Red Bank project areas tend to be healthier and less stressed than the plants at the Sites Reservoir area. The associated riparian forest is also best developed within the proposed Red Bank Reservoir area. The condition of the riparian vegetation and elderberry plants within the proposed Sites Reservoir was generally worse than that at Newville Reservoir.

The numbers of elderberry plants within the proposed Sites and Newville project areas is similar, thus the mitigation area required would be approximately the same. However, although the Red Bank Project area is much smaller than the Sites or Newville areas, there were almost twice as many elderberry stems. This in turn would double the off-site mitigation area required for the Red Bank Project.

Surveys are valid for a two-year period according to USFWS guidelines because of the potential for the adult female beetles to lay their eggs in different elderberry plants from which they emerged. Field surveys will need to be conducted again before a final report is produced. In addition, areas not surveyed prior to this report, such as areas with restricted access, conveyance routes, road relocations, recreation, etc. will need to be surveyed. Analyses will also be needed to predict how possible changes in water regimes within the channels and associated savannas downstream of potential reservoir areas will affect elderberry survival and distribution.

Mitigation requirements for each of the proposed reservoir sites will need to be discussed with the USFWS. Contact with appropriate USFWS personnel has already been initiated by telephone. Survey methodologies have been discussed and approved.

References

- Barr, C. B. 1991. *The Distribution, Habitat, and Status of the Valley Elderberry Longhorn Beetle* Desmocerus californicus dimorphus. U.S. Fish and Wildlife Service, Sacramento, California.
- Jones and Stokes Associates, Inc. 1986. Survey of the Habitat and Populations of the Valley Elderberry Longhorn Beetle Along the Sacramento River. 1986 Progress Report. Prepared for the U.S. Fish and Wildlife Service, Sacramento, Endangered Species Office, Sacramento, California.
- U.S. Fish and Wildlife Service 1980. *Listing the Valley Elderberry Longhorn Beetle as a Threatened Species with Critical Habitat*. Federal Register 45:52803-52807.
- _____. 1984. *Valley Elderberry Longhorn Beetle Recovery Plan*. U.S. Fish and Wildlife Service, Portland, Oregon.
- _____. 1996. *Mitigation Guidelines for the Valley Elderberry Longhorn Beetle*. U.S. Fish and Wildlife Service, Sacramento, California.

State of California, Gray Davis, Governor The Resources Agency, Mary D. Nichols, Secretary for Resources Department of Water Resources, Thomas M. Hannigan, Director

Steve Macaulay, Chief Deputy Director

Raymond D. Hart, Deputy Director

Stephen L. Kashiwada, Deputy Director

L. Lucinda Chipponeri, Assistant Director for Legislation

Susan N. Weber, Chief Counsel

Division of Planning and Local Assistance, William J. Bennett, Chief

This bulletin was prepared under the direction of Integrated Storage Investigation, Naser J. Bateni, Chief Offstream Storage Investigation, Glen S. Pearson, Chief

by David J. Bogener, Environmental Specialist IV

assisted by Michael Serna, Senior Delineator Mark Dombrowski, Junior Engineering Techician Don Schroeder, Fish Wildlife Scientific Aide

State of California The Resources Agency Department of Water Resources Division of Planning and Local Assistance

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix D: Fish Survey Summary

September 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix D: Fish Survey Summary

Report prepared by: Charles J. Brown Associate Biologiest California Department of Fish and Game

Assisted by: Waiman Yip Senior Engineer California Department of Water Resources

September 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

Assisted by (continued):

Glen Gorden Student Assistant

GeorgeLow Student Assistant

April Scholzen Office Technician

Contents

Fish Survey Summary	1
Introduction	1
Contract with DFG	2
Report Organization and Content	2
Methodology	2
Diving	2
Seining	2
Fyke Nets	5
Electrofishing	5
Red Bank Project Fish Studies	5
Red Bank Creek Fish Resources	6
Cottonwood Creek Fish Resources	8
Thomes-Newville Project Fish Studies	12
Methodology	13
Thomes Creek Fish Resources	14
Stony Creek Fish Resources	19
Sites and Colusa Project Fish Studies	23
Sites and Colusa Project Stream Fish Resources	23
Colusa Basin Drain Fish Studies	27
Sites and Colusa Project Habitat Types	32
Summary of Fish Studies for Proposed Projects	44
References	45

Tables

Table 1. Nongame Fish Observed in the Red Bank and Cottonwood Creeks	7
Table 2. Relative Abundance of Nongame Fish (Fish/Yd) Caught in Lower	
Cottonwood Creek, 1976, and in Red Bank Creek, 1998	.7
Table 3. Game Fish Observed in Cottonwood Creek, 1976, and in Red Bank	
Creek, 1998	.7
Table 4. Relative Abundance of Resident Game Fish (Fish/ Yd) Caught	
in Lower Cottonwood Creek and in Red Bank Creek	8
Table 5. Estimates of Chinook Salmon Spawning in the Cottonwood Creek	
System, 1952-98 (DFG Spawning Stock Reports)	0
Table 6. Average Monthly Stream Flow in Cottonwood Creek at the	
Cottonwood Gage	12
Table 7. Juvenile Chinook Salmon Seined from Thomes Creek in 1980 and	
1981 1	15
Table 8. Fyke Net Catches of Juvenile Chinook Salmon from Mainstem of	
Thomes Creek in 1981	15
Table 9. Fyke Net Catches of Juvenile Chinook Salmon from the	
Tehama-Colusa Canal Discharge Channel in Thomes Creek	
in 1981 and 1982	15

Table 10. Fish Species Found in Thomes Creek in 1982	. 18
Table 11. Average Population Estimates and Biomass Estimates	
for Fish Caught in Sections of Thomes Creek in 1982	. 18
Table 12. Juvenile Chinook Salmon Seined from Stony Creek in	. 19
Table 13. Population Estimates for Fish Caught in Selected Sections	
of Streams within the Newville Reservoir Site in 1983	. 20
Table 14. Average Biomass Estimates (lb/acre) for Fish Caught in Selected	
Sections of Streams within the Newville Reservoir Site in 1983	. 20
Table 15. Fish of the Stony Creek Drainage (Excludes Fish within Newville	
Reservoir Site)	. 22
Table 16. Average Population Estimates and Biomass Estimates for Fish	
Caught in Selected Sections of Stony Creek in 1982	. 23
Table 17. Fish Caught in the Sites Study Area in 1998 and 1999	. 25
Table 18. Species Caught at Each Sample Station and Relative Abundance	
on Funks Creek	. 25
Table 19. Relative Abundance of Fish Caught at Hunters Creek	. 26
Table 20. Species Caught at Each Station and Relative Abundance	
on Stone Corral Creek	. 26
Table 21. Species Caught at Each Station and Relative Abundance	
on Antelope Creek	. 27
Table 22. Average Monthly Streamflow (cfs) in the Colusa Basin Drain	
at the Highway 20 Crossing	. 28
Table 23. Resident Game Fish of the Colusa Basin Drain	. 30
Table 24. Resident Nongame Fish of the Colusa Basin Drain	. 30
Table 25. Number of Species Captured at Each Trapping Station	. 31
Table 26. Catch Per Hour Effort for Each Trapping Method	. 32
Table 27. Substrate Type and Size Used	. 33
Table 28. Summary of Substrates (%) by Habitat Type on Funks Creek	. 34
Table 29. Summary of Habitat Cover in Funks Creek	. 35
Table 30. Summary of Substrates on Grapevine Creek	. 36
Table 31. Summary of Habitat Cover in Grapevine Creek	. 37
Table 32. Summary of Substrates on Stone Corral Creek	. 38
Table 33. Summary of Habitat Cover in Stone Corral Creek	. 39
Table 34. Summary of Substrates on Antelope Creek	. 40
Table 35. Summary of Cover in Antelope Creek	. 41
Table 36. Comparison of Relative Occurrence of Pools, Flat Water, and	
Riffles in Creeks in the Sites-Colusa Project Area	. 41
Table 37. Summary of Substrates (%) by Habitat Type on Creeks in the	
Sites-Colusa Study Area	. 42

Figures

Figure 1. North of Delta Offstream Storage Investigation	3
Figure 2. Cottonwood Creek System and the Red Bank Project	6
Figure 3. Map Showing streams in the Sites-Colusa Project	24
Figure 4. Relative Occurrence of Habitat Types in Funks Creek	34
Figure 5. Relative Occurrence of Habitat Types in Grapevine Creek	36
Figure 6. Relative Occurrence of Habitat Types in Stone Corral Creek	38
Figure 7. Relative Occurrence of Habitat Types in Antelope Creek	40
Figure 8. Relative Occurrence of Habitat Types in Sites-Colusa	42
Figure 9. Percent of Canopy Over Creeks Measured at Sites-Colusa	
Project Area	43

This page was deliberately left blank.

Fish Survey Summary

Introduction

In late 1997, the Department of Water Resources began a two-year reconnaissance level study of North of the Delta Offstream Storage authorized by Proposition 204—the Safe, Clean, Reliable Water Supply Act approved by voters in 1996. In early 1999, CALFED consolidated all storage investigations under a comprehensive program called Integrated Storage Investigations. The North of the Delta Offstream Storage Investigation was incorporated into one of seven ISI program elements.

The North of the Delta Offstream Storage Investigation continues engineering, economic, and environmental impact analyses to determine the feasibility of four north of the Delta storage projects. The four potential alternatives are Sites Reservoir, Colusa Project, Thomes-Newville Project, and Red Bank Project (Figure 1). Phase I, currently underway, includes preliminary field surveys of environmental resources and extensive field surveys of cultural resources, geological, seismic and foundation studies, and an engineering feasibility evaluation. Phase II will start when CALFED's Record of Decision and Certification for the Programmatic EIR/EIS is completed and if north of Delta offstream storage is consistent with CALFED's preferred program alternative. Phase II will include completion of necessary fish and wildlife surveys, evaluations of potential mitigation sites, preparation of project-specific environmental documentation, final project feasibility reports, and the acquisition of permits necessary for implementation.

Under Phase I, the Department of Fish and Game conducted studies of fish and wildlife resources in each project area. This appendix summarizes studies of fish in the tributaries that flow through each of the four proposed project areas. The information gathered will be used to describe impacts on fish resources during the planning process. Fishery studies conducted for the Sacramento River will be summarized in a separate report.

Contract with DFG

DFG initiated fish studies in 1997. Studies were conducted to develop data adequate to meet the needs of the U.S. Fish and Wildlife Service, National Marine Fisheries Service, and DFG consultations as required by endangered species legislation. Past studies were also reviewed and evaluated as part of this effort.

Report Organization and Content

Results and discussions of findings in past fishery studies and recently conducted surveys of fishery resources in the four proposed project areas are included in this appendix. The general procedure for commonly used fish surveys are outlined, with specific sampling data and results discussed in respective sections for each proposed project area.

Methodology

At the proposed project sites, fish surveys were conducted by diving, seining, fyke netting, and/or electrofishing. These methods were used to collect data on occurrence and relative abundance of species of fish. This section discusses general procedures for these methods. Details of surveys and results for each site are discussed in the respective sections.

Diving

Fish were observed in deep pools by divers wearing faceplates. Fish species were identified and numbers of each species observed were recorded. Diving was used as a sampling technique when pools were too big or deep for other sampling methods.

Seining

A seine is used to collect fish for sampling data. Three different seines varying in size were used depending on the size of the pool. The largest seine was 60 feet long, 5 feet high, with a mesh size of one-quarter inch and a 7-foot-by -7foot pocket. A medium sized seine was 29 feet long, 6 feet high, with a mesh size of one-quarter inch and a pocket size of 7 feet by 5 feet. The third seine, used only for small pools and ponds, was 12 feet long, 4 feet high, with a mesh size of one-quarter inch and a 7-foot-by-5-foot pocket. A seine was brought around from one edge of the pool to the other. To prevent fish from escaping, a barrier net was stretched across the creek upstream and downstream from the pool to be seined. Captured specimens were stored in a bucket of water until they could be examined. Specimens were identified and the first 20 of each species were measured for fork length to the nearest millimeter and then released downstream. The seine was pulled a total of three times at each site. Representative specimens were either preserved or photographed for positive identification.

This page was deliberately left blank.
Fyke Nets

Fish captured in fyke nets were measured for fork length to the nearest millimeter and weighed by water displacement to the nearest gram. No estimates of abundance were done for fish caught in fyke nets. Therefore, these fish were not included in the relative abundance tables.

Electrofishing

Electrofishing was done with a Smith-Root Type VII electroshocker. Sections of creek varying from 33 to 138 feet were netted off, upstream and downstream. With a backpack electroshocker, DFG biologists waded into the stream starting from the upstream net and moved downstream. The anode of the electrofisher was inserted into likely fish habitat. The stunned fish were then collected into buckets, measured for fork length to the nearest millimeter for the first 20 of each species, and then a plus count was taken. Fish were weighed using water displacement to the nearest gram. The surface area of each station was calculated in square feet and then converted to square millimeters for fish density analysis. The resulting relative abundance was converted to and reported in fish per square yard.

Red Bank Project Fish Studies

This section describes the results of current and past fish studies conducted on Red Bank, South Fork Cottonwood, and Cottonwood Creeks, the major tributaries of the Red Bank Project area (Figure 2). Past studies date to 1969 and contain the reconnaissance-level fish and wildlife evaluation of Sacramento Valley alternative west side conveyance routes prepared by DFG (Smith and Van Woert 1969). Other studies reviewed include reports prepared by DFG and DWR in 1972, 1975, 1985, and 1987 (Haley and Van Woert 1972, Bill et al. 1975, Brown et al. 1985, Smith 1987).

Figure 2. Cottonwood Creek System and the Red Bank Project

Red Bank Creek Fish Resources

DFG Biologists sampled fish in Red Bank Creek within the footprint of the Schoenfield Reservoir in 1998. Data were collected at 28 stations. In summer 1998, seining was done at 16 stations dispersed on Red Bank Creek and its tributaries, Dry and Grizzly Creeks. Twelve stations were sampled on Red Bank Creek by electrofishing in October and November 1998.

Nongame Fish

Four species of nongame fish were observed (Table 1). The most common species of nongame fish found were California roach (0.588 fish/yd²) and Sacramento pike minnow (0.158 fish/yd²) (Table 2).

Resident Game Fish

In 1998, DFG biologists observed four species of resident game fish in Red Bank Creek (Table 3). The most common resident game fish were largemouth bass $(0.009 \text{ fish/yd}^2)$ and bluegill $(0.001 \text{ fish/yd}^2)$ (Table 4).

Steelhead

Also in 1998, DFG biologists found juvenile steelhead in the footprint of the proposed Schoenfield Reservoir in Red Bank by electrofishing and estimated density to be 0.002 fish/yd². Steelhead were found in two of 28 stations sampled.

Common Name	Scientific Name	Cottonwood Creek (1976)	Red Bank Creek (1998)
California roach	Hesperoleucus symmetricus	Х	Х
Carp	Cyprinus carpio	Х	
Golden shiner	Notemigonus crysoleucas	Х	
Hardhead	Mylopharodon conocephalus	Х	
Hitch	Lavinia exilicauda	Х	
Mosquitofish	Gambusia affinis	Х	
Pacific lamprey	Lampetra tridentata	Х	Х
Prickly sculpin	Cottus asper	Х	
Sacramento pike minnow	Ptychocheilus grandis	Х	Х
Sacramento sucker	Catostomus occidentalis	Х	Х
Speckled dace	Rhinichthys osculus	Х	
Threespine stickleback	Gasterosteus aculeatus	Х	
Tule perch	Hysterocarpus traski	Х	

Table 1. Nongame Fish Observed in the Red Bank andCottonwood Creeks

Table 2. Relative Abundance of Nongame Fish (Fish/Yd²) Caught in Lower Cottonwood Creek, 1976, and in Red Bank Creek Species Cottonwood Creek Red Bank Creek

Species	Cottonwood Creek (1976)	(1998)
California roach	0.003	0.588
Carp	0.003	
Hardhead	0.022	
Sacramento pike minnow	0.015	0.158
Sacramento sucker	0.006	0.091

Table 3. Game Fish Observed in Cottonwood Creek, 1976,and in Red Bank Creek, 1998

Common Name	Scientific Name	Cottonwood Creek (1976)	Red Bank Creek (1998)
Black bullhead	lctalurus melas	Х	
Bluegill	Lepomis macrochirus	Х	Х
Brown bullhead	lctalurus nebulosus	Х	
Brown trout	Salmo trutta	Х	
Chinook salmon	Onchorhynchus tshawytscha	Х	
Green sunfish	Lepomis cyanellus	Х	Х
Largemouth bass	Micropterus salmoides	Х	Х
Smallmouth bass	Micropterus dolomieui	Х	
Steelhead	Onchorhynchys mykiss	Х	Х
White catfish	Ictalurus catus	Х	

Species	Cottonwood Creek (1976)	Red Bank Creek (1998)
Bluegill	0.022	0.001
Brown bullhead	0.006	
Green sunfish	0.015	0.001
Largemouth bass	0.003	0.009
Smallmouth bass	0.003	

Table 4. Relative Abundance of Resident Game Fish (Fish/ Yd²)Caught in Lower Cottonwood Creek and in Red Bank Creek

Cottonwood Creek Fish Resources

DFG biologists surveyed Cottonwood Creek from the confluence of the north fork to the mouth of Cottonwood Creek in 1976 (Richardson et al. 1978). Observations were made by diving, seining, fyke netting, and electrofishing. Abundance estimates were made for fish caught by electrofishing. Fish caught in fyke nets or observed by divers were not included in the relative abundance tables, because no estimates of abundance were done for these fish.

Nongame Fish

Thirteen species of nongame fish were observed (Table 1). The most common species of resident nongame fish found were hardhead (0.022 fish/yd²) and Sacramento pike minnows (0.015 fish/yd²) (Table 2). Some Sacramento pike minnows and Sacramento suckers also migrate to the Sacramento-San Joaquin estuary to rear and return to Cottonwood Creek as adults to spawn (Richardson et al. 1978). Life history information is valuable in planning instream flow studies, HEP evaluations, and determining project impacts.

Resident Game Fish

Ten species of resident game fish were observed in the Cottonwood Creek system in 1976 (Richardson et al. 1978) (Table 3). The most common resident game fish were bluegill (0.022 fish/yd²) and green sunfish (0.015 fish/yd²) (Table 4). Green sunfish and bluegill were common in the lower reaches surveyed (Richardson et al. 1978).

Steelhead

DFG biologists found juvenile steelhead in South Fork Cottonwood Creek in the Yolla Bolly Wilderness in the summer of 1976. No estimates of numbers of juvenile steelhead were made. The Yolla Bolly Wilderness is well above the site of the proposed Dippingvat Dam. Adult steelhead were seined from the mouth of Cottonwood Creek in November 1976 (Brown, et al., 1985). DFG estimates that Cottonwood Creek supports an average annual migration of 1,000 steelhead based on the best estimates of biologists who were most familiar with Cottonwood Creek (DFG 1966).

Chinook Salmon

Fall Run. Fall-run chinook salmon ascend Cottonwood Creek and spawn in late October through November (Richardson et al. 1978). They spawn in

Cottonwood Creek from the mouth to the confluence of North Fork Cottonwood Creek. About 53 percent of fall-run chinook salmon spawn from the mouth of Cottonwood Creek to the Interstate-5 highway bridge, 23 percent spawn from the Interstate-5 highway bridge to the confluence of Cottonwood Creek and South Fork Cottonwood Creek, and 24 percent spawn in Cottonwood Creek between the confluence of the south and north forks. Their young begin migrating after they incubate in January (Richardson 1978). They migrate downstream from January through May. DFG estimates that an average of 3,600 fall-run chinook salmon spawn in Cottonwood Creek (Table 5) (Elwell 1962; Fry 1961; Fry and Petrovich 1970; Hoopaugh 1978; Hoopaugh and Knudson 1979; Kano et al. 1996; Kano 1998a, 1998b; Knutson 1980; Mahoney 1962; Menchen 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970; Puckett et al. 1979; Reavis 1983, 1984, 1986).

Year	Fall Run	Spring Run		
		Beegum Gulch	North Fork	South Fork
1952	-	-	-	-
1953	3,000	-	-	-
1954	1,000	-	-	-
1955	800	-	-	-
1956	660	-	-	-
1957	358	-	-	-
1958	600	-	-	-
1959	3,300	-	-	-
1960	350	-	-	-
1961	1,500	-	-	-
1962	6,000	-	-	0
1963	3,500	-	-	-
1964	3,450	-	-	-
1965	900	-	-	-
1966	2,900	-	-	-
1967	600	-	-	-
1968	8,540	-	-	-
1969	4,967	-	-	-
1970	-	-	-	-
1971	-	-	-	-
1972	-	-	-	0
1973	-	0	-	-
1974	-	3	-	-
1975	-	3	-	1
1976	2,427	-	-	-
1977	1,512	-	-	-
1978	1,120	-	-	0
1979	-	-	-	-
1980	-	-	-	-
1981	3,356	-	-	-
1982	700	0	-	-
1983	1,000	-	-	-
1984	500	-	-	-
1985	-	-	-	-
1986	-	-	-	-
1987	-	-	-	-
1988	-	-	-	-
1989	-	0	-	-
1990	-	-	-	-

Table 5. Estimates of Chinook Salmon Spawning in the Cottonwood Creek System, 1952-98 (DFG Spawning Stock Reports)

Year	Fall Run	Spring Run		
		Beegum Gulch	North Fork	South Fork
1991	676	-	-	-
1992	1,585	-	-	-
1993	-	1	-	-
1994	-	-	-	-
1995	-	8	-	-
1996	-	6	-	-
1997	-	-	-	-
1998	-	477	-	0

Table 5. Estimates of Chinook Salmon Spawning in the Cottonwood Creek System, 1952-98 (DFG Spawning Stock Reports) continued

Late Fall-Run. Late fall-run chinook salmon migrate up Cottonwood Creek and spawn in January. DFG Biologists observed them spawning at the mouth of North Fork Cottonwood Creek in January 1976 (Richardson et al. 1978). Their young migrate downstream in May and June as much smaller fry than fall-run at that time of year. Young late fall-run chinook salmon were caught in fyke nets near the mouth of Cottonwood Creek in May and June 1976 (Richardson 1978). DFG estimates that an average of 300 late fall-run chinook salmon migrate up Cottonwood Creek (Smith and Van Woert 1969). DFG biologists surveying Cottonwood Creek in 1977 observed late fall-run chinook salmon spawning, but no estimates of run size were made.

Spring-Run. Spring-run chinook salmon migrate up Cottonwood Creek in April and spend the summer in deep pools in South Fork Cottonwood Creek, Beegum Gulch, and North Fork Cottonwood Creek. Most are found in Beegum Gulch. Young spring-run chinook salmon migrate downstream from January through May. DFG estimates that an average of 500 spring-run chinook salmon migrate up Cottonwood Creek (DFG 1966). DFG biologists surveyed Beegum Gulch in 1998 and found about 500 spring-run chinook salmon. Some young spring-run salmon from the Sacramento River use the lower reach of Cottonwood Creek from Interstate-5 to the mouth for rearing during the summer and fall (Richardson et al. 1978).

Spawning Habitat. DFG biologists took gravel samples in summer 1977 to measure quantity and quality of salmon spawning habitat in Cottonwood Creek. Approximately 392,000 square feet of gravel suitable for chinook salmon spawning was identified in the Cottonwood Creek system (Richardson and Brown 1978). About 40,000 square feet of that total was in south fork. Other investigations have produced estimates ranging from 285,000 square feet (Hansen et al. 1940) to 2,000,000 square feet (Leach and Van Woert 1968) of gravel in the system. A female chinook salmon requires about 100 square feet of gravel for spawning (Leach and Van Woert 1968). Most of the gravel was found in Cottonwood Creek below its confluence with North Fork Cottonwood Creek. Little suitable gravel was found in North Fork Cottonwood Creek. Instream Flow. An instream flow study was conducted in 1976 and 1977 to measure the amount of chinook salmon spawning and rearing habitat in Cottonwood Creek and South Fork Cottonwood Creek. Optimum spawning flow was about 180 cfs and optimum rearing flow was 200 cfs from the mouth of Cottonwood Creek to the confluence of Cottonwood Creek and South Fork Cottonwood Creek. Optimum spawning flow was about 80 cfs and optimum rearing flow was 100 cfs in the lower seven miles of South Fork (Brown 1979). Natural monthly stream flow averages 295 cfs during fall-run chinook spawning in November near the mouth of Cottonwood Creek (Table 6). Average monthly flows range from 604 to 2,174 cfs when salmon rear from January through May.

Month	Average Monthly Flow (cfs)
January	1,744
February	2,174
March	1,590
April	1,205
Мау	604
June	283
July	112
August	66
September	66
October	108
November	295
December	955

Table 6. Average Monthly Stream Flow in Cottonwood Creek at the Cottonwood Gage

Thomes-Newville Project Fish Studies

DFG initiated studies of the impacts on fish and wildlife of a Thomes-Newville Project in 1979 as part of DWR's Thomes-Newville Reservoir planning studies. However, the planning studies were halted in 1982. DFG completed a report of its abbreviated studies in 1983 (Brown et al. 1983). In 1998, DFG initiated studies of fish and wildlife resources of a Thomes-Newville Project as part of the North of Delta Offstream Storage Program. A brief survey of springrun chinook salmon was conducted during the recent investigations. This section discusses recent findings and recapitulates the effort and results of the 1982 study (Brown et al. 1983).

Methodology

Juvenile Salmon

Seining for juvenile chinook salmon in Stony and Thomes Creeks was done over a period of three years, 1980 to 1982. Ten sample stations were selected on Thomes and Stony Creeks. Each station was seined weekly from February to June, with 50-foot delta mesh seines (Brown et al. 1983).

Fyke nets were used to sample for juvenile salmonids during the 1981 and 1982 seasons on Thomes Creek only. Irregular and frequent floodflow releases from Black Butte Reservoir made it impractical to fyke net in Stony Creek. Two fyke nets were used in Thomes Creek. One was placed in the mainstem and another near the confluence to the discharge channel from the Tehama-Colusa Canal. The nets were fished continuously from Monday to Friday and were removed during weekends or during high water. Each net in the mainstem was fished from February through March. Captured fish were measured for fork length to the nearest millimeter and weighed by water displacement to the nearest gram (Brown et al. 1983).

Adult Salmon and Steelhead

Adult chinook salmon carcasses were counted to estimate the number of salmon in Stony and Thomes Creeks. Stony Creek was surveyed for carcasses between the Sacramento River confluence and the North Diversion Dam. Thomes Creek was surveyed between the Sacramento River confluence and Paskenta and in a channel from the discharge point of the Tehama-Colusa Canal to its confluence with Thomes Creek. Counts were taken once per week from November through January in 1980-81 and 1981-82 on Thomes Creek and from December through February in 1981-82 on Stony Creek. Each carcass was tagged by fastening a number 3 hog ring to its mandible. Tick marks were notched into the hog rings with wire cutters to identify the appropriate week of tagging. The sex and fork length of each carcass was noted. The date and location of where each carcass was found was recorded; each carcass was then returned to the same area where it was tagged. On successive surveys, tagged fish that were recovered were cut in half to avoid recounting in subsequent surveys. The 1980-81 spawning escapement estimate for Thomes Creek was calculated with the Schaefer method (Ricker 1975), while the 1981-82 estimates for both Stony and Thomes Creeks were estimated with the Peterson method (Ricker 1975) (Brown et al. 1983).

On June 13, 1979; August 18, 1980; and August 12, 1998, Thomes Creek was surveyed to enumerate adult spring-run chinook salmon and summersteelhead. The area surveyed was from the gorge to the fjord at Hatch Flat near Paskenta. Each pool was examined by snorkel diving. All fish were identified and their size range and relative abundance estimated. No habitat suitable for spring-run salmon and summer steelhead exists in Stony Creek; therefore, no survey was conducted (Brown et al. 1983). Historical estimates for fall-run chinook salmon for both Stony and Thomes Creeks were compiled from DFG salmon-spawning stock reports.

Resident Fish and Migratory Nongame Fish

A fyke net consisting of 0.03 inch oval mesh netting mounted on a 0.01 inch x 0.02 inch metal tubing frame was placed in the creek near the mouth of Thomes Creek. The purpose of the net was to capture juveniles, larval Sacramento suckers, and Sacramento pike minnows migrating to the Sacramento River. A perforated aluminum box—1.6 feet x 1.6 feet x 3.3 feet—was attached to the cod end of the net to receive captured fish. The net was fished 24 hours per day during weekdays from January to June 1981 (Brown et al. 1983).

To estimate the population of spawning Sacramento suckers and Sacramento pike minnows, adult fish were captured in Thomes Creek and its tributary, Mill Creek. From December 1980 through June 1981, 17 samples were taken at 10-day intervals via electrofishing. A 12-foot Avon rubber raft was retrofitted with a Smith-Root Type VII electroshocker. The battery and electroshocking unit were placed inside an ice chest and secured to the raft's rowing frame. Prove arrays were constructed of 0.08-inch stainless steel cable, attached to the bow of the raft, and fished at a depth of 4.9 feet. (Brown et al. 1983).

Captured fish were weighed to the nearest 0.3 ounce and fork lengths were measured to the nearest millimeter. Each fish was marked with a floy spaghetti tag and released. The tag was inserted under the dorsal fin and tied in a loop. The Jolly-Seber method was used to determine the population estimate for Sacramento suckers while the Schaefer method (Ricker 1975) was used to estimate the population of Sacramento pike minnows (Brown et al. 1983).

Electrofishing was done in streams in the footprint of proposed Newville Reservoir in 1981 and 1982. Seven sections were sampled in streams within the project area. These include North Fork Stony, Salt, and Heifer Camp Creeks. Ten sections in Stony Creek and 15 in Thomes Creek were sampled. Fish were captured by backpack electrofishing. Population number and biomass estimates for each species for the Thomes-Newville data were developed using the two-pass method of Seber and LeCren (1967) (Brown et al. 1983).

Thomes Creek Fish Resources

Juvenile Chinook Salmon

1980 Emigration. Thirteen juvenile chinook salmon were captured by seining during the 1980 sample period (Table 7). These fish were caught in the lowermost stations of Thomes Creek from March 20 to May 24, 1980.

1981 Emigration. Six juvenile chinook salmon were captured by seining during the 1981 sample period (Table 7). One of these fish was from Coleman National Fish Hatchery.

In 1981, 206 juvenile chinook salmon were captured by fyke netting in Thomes Creek, 20 from the mainstem and 186 from the discharge canal (Tables 8 and 9).

Sample Period	Number of Weekly Seinings	Number of Fish	Average Length of Fish (inches)
1980			
March	4	5	2.8
April	5	8	2.8
Total	9	13	
1981			
March	2	5	4.1
April	1	1	2.3
Total	3	6	

Table 7. Juvenile Chinook Salmon Seined from Thomes Creek in1980 and 1981

¹ Brown et al. 1983

Table 8. Fyke Net Catches of Juvenile Chinook Salmon fromMainstem of Thomes Creek in 1981¹

Sample Period	Hours Fished	Number of Salmon	Average Length of Fish (inches)
February	672	0	0
March	744	9	2.7
April	648	10	3.1
May	336	1	2.7
Total	2,400	20	
Brown et al. 1983			

Table 9. Fyke Net Catches of Juvenile Chinook Salmon from the Tehama-Colusa Canal Discharge Channel in Thomes Creek in 1981 and 1982¹

Sample Period	Number of Fish	Average Length of Fish (inches)
1981		
January	1	1.4
February	126	1.3
March	59	1.3
Total	186	
1982		
January	2	1.4
February	45	1.4
March	337	1.5
Total	384	
¹ Brown et al. 1983		

The catches from the mainstem occurred over a nine-week period beginnning the first week of March and ending the first week of May. Salmon from these catches ranged in size from 2.7 to 3.1 inches fork length (Table 8). Except for the time when the migration occurred, no real descriptive trends can be derived from these data. These fish, however, appear to be much larger than expected for fall-run fish spawned in Thomes Creek. Some fish may have spawned earlier in the mainstem Sacramento River and moved upstream into Thomes Creek. It is common for juvenile salmonids from the Sacramento River to swim upstream into tributaries (Richard Hallock, DFG, personal communication).

Juveniles captured in the discharge channel spawned there. The presence of live adults, carcasses, and redds in the channel together with the presence of juveniles is strong evidence that successful spawning occurred in the channel.

The migration of juvenile chinook salmon from the discharge channel occurred from late February through the third week of March. At this time the discharge was terminated by the U.S. Bureau of Reclamation and no water flowed to indicate newly hatched fish. These fish were of the fall-run spawn. Although the migration was halted by lack of flow, it could have continued if discharge had been extended. In response to the lack of flow, DFG regional personnel rescued in excess of 3,000 juvenile salmon.

1982 Emigration – No juvenile chinook salmon were captured by seining or fyke netting in the mainstem of Thomes Creek during the 1982 sample period. High flows and other duties limited efforts.

As indicated in Table 9, 384 juvenile chinook salmon were captured by fyke netting in the discharge channel from the Tehama-Colusa Canal. The first fish was captured during the first week of January, but the bulk of the migration did not occur until the third week of February. The migration continued until March 30, 1982, when the discharge was terminated by USBR.

Juvenile Steelhead

Seven juvenile steelhead were captured by seining in Thomes Creek in 1981. Four of these fish were probably from Coleman National Fish Hatchery. They had rounded fins and deformed dorsal fins, which are a characteristic of hatchery-grown fish. Juvenile salmonids from the Sacramento River commonly ascend tributaries (Richard Hallock, DFG, personal communication).

Adult Chinook Salmon

Review of past reports show little information on historic salmon runs in Thomes Creek. Only seven surveys were documented between 1955 and 1979. In 1957, the fall-run escapement estimate was 25, and in 1975 the estimate was 170 fish (Mahoney 1958, Hoopaugh 1978a). Estimates of fall-run salmon for survey years 1959, 1960, 1964, 1965, and 1976 were zero (Mahoney 1960, 1962; Menchen 1965, 1966; Hoopaugh 1978b).

1980-81 Fall-Run Estimate. Fifty-nine chinook salmon carcasses were tagged during 12 surveys of Thomes Creek. Of these 59, 17 fish (29 percent) were males while 42 fish (71 percent) were females. This represented a male-female ratio of 1:2.5. Twenty-three carcasses were recovered in fall 1980. From these data an estimated 155 salmon spawned in Thomes Creek during the sample period.

Live fish were first observed in the creek November 11, 1980, but no carcass was tagged until nine days later. The last carcass was tagged on January 12, 1981. Fifty-seven (97 percent) of the fish tagged were located in the Tehama-Colusa Canal outlet channel. Only two fish (3 percent) were tagged in the mainstem. Observation of six redds and four live fish indicates there was some spawning activity in areas below Henleyville.

1981-82 Fall-Run Estimates. Thirty-eight chinook salmon carcasses were tagged during 10 surveys of Thomes Creek. Of these 38, 16 fish (42 percent) were males while 22 fish (58 percent) were females. This represents a male-female ratio of 1:1.4. All of the fish tagged were located in the Tehama-Colusa Canal outlet channel. Twenty tagged carcasses were recovered. From these data an estimated 167 salmon spawned in Thomes Creek during the sample period. No live fish or redd was seen in the mainstem.

1979-1980 Spring-Run Estimates. No adult anadromous salmonid was seen during the June 1979 or August 1980 spring-run chinook salmon surveys in Thomes Creek. Numerous juvenile steelhead and brown trout were seen in the area of the survey which may indicate that habitat for spring-run chinook salmon or summer steelhead may exist. Although surface water temperatures generally approach 77°F in these areas, cooler water (59-68°F) can be found near the bottom of larger pools that could support salmonids.

1999 Spring-Run Estimates. One adult spring-run chinook salmon was seen during August 1999 diving surveys in Thomes Creek. As in 1980, numerous juvenile steelhead and brown trout were seen in the area of the survey.

1980 Late Fall-Run. The late spawning characteristics of a few chinook salmon indicate that they were of the late fall-run. Those that spawned in late December and January were salmon of this race.

Resident Fish and Migratory Nongame Fish

Twenty-two species of fish were observed in Thomes Creek (Table 10). DFG staff developed population and biomass estimates for 13 of these species (Table 11). Three species were game fish and 10 were nongame fish. Steelhead were the most abundant fish above the gorge, while Sacramento pike minnow, Sacramento suckers, hardhead, California roach, and speckled dace were the more common fish below the gorge.

Most of the nongame fish caught in the reach below the gorge were juveniles, indicating that this reach serves mainly as a spawning and rearing area. Adult Sacramento suckers, Sacramento pike minnow, California roach, and hardhead annually migrate from the Sacramento River into Thomes Creek and its tributaries to spawn. Juveniles that do not migrate immediately after hatching remain to rear until the following rainy season when water flows to the mouth.

Thomes Creek below Paskenta usually dries up except for a few residual pools scattered along the streambed during the late summer, making it impossible for resident adult fish to live throughout the summer months. Some adult game fish such as largemouth and smallmouth bass, bluegill, and green sunfish ascend the creek from the Sacramento River during late spring and early summer to use these pools as spawning areas.

Common Name	Scientific name
Bluegill	Lepomis machrochirus
Brown bullhead	Ictalurus nebulosus
California roach	Lavinia symmetricus
Carp	Cyprinus carpio
Channel catfish	Ictalurus punctatus
Golden shiner	Notemigomus crysoleucus
Goldfish	Carassius auratus
Green sunfish	Lepomis cyanellus
Hardhead	Mylopharodon conocephalus
Hitch	Lavinia exilicauda
Largemouth bass	Micropterus salmoides
Mosquitofish	Gambusia affinis
Pacific lamprey	Lampetra tredentata
Prickly sculpin	Cottus asper
Sacramento pike minnow	Ptychocheilus grandis
Sacramento sucker	Catostomus occidentatlis
Smallmouth bass	Micropterus dolomeiu
Speckled dace	Rhinicthys osculus
Steelhead	Onchorynchus mykiss
Threespine stickleback	Gasterosteus aculeatus
Tule perch	Hysterocarpus traski
White catfish	Ictalurus catus
¹ Brown et al. 1983	

Table 10. Fish Species Found in Thomes Creek in 1982¹

Table 11. Average Population Estimates and Biomass Estimates for Fish Caught in Sections of Thomes Creek in 1982¹ Output

Species	Average Population	Average Biomass
	Estimate	(lb/acre)
Bluegill	3	4.5
California roach	41	10.7
Carp	90	64.2
Goldfish	1	19.2
Green sunfish	14	15.2
Hardhead	47	47.3
Hitch	1	0.4
Largemouth bass	5	8
Prickly sculpin	1	1.8
Sacramento pike minnow	337	89.2
Sacramento sucker	143	16.1
Speckled dace	229	16.1
Tule perch	1	0.2
¹ Brown et al. 1983		

Stony Creek Fish Resources

Juvenile Chinook Salmon

1980 Emigration. During the 1980 sample period, 181 juvenile chinook salmon were caught by seining (Table 12). Salmon were first caught during the second week of February and the last salmon was caught during the first week of May.

1981 Emigration. During the 1981 sample period, 73 juvenile chinook salmon were captured by seining (Table 12). Fish were first captured during the third week of February and the last fish were captured during the second week of April.

1982 Emigration. During the 1982 sample period, only four juvenile chinook salmon were captured by seining (Table 12). Two fish were captured during January and two were captured during the first week of March.

Adult Salmon Studies

1981-82 Fall-Run Estimates. Thirty-six chinook salmon carcasses were tagged during five surveys. Two of these salmon were recovered. From these data DFG estimates that 393 salmon spawned in Stony Creek during the sample period. Of the 36 tagged, 11 fish (31 percent) were males while 25 fish (69 percent) were females. This represents a male-female ratio of 1:2.3.

Most of the spawning activity was located in lower Stony Creek in the reach between the Interstate-5 bridge and the mouth. At least 35 redds and 29 carcasses were counted in this area.

Sample Period	Number of Fish	Average Length of Fish (in)
1980		
February	64	1.7
March	51	1.8
April	60	2.0
May	6	3.0
Total	181	
1981		
February	5	1.5
March	64	2.1
April	4	3.0
Total	73	
1982		
January	2	3.3
March	2	1.7
Total	4	
¹ Brown et al. 1983		

Table 12. Juvenile Chinook Salmon Seined from Stony Creekin 1980, 1981, and 19821

Resident Fish Surveys

Six species of fish, two game and four nongame, were captured in streams potentially inundated by the Newville Reservoir (Tables 13 and 14). These streams include North Fork Stony Creek, Salt Creek, and Heifer Camp Creek. Rainbow trout were captured in sections of streams above the inundation line where the water is cool and cover is abundant. California roach, Sacramento pike minnow, Sacramento sucker, carp, and green sunfish were captured in sections of streams below the inundation line. California roach, Sacramento pike minnows, and Sacramento suckers were more abundant species, while carp and green sunfish are relatively uncommon (Brown et al. 1983).

Species	North Fork Stony Creek	Salt Creek	Heifer Camp Creek					
California roach	4	546	120					
Carp	1							
Green sunfish	-	13						
Rainbow trout	-	24	8					
Sacramento pike minnow	12	24	85					
Sacramento sucker ¹ Brown et al. 1983	> 2	45	6					

Table 13. Population Estimates for Fish Caught in Selected Sections of Streams within the Newville Reservoir Site in 1983¹

Table 14. Average Biomass Estimates (lb/acre) for FishCaught in Selected Sections of Streams within theNewville Reservoir Site in 1983¹

Species	North Fork Stony Creek	Salt Creek	Heifer Camp Creek		
California roach	0.9	427.3	72.3		
Carp	145.4	-			
Green sunfish	-	33.9			
Rainbow trout	-	74.9	18.7		
Sacramento pike minnow	8	339.9	775.1		
Sacramento sucker ¹ Brown et al. 1983	0.09	88.3			

The sections of stream within the inundation area are used primarily for spawning and rearing by nongame species (mainly the minnow family), although some green sunfish were observed spawning during the late spring in nonflowing areas of the stream. It is likely that, during high water, adult cyprinids ascend these tributaries from Black Butte Reservoir to spawn (Brown et al. 1983).

Upper Salt Creek supports a population of rainbow trout. Nongame fish were not found in this area nor were migratory cyprinids because they cannot ascend the creek due to a waterfall. This waterfall is not in the inundation area. However, if Newville Reservoir is built, the waterfall could be flooded, which would allow nongame fish to swim upstream. This may reduce the rainbow trout populations because of competiton with nongame fish (Brown et al. 1983).

Twenty-eight species of fish were observed in Stony Creek (Table 15). DFG developed population and biomass estimates for 21 of these species (Table 16). Eight species were game fish and 13 were nongame fish. Largemouth bass and bluegill were the most abundant gamefish below Black Butte Reservoir; channel catfish and white catfish were the most abundant game fish above the Sacramento River. Sacramento pike minnows and suckers were found in all stations throughout Stony Creek, were the most abundant, and had the highest biomass for all species of fish. Prickly sculpin were found in all sections, but made up a very small portion of the total biomass.

Most nongame fish caught in the reach below Black Butte Reservoir were juveniles, indicating that this reach serves mainly as a spawning and rearing area. Adult Sacramento suckers, Sacramento pike minnow, California roach, and hardhead annually migrate from the Sacramento River into Stony Creek to spawn. Juveniles that do not migrate immediately after hatching remain to rear until the following season when water flows to the mouth. Other game fish such as largemouth bass, smallmouth bass, bluegill, and green sunfish were also observed spawning in backwater areas of Stony Creek. These adult fish may have migrated upstream from the Sacramento River, may have washed downstream from Black Butte Reservoir, or may reside throughout the year in the creek.

Common Name	Scientific Name
Black bullhead	Ictalurus melas
Black crappie	Pomoxis melas
Bluegill	Lepomis machrochirus
Brown bullhead	lctalurus nebulosus
California roach	Lavinia symmetricus
Carp	Cyprinus carpio
Channel catfish	Ictalurus punctatus
Golden shiner	Notemigomus crysoleucus
Goldfish	Carassius auratus
Green sunfish	Lepomis cyanellus
Hardhead	Mylopharodon conocephalus
Hitch	Lavinia exilicauda
Largemouth bass	Micropterus salmoides
Mosquitofish	Gambusia affinis
Pacific lamprey	Lampetra tridentata
Prickly sculpin	Cottus asper
Rainbow trout	Onchorynchus mykiss
Redear sunfish	Lepomis microlophus
Sacramento blackfish	Orthodon microlepidotus
Sacramento pike minnow	Ptychocheilus grandis
Sacramento sucker	Catostomus occidentatlis
Smallmouth bass	Micropterus dolomeiu
Speckled dace	Rhinicthys osculus
Threadfin shad	Dorosoma petenense
Threespine stickleback	Gasterosteus aculeatus
Tule perch	Hysterocarpus traski
White catfish	Ictalurus catus
White crappie ¹ Brown et al. 1983	Pomoxis annularis

Table 15. Fish of the Stony Creek Drainage (Excludes Fish within
Newville Reservoir Site)¹

Species	Average Population Estimate	Average Biomass (Ib/acre)
Black crappie	8	87.4
Bluegill	19	8
California roach	200	54.4
Carp	5	64.2
Channel catfish	57	47.3
Goldfish	8	33.9
Green sunfish	7	2.7
Hardhead	9	24.1
Hitch	32	20.5
Largemouth bass	13	11.6
Mosquitofish	3	0.09
Prickly sculpin	57	11.6
Sacramento pike minnow	146	91
Sacramento sucker	96	256.9
Smallmouth bass	5	16.1
Speckled dace	318	41.9
Threadfin shad	2	0.9
Threespine stickleback	3	0.05
Tule perch	6	5.4
White catfish	30	34.8
White crappie ¹ Brown et al. 1983	5	17.8

Table 16. Average Population Estimates and Biomass Estimates for Fish Caught in Selected Sections of Stony Creek in 1982¹

Sites and Colusa Project Fish Studies

Fish studies for the Sites and Colusa Projects included three basic areas of study: fish resources in streams within the proposed reservoirs and in the Colusa Basin Drain, and habitat typing of the dominant streams in the proposed reservoirs.

Sites and Colusa Project Stream Fish Resources

This section summarizes studies of fish in streams that flow through the proposed Sites and Colusa Projects. Studies were conducted in 1998 and 1999. Information gathered in these streams will be used to describe impacts on fish resources during the planning process.

Figure 3. Streams in the Sites-Colusa Project

Methodology

Stone Corral Creek, Funks Creek, Logan Creek, and Hunters Creek and their tributaries originate in oak woodland habitat in western Colusa and Glenn Counties (Figure 3). The creeks flow downstream through annual grassland and cultivated rice fields before flowing into the Colusa Basin Drain. Deeply incised channels characterize these streams with little vegetation on the banks and little cover in streambeds. Streamflow is seasonal with periods of high flow during winter storms, declining flows through spring and early summer, and intermittent flow in late summer. Water quality is poor and high in dissolved minerals. The total dissolved solids in the water are so high that electrofishing as a means of sampling is not possible in the streams.

Pools were seined at specific stations on all creeks surveyed to determine species composition. All sample stations were within the footprint of the Sites-Colusa Project. Thirty-six stations were spread out among Hunter, Minton, Logan, Antelope, and particularly Stone Corral and Funks Creeks. Seven stock ponds in the Sites and Colusa area were also seined for fish.

Twelve species of fish were caught in the Sites and Colusa study area in 1998 and 1999. Five species were game fish and seven species were nongame fish (Table 17). A single spring-run chinook salmon was observed in Antelope Creek, a tributary to Stone Corral Creek in spring 1998. It died a few weeks later and was identified by its carcass.

Common Name	Scientific Name
Bluegill	Lepomis macrochirus
California roach	Hesperoleucus symmetricus
Chinook salmon	Oncorhynchus tschawtscha
Green sunfish	Lepomis cyanellus
Hitch	Lavinia exilicauda
Largemouth bass	Micropterus salmoides
Mosquitofish	Gambusia affinis
Redear sunfish	Lepomis microlophus
Sacramento blackfish	Orthodon microlepidotus
Sacramento pike minnow	Ptychocheilus grandis
Sacramento sucker	Catostomus occidentalis
Sculpin sp.	Cottus sp.

Table 17. Fish Caught in the Sites Study Area in 1998 and 1999

Funks Creek. Fifteen stations were sampled on Funks Creek between July 22, 1998, and January 8, 1999. Stations were evenly spaced between the Golden Gate damsite and the upper limit of flow in Funks Creek. Streamflow was intermittent. Five species of fish were found in Funks Creek, including one type of game fish, largemouth bass (Table 18). The most common fish in Funks Creek was the hitch, with an average density of 3.1 fish/yd² (Table 18). Hitch were caught in 11 out of 15 stations seined (Table 18).

Table 18. Species Caught at Each Sample Station andRelative Abundance on Funks Creek

Spacias	Station Sampled								Fich/vd ²							
Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	FISH/yu
Hitch			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			3.1
Largemouth bass									Х			Х				0.001
Sacramento pike minnow					Х	Х			х				Х			0.06
Sacramento Sucker					Х	Х			Х	Х			Х			0.02
Sculpin														Х		

The most diverse sampled sections of Funks Creek were in the lower reaches, stations 5, 6, 9, 10, 12, and 13. The upper reaches of Funks Creek either lacked fish or only one species was found. Hitch densities varied widely throughout the creek, and no one area seemed to maintain a higher population.

Hunters Creek. Three stations on lower Hunters Creek were seined between July 22, 1998, and August 3, 1998. No water was present above these sites. Only two species of fish were found on Hunters Creek, green sunfish and mosquitofish. Both species were found in two of the three stations (Table 19).

Mosquitofish were found in a relative abundance of 3.8 fish/yd^2 , but they only occurred in abundance at one station. Green sunfish were found to have an average density of 2.3 fish/yd^2 .

Table 19. Relative	Abundance	of Fish	Caught at	Hunters	Creek
--------------------	-----------	---------	-----------	---------	-------

Species	Fish/yd ²
Green sunfish	2.3
Mosquitofish	3.8

Minton Creek. Minton Creek was sampled in two places on August 12, 1998. Samples were taken in lower reaches of the creek because areas of the creek above the sample sites were dry. Hitch were found in only one of those stations, at a density of 0.5 fish/yd^2 .

Stone Corral Creek. Eleven stations were sampled on Stone Corral Creek between July 15, 1998, and January 6, 1999. Stations were located from the damsite to about 1 mile above. Flows were less than 1 cfs. Eight species of fish were found in Stone Corral Creek, including two species of game fish, green sunfish and bluegill (Table 20).

The fish most common fish among the stations was the Sacramento pike minnow followed by the hitch (Table 20). Fish density on Stone Corral was relatively low for all species at all stations. Hitch were the dominant species in terms of density 0.8 fish/yd^2 .

Table 20. Species Caught at Each Station and Relative Abundance on Stone Corral Creek

Species	Station Sampled						Fish/yd2					
-	1	2	3	4	5	6	7	8	9	10	11	-
Bluegill				Х								0.002
California roach		Х		Х								0.02
Green sunfish			Х					Х	Х	Х	Х	0.03
Hitch		Х	Х					Х	Х	Х	Х	0.8
Mosquitofish				Х								0.002
Sacramento blackfish											х	0.2
Sacramento pike minnow			х	х	Х	Х		Х	Х		х	0.2
Sacramento sucker			Х	Х		Х					Х	0.02

Most seining stations on Stone Corral Creek were clustered around the same region. Station 1 was far upstream from the others and yielded no fish. The diversity of species caught was highest at stations 4 and 11.

Antelope Creek. Five seining stations were sampled on Antelope Creek between July 14, 1998, and November 25, 1998. Stations were evenly spaced between the mouth of Antelope Creek and the boundary of Sites Reservoir.

Streamflow was less than 5 cfs. Three species of fish were captured on Antelope Creek: green sunfish, hitch, and Sacramento pike minnow (Table 21). Hitch were the most abundant fish with an average density of 3.8 fish/yd^2 . The Sacramento pike minnow and the green sunfish both had a relative abundance of 0.2 fish/yd^2 .

Table 21. Species	Caught at Each	Station and	Relative	Abundance
	on Antelo	pe Creek		

Species		Fish/yd2				
	1	2	3	4	5	
Green sunfish		Х		Х	Х	0.2
Hitch	Х	Х	Х	Х	Х	3.8
Sacramento pike minnow				Х	Х	0.2

Logan Creek. Four stations were sampled on Logan Creek over two days in August 1998. Stations were located in and near the footprint of the proposed Colusa Reservoir. Streamflow was less than 1 cfs. Hitch were caught in stations 1 and 2. The average density of hitch on Logan Creek was 0.4 fish/yd².

Ponds. DFG biologist seined seven stock-watering ponds in the study area. The ponds seined do not dry up during the summer. Three game fish were found in the ponds, red-eared sunfish, bluegill, and largemouth bass. Redear sunfish were found in one pond, bluegill were found in abundance in two ponds, and largemouth bass were found in three ponds. No other fish were found in these ponds.

Discussion

Hitch were found in all the creeks in the Sites and Colusa Project area. Hitch were also present in the greatest numbers. Stone Corral Creek had the greatest diversity of fish throughout the year—eight species—including two species of introduced game fish, bluegill and green sunfish. However fish densities were lower, particularly for hitch in Stone Corral than in other creeks. Funks Creek, the next most diverse creek, had only five species of fish, including one introduced game fish, largemouth bass.

Most fish captured during seining were minnows, members of the Cyprinid family. California roach are the only fish present that are adapted to spending summers in the remaining pools of intermittent streams (Moyle 1976). Very few fish found while seining, including game fish, were above 5.9 inches in lengths, suggesting that juvenile fish only rear in these areas. Adult fish typically ascend seasonal creeks in the study area in winter and spawn there in early spring. Most adults migrate downstream after spawning.

No species of concern or threatened or endangered species were found in this study. The species caught during the study are common in California.

Colusa Basin Drain Fish Studies

This section describes the fish resources of the Colusa Basin Drain. Colusa Basin Drain is a natural channel that historically transported water from west

DRAFT

side tributaries such as Willow, Funks, Stone Corral, and Freshwater Creeks to the Sacramento River. It also carried overflowing floodwater from the Sacramento River. With the advent of agriculture in the Sacramento Valley, the Colusa Basin Drain was channelized and dredged to carry agricultural runoff in addition to natural flows.

Streamflow in the CBD peaks in winter months when storms swell the small streams that feed the CBD. Flow also reaches high levels in late summer when rice fields are drained into the CBD. Table 22 shows average monthly streamflow in CBD from 1976 to 1997. Daily and instantaneous flows in the CBD may be much higher.

The CBD provides little bank cover for fish; however, some instream cover is provided by large and small woody debris. Its banks are scoured by periodic high flows and roads often run along the dikes that contain the waters of the CBD. The bottom of the CBD is largely mud. Water in the CBD is turbid and warm in the summer, and turbid and cool during the winter. The proposed diversion from the CBD for Sites and Colusa Reservoirs will be east of the town of Maxwell along the CBD.

Table 22. Average Monthly Streamflow (cfs) in the Colusa Basin

Drain at the Highway 20 Crossing la ve - . .. I..I A.

rear	Uct	NOV	Dec	Jan	Feb	war	Apr	way	Jun	Jui	Aug	Sep
1976	237	249	160	185	177	371	312	879	239	434	926	904
1977	169	255	138	312	181	256	90	642	121	121	424	388
1978	116	272	254	3121	2133	1429	365	684	469	711	1056	1028
1979	201	312	113	689	940	407	328	802	424	803	1211	1029
1980	200	563	837	1874	2888	1305	326	1048	603	805	1307	1160
1981	275	328	359	1017	840	433	342	1039	446	1057	1464	1182
1982	284	877	1115	1939	472	383	682	743	908	n.r.	1393	1356
1983	467	778	1225	2331	3028	5304	990	n.r.	n.r.	907	1168	1198
1984	315	1302	3623	1523	493	265	547	1190	851	1310	1580	1041
1985	376	1160	683	285	170	196	409	1048	768	1237	1442	1442
1986	316	663	700	754	4214	1833	449	921	834	1052	1338	1338
1987	318	459	235	249	319	508	495	913	707	907	1175	1175
1988	341	668	462	1365	287	431	666	849	515	586	972	972
1989	345	617	354	342	212	404	438	572	587	800	995	995
1990	303	411	181	346	203	n.r.	n.r.	583	439	533	913	913
1991	247	n.r.	n.r.	153	217	916	423	477	353	371	535	535
1992	159	319	291	261	932	670	256	167	250	149	186	186
1993	116	267	347	2900	3049	762	322	279	290	201	489	489
1994	203	419	466	315	740	331	300	191	147	61	418	418
1995	155	565	549	6612	2020	3823	591	551	364	297	416	416
1996	255	368	749	972	2668	1092	493	771	472	249	660	660
1997	229	643	643	3698	1464	357	321	286	152	368	953	953
AVG	256	547	642	1420	1257	1023	435	697	473	617	956	956

Methodology

Two fyke nets were placed in the CBD, one upstream of the proposed diversion point and one downstream. The first net was put in at the confluence

of Willow Creek and the CBD. The second was placed just south of Hwy 20 on the CBD. The fyke nets have a 3 foot-by-5 foot opening, and a 12-foot funnel. Galvanized pipe frames support the net opening. Nets of variable size stretched mesh were used: 1 inch, 0.25 inch, and 0.125 inch. The largest sized mesh was at the front of the funnel, and smallest size mesh was at the back. The narrow end of each net is connected to a wooden live box, 2.5 feet by 1.5 feet by 1.6 feet. Holes in the side and back of the box were covered by screening with a mesh size of 0.19 inch. The fyke nets were held in fishing position by rope bridles attached to ropes secured to metal fencing posts and/or a tree or utility pole on the bank. The nets were installed on January 19, 1999, and checked daily Monday through Friday. The nets were identified and measured for fork length to the nearest millimeter for the first 20 of each species, after which species were only tallied. Representatives of each species were either photographed or preserved for future positive identification.

Periodic seining using the medium sized—29-feet long, 6-feet high, onequarter inch mesh; seine, and hook and line sampling were also used to sample the fish of the Colusa Basin Drain at the upper net location. Two hoop nets and a gill net were also placed at the upper fyke net location February 1, 1999. The hoop nets were installed upstream of the fyke net. The hoop nets were 7 feet long with six hoops 2 feet in diameter set 1 foot apart, with a net mesh size of 1 inch. They had two finger funnels each. These nets were secured to a wooden bridge and placed on either side of the channel. The hoop nets were baited with fish carcasses. The gill net spanned the entire distance of the drain downstream of the fyke net. These nets were removed March 10, 1999. One hoop was replaced at the bridge on March 19, 1999.

Results

A total of 9 game fish and 17 nongame fish were caught in the CBD (Tables 23 and 24). The warmouth (*Lepomis gulosus*) and the largemouth bass (*Micropterus salmoides*), which were caught by U.S. Geological Survey in 1996, were not observed in this recent survey.

Common Name	Scientific Name
Black bullhead	lctalurus melas
Black crappie	Pomoxis nigromaculatus
Bluegill	Lepomis macrochirus
Brown bullhead	lctalurus nebulosus
Channel catfish	lctalurus punctatus
Chinook salmon	Oncorhynchus tschawtscha
Green sunfish	Lepomis cyanellus
White catfish	lctalurus catus
White crappie	Pomoxis annularis

Table 23. Resident Game Fish of the Colusa Basin Drain

Table 24. Resident Nongame Fish of the Colusa Basin Drain

Common Name	Scientific Name
Big scale logperch	Percina macrolepida
California roach	Hesperoleucus symmetricus
Carp	Cyprinus carpio
Flathead minnow	Pimephales promelas
Goldfish	Carassius auratus
Hitch	Lavinia exilicauda
Inland silversides	Menidia beryllina
Mosquitofish	Gambusia affinis
Pacific lamprey	Lampetra tridentata
Sacramento blackfish	Orthodon microlepidotus
Sacramento pike minnow	Ptycholcheilus grandis
Sacramento splittail	Pogonichthys macrolepidotus
Sacramento sucker	Catostomus occidentalis
Sculpin sp.	Cottus sp.
Threadfin shad	Dorosoma pretenense
Tui chub	Gila bicolor
Tule perch	Hysterocarpus traski

One late fall-run chinook salmon carcass was found in the upper fyke net. In October 1998, fall-run chinook salmon were observed migrating up the CBD at the Delevan Wildlife Area. DWR biologists saw spring-run chinook salmon in Walker Creek, a tributary to Willow Creek, in spring 1998. Four splittail were caught in the fyke net located just below Highway 20 in July and August, 1999. All four were young-of-the-year splittail. They averaged 1.4 inches, and ranged from 0.9 to 2.0 inches fork length.

The greatest diversity of fish was caught in the upper fyke net, at the confluence of Willow Creek and the CBD. The gill net and the hoop net caught

DRAFT

only a few different species of fish (Table 25). Various tadpoles, mostly bullfrog, (*Rana catesbieana*), were by far the most numerous animal caught by any method, but particularly the fyke nets. Channel catfish were the most frequently caught fish, the majority of which were juveniles. Mostly juvenile fish were caught in the nets. Rarely did fish exceed 5.9 inches, with the exception of the goldfish. Adult channel catfish, up to 17.7 inches, were caught by hook and line. Carp, up to 20 inches, were also caught with hook and line.

Seining was the most efficient form of sampling in the Colusa Basin Drain, with a catch per hour effort ratio of 21.8. The hoop net was the least efficient method of capture, with a catch per hour effort ratio of 0.01 (Table 26).

Species	Gill net	Hoop net	Seine	Hook & line	Fyke nets	Total	
Big scale logperch			2		3	5	
Black bullhead				1	7	8	
Black crappie			1		2	3	
Bluegill	1	1	10	1	23	36	
Brown bullhead				20	18	38	
California roach			15		1	16	
Carp				69	2	71	
Channel catfish	2	1		28	195	226	
Chinook salmon					1	1	
Flathead minnow					1	1	
Goldfish				16	15	31	
Green sunfish			8		48	56	
Hitch			40	1	52	93	
Inland silversides			1		4	5	
Mosquitofish			3		6	9	
Pacific lamprey					7	7	
Sacramento blackfish			96		23	119	
Sacramento pike minnow	1				2	3	
Sacramento splittail					4	4	
Sacramento sucker	1	1	1		3	6	
Sculpin sp.			1		1	2	
Threadfin shad					6	6	
Tui chub						1	
Tule perch		1			4	5	
White catfish				7	18	25	
White crappie					3	3	

Table 25. Number of Species Captured at Each Trapping Station

Trapping Method	Total Effort Hours	Catch per Hour Effort
Gill net	336	0.02
Hoop net	576	0.01
Seine	8	21.8
Hook and line	41	3.5
Fyke net	2500	0.25

Table 26. Catch Per Hour Effort for Each Trapping Method

Discussion

Four Sacramento splittail were caught. This species were federally listed as threatened in March 1999. Numerous fall-run chinook salmon were observed in the CBD and the carcass of one late fall-run chinook salmon was found. Fall-run chinook salmon and late fall-run chinook salmon are federally proposed for listing as threatened. Spring-run chinook salmon were observed in Walker Creek, a tributary to the CBD. They were listed as a State of California Threatened Species in February 1999. They are also proposed for listing as a federally endangered species.

Willow and Freshwater Creeks are tributaries to the CBD. They flow all year in their upper reaches and have deep pools suitable for steelhead juveniles. Steelhead smolts migrate during high stream flows in the winter. The nets set up in the CBD might not have caught them because larger fish and migrating yearling steelhead avoid fixed fyke nets. Willow and Freshwater Creeks should be sampled during summer to detect rearing steelhead fry.

Sites and Colusa Project Habitat Types

This section summarizes studies of habitat types along the streams in the proposed Sites and Colusa Project areas conducted in 1998 and 1999.

Methodology

An initial channel type survey, including an evaluation of the overall channel morphology, was made at the beginning of the study of each creek. Channel type was subsequently determined when the overall character of the channel changed for over 20 bankfull widths.

Channel type surveys began by first noting if the stream is a threaded or single channel. Then the bankfull width was measured at the prominent scour marks and sedimentation on the bank substrate with a 100-foot vinyl tape. Ten depths were taken at the study section to obtain the average bankfull depth. The substrate type was noted (Table 27).

Substrate Type	Size in inches
Boulder	> 10
Large Cobble	5-10
Small Cobble	2.5-5
Gravel	0.08-2.5
Sand	<0.08
¹ Flosi et al. 1998	

Table 27. Substrate	Type and Size Used ¹
---------------------	---------------------------------

Habitat type evaluation on Funks Creek began at Golden Gate damsite on January 12, 1999, and proceeded upstream to a point just above the mouth of Grapevine Creek on February 25, 1999. After this point, Funks Creek no longer contained water. Habitat typing continued on Grapevine Creek from the confluence with Funks Creek on February 26, 1999, and concluded at the reservoir inundation line on April 28, 1999. Stone Corral Creek habitat typing began on February 10, 1999, and continued until the channel no longer contained water, just past the confluence of Antelope Creek. Habitat typing concluded for Stone Corral and began on Antelope Creek on February 23, 1999. Habitat typing concluded on Antelope Creek on April 22, 1999, at the reservoir inundation line.

Each habitat unit was described as a pool, flat water, or riffle. All data was recorded on a standardized habitat typing data sheet (Flosi et al. 1998). Side channels were evaluated separately only when they demonstrated a different habitat type due to the small nature of the creek bed and intermittent water flow. Once the habitat unit type was identified it was assigned a unit number. For each unit, a mean length (measured as the thalweg length), width, and depth were taken, as well a maximum depth. All measurements were made and recorded in feet and tenths of feet using standard engineering measuring tapes and stadia rods. For pools, the tail-crest depth, type of pool-tail substrate, and the percent the substrate is embedded were also evaluated.

In addition to unit type data, the time surveying began, air and water temperature, date, and surveyors present were all recorded daily. Yellow flags were left at the end of the last habitat unit surveyed each day. The substrate type and percent exposed substrate was recorded. A shelter value for the unit was given based on the quantity and composition of the cover. The total percent cover for the habitat unit was recorded, then broken down into the percentages of the total that each cover element represented.

The bank composition was evaluated and dominant vegetation for right and left banks was recorded. Plant species and bank substrates were entered. The percent of the bank vegetated was evaluated up to bankfull width plus 20 feet. The percent and type, (deciduous or coniferous), of cover by tree canopy at midday was also evaluated. This was done for the entire part of each stream studied.

Results

Funks Creek. Flat water constituted 51 percent of the total creek measured. The average flat water length on Funks Creek was 212 feet. Pools at 35 percent of the total length with an average length of 146 feet, were the second most dominant habitat type. Riffles constituted 14 percent of the creek, with an average unit length of 57 feet (Figure 4).

Figure 4. Relative Occurrence of Habitat Types in Funks Creek

Gravel was the most common substrate (Table 28). Small cobble substrate was the second most common substrate type, occurring at 28 percent of the units surveyed. Silt/clay type substrate was most commonly associated with the gravel substrate, either as the primary or secondary substrate. It also frequently occurred as a layer over bedrock or boulder substrates. Silt/clay was the dominant substrate in the lower reaches of Funks Creek, giving way to gravel as the dominant substrate in the upper reaches of the stream.

Habitat type	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock
Riffle	19	0	26	21	10	1	24
Flat water	11	1	33	21	5	8	21
Pool	6	1	41	43	5	2	2
Average	12	1	33	28	7	4	15

Table 28. Summary of Substrates (%) by Habitat Typeon Funks Creek

The bank composition was overwhelmingly silt/clay. Occasional areas of bedrock bank or cobble bank occurred; where roads passed through or near the creek, boulders dominated the bank. Greater variability of bank composition occurred in the lower reaches of the creek. Most bedrock banks occurred in major blocks where bedrock ridges rose through the valley floor. Star thistle and grasses dominated both banks. The average percent bank covered by vegetation was 52 percent for the right bank and 53 percent for the left bank. Occasional cottonwoods, willows, oaks, and walnut trees punctuate the bank. Only 18 percent of the habitat units had some degree of canopy. The average canopy cover was 5 percent, or 26 percent when considering only those units that had any canopy cover at all. Trees were concentrated at Golden Gate, where habitat typing began on Funks Creek, and in the upper reaches of the creek.

The average of the total units covered by all cover combined was 27 percent. Aquatic vegetation was the prevalent type of cover, boulders were the most common large cover item. Aquatic vegetation and boulders each comprised an average of 25 percent of the total cover (Table 29). Large woody debris and root masses occurred relatively infrequently. Undercut banks occurred in 17 percent of the habitat units. Pools overall had a large degree and variety of cover, while flat water and riffles had less cover.

	Percent Percent of Cover Type									
	of each habitat having cover	Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges
Riffles	20	-	-	1	-	20	15	30	28	6
Flat water	38	34	1	1	-	1	27	10	25	1
Pools	24	18	3	1	1	1	34	2	21	19
Average	27	17	1	1	-	7	25	14	25	9

Grapevine Creek. Riffles made up 24 percent of the total creek measured (Figure 5). The average riffle length on Grapevine Creek was 72 feet. Flat water made up 23 percent of the total length with an average length of 143 feet, and was the least dominant habitat type. Pools made up just over half, 53 percent, of the total length of Grapevine Creek within the reservoir footprint.

Small cobble was the most common substrate in Grapevine Creek. Gravel was also common, occurring as the substrate in 30 percent of the habitat units. Large cobble was the dominant substrate in 13 percent of the units surveyed. Small cobble substrate was spread throughout the creek system; however, there were no distinct pockets of this or any other substrate.

Figure 5. Relative Occurrence of Habitat Types in Grapevine Creek

Thirty-two percent of the pools on Grapevine Creek were dominated by small cobble substrate. Gravel was dominant in 22 percent of these. Flat water was dominated by gravel and small cobbles (Table 30).

	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock
Riffle	5		32	24	11	1	27
Flat water	12	1	35	41	7	2	2
Pool	6		22	32	21	5	14
Average	8		30	32	13	3	14

Table 30. Summary of Substrates on Grapevine Creek

Bank composition was overwhelmingly silt/clay. Frequent patches of gravel/cobble banks occurred throughout the creek channel surveyed. Most bedrock banks occurred in major blocks where bedrock ridges rise through the valley floor.

Grasses and star thistle dominated both banks. The average percent bank covered by vegetation was 56 percent for the right bank and 54 percent for the left bank. Occasional oaks, willows, cottonwoods, walnuts, and gray pines punctuate the bank. Thirty-nine percent of the habitat units examined on Grapevine Creek had some degree of canopy—38 percent from deciduous trees and shrubs, and 1 percent from pines. The average canopy cover was 12 percent. Trees were more concentrated at the upstream end where Grapevine Creek starts to climb in elevation toward the edge of the reservoir footprint.

The average of the total unit covered by all cover combined was 29 percent. Aquatic vegetation was the most prevalent type of cover, occurring in 72 percent of the flat water units surveyed. Aquatic vegetation comprised an average 53 percent of the total unit cover (Table 31).

Pools had the largest mean total coverage at 32 percent. Aquatic vegetation comprised 46 percent of the cover in pools. Riffles had a mean total cover 28 percent, 40 percent of which was aquatic vegetation. Terrestrial vegetation, boulders, and bubble curtains also provided cover in riffles—14 percent, 17 percent, and 7 percent, respectively. Flat water averaged 26 percent total coverage, of this 72 percent of the cover was aquatic vegetation.

Aquatic vegetation was the most common large cover item, occurring in 53 percent of the units surveyed. Root masses were another large cover item that occurred with some frequency at 7 percent. Terrestrial vegetation occurred in 9 percent of the habitat units, and bedrock ledges in 4 percent of the units. Riffles and pools contained all of the major types of cover (Table 31).

	Percent of Percent of Cover Type									
	each habitat having cover	Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges
Riffles	28	1	3	3	13	14	40	7	17	2
Flat water	26	5	3	-	4	8	72	4	4	-
Pools	32	7	3	12	4	4	46	4	9	11
Average	29	4	3	5	7	9	53	5	10	4

 Table 31. Summary of Habitat Cover in Grapevine Creek

Stone Corral Creek. Flat water made up the majority of habitat type measured, comprising 52 percent of the total creek. The average flat water length on Stone Corral Creek was 213 feet. Pools, making up 36 percent of the total length and with an average length of 145 feet, were the second most dominant habitat type in terms of total footage. Riffles made up 12 percent of the creek's total length, with an average unit length of 48 feet (Figure 6).

Bedrock was the most common substrate, occurring as the primary substrate in 31 percent of the total units surveyed on Stone Corral Creek. Gravel substrate was the second most common substrate type, occurring in 24 percent of units surveyed. Silt/clay type substrate was commonly associated with bedrock or gravel, occurring as a layer over the other substrates. The lower reach of Stone Corral Creek was heavily dominated by bedrock, giving way to a more gravel base near the confluence with Antelope Creek. Silt/clay substrate is spread consistently throughout the creek system.

Thirty-three percent of pools had silt/clay as the dominant substrate (Table 32). Fifty-two percent of flat water had gravel as the dominant substrate. Riffles had 56 percent bedrock dominant and 17 percent silt/clay dominant substrate. The most common occurring pool tail substrate was bedrock.

······································									
	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock		
Riffle	17		9	1		17	56		
Flat water	20		52		14	14			
Pool	33	5	12	2		12	36		
Average	23	2	24	1	5	14	31		

Table 32. Summary of Substrates on Stone Corral Creek

The bank composition was overwhelmingly silt/clay. Occasional areas of bedrock bank or cobble bank occurred; where roads passed through or near the creek, boulders dominated the bank. Greater variability of bank composition then occurred in the lower reaches of the creek, where cobbled banks frequently occurred. Most bedrock banks occurred in major blocks where bedrock ridges rise through the valley floor.

Bank vegetation included grasses and star thistle, which dominated both banks. The average percent bank covered by vegetation was 62 percent for the right bank and 63 percent for the left bank. Occasional oaks, willows, cottonwoods, and walnut trees punctuate the bank. Only 11 percent of the habitat units surveyed had some degree of canopy. The average canopy cover was 4 percent, all deciduous trees and shrubs. Trees were more concentrated at the lower end where habitat typing began on Stone Corral Creek. The average of the total unit covered by all cover types combined was 33 percent. Aquatic vegetation was the most prevalent type of cover, comprising an average of 56 percent of the total unit coverage.

Riffles had a mean total cover of 39 percent, 49 percent of which was aquatic vegetation. An average of 7 percent of the cover in riffles was comprised of boulders. Flat water averaged 34 percent total coverage, of this 61 percent of the cover was aquatic vegetation. Pools had a mean percent total coverage of 26 percent.

Aquatic vegetation was the most common large cover item, occurring in 56 percent of the units surveyed. Boulders and terrestrial vegetation were the next most common cover items at 16 percent and 12 percent, respectively. Undercut banks occurred in 6 percent of the habitat units, and bedrock ledges in 4 percent of the units. No habitat unit types contained all major types of cover (Table 33).

	Percent of		Percent of Cover Type							
	habitat having cover	Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges
Riffles	39	-	-	-	-	25	49	18	7	2
Flat water	34	5	5	-	-	6	61	-	21	3
Pools	26	12	-	-	1	4	57	-	19	7
Average	33	6	2	-	-	12	56	6	16	4

 Table 33. Summary of Habitat Cover in Stone Corral Creek

Antelope Creek. Flat water made up the majority of the total footage measured, comprising 53 percent of the total creek measured. The average flat water length on Antelope Creek was 135 feet. Riffles made up 7 percent of the creek's total length, with an average unit length of 18 feet. Pools comprised 40 percent of the total length measured with an average length of 103 feet (Figure 7).

Silt/clay was the most common substrate, occurring as the primary substrate in 24 percent of Antelope Creek. Gravel and small cobble were also common substrates at 22 percent each. Silt/clay type substrate was commonly associated with gravel. Small cobble increased in frequency of occurrence in the upper reaches of Antelope Creek. Gravel substrate occurred uniformly throughout Antelope Creek (Table 34).

Figure 7. Relative Occurrence of Habitat Types in Antelope Creek

Silt/clay dominated the majority of pools. Twenty-nine percent of flat water units had silt/clay as the dominant substrate. Gravel and small cobbles at 23 percent and 22 percent respectively (Table 34) dominated riffles.

	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock
Riffle	7	2	23	22	7	9	30
Flat water	29	3	25	27	7	2	7
Pool	35	3	18	16	10	14	4
Average	24	3	22	22	8	8	14

Table 34. Summary of Substrates on Antelope Creek

Bank composition was largely silt/clay. Occasional areas of bedrock bank or cobble bank occurred; where roads passed through or near the creek, boulders dominated the bank. The diversity of bank substrate increased, particularly gravel and cobble, in the upper reaches of Antelope Creek.

Grasses and star thistle dominated both banks. The average percent bank covered by vegetation was 80 percent for the right bank and 80 percent for the left bank. Oaks, willows, cottonwoods, walnut trees, and gray pines punctuate and occasionally line the bank. Forty-seven percent of the habitat units surveyed had some degree of canopy. The average canopy cover was 20 percent. Trees were more concentrated at the middle to upper reaches.

The average of the total stream habitat covered was 31 percent (Table 35). Aquatic vegetation was the most prevalent type of cover, occurring in 65 percent of the units surveyed. Aquatic vegetation comprised an average of 46 percent of the total unit cover.

Riffles had an average total cover of 34 percent, with 43 percent aquatic vegetation. Flat water averaged 30 percent total coverage—58 percent aquatic vegetation. The primary cover for all units was aquatic vegetation. Some units
indicated a higher percentage of cover, but these occur on an infrequent basis in this creek.

Aquatic vegetation and terrestrial vegetation were the most common large cover items, occurring in 46 percent and 17 percent respectively of the units surveyed. Most units surveyed had small amounts of a variety of cover types.

Habitat type	Percent of each habitat having cover	ercent of Percent of each habitat type								
		Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges
Riffles	34	4	5	4	15	16	43	1	12	-
Flat water	30	4	3	1	8	19	58	1	5	1
Pools	29	18	7	1	7	15	37	1	13	1
Average	31	9	5	2	10	17	46	1	10	1

Table 35. Summary of Cover in Antelope Creek

Discussion

Habitat typing was done to quantify physical aquatic habitat to provide information for the NEPA and CEQA process. This quantification will determine habitat lost by inundation and will form the basis for mitigation. Grapevine Creek had more pools and riffles. Grapevine Creek also had the least amount of flat water. Funks Creek and Stone Corral Creek had similar amounts of pools, flat water, and riffles. Antelope Creek was more like Stone Corral and Funks Creeks than Grapevine Creek. Grapevine Creek flows from springs in hills to the west of Sites-Colusa and is steeper than the other creeks. That causes Grapevine Creek to have less flat water than the other creeks (Table 36 and Figure 8).

Table 36. Comparison of Relative Occurrence of Pools, Flat Water, and Riffles in Creeks in the Sites-Colusa Project Area

	Funks	Grapevine	Stone Corral	Antelope
Pools	21	32	22	24
Riffles	25	42	21	12
Flat water	28	13	29	30

Figure 8. Relative Occurrence of Habitat Types in Sites-Colusa

Stone Corral Creek had a high abundance of larger substrates. Grapevine Creek had the lowest percentage of silt. Grapevine Creek also had the most gravel, small cobble, and large cobble substrate. Fine materials are abundant in Stone Corral and Antelope Creeks. The relatively steep nature of Grapevine Creek washes fine materials away and leaves coarser materials behind (Table 37).

Creek				Habitat ty	bitat type			
	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock	
Funks	12	3	32	28	7	3	15	
Grapevine	8	1	30	32	13	3	13	
Stone Corral	23	2	24	1	5	14	31	
Antelope	24	3	22	22	8	8	13	

Table 37.	. Summary of Substrates (%) by Habitat Type on Creeks
	in the Sites-Colusa Study Area

The occurrence of cover types followed the same trends for all four creeks surveyed. Aquatic vegetation was the dominant cover type in each creek. Stone Corral Creek showed a higher percent occurrence of boulders—nearly twice as many as Antelope Creek and nearly five times as many as Funks and Grapevine Creeks.

Bubble curtains were more common in Funks Creek. Antelope Creek had more cover provided by root masses than the other creeks (Table 38).

Creek	Percent of each				Perc	ent of Habit				
	habitat having cover	Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges
Funks	27	17	1	1	1	7	25	14	25	9
Grapevine	29	4	3	4	7	10	53	6	10	4
Stone Corral	33	6	1	-	1	10	54	6	16	4
Antelope	31	9	5	2	10	17	46	1	9	1

Table 38. Summary of Cover (percent of each habitat type) onCreeks in the Sites-Colusa Study Area

The pools of all four creeks had similar degrees of cover for all habitats, which were spread very closely to 30 percent coverage. Notable spikes in percent unit covered occurred in unit types that have a very low frequency of occurrence. Grapevine and Antelope Creeks show an increase in the occurrence of canopy (Figure 9).

Figure 9. Percent of Canopy Over Creeks Measured at Sites-Colusa Project Area

Creek flows varied widely with lack of rainfall, forcing activity to be suspended on some areas of Funks, Stone Corral, and Antelope Creeks until further rain revived the stream flow. This suggests that streams on the floor of the Antelope Valley are intermittent and only flow during the summers of particularly wet years. Antelope Creek, and particularly Grapevine Creek, could flow year round. The majority of the fish found in this area were juvenile fish that would probably use the creeks only as rearing areas. The high concentration of sediments and aquatic vegetation would also raise the biological oxygen demand in the creeks during the summer months in any remaining deeper pools,

DRAFT

making them uninhabitable to most fish, with the exception of the California roach, *Lavinia exilicauda* (Moyle 1976).

Both Grapevine and Antelope Creeks are the continuations of the main creek channels of those systems. Both creeks also show an increase in canopy and larger substrates. When viewed as just two creek systems, Funks-Grapevine and Stone Corral-Antelope both show a trend toward more canopy and larger substrates. The increased canopy and decreased sedimentation in the upper reaches of Antelope Creek and Grapevine Creek may provide sufficient cooling factors for year-long fish inhabitants. Eight-to-10 inch largemouth bass, *Micropterus salmoides*, were seen in the upper reaches of Grapevine Creek, which suggests a year-round flow capable of supporting larger fish. The larger substrate size also provides cover for the minnow fry that occupy the creeks in the spring.

Very little riparian vegetation, such as rushes, essential cover for aquatic amphibians and reptiles, exists on the banks of any of the creeks in the Sites-Colusa Project area, with the exceptions of the upper reaches of Antelope and Grapevine Creeks.

Summary of Fish Studies for Proposed Projects

Thomes Creek has runs of fall-run, late fall-run, and limited numbers of spring-run chinook salmon. Steelhead also spawn in Thomes Creek. Large runs of Sacramento suckers and Sacramento pike minnows migrate up Thomes Creek. Fall-run salmon, Sacramento suckers, and Sacramento pike minnow also migrate up Stony Creek. Cottonwood Creek has larger runs of fall-run, late fall-run, and spring-run chinook salmon. Cottonwood Creek has a run of steelhead, as well as annual migrations of Sacramento suckers and Sacramento pike minnows. Stone Corral Creek and Funks Creek have no established runs of chinook salmon but have small runs of Sacramento suckers and Sacramento pike minnows.

References

Bill, A.J., L.A. Brown, and R.A. Steel. 1975. Major Surface Water Development Opportunities in the Sacramento Valley. California Department of Water Resources. 53p.

Brown, C.J. 1979. An Analysis of Stream Flows for Fishes of Cottonwood Creek, California. California Department of Fish and Game. 22 p.

______, E.D. Smith, J.M. Siperek, N.A. Villa, H.H. Reading, and J.P. Finn. 1983. *Thomes-Newville Unit Fish and Wildlife Evaluation*. California Department of Fish and Game. 207 p.

, J.R. Garcia and A. Woesner. 1985. *Final Report on Reconnaissance Level Studies of the Fish and Wildlife Resources at the Dippingvat and Schoenfield Reservoir Sites*. California Department of Fish and Game. 89 p.

- California Department of Fish and Game. 1966. *California Fish and Wildlife Plan. Vol. III. Supporting Data, Part B - inventory Salmon - Steelhead and Marine Resources.* California Department of Fish and Game. pp. 323-679.
- Elwell, R.F. 1962. *King Salmon Spawning Stocks in California's Central Valley,* 1961. California Department of Fish and Game, Mar. Res. Br. Admin. Rept. 62-5
- Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey, B. Collins. 1998. *California Salmonid Stream Habitat Restoration Manual*. State of California, the Resource Agency California Department of Fish and Game. Inland Fisheries Division 1998, pp. III-1 III54
- Fry, D.H. Jr. 1961. *King Salmon Spawning Stocks in California's Central Valley*, 1949-1959. Calif. Fish and Game 47(1):55-71.

_____, and A. Petrovich, Jr. 1970. *King salmon* (Onchorynchus tshawytscha) *Spawning Stocks of the California Central Valley, 1953-1969.* California Department of Fish and Game. Anad. Fish. Admin. Rept 70-11.

- Haley, R., E.S. Smith, and W.F. Van Woert. 1972. *Fish and Wildlife Problems and Opportunities in Relation to Sacramento River Water Developments*. California Department of Fish and Game. 41 pp.
- Hansen, H.A., O.R. Smith, and P.R. Needham. 1940. *An Investigation of Fish Salvage Problems in Relation to Shasta Dam*. U.S. Fish and Wildlife Service Special Scientific Report No. 100. 200 p.

DRAFT

Hoopaugh, D.A. (ed.) 1978. King Salmon (Chinook) Spawning Stocks in California's Central Valley, 1976. California Department of Fish and Game. Anad. Fish. Br. Admin. Rept. 78-19.

_____, ed. 1978a. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1975.* Calif. Fish and Game, Anad. Fish. Br. Admin. Rept. No. 77-12. 29 p.

_____, 1978b. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1976*. Calif. Fish and Game, Anadromous Fish Branch Administrative Report. No. 78-19. 28 p.

_____, and A.C. Knutson, Jr. (eds.) 1979. *Chinook (king) Salmon Spawning Stocks in California's Central Valley, 1977.* California Department of Fish and Game. Anad. Fish. Br. Admin. Rept. 79-11.

Kano, R.M., R.L. Reavis and F. Fisher (ed.) 1996. Annual report. Chinook Salmon Spawning Stocks in California's Central Valley, 1984. California Department of Fish and Game. Inland Fish. Div. Admin. Rept. 96-4.

_____,(ed.). 1998a. Annual Report. *Chinook Salmon Spawner Stocks in California's Central Valley, 1991*. California Department of Fish and Game. Inland Fish. Div. Admin. Rept. 98-6.

_____, (ed.). 1998b. Annual report. *Chinook Salmon Spawner Stocks in California's Central Valley, 1992*. California Department of Fish and Game. Inland Fish. Div. Admin. Rept. 98-10.

- Knutson, A.C. Jr. (ed.) 1980. Chinook (King) Salmon Spawning Stocks in California's Central Valley, 1977. California Department of Fish and Game. Anad. Fish. Br. Admin. Rept. 80-6.
- Leach, H.R. and W.F. VanWoert. 1968. Upper Sacramento River Basin Investigation-Fish and Wildlife Evaluation of Tributary Developments and Butte Basin Flood Control. California Department of Fish and Game. 132 p.
- Mahoney, J. 1958. 1957 King Salmon Spawning Population Estimates for the Sacramento-San Joaquin River Systems. Calif. Fish and Game, Marine Res. Br. Admin. Report. 18 p.

_____, 1960. 1959 King Salmon Spawning Population Estimates for the Sacramento-San Joaquin River Systems. Calif. Fish and Game, Marine Res. Br. Admin. Rept. 13 p.

_____, 1962. 1960 King Salmon Spawning Population Estimates for the Sacramento-San Joaquin River System. California Department of Fish and Game. Mar. Res. Br. Admin. Rept. 62-1.

Menchen, R.S.(ed.) 1963. *King Salmon Spawning Stocks in California's Central Valley, 1962.* California Department of Fish and Game. Mar. Res. Br. Admin. Rept. 63-3.

_____, (ed.) 1964. *King Salmon Spawning Stocks in California's Central Valley, 1963.* California Department of Fish and Game. Mar. Res. Br. Admin. Rept. 64-3.

_____, ed. 1965. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1965.* Calif. Fish and Game, Marine Res. Br. Admin. Rept. No. 65-2. 17 p.

_____, 1966. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1967.* Calif. Fish and Game, Marine Res. Br. Admin. Rept. No. 66-6. 22 p.

, (ed.) 1967. *King Salmon Spawning Stocks in California's Central Valley, 1966*. California Department of Fish and Game. Mar. Res. Br. Admin. Rept. 67-13.

_____, 1968. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1967.* Calif. Fish and Game, Marine Res. Br. Admin. Rept. No. 68-6. 27 p.

_____,(ed.) 1969. *King Salmon Spawning Stocks in California's Central Valley, 1968.* California Department of Fish and Game Anadromous Fishery Branch Administrative Report 69-4.

_____, (ed.) 1970. *King Salmon Spawning Stocks in California's Central Valley, 1969.* California Department of Fish and Game Anadromous Fishery Branch Administrative Report. 70-14.

Moyle, P. B. *Inland Fishes of California*. University of California Press, Berkeley and Los Angeles, CA 1976 pp. 162-210

Puckett, L.K., J.D. Massie, C.J. Brown, J.P. Finn, and N.A. Villa. 1979. A Summary of Fish and Wildlife Studies and Recommendations for the U.S. Corps of Engineers' Proposed Cottonwood Creek Project. California Department of Fish and Game. 62 pp. Reavis, R., Jr. (ed.) 1983. Annual report. *Chinook Salmon Spawning Stocks in California's Central Valley, 1981*. California Department of Fish and Game. Anadromous Fishery Branch Administrative Report 83-2.

_____, (ed.) 1984. Annual report. *Chinook Salmon Spawning Stocks in California's Central Valley, 1982*. California Department of Fish and Game Anadromous Fishery Branch Administrative Report 84-10.

_____, (ed.) 1986. Annual report. *Chinook Salmon Spawning Stocks in California's Central Valley, 1983.* California Department of Fish and Game Anadromous Fishery Branch Administrative Report 86-1.

Richardson, T.R. 1978. Observations on Downstream Migration of Salmonid Smolts in Cottonwood Creek. California Department of Fish and Game. 23 p.

_____, C.J. Brown and L.K. Puckett. 1978. *Inventory of Fishes of Cottonwood Creek, California*. California Department of Fish and Game. 23 p.

- Ricker, W. E. 1975. Computation and Interpretation of Biological Statistics of Fish Populations. Canada, Fish. Res. Bd. Bull. (191). 382 p.
- Seber, G. A. and E. D. LeCren. 1967. *Estimating Population Parameters from Catches Large Relative to the Population*. J. Animal Ecology 36(3):631-643.
- Smith, B.J. 1987. State Water Project Future Supply Cottonwood Creek Reformulation: the Dippingvat-Schoenfield Project. California Department of Water Resources Report. 40 p.
- Smith, E.S., and W. Van Woert. 1969. Reconnaissance-Level Fish and Wildlife Evaluation of Sacramento Valley Alternative West Side Conveyance Routes. California Department of Fish and Game. 75 p.

State of California, Gray Davis, Governor The Resources Agency, Mary D. Nichols, Secretary for Resources Department of Water Resources, Thomas M. Hannigan, Director

> Steve Macaulay, Chief Deputy Director Jonas Minton, Deputy Director L. Lucinda Chipponeri, Assistant Director for Legislation Susan N. Weber, Chief Counsel

Naser J. Bateni, Chief, Division of Planning and Local Assistance

In coordination with CALFED

by

5
Charlie Brown, Department of Fish and Game
Brad Burkholder, Department of Fish and Game
Jenny Marr*, Department of Fish and Game
Frank Wernette, Department of Fish and Game
David J. Bogener, Department of Water Resources
Gerald Boles, Department of Water Resources
Koll Buer, Department of Water Resources
Doug Denton, Department of Water Resources
K. Glyn Echols, Department of Water Resources
Gary Hester, Department of Water Resources
Ralph Hinton, Department of Water Resources
Gail Kuenster, Department of Water Resources
Joyce Lacey-Rickert, Department of Water Resources
Glen Pearson, Department of Water Resources
Doug Rischbieter, Department of Water Resources
Dwight P. Russell, Department of Water Resources
Jim Wieking, Department of Water Resources
Waiman Yip, Department of Water Resources
1 . 1

Robert Orlins, Department of Parks and Recreation

assisted by

Nikki Blomquist,	Department of Water	Resources
Linton Brown,	Department of Water	Resources
Elle Burns,	Department of Water	Resources
Barbara Castro,	Department of Water	Resources
Julia Culp,	Department of Water	Resources
Jennifer Davis-Ferris,	Department of Water	Resources
Mark Dombrowski,	Department of Water	Resources
Lawrence Janeway,	Department of Water	Resources
Liz Kanter,	Department of Water	Resources
Sandy Merritt,	Department of Water	Resources
Shawn Pike,	Department of Water	Resources
Carole Rains,	Department of Water	Resources
April Scholzen,	Department of Water	Resources
Michael Serna,	Department of Water	Resources
Ward Tabor,	Department of Water	Resources
Marilee Talley,	Department of Water	Resources
Susan Tatayon,	Department of Water	Resources
Caroline Warren,	Department of Water	Resources

Special thanks to DWR's Northern District staff, who drafted many chapters of this progress report and conducted many of the studies that form its core.

State of California The Resources Agency Department of Water Resources Division of Planning and Local Assistance

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix D: Fish Survey Summary

September 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

DRAFT

North of the Delta Offstream Storage Investigation

Progress Report Appendix D: Fish Survey Summary

Report prepared by: Charles J. Brown Associate Biologiest California Department of Fish and Game

Assisted by: Waiman Yip Senior Engineer California Department of Water Resources

September 2000

Integrated Storage Investigations

> CALFED BAY-DELTA PROGRAM

Assisted by (continued):

Glen Gorden Student Assistant

GeorgeLow Student Assistant

April Scholzen Office Technician

Contents

Fish Survey Summary	1
Introduction	1
Contract with DFG	2
Report Organization and Content	2
Methodology	2
Diving	2
Seining	2
Fyke Nets	5
Electrofishing	5
Red Bank Project Fish Studies	5
Red Bank Creek Fish Resources	6
Cottonwood Creek Fish Resources	8
Thomes-Newville Project Fish Studies	12
Methodology	13
Thomes Creek Fish Resources	14
Stony Creek Fish Resources	19
Sites and Colusa Project Fish Studies	23
Sites and Colusa Project Stream Fish Resources	23
Colusa Basin Drain Fish Studies	27
Sites and Colusa Project Habitat Types	32
Summary of Fish Studies for Proposed Projects	44
References	45

Tables

Table 1. Nongame Fish Observed in the Red Bank and Cottonwood Creeks	7
Table 2. Relative Abundance of Nongame Fish (Fish/Yd) Caught in Lower	
Cottonwood Creek, 1976, and in Red Bank Creek, 1998	7
Table 3. Game Fish Observed in Cottonwood Creek, 1976, and in Red Bank	
Creek, 1998	7
Table 4. Relative Abundance of Resident Game Fish (Fish/ Yd) Caught	
in Lower Cottonwood Creek and in Red Bank Creek	8
Table 5. Estimates of Chinook Salmon Spawning in the Cottonwood Creek	
System, 1952-98 (DFG Spawning Stock Reports)	10
Table 6. Average Monthly Stream Flow in Cottonwood Creek at the	
Cottonwood Gage	12
Table 7. Juvenile Chinook Salmon Seined from Thomes Creek in 1980 and	
1981	15
Table 8. Fyke Net Catches of Juvenile Chinook Salmon from Mainstem of	
Thomes Creek in 1981	15
Table 9. Fyke Net Catches of Juvenile Chinook Salmon from the	
Tehama-Colusa Canal Discharge Channel in Thomes Creek	
in 1981 and 1982	15

Table 10. Fish Species Found in Thomes Creek in 1982	. 18
Table 11. Average Population Estimates and Biomass Estimates	
for Fish Caught in Sections of Thomes Creek in 1982	. 18
Table 12. Juvenile Chinook Salmon Seined from Stony Creek in	. 19
Table 13. Population Estimates for Fish Caught in Selected Sections	
of Streams within the Newville Reservoir Site in 1983	20
Table 14. Average Biomass Estimates (lb/acre) for Fish Caught in Selected	
Sections of Streams within the Newville Reservoir Site in 1983	. 20
Table 15. Fish of the Stony Creek Drainage (Excludes Fish within Newville	
Reservoir Site)	. 22
Table 16. Average Population Estimates and Biomass Estimates for Fish	
Caught in Selected Sections of Stony Creek in 1982	. 23
Table 17. Fish Caught in the Sites Study Area in 1998 and 1999	. 25
Table 18. Species Caught at Each Sample Station and Relative Abundance	
on Funks Creek	. 25
Table 19. Relative Abundance of Fish Caught at Hunters Creek	. 26
Table 20. Species Caught at Each Station and Relative Abundance	
on Stone Corral Creek	. 26
Table 21. Species Caught at Each Station and Relative Abundance	
on Antelope Creek	. 27
Table 22. Average Monthly Streamflow (cfs) in the Colusa Basin Drain	
at the Highway 20 Crossing	. 28
Table 23. Resident Game Fish of the Colusa Basin Drain	. 30
Table 24. Resident Nongame Fish of the Colusa Basin Drain	. 30
Table 25. Number of Species Captured at Each Trapping Station	31
Table 26. Catch Per Hour Effort for Each Trapping Method	. 32
Table 27. Substrate Type and Size Used	. 33
Table 28. Summary of Substrates (%) by Habitat Type on Funks Creek	. 34
Table 29. Summary of Habitat Cover in Funks Creek	. 35
Table 30. Summary of Substrates on Grapevine Creek	. 36
Table 31. Summary of Habitat Cover in Grapevine Creek	. 37
Table 32. Summary of Substrates on Stone Corral Creek	. 38
Table 33. Summary of Habitat Cover in Stone Corral Creek	. 39
Table 34. Summary of Substrates on Antelope Creek	. 40
Table 35. Summary of Cover in Antelope Creek	41
Table 36. Comparison of Relative Occurrence of Pools, Flat Water, and	
Riffles in Creeks in the Sites-Colusa Project Area	41
Table 37. Summary of Substrates (%) by Habitat Type on Creeks in the	
Sites-Colusa Study Area	. 42

Figures

Figure 1. North of Delta Offstream Storage Investigation	3
Figure 2. Cottonwood Creek System and the Red Bank Project	6
Figure 3. Map Showing streams in the Sites-Colusa Project	24
Figure 4. Relative Occurrence of Habitat Types in Funks Creek	34
Figure 5. Relative Occurrence of Habitat Types in Grapevine Creek	36
Figure 6. Relative Occurrence of Habitat Types in Stone Corral Creek	38
Figure 7. Relative Occurrence of Habitat Types in Antelope Creek	40
Figure 8. Relative Occurrence of Habitat Types in Sites-Colusa	42
Figure 9. Percent of Canopy Over Creeks Measured at Sites-Colusa	
Project Area	43

This page was deliberately left blank.

Fish Survey Summary

Introduction

In late 1997, the Department of Water Resources began a two-year reconnaissance level study of North of the Delta Offstream Storage authorized by Proposition 204—the Safe, Clean, Reliable Water Supply Act approved by voters in 1996. In early 1999, CALFED consolidated all storage investigations under a comprehensive program called Integrated Storage Investigations. The North of the Delta Offstream Storage Investigation was incorporated into one of seven ISI program elements.

The North of the Delta Offstream Storage Investigation continues engineering, economic, and environmental impact analyses to determine the feasibility of four north of the Delta storage projects. The four potential alternatives are Sites Reservoir, Colusa Project, Thomes-Newville Project, and Red Bank Project (Figure 1). Phase I, currently underway, includes preliminary field surveys of environmental resources and extensive field surveys of cultural resources, geological, seismic and foundation studies, and an engineering feasibility evaluation. Phase II will start when CALFED's Record of Decision and Certification for the Programmatic EIR/EIS is completed and if north of Delta offstream storage is consistent with CALFED's preferred program alternative. Phase II will include completion of necessary fish and wildlife surveys, evaluations of potential mitigation sites, preparation of project-specific environmental documentation, final project feasibility reports, and the acquisition of permits necessary for implementation.

Under Phase I, the Department of Fish and Game conducted studies of fish and wildlife resources in each project area. This appendix summarizes studies of fish in the tributaries that flow through each of the four proposed project areas. The information gathered will be used to describe impacts on fish resources during the planning process. Fishery studies conducted for the Sacramento River will be summarized in a separate report.

Contract with DFG

DFG initiated fish studies in 1997. Studies were conducted to develop data adequate to meet the needs of the U.S. Fish and Wildlife Service, National Marine Fisheries Service, and DFG consultations as required by endangered species legislation. Past studies were also reviewed and evaluated as part of this effort.

Report Organization and Content

Results and discussions of findings in past fishery studies and recently conducted surveys of fishery resources in the four proposed project areas are included in this appendix. The general procedure for commonly used fish surveys are outlined, with specific sampling data and results discussed in respective sections for each proposed project area.

Methodology

At the proposed project sites, fish surveys were conducted by diving, seining, fyke netting, and/or electrofishing. These methods were used to collect data on occurrence and relative abundance of species of fish. This section discusses general procedures for these methods. Details of surveys and results for each site are discussed in the respective sections.

Diving

Fish were observed in deep pools by divers wearing faceplates. Fish species were identified and numbers of each species observed were recorded. Diving was used as a sampling technique when pools were too big or deep for other sampling methods.

Seining

A seine is used to collect fish for sampling data. Three different seines varying in size were used depending on the size of the pool. The largest seine was 60 feet long, 5 feet high, with a mesh size of one-quarter inch and a 7-foot-by -7foot pocket. A medium sized seine was 29 feet long, 6 feet high, with a mesh size of one-quarter inch and a pocket size of 7 feet by 5 feet. The third seine, used only for small pools and ponds, was 12 feet long, 4 feet high, with a mesh size of one-quarter inch and a 7-foot-by-5-foot pocket. A seine was brought around from one edge of the pool to the other. To prevent fish from escaping, a barrier net was stretched across the creek upstream and downstream from the pool to be seined. Captured specimens were stored in a bucket of water until they could be examined. Specimens were identified and the first 20 of each species were measured for fork length to the nearest millimeter and then released downstream. The seine was pulled a total of three times at each site. Representative specimens were either preserved or photographed for positive identification.

This page was deliberately left blank.

Fyke Nets

Fish captured in fyke nets were measured for fork length to the nearest millimeter and weighed by water displacement to the nearest gram. No estimates of abundance were done for fish caught in fyke nets. Therefore, these fish were not included in the relative abundance tables.

Electrofishing

Electrofishing was done with a Smith-Root Type VII electroshocker. Sections of creek varying from 33 to 138 feet were netted off, upstream and downstream. With a backpack electroshocker, DFG biologists waded into the stream starting from the upstream net and moved downstream. The anode of the electrofisher was inserted into likely fish habitat. The stunned fish were then collected into buckets, measured for fork length to the nearest millimeter for the first 20 of each species, and then a plus count was taken. Fish were weighed using water displacement to the nearest gram. The surface area of each station was calculated in square feet and then converted to square millimeters for fish density analysis. The resulting relative abundance was converted to and reported in fish per square yard.

Red Bank Project Fish Studies

This section describes the results of current and past fish studies conducted on Red Bank, South Fork Cottonwood, and Cottonwood Creeks, the major tributaries of the Red Bank Project area (Figure 2). Past studies date to 1969 and contain the reconnaissance-level fish and wildlife evaluation of Sacramento Valley alternative west side conveyance routes prepared by DFG (Smith and Van Woert 1969). Other studies reviewed include reports prepared by DFG and DWR in 1972, 1975, 1985, and 1987 (Haley and Van Woert 1972, Bill et al. 1975, Brown et al. 1985, Smith 1987).

Figure 2. Cottonwood Creek System and the Red Bank Project

Red Bank Creek Fish Resources

DFG Biologists sampled fish in Red Bank Creek within the footprint of the Schoenfield Reservoir in 1998. Data were collected at 28 stations. In summer 1998, seining was done at 16 stations dispersed on Red Bank Creek and its tributaries, Dry and Grizzly Creeks. Twelve stations were sampled on Red Bank Creek by electrofishing in October and November 1998.

Nongame Fish

Four species of nongame fish were observed (Table 1). The most common species of nongame fish found were California roach (0.588 fish/yd²) and Sacramento pike minnow (0.158 fish/yd²) (Table 2).

Resident Game Fish

In 1998, DFG biologists observed four species of resident game fish in Red Bank Creek (Table 3). The most common resident game fish were largemouth bass $(0.009 \text{ fish/yd}^2)$ and bluegill $(0.001 \text{ fish/yd}^2)$ (Table 4).

Steelhead

Also in 1998, DFG biologists found juvenile steelhead in the footprint of the proposed Schoenfield Reservoir in Red Bank by electrofishing and estimated density to be 0.002 fish/yd². Steelhead were found in two of 28 stations sampled.

Common Name	Scientific Name	Cottonwood Creek (1976)	Red Bank Creek (1998)
California roach	Hesperoleucus symmetricus	Х	Х
Carp	Cyprinus carpio	Х	
Golden shiner	Notemigonus crysoleucas	Х	
Hardhead	Mylopharodon conocephalus	Х	
Hitch	Lavinia exilicauda	Х	
Mosquitofish	Gambusia affinis	Х	
Pacific lamprey	Lampetra tridentata	Х	Х
Prickly sculpin	Cottus asper	Х	
Sacramento pike minnow	Ptychocheilus grandis	Х	Х
Sacramento sucker	Catostomus occidentalis	Х	Х
Speckled dace	Rhinichthys osculus	Х	
Threespine stickleback	Gasterosteus aculeatus	Х	
Tule perch	Hysterocarpus traski	Х	

Table 1. Nongame Fish Observed in the Red Bank andCottonwood Creeks

Table 2. Relative Abundance of Nongame Fish (Fish/Yd²) Caught in Lower Cottonwood Creek, 1976, and in Red Bank Creek Species Cottonwood Creek Red Bank Creek

Species	Cottonwood Creek (1976)	(1998)
California roach	0.003	0.588
Carp	0.003	
Hardhead	0.022	
Sacramento pike minnow	0.015	0.158
Sacramento sucker	0.006	0.091

Table 3. Game Fish Observed in Cottonwood Creek, 1976,and in Red Bank Creek, 1998

Common Name	Scientific Name	Cottonwood Creek (1976)	Red Bank Creek (1998)
Black bullhead	lctalurus melas	Х	
Bluegill	Lepomis macrochirus	Х	Х
Brown bullhead	lctalurus nebulosus	Х	
Brown trout	Salmo trutta	Х	
Chinook salmon	Onchorhynchus tshawytscha	Х	
Green sunfish	Lepomis cyanellus	Х	Х
Largemouth bass	Micropterus salmoides	Х	Х
Smallmouth bass	Micropterus dolomieui	Х	
Steelhead	Onchorhynchys mykiss	Х	Х
White catfish	Ictalurus catus	Х	

Species	Cottonwood Creek (1976)	Red Bank Creek (1998)
Bluegill	0.022	0.001
Brown bullhead	0.006	
Green sunfish	0.015	0.001
Largemouth bass	0.003	0.009
Smallmouth bass	0.003	

Table 4. Relative Abundance of Resident Game Fish (Fish/ Yd²)Caught in Lower Cottonwood Creek and in Red Bank Creek

Cottonwood Creek Fish Resources

DFG biologists surveyed Cottonwood Creek from the confluence of the north fork to the mouth of Cottonwood Creek in 1976 (Richardson et al. 1978). Observations were made by diving, seining, fyke netting, and electrofishing. Abundance estimates were made for fish caught by electrofishing. Fish caught in fyke nets or observed by divers were not included in the relative abundance tables, because no estimates of abundance were done for these fish.

Nongame Fish

Thirteen species of nongame fish were observed (Table 1). The most common species of resident nongame fish found were hardhead (0.022 fish/yd²) and Sacramento pike minnows (0.015 fish/yd²) (Table 2). Some Sacramento pike minnows and Sacramento suckers also migrate to the Sacramento-San Joaquin estuary to rear and return to Cottonwood Creek as adults to spawn (Richardson et al. 1978). Life history information is valuable in planning instream flow studies, HEP evaluations, and determining project impacts.

Resident Game Fish

Ten species of resident game fish were observed in the Cottonwood Creek system in 1976 (Richardson et al. 1978) (Table 3). The most common resident game fish were bluegill (0.022 fish/yd²) and green sunfish (0.015 fish/yd²) (Table 4). Green sunfish and bluegill were common in the lower reaches surveyed (Richardson et al. 1978).

Steelhead

DFG biologists found juvenile steelhead in South Fork Cottonwood Creek in the Yolla Bolly Wilderness in the summer of 1976. No estimates of numbers of juvenile steelhead were made. The Yolla Bolly Wilderness is well above the site of the proposed Dippingvat Dam. Adult steelhead were seined from the mouth of Cottonwood Creek in November 1976 (Brown, et al., 1985). DFG estimates that Cottonwood Creek supports an average annual migration of 1,000 steelhead based on the best estimates of biologists who were most familiar with Cottonwood Creek (DFG 1966).

Chinook Salmon

Fall Run. Fall-run chinook salmon ascend Cottonwood Creek and spawn in late October through November (Richardson et al. 1978). They spawn in

Cottonwood Creek from the mouth to the confluence of North Fork Cottonwood Creek. About 53 percent of fall-run chinook salmon spawn from the mouth of Cottonwood Creek to the Interstate-5 highway bridge, 23 percent spawn from the Interstate-5 highway bridge to the confluence of Cottonwood Creek and South Fork Cottonwood Creek, and 24 percent spawn in Cottonwood Creek between the confluence of the south and north forks. Their young begin migrating after they incubate in January (Richardson 1978). They migrate downstream from January through May. DFG estimates that an average of 3,600 fall-run chinook salmon spawn in Cottonwood Creek (Table 5) (Elwell 1962; Fry 1961; Fry and Petrovich 1970; Hoopaugh 1978; Hoopaugh and Knudson 1979; Kano et al. 1996; Kano 1998a, 1998b; Knutson 1980; Mahoney 1962; Menchen 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970; Puckett et al. 1979; Reavis 1983, 1984, 1986).

Year	Fall Run	Spring Run		
		Beegum Gulch	North Fork	South Fork
1952	-	-	-	-
1953	3,000	-	-	-
1954	1,000	-	-	-
1955	800	-	-	-
1956	660	-	-	-
1957	358	-	-	-
1958	600	-	-	-
1959	3,300	-	-	-
1960	350	-	-	-
1961	1,500	-	-	-
1962	6,000	-	-	0
1963	3,500	-	-	-
1964	3,450	-	-	-
1965	900	-	-	-
1966	2,900	-	-	-
1967	600	-	-	-
1968	8,540	-	-	-
1969	4,967	-	-	-
1970	-	-	-	-
1971	-	-	-	-
1972	-	-	-	0
1973	-	0	-	-
1974	-	3	-	-
1975	-	3	-	1
1976	2,427	-	-	-
1977	1,512	-	-	-
1978	1,120	-	-	0
1979	-	-	-	-
1980	-	-	-	-
1981	3,356	-	-	-
1982	700	0	-	-
1983	1,000	-	-	-
1984	500	-	-	-
1985	-	-	-	-
1986	-	-	-	-
1987	-	-	-	-
1988	-	-	-	-
1989	-	0	-	-
1990	-	-	-	-

Table 5. Estimates of Chinook Salmon Spawning in the Cottonwood Creek System, 1952-98 (DFG Spawning Stock Reports)

Year	Fall Run	Spring Run		
		Beegum Gulch	North Fork	South Fork
1991	676	-	-	-
1992	1,585	-	-	-
1993	-	1	-	-
1994	-	-	-	-
1995	-	8	-	-
1996	-	6	-	-
1997	-	-	-	-
1998	-	477	-	0

Table 5. Estimates of Chinook Salmon Spawning in the Cottonwood Creek System, 1952-98 (DFG Spawning Stock Reports) continued

Late Fall-Run. Late fall-run chinook salmon migrate up Cottonwood Creek and spawn in January. DFG Biologists observed them spawning at the mouth of North Fork Cottonwood Creek in January 1976 (Richardson et al. 1978). Their young migrate downstream in May and June as much smaller fry than fall-run at that time of year. Young late fall-run chinook salmon were caught in fyke nets near the mouth of Cottonwood Creek in May and June 1976 (Richardson 1978). DFG estimates that an average of 300 late fall-run chinook salmon migrate up Cottonwood Creek (Smith and Van Woert 1969). DFG biologists surveying Cottonwood Creek in 1977 observed late fall-run chinook salmon spawning, but no estimates of run size were made.

Spring-Run. Spring-run chinook salmon migrate up Cottonwood Creek in April and spend the summer in deep pools in South Fork Cottonwood Creek, Beegum Gulch, and North Fork Cottonwood Creek. Most are found in Beegum Gulch. Young spring-run chinook salmon migrate downstream from January through May. DFG estimates that an average of 500 spring-run chinook salmon migrate up Cottonwood Creek (DFG 1966). DFG biologists surveyed Beegum Gulch in 1998 and found about 500 spring-run chinook salmon. Some young spring-run salmon from the Sacramento River use the lower reach of Cottonwood Creek from Interstate-5 to the mouth for rearing during the summer and fall (Richardson et al. 1978).

Spawning Habitat. DFG biologists took gravel samples in summer 1977 to measure quantity and quality of salmon spawning habitat in Cottonwood Creek. Approximately 392,000 square feet of gravel suitable for chinook salmon spawning was identified in the Cottonwood Creek system (Richardson and Brown 1978). About 40,000 square feet of that total was in south fork. Other investigations have produced estimates ranging from 285,000 square feet (Hansen et al. 1940) to 2,000,000 square feet (Leach and Van Woert 1968) of gravel in the system. A female chinook salmon requires about 100 square feet of gravel for spawning (Leach and Van Woert 1968). Most of the gravel was found in Cottonwood Creek below its confluence with North Fork Cottonwood Creek. Little suitable gravel was found in North Fork Cottonwood Creek. Instream Flow. An instream flow study was conducted in 1976 and 1977 to measure the amount of chinook salmon spawning and rearing habitat in Cottonwood Creek and South Fork Cottonwood Creek. Optimum spawning flow was about 180 cfs and optimum rearing flow was 200 cfs from the mouth of Cottonwood Creek to the confluence of Cottonwood Creek and South Fork Cottonwood Creek. Optimum spawning flow was about 80 cfs and optimum rearing flow was 100 cfs in the lower seven miles of South Fork (Brown 1979). Natural monthly stream flow averages 295 cfs during fall-run chinook spawning in November near the mouth of Cottonwood Creek (Table 6). Average monthly flows range from 604 to 2,174 cfs when salmon rear from January through May.

Month	Average Monthly Flow (cfs)
January	1,744
February	2,174
March	1,590
April	1,205
Мау	604
June	283
July	112
August	66
September	66
October	108
November	295
December	955

Table 6. Average Monthly Stream Flow in Cottonwood Creek at the Cottonwood Gage

Thomes-Newville Project Fish Studies

DFG initiated studies of the impacts on fish and wildlife of a Thomes-Newville Project in 1979 as part of DWR's Thomes-Newville Reservoir planning studies. However, the planning studies were halted in 1982. DFG completed a report of its abbreviated studies in 1983 (Brown et al. 1983). In 1998, DFG initiated studies of fish and wildlife resources of a Thomes-Newville Project as part of the North of Delta Offstream Storage Program. A brief survey of springrun chinook salmon was conducted during the recent investigations. This section discusses recent findings and recapitulates the effort and results of the 1982 study (Brown et al. 1983).

Methodology

Juvenile Salmon

Seining for juvenile chinook salmon in Stony and Thomes Creeks was done over a period of three years, 1980 to 1982. Ten sample stations were selected on Thomes and Stony Creeks. Each station was seined weekly from February to June, with 50-foot delta mesh seines (Brown et al. 1983).

Fyke nets were used to sample for juvenile salmonids during the 1981 and 1982 seasons on Thomes Creek only. Irregular and frequent floodflow releases from Black Butte Reservoir made it impractical to fyke net in Stony Creek. Two fyke nets were used in Thomes Creek. One was placed in the mainstem and another near the confluence to the discharge channel from the Tehama-Colusa Canal. The nets were fished continuously from Monday to Friday and were removed during weekends or during high water. Each net in the mainstem was fished from February through March. Captured fish were measured for fork length to the nearest millimeter and weighed by water displacement to the nearest gram (Brown et al. 1983).

Adult Salmon and Steelhead

Adult chinook salmon carcasses were counted to estimate the number of salmon in Stony and Thomes Creeks. Stony Creek was surveyed for carcasses between the Sacramento River confluence and the North Diversion Dam. Thomes Creek was surveyed between the Sacramento River confluence and Paskenta and in a channel from the discharge point of the Tehama-Colusa Canal to its confluence with Thomes Creek. Counts were taken once per week from November through January in 1980-81 and 1981-82 on Thomes Creek and from December through February in 1981-82 on Stony Creek. Each carcass was tagged by fastening a number 3 hog ring to its mandible. Tick marks were notched into the hog rings with wire cutters to identify the appropriate week of tagging. The sex and fork length of each carcass was noted. The date and location of where each carcass was found was recorded; each carcass was then returned to the same area where it was tagged. On successive surveys, tagged fish that were recovered were cut in half to avoid recounting in subsequent surveys. The 1980-81 spawning escapement estimate for Thomes Creek was calculated with the Schaefer method (Ricker 1975), while the 1981-82 estimates for both Stony and Thomes Creeks were estimated with the Peterson method (Ricker 1975) (Brown et al. 1983).

On June 13, 1979; August 18, 1980; and August 12, 1998, Thomes Creek was surveyed to enumerate adult spring-run chinook salmon and summersteelhead. The area surveyed was from the gorge to the fjord at Hatch Flat near Paskenta. Each pool was examined by snorkel diving. All fish were identified and their size range and relative abundance estimated. No habitat suitable for spring-run salmon and summer steelhead exists in Stony Creek; therefore, no survey was conducted (Brown et al. 1983). Historical estimates for fall-run chinook salmon for both Stony and Thomes Creeks were compiled from DFG salmon-spawning stock reports.

Resident Fish and Migratory Nongame Fish

A fyke net consisting of 0.03 inch oval mesh netting mounted on a 0.01 inch x 0.02 inch metal tubing frame was placed in the creek near the mouth of Thomes Creek. The purpose of the net was to capture juveniles, larval Sacramento suckers, and Sacramento pike minnows migrating to the Sacramento River. A perforated aluminum box—1.6 feet x 1.6 feet x 3.3 feet—was attached to the cod end of the net to receive captured fish. The net was fished 24 hours per day during weekdays from January to June 1981 (Brown et al. 1983).

To estimate the population of spawning Sacramento suckers and Sacramento pike minnows, adult fish were captured in Thomes Creek and its tributary, Mill Creek. From December 1980 through June 1981, 17 samples were taken at 10-day intervals via electrofishing. A 12-foot Avon rubber raft was retrofitted with a Smith-Root Type VII electroshocker. The battery and electroshocking unit were placed inside an ice chest and secured to the raft's rowing frame. Prove arrays were constructed of 0.08-inch stainless steel cable, attached to the bow of the raft, and fished at a depth of 4.9 feet. (Brown et al. 1983).

Captured fish were weighed to the nearest 0.3 ounce and fork lengths were measured to the nearest millimeter. Each fish was marked with a floy spaghetti tag and released. The tag was inserted under the dorsal fin and tied in a loop. The Jolly-Seber method was used to determine the population estimate for Sacramento suckers while the Schaefer method (Ricker 1975) was used to estimate the population of Sacramento pike minnows (Brown et al. 1983).

Electrofishing was done in streams in the footprint of proposed Newville Reservoir in 1981 and 1982. Seven sections were sampled in streams within the project area. These include North Fork Stony, Salt, and Heifer Camp Creeks. Ten sections in Stony Creek and 15 in Thomes Creek were sampled. Fish were captured by backpack electrofishing. Population number and biomass estimates for each species for the Thomes-Newville data were developed using the two-pass method of Seber and LeCren (1967) (Brown et al. 1983).

Thomes Creek Fish Resources

Juvenile Chinook Salmon

1980 Emigration. Thirteen juvenile chinook salmon were captured by seining during the 1980 sample period (Table 7). These fish were caught in the lowermost stations of Thomes Creek from March 20 to May 24, 1980.

1981 Emigration. Six juvenile chinook salmon were captured by seining during the 1981 sample period (Table 7). One of these fish was from Coleman National Fish Hatchery.

In 1981, 206 juvenile chinook salmon were captured by fyke netting in Thomes Creek, 20 from the mainstem and 186 from the discharge canal (Tables 8 and 9).

Sample Period	Number of Weekly Seinings	Number of Fish	Average Length of Fish (inches)
1980			
March	4	5	2.8
April	5	8	2.8
Total	9	13	
1981			
March	2	5	4.1
April	1	1	2.3
Total	3	6	

Table 7. Juvenile Chinook Salmon Seined from Thomes Creek in1980 and 1981

¹ Brown et al. 1983

Table 8. Fyke Net Catches of Juvenile Chinook Salmon fromMainstem of Thomes Creek in 1981¹

Sample Period	Hours Fished	Number of Salmon	Average Length of Fish (inches)
February	672	0	0
March	744	9	2.7
April	648	10	3.1
May	336	1	2.7
Total	2,400	20	
Brown et al. 1983			

Table 9. Fyke Net Catches of Juvenile Chinook Salmon from the Tehama-Colusa Canal Discharge Channel in Thomes Creek in 1981 and 1982¹

Sample Period	Number of Fish	Average Length of Fish (inches)
1981		
January	1	1.4
February	126	1.3
March	59	1.3
Total	186	
1982		
January	2	1.4
February	45	1.4
March	337	1.5
Total	384	
¹ Brown et al. 1983		

The catches from the mainstem occurred over a nine-week period beginnning the first week of March and ending the first week of May. Salmon from these catches ranged in size from 2.7 to 3.1 inches fork length (Table 8). Except for the time when the migration occurred, no real descriptive trends can be derived from these data. These fish, however, appear to be much larger than expected for fall-run fish spawned in Thomes Creek. Some fish may have spawned earlier in the mainstem Sacramento River and moved upstream into Thomes Creek. It is common for juvenile salmonids from the Sacramento River to swim upstream into tributaries (Richard Hallock, DFG, personal communication).

Juveniles captured in the discharge channel spawned there. The presence of live adults, carcasses, and redds in the channel together with the presence of juveniles is strong evidence that successful spawning occurred in the channel.

The migration of juvenile chinook salmon from the discharge channel occurred from late February through the third week of March. At this time the discharge was terminated by the U.S. Bureau of Reclamation and no water flowed to indicate newly hatched fish. These fish were of the fall-run spawn. Although the migration was halted by lack of flow, it could have continued if discharge had been extended. In response to the lack of flow, DFG regional personnel rescued in excess of 3,000 juvenile salmon.

1982 Emigration – No juvenile chinook salmon were captured by seining or fyke netting in the mainstem of Thomes Creek during the 1982 sample period. High flows and other duties limited efforts.

As indicated in Table 9, 384 juvenile chinook salmon were captured by fyke netting in the discharge channel from the Tehama-Colusa Canal. The first fish was captured during the first week of January, but the bulk of the migration did not occur until the third week of February. The migration continued until March 30, 1982, when the discharge was terminated by USBR.

Juvenile Steelhead

Seven juvenile steelhead were captured by seining in Thomes Creek in 1981. Four of these fish were probably from Coleman National Fish Hatchery. They had rounded fins and deformed dorsal fins, which are a characteristic of hatchery-grown fish. Juvenile salmonids from the Sacramento River commonly ascend tributaries (Richard Hallock, DFG, personal communication).

Adult Chinook Salmon

Review of past reports show little information on historic salmon runs in Thomes Creek. Only seven surveys were documented between 1955 and 1979. In 1957, the fall-run escapement estimate was 25, and in 1975 the estimate was 170 fish (Mahoney 1958, Hoopaugh 1978a). Estimates of fall-run salmon for survey years 1959, 1960, 1964, 1965, and 1976 were zero (Mahoney 1960, 1962; Menchen 1965, 1966; Hoopaugh 1978b).

1980-81 Fall-Run Estimate. Fifty-nine chinook salmon carcasses were tagged during 12 surveys of Thomes Creek. Of these 59, 17 fish (29 percent) were males while 42 fish (71 percent) were females. This represented a male-female ratio of 1:2.5. Twenty-three carcasses were recovered in fall 1980. From these data an estimated 155 salmon spawned in Thomes Creek during the sample period.

Live fish were first observed in the creek November 11, 1980, but no carcass was tagged until nine days later. The last carcass was tagged on January 12, 1981. Fifty-seven (97 percent) of the fish tagged were located in the Tehama-Colusa Canal outlet channel. Only two fish (3 percent) were tagged in the mainstem. Observation of six redds and four live fish indicates there was some spawning activity in areas below Henleyville.

1981-82 Fall-Run Estimates. Thirty-eight chinook salmon carcasses were tagged during 10 surveys of Thomes Creek. Of these 38, 16 fish (42 percent) were males while 22 fish (58 percent) were females. This represents a male-female ratio of 1:1.4. All of the fish tagged were located in the Tehama-Colusa Canal outlet channel. Twenty tagged carcasses were recovered. From these data an estimated 167 salmon spawned in Thomes Creek during the sample period. No live fish or redd was seen in the mainstem.

1979-1980 Spring-Run Estimates. No adult anadromous salmonid was seen during the June 1979 or August 1980 spring-run chinook salmon surveys in Thomes Creek. Numerous juvenile steelhead and brown trout were seen in the area of the survey which may indicate that habitat for spring-run chinook salmon or summer steelhead may exist. Although surface water temperatures generally approach 77°F in these areas, cooler water (59-68°F) can be found near the bottom of larger pools that could support salmonids.

1999 Spring-Run Estimates. One adult spring-run chinook salmon was seen during August 1999 diving surveys in Thomes Creek. As in 1980, numerous juvenile steelhead and brown trout were seen in the area of the survey.

1980 Late Fall-Run. The late spawning characteristics of a few chinook salmon indicate that they were of the late fall-run. Those that spawned in late December and January were salmon of this race.

Resident Fish and Migratory Nongame Fish

Twenty-two species of fish were observed in Thomes Creek (Table 10). DFG staff developed population and biomass estimates for 13 of these species (Table 11). Three species were game fish and 10 were nongame fish. Steelhead were the most abundant fish above the gorge, while Sacramento pike minnow, Sacramento suckers, hardhead, California roach, and speckled dace were the more common fish below the gorge.

Most of the nongame fish caught in the reach below the gorge were juveniles, indicating that this reach serves mainly as a spawning and rearing area. Adult Sacramento suckers, Sacramento pike minnow, California roach, and hardhead annually migrate from the Sacramento River into Thomes Creek and its tributaries to spawn. Juveniles that do not migrate immediately after hatching remain to rear until the following rainy season when water flows to the mouth.

Thomes Creek below Paskenta usually dries up except for a few residual pools scattered along the streambed during the late summer, making it impossible for resident adult fish to live throughout the summer months. Some adult game fish such as largemouth and smallmouth bass, bluegill, and green sunfish ascend the creek from the Sacramento River during late spring and early summer to use these pools as spawning areas.

Common Name	Scientific name
Bluegill	Lepomis machrochirus
Brown bullhead	Ictalurus nebulosus
California roach	Lavinia symmetricus
Carp	Cyprinus carpio
Channel catfish	Ictalurus punctatus
Golden shiner	Notemigomus crysoleucus
Goldfish	Carassius auratus
Green sunfish	Lepomis cyanellus
Hardhead	Mylopharodon conocephalus
Hitch	Lavinia exilicauda
Largemouth bass	Micropterus salmoides
Mosquitofish	Gambusia affinis
Pacific lamprey	Lampetra tredentata
Prickly sculpin	Cottus asper
Sacramento pike minnow	Ptychocheilus grandis
Sacramento sucker	Catostomus occidentatlis
Smallmouth bass	Micropterus dolomeiu
Speckled dace	Rhinicthys osculus
Steelhead	Onchorynchus mykiss
Threespine stickleback	Gasterosteus aculeatus
Tule perch	Hysterocarpus traski
White catfish	Ictalurus catus
¹ Brown et al. 1983	

Table 10. Fish Species Found in Thomes Creek in 1982¹

Table 11. Average Population Estimates and Biomass Estimates for Fish Caught in Sections of Thomes Creek in 1982¹ Output

Species	Average Population	Average Biomass
	Estimate	(lb/acre)
Bluegill	3	4.5
California roach	41	10.7
Carp	90	64.2
Goldfish	1	19.2
Green sunfish	14	15.2
Hardhead	47	47.3
Hitch	1	0.4
Largemouth bass	5	8
Prickly sculpin	1	1.8
Sacramento pike minnow	337	89.2
Sacramento sucker	143	16.1
Speckled dace	229	16.1
Tule perch	1	0.2
¹ Brown et al. 1983		

Stony Creek Fish Resources

Juvenile Chinook Salmon

1980 Emigration. During the 1980 sample period, 181 juvenile chinook salmon were caught by seining (Table 12). Salmon were first caught during the second week of February and the last salmon was caught during the first week of May.

1981 Emigration. During the 1981 sample period, 73 juvenile chinook salmon were captured by seining (Table 12). Fish were first captured during the third week of February and the last fish were captured during the second week of April.

1982 Emigration. During the 1982 sample period, only four juvenile chinook salmon were captured by seining (Table 12). Two fish were captured during January and two were captured during the first week of March.

Adult Salmon Studies

1981-82 Fall-Run Estimates. Thirty-six chinook salmon carcasses were tagged during five surveys. Two of these salmon were recovered. From these data DFG estimates that 393 salmon spawned in Stony Creek during the sample period. Of the 36 tagged, 11 fish (31 percent) were males while 25 fish (69 percent) were females. This represents a male-female ratio of 1:2.3.

Most of the spawning activity was located in lower Stony Creek in the reach between the Interstate-5 bridge and the mouth. At least 35 redds and 29 carcasses were counted in this area.

Sample Period	Number of Fish	Average Length of Fish (in)
1980		
February	64	1.7
March	51	1.8
April	60	2.0
May	6	3.0
Total	181	
1981		
February	5	1.5
March	64	2.1
April	4	3.0
Total	73	
1982		
January	2	3.3
March	2	1.7
Total	4	
¹ Brown et al. 1983		

Table 12. Juvenile Chinook Salmon Seined from Stony Creekin 1980, 1981, and 19821
Resident Fish Surveys

Six species of fish, two game and four nongame, were captured in streams potentially inundated by the Newville Reservoir (Tables 13 and 14). These streams include North Fork Stony Creek, Salt Creek, and Heifer Camp Creek. Rainbow trout were captured in sections of streams above the inundation line where the water is cool and cover is abundant. California roach, Sacramento pike minnow, Sacramento sucker, carp, and green sunfish were captured in sections of streams below the inundation line. California roach, Sacramento pike minnows, and Sacramento suckers were more abundant species, while carp and green sunfish are relatively uncommon (Brown et al. 1983).

Species	North Fork Stony Creek	Salt Creek	Heifer Camp Creek
California roach	4	546	120
Carp	1		
Green sunfish	-	13	
Rainbow trout	-	24	8
Sacramento pike minnow	12	24	85
Sacramento sucker ¹ Brown et al. 1983	> 2	45	6

Table 13. Population Estimates for Fish Caught in Selected Sections of Streams within the Newville Reservoir Site in 1983¹

Table 14. Average Biomass Estimates (lb/acre) for FishCaught in Selected Sections of Streams within theNewville Reservoir Site in 1983¹

Species	North Fork Stony Creek	Salt Creek	Heifer Camp Creek
California roach	0.9	427.3	72.3
Carp	145.4	-	
Green sunfish	-	33.9	
Rainbow trout	-	74.9	18.7
Sacramento pike minnow	8	339.9	775.1
Sacramento sucker ¹ Brown et al. 1983	0.09	88.3	

The sections of stream within the inundation area are used primarily for spawning and rearing by nongame species (mainly the minnow family), although some green sunfish were observed spawning during the late spring in nonflowing areas of the stream. It is likely that, during high water, adult cyprinids ascend these tributaries from Black Butte Reservoir to spawn (Brown et al. 1983).

Upper Salt Creek supports a population of rainbow trout. Nongame fish were not found in this area nor were migratory cyprinids because they cannot ascend the creek due to a waterfall. This waterfall is not in the inundation area. However, if Newville Reservoir is built, the waterfall could be flooded, which would allow nongame fish to swim upstream. This may reduce the rainbow trout populations because of competiton with nongame fish (Brown et al. 1983).

Twenty-eight species of fish were observed in Stony Creek (Table 15). DFG developed population and biomass estimates for 21 of these species (Table 16). Eight species were game fish and 13 were nongame fish. Largemouth bass and bluegill were the most abundant gamefish below Black Butte Reservoir; channel catfish and white catfish were the most abundant game fish above the Sacramento River. Sacramento pike minnows and suckers were found in all stations throughout Stony Creek, were the most abundant, and had the highest biomass for all species of fish. Prickly sculpin were found in all sections, but made up a very small portion of the total biomass.

Most nongame fish caught in the reach below Black Butte Reservoir were juveniles, indicating that this reach serves mainly as a spawning and rearing area. Adult Sacramento suckers, Sacramento pike minnow, California roach, and hardhead annually migrate from the Sacramento River into Stony Creek to spawn. Juveniles that do not migrate immediately after hatching remain to rear until the following season when water flows to the mouth. Other game fish such as largemouth bass, smallmouth bass, bluegill, and green sunfish were also observed spawning in backwater areas of Stony Creek. These adult fish may have migrated upstream from the Sacramento River, may have washed downstream from Black Butte Reservoir, or may reside throughout the year in the creek.

Common Name	Scientific Name
Black bullhead	Ictalurus melas
Black crappie	Pomoxis melas
Bluegill	Lepomis machrochirus
Brown bullhead	lctalurus nebulosus
California roach	Lavinia symmetricus
Carp	Cyprinus carpio
Channel catfish	Ictalurus punctatus
Golden shiner	Notemigomus crysoleucus
Goldfish	Carassius auratus
Green sunfish	Lepomis cyanellus
Hardhead	Mylopharodon conocephalus
Hitch	Lavinia exilicauda
Largemouth bass	Micropterus salmoides
Mosquitofish	Gambusia affinis
Pacific lamprey	Lampetra tridentata
Prickly sculpin	Cottus asper
Rainbow trout	Onchorynchus mykiss
Redear sunfish	Lepomis microlophus
Sacramento blackfish	Orthodon microlepidotus
Sacramento pike minnow	Ptychocheilus grandis
Sacramento sucker	Catostomus occidentatlis
Smallmouth bass	Micropterus dolomeiu
Speckled dace	Rhinicthys osculus
Threadfin shad	Dorosoma petenense
Threespine stickleback	Gasterosteus aculeatus
Tule perch	Hysterocarpus traski
White catfish	Ictalurus catus
White crappie ¹ Brown et al. 1983	Pomoxis annularis

Table 15. Fish of the Stony Creek Drainage (Excludes Fish within
Newville Reservoir Site)¹

Species	Average Population Estimate	Average Biomass (Ib/acre)
Black crappie	8	87.4
Bluegill	19	8
California roach	200	54.4
Carp	5	64.2
Channel catfish	57	47.3
Goldfish	8	33.9
Green sunfish	7	2.7
Hardhead	9	24.1
Hitch	32	20.5
Largemouth bass	13	11.6
Mosquitofish	3	0.09
Prickly sculpin	57	11.6
Sacramento pike minnow	146	91
Sacramento sucker	96	256.9
Smallmouth bass	5	16.1
Speckled dace	318	41.9
Threadfin shad	2	0.9
Threespine stickleback	3	0.05
Tule perch	6	5.4
White catfish	30	34.8
White crappie ¹ Brown et al. 1983	5	17.8

Table 16. Average Population Estimates and Biomass Estimates for Fish Caught in Selected Sections of Stony Creek in 1982¹

Sites and Colusa Project Fish Studies

Fish studies for the Sites and Colusa Projects included three basic areas of study: fish resources in streams within the proposed reservoirs and in the Colusa Basin Drain, and habitat typing of the dominant streams in the proposed reservoirs.

Sites and Colusa Project Stream Fish Resources

This section summarizes studies of fish in streams that flow through the proposed Sites and Colusa Projects. Studies were conducted in 1998 and 1999. Information gathered in these streams will be used to describe impacts on fish resources during the planning process.

Figure 3. Streams in the Sites-Colusa Project

Methodology

Stone Corral Creek, Funks Creek, Logan Creek, and Hunters Creek and their tributaries originate in oak woodland habitat in western Colusa and Glenn Counties (Figure 3). The creeks flow downstream through annual grassland and cultivated rice fields before flowing into the Colusa Basin Drain. Deeply incised channels characterize these streams with little vegetation on the banks and little cover in streambeds. Streamflow is seasonal with periods of high flow during winter storms, declining flows through spring and early summer, and intermittent flow in late summer. Water quality is poor and high in dissolved minerals. The total dissolved solids in the water are so high that electrofishing as a means of sampling is not possible in the streams.

Pools were seined at specific stations on all creeks surveyed to determine species composition. All sample stations were within the footprint of the Sites-Colusa Project. Thirty-six stations were spread out among Hunter, Minton, Logan, Antelope, and particularly Stone Corral and Funks Creeks. Seven stock ponds in the Sites and Colusa area were also seined for fish.

Twelve species of fish were caught in the Sites and Colusa study area in 1998 and 1999. Five species were game fish and seven species were nongame fish (Table 17). A single spring-run chinook salmon was observed in Antelope Creek, a tributary to Stone Corral Creek in spring 1998. It died a few weeks later and was identified by its carcass.

Common Name	Scientific Name
Bluegill	Lepomis macrochirus
California roach	Hesperoleucus symmetricus
Chinook salmon	Oncorhynchus tschawtscha
Green sunfish	Lepomis cyanellus
Hitch	Lavinia exilicauda
Largemouth bass	Micropterus salmoides
Mosquitofish	Gambusia affinis
Redear sunfish	Lepomis microlophus
Sacramento blackfish	Orthodon microlepidotus
Sacramento pike minnow	Ptychocheilus grandis
Sacramento sucker	Catostomus occidentalis
Sculpin sp.	Cottus sp.

Table 17. Fish Caught in the Sites Study Area in 1998 and 1999

Funks Creek. Fifteen stations were sampled on Funks Creek between July 22, 1998, and January 8, 1999. Stations were evenly spaced between the Golden Gate damsite and the upper limit of flow in Funks Creek. Streamflow was intermittent. Five species of fish were found in Funks Creek, including one type of game fish, largemouth bass (Table 18). The most common fish in Funks Creek was the hitch, with an average density of 3.1 fish/yd² (Table 18). Hitch were caught in 11 out of 15 stations seined (Table 18).

Table 18. Species Caught at Each Sample Station andRelative Abundance on Funks Creek

Spacias							Statio	on Sa	mple	d						Fich/vd ²
Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	FISH/yu
Hitch			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			3.1
Largemouth bass									Х			Х				0.001
Sacramento pike minnow					Х	Х			х				Х			0.06
Sacramento Sucker					Х	Х			Х	Х			Х			0.02
Sculpin														Х		

The most diverse sampled sections of Funks Creek were in the lower reaches, stations 5, 6, 9, 10, 12, and 13. The upper reaches of Funks Creek either lacked fish or only one species was found. Hitch densities varied widely throughout the creek, and no one area seemed to maintain a higher population.

Hunters Creek. Three stations on lower Hunters Creek were seined between July 22, 1998, and August 3, 1998. No water was present above these sites. Only two species of fish were found on Hunters Creek, green sunfish and mosquitofish. Both species were found in two of the three stations (Table 19).

Mosquitofish were found in a relative abundance of 3.8 fish/yd^2 , but they only occurred in abundance at one station. Green sunfish were found to have an average density of 2.3 fish/yd^2 .

Table 19. Relative	Abundance	of Fish	Caught at	Hunters	Creek
--------------------	-----------	---------	-----------	---------	-------

Species	Fish/yd ²
Green sunfish	2.3
Mosquitofish	3.8

Minton Creek. Minton Creek was sampled in two places on August 12, 1998. Samples were taken in lower reaches of the creek because areas of the creek above the sample sites were dry. Hitch were found in only one of those stations, at a density of 0.5 fish/yd^2 .

Stone Corral Creek. Eleven stations were sampled on Stone Corral Creek between July 15, 1998, and January 6, 1999. Stations were located from the damsite to about 1 mile above. Flows were less than 1 cfs. Eight species of fish were found in Stone Corral Creek, including two species of game fish, green sunfish and bluegill (Table 20).

The fish most common fish among the stations was the Sacramento pike minnow followed by the hitch (Table 20). Fish density on Stone Corral was relatively low for all species at all stations. Hitch were the dominant species in terms of density 0.8 fish/yd^2 .

Table 20. Species Caught at Each Station and Relative Abundance on Stone Corral Creek

Species	Station Sampled									Fish/yd2		
-	1	2	3	4	5	6	7	8	9	10	11	-
Bluegill				Х								0.002
California roach		Х		Х								0.02
Green sunfish			Х					Х	Х	Х	Х	0.03
Hitch		Х	Х					Х	Х	Х	Х	0.8
Mosquitofish				Х								0.002
Sacramento blackfish											х	0.2
Sacramento pike minnow			х	х	Х	Х		Х	Х		х	0.2
Sacramento sucker			Х	Х		Х					Х	0.02

Most seining stations on Stone Corral Creek were clustered around the same region. Station 1 was far upstream from the others and yielded no fish. The diversity of species caught was highest at stations 4 and 11.

Antelope Creek. Five seining stations were sampled on Antelope Creek between July 14, 1998, and November 25, 1998. Stations were evenly spaced between the mouth of Antelope Creek and the boundary of Sites Reservoir.

Streamflow was less than 5 cfs. Three species of fish were captured on Antelope Creek: green sunfish, hitch, and Sacramento pike minnow (Table 21). Hitch were the most abundant fish with an average density of 3.8 fish/yd^2 . The Sacramento pike minnow and the green sunfish both had a relative abundance of 0.2 fish/yd^2 .

Table 21. Species	Caught at Each	Station and	Relative	Abundance
	on Antelo	pe Creek		

Species		Stat	ion Sam	pled		Fish/yd2
	1	2	3	4	5	
Green sunfish		Х		Х	Х	0.2
Hitch	Х	Х	Х	Х	Х	3.8
Sacramento pike minnow				Х	Х	0.2

Logan Creek. Four stations were sampled on Logan Creek over two days in August 1998. Stations were located in and near the footprint of the proposed Colusa Reservoir. Streamflow was less than 1 cfs. Hitch were caught in stations 1 and 2. The average density of hitch on Logan Creek was 0.4 fish/yd².

Ponds. DFG biologist seined seven stock-watering ponds in the study area. The ponds seined do not dry up during the summer. Three game fish were found in the ponds, red-eared sunfish, bluegill, and largemouth bass. Redear sunfish were found in one pond, bluegill were found in abundance in two ponds, and largemouth bass were found in three ponds. No other fish were found in these ponds.

Discussion

Hitch were found in all the creeks in the Sites and Colusa Project area. Hitch were also present in the greatest numbers. Stone Corral Creek had the greatest diversity of fish throughout the year—eight species—including two species of introduced game fish, bluegill and green sunfish. However fish densities were lower, particularly for hitch in Stone Corral than in other creeks. Funks Creek, the next most diverse creek, had only five species of fish, including one introduced game fish, largemouth bass.

Most fish captured during seining were minnows, members of the Cyprinid family. California roach are the only fish present that are adapted to spending summers in the remaining pools of intermittent streams (Moyle 1976). Very few fish found while seining, including game fish, were above 5.9 inches in lengths, suggesting that juvenile fish only rear in these areas. Adult fish typically ascend seasonal creeks in the study area in winter and spawn there in early spring. Most adults migrate downstream after spawning.

No species of concern or threatened or endangered species were found in this study. The species caught during the study are common in California.

Colusa Basin Drain Fish Studies

This section describes the fish resources of the Colusa Basin Drain. Colusa Basin Drain is a natural channel that historically transported water from west

DRAFT

side tributaries such as Willow, Funks, Stone Corral, and Freshwater Creeks to the Sacramento River. It also carried overflowing floodwater from the Sacramento River. With the advent of agriculture in the Sacramento Valley, the Colusa Basin Drain was channelized and dredged to carry agricultural runoff in addition to natural flows.

Streamflow in the CBD peaks in winter months when storms swell the small streams that feed the CBD. Flow also reaches high levels in late summer when rice fields are drained into the CBD. Table 22 shows average monthly streamflow in CBD from 1976 to 1997. Daily and instantaneous flows in the CBD may be much higher.

The CBD provides little bank cover for fish; however, some instream cover is provided by large and small woody debris. Its banks are scoured by periodic high flows and roads often run along the dikes that contain the waters of the CBD. The bottom of the CBD is largely mud. Water in the CBD is turbid and warm in the summer, and turbid and cool during the winter. The proposed diversion from the CBD for Sites and Colusa Reservoirs will be east of the town of Maxwell along the CBD.

Table 22. Average Monthly Streamflow (cfs) in the Colusa Basin

Drain at the Highway 20 Crossing **.** . la ve - . .. I..I A.

rear	Uct	NOV	Dec	Jan	Feb	war	Apr	way	Jun	Jui	Aug	Sep
1976	237	249	160	185	177	371	312	879	239	434	926	904
1977	169	255	138	312	181	256	90	642	121	121	424	388
1978	116	272	254	3121	2133	1429	365	684	469	711	1056	1028
1979	201	312	113	689	940	407	328	802	424	803	1211	1029
1980	200	563	837	1874	2888	1305	326	1048	603	805	1307	1160
1981	275	328	359	1017	840	433	342	1039	446	1057	1464	1182
1982	284	877	1115	1939	472	383	682	743	908	n.r.	1393	1356
1983	467	778	1225	2331	3028	5304	990	n.r.	n.r.	907	1168	1198
1984	315	1302	3623	1523	493	265	547	1190	851	1310	1580	1041
1985	376	1160	683	285	170	196	409	1048	768	1237	1442	1442
1986	316	663	700	754	4214	1833	449	921	834	1052	1338	1338
1987	318	459	235	249	319	508	495	913	707	907	1175	1175
1988	341	668	462	1365	287	431	666	849	515	586	972	972
1989	345	617	354	342	212	404	438	572	587	800	995	995
1990	303	411	181	346	203	n.r.	n.r.	583	439	533	913	913
1991	247	n.r.	n.r.	153	217	916	423	477	353	371	535	535
1992	159	319	291	261	932	670	256	167	250	149	186	186
1993	116	267	347	2900	3049	762	322	279	290	201	489	489
1994	203	419	466	315	740	331	300	191	147	61	418	418
1995	155	565	549	6612	2020	3823	591	551	364	297	416	416
1996	255	368	749	972	2668	1092	493	771	472	249	660	660
1997	229	643	643	3698	1464	357	321	286	152	368	953	953
AVG	256	547	642	1420	1257	1023	435	697	473	617	956	956

Methodology

Two fyke nets were placed in the CBD, one upstream of the proposed diversion point and one downstream. The first net was put in at the confluence

of Willow Creek and the CBD. The second was placed just south of Hwy 20 on the CBD. The fyke nets have a 3 foot-by-5 foot opening, and a 12-foot funnel. Galvanized pipe frames support the net opening. Nets of variable size stretched mesh were used: 1 inch, 0.25 inch, and 0.125 inch. The largest sized mesh was at the front of the funnel, and smallest size mesh was at the back. The narrow end of each net is connected to a wooden live box, 2.5 feet by 1.5 feet by 1.6 feet. Holes in the side and back of the box were covered by screening with a mesh size of 0.19 inch. The fyke nets were held in fishing position by rope bridles attached to ropes secured to metal fencing posts and/or a tree or utility pole on the bank. The nets were installed on January 19, 1999, and checked daily Monday through Friday. The nets were identified and measured for fork length to the nearest millimeter for the first 20 of each species, after which species were only tallied. Representatives of each species were either photographed or preserved for future positive identification.

Periodic seining using the medium sized—29-feet long, 6-feet high, onequarter inch mesh; seine, and hook and line sampling were also used to sample the fish of the Colusa Basin Drain at the upper net location. Two hoop nets and a gill net were also placed at the upper fyke net location February 1, 1999. The hoop nets were installed upstream of the fyke net. The hoop nets were 7 feet long with six hoops 2 feet in diameter set 1 foot apart, with a net mesh size of 1 inch. They had two finger funnels each. These nets were secured to a wooden bridge and placed on either side of the channel. The hoop nets were baited with fish carcasses. The gill net spanned the entire distance of the drain downstream of the fyke net. These nets were removed March 10, 1999. One hoop was replaced at the bridge on March 19, 1999.

Results

A total of 9 game fish and 17 nongame fish were caught in the CBD (Tables 23 and 24). The warmouth (*Lepomis gulosus*) and the largemouth bass (*Micropterus salmoides*), which were caught by U.S. Geological Survey in 1996, were not observed in this recent survey.

Common Name	Scientific Name
Black bullhead	lctalurus melas
Black crappie	Pomoxis nigromaculatus
Bluegill	Lepomis macrochirus
Brown bullhead	lctalurus nebulosus
Channel catfish	lctalurus punctatus
Chinook salmon	Oncorhynchus tschawtscha
Green sunfish	Lepomis cyanellus
White catfish	lctalurus catus
White crappie	Pomoxis annularis

Table 23. Resident Game Fish of the Colusa Basin Drain

Table 24. Resident Nongame Fish of the Colusa Basin Drain

Common Name	Scientific Name
Big scale logperch	Percina macrolepida
California roach	Hesperoleucus symmetricus
Carp	Cyprinus carpio
Flathead minnow	Pimephales promelas
Goldfish	Carassius auratus
Hitch	Lavinia exilicauda
Inland silversides	Menidia beryllina
Mosquitofish	Gambusia affinis
Pacific lamprey	Lampetra tridentata
Sacramento blackfish	Orthodon microlepidotus
Sacramento pike minnow	Ptycholcheilus grandis
Sacramento splittail	Pogonichthys macrolepidotus
Sacramento sucker	Catostomus occidentalis
Sculpin sp.	Cottus sp.
Threadfin shad	Dorosoma pretenense
Tui chub	Gila bicolor
Tule perch	Hysterocarpus traski

One late fall-run chinook salmon carcass was found in the upper fyke net. In October 1998, fall-run chinook salmon were observed migrating up the CBD at the Delevan Wildlife Area. DWR biologists saw spring-run chinook salmon in Walker Creek, a tributary to Willow Creek, in spring 1998. Four splittail were caught in the fyke net located just below Highway 20 in July and August, 1999. All four were young-of-the-year splittail. They averaged 1.4 inches, and ranged from 0.9 to 2.0 inches fork length.

The greatest diversity of fish was caught in the upper fyke net, at the confluence of Willow Creek and the CBD. The gill net and the hoop net caught

DRAFT

only a few different species of fish (Table 25). Various tadpoles, mostly bullfrog, (*Rana catesbieana*), were by far the most numerous animal caught by any method, but particularly the fyke nets. Channel catfish were the most frequently caught fish, the majority of which were juveniles. Mostly juvenile fish were caught in the nets. Rarely did fish exceed 5.9 inches, with the exception of the goldfish. Adult channel catfish, up to 17.7 inches, were caught by hook and line. Carp, up to 20 inches, were also caught with hook and line.

Seining was the most efficient form of sampling in the Colusa Basin Drain, with a catch per hour effort ratio of 21.8. The hoop net was the least efficient method of capture, with a catch per hour effort ratio of 0.01 (Table 26).

Species	Gill net	Hoop net	Seine	Hook & line	Fyke nets	Total	
Big scale logperch			2		3	5	
Black bullhead				1	7	8	
Black crappie			1		2	3	
Bluegill	1	1	10	1	23	36	
Brown bullhead				20	18	38	
California roach			15		1	16	
Carp				69	2	71	
Channel catfish	2	1		28	195	226	
Chinook salmon					1	1	
Flathead minnow					1	1	
Goldfish				16	15	31	
Green sunfish			8		48	56	
Hitch			40	1	52	93	
Inland silversides			1		4	5	
Mosquitofish			3		6	9	
Pacific lamprey					7	7	
Sacramento blackfish			96		23	119	
Sacramento pike minnow	1				2	3	
Sacramento splittail					4	4	
Sacramento sucker	1	1	1		3	6	
Sculpin sp.			1		1	2	
Threadfin shad					6	6	
Tui chub						1	
Tule perch		1			4	5	
White catfish				7	18	25	
White crappie					3	3	

Table 25. Number of Species Captured at Each Trapping Station

Trapping Method	Total Effort Hours	Catch per Hour Effort
Gill net	336	0.02
Hoop net	576	0.01
Seine	8	21.8
Hook and line	41	3.5
Fyke net	2500	0.25

Table 26. Catch Per Hour Effort for Each Trapping Method

Discussion

Four Sacramento splittail were caught. This species were federally listed as threatened in March 1999. Numerous fall-run chinook salmon were observed in the CBD and the carcass of one late fall-run chinook salmon was found. Fall-run chinook salmon and late fall-run chinook salmon are federally proposed for listing as threatened. Spring-run chinook salmon were observed in Walker Creek, a tributary to the CBD. They were listed as a State of California Threatened Species in February 1999. They are also proposed for listing as a federally endangered species.

Willow and Freshwater Creeks are tributaries to the CBD. They flow all year in their upper reaches and have deep pools suitable for steelhead juveniles. Steelhead smolts migrate during high stream flows in the winter. The nets set up in the CBD might not have caught them because larger fish and migrating yearling steelhead avoid fixed fyke nets. Willow and Freshwater Creeks should be sampled during summer to detect rearing steelhead fry.

Sites and Colusa Project Habitat Types

This section summarizes studies of habitat types along the streams in the proposed Sites and Colusa Project areas conducted in 1998 and 1999.

Methodology

An initial channel type survey, including an evaluation of the overall channel morphology, was made at the beginning of the study of each creek. Channel type was subsequently determined when the overall character of the channel changed for over 20 bankfull widths.

Channel type surveys began by first noting if the stream is a threaded or single channel. Then the bankfull width was measured at the prominent scour marks and sedimentation on the bank substrate with a 100-foot vinyl tape. Ten depths were taken at the study section to obtain the average bankfull depth. The substrate type was noted (Table 27).

Substrate Type	Size in inches
Boulder	> 10
Large Cobble	5-10
Small Cobble	2.5-5
Gravel	0.08-2.5
Sand	<0.08
¹ Flosi et al. 1998	

Table 27. Substrate	Type and Size Used ¹
---------------------	---------------------------------

Habitat type evaluation on Funks Creek began at Golden Gate damsite on January 12, 1999, and proceeded upstream to a point just above the mouth of Grapevine Creek on February 25, 1999. After this point, Funks Creek no longer contained water. Habitat typing continued on Grapevine Creek from the confluence with Funks Creek on February 26, 1999, and concluded at the reservoir inundation line on April 28, 1999. Stone Corral Creek habitat typing began on February 10, 1999, and continued until the channel no longer contained water, just past the confluence of Antelope Creek. Habitat typing concluded for Stone Corral and began on Antelope Creek on February 23, 1999. Habitat typing concluded on Antelope Creek on April 22, 1999, at the reservoir inundation line.

Each habitat unit was described as a pool, flat water, or riffle. All data was recorded on a standardized habitat typing data sheet (Flosi et al. 1998). Side channels were evaluated separately only when they demonstrated a different habitat type due to the small nature of the creek bed and intermittent water flow. Once the habitat unit type was identified it was assigned a unit number. For each unit, a mean length (measured as the thalweg length), width, and depth were taken, as well a maximum depth. All measurements were made and recorded in feet and tenths of feet using standard engineering measuring tapes and stadia rods. For pools, the tail-crest depth, type of pool-tail substrate, and the percent the substrate is embedded were also evaluated.

In addition to unit type data, the time surveying began, air and water temperature, date, and surveyors present were all recorded daily. Yellow flags were left at the end of the last habitat unit surveyed each day. The substrate type and percent exposed substrate was recorded. A shelter value for the unit was given based on the quantity and composition of the cover. The total percent cover for the habitat unit was recorded, then broken down into the percentages of the total that each cover element represented.

The bank composition was evaluated and dominant vegetation for right and left banks was recorded. Plant species and bank substrates were entered. The percent of the bank vegetated was evaluated up to bankfull width plus 20 feet. The percent and type, (deciduous or coniferous), of cover by tree canopy at midday was also evaluated. This was done for the entire part of each stream studied.

Results

Funks Creek. Flat water constituted 51 percent of the total creek measured. The average flat water length on Funks Creek was 212 feet. Pools at 35 percent of the total length with an average length of 146 feet, were the second most dominant habitat type. Riffles constituted 14 percent of the creek, with an average unit length of 57 feet (Figure 4).

Figure 4. Relative Occurrence of Habitat Types in Funks Creek

Gravel was the most common substrate (Table 28). Small cobble substrate was the second most common substrate type, occurring at 28 percent of the units surveyed. Silt/clay type substrate was most commonly associated with the gravel substrate, either as the primary or secondary substrate. It also frequently occurred as a layer over bedrock or boulder substrates. Silt/clay was the dominant substrate in the lower reaches of Funks Creek, giving way to gravel as the dominant substrate in the upper reaches of the stream.

Habitat type	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock
Riffle	19	0	26	21	10	1	24
Flat water	11	1	33	21	5	8	21
Pool	6	1	41	43	5	2	2
Average	12	1	33	28	7	4	15

Table 28. Summary of Substrates (%) by Habitat Typeon Funks Creek

The bank composition was overwhelmingly silt/clay. Occasional areas of bedrock bank or cobble bank occurred; where roads passed through or near the creek, boulders dominated the bank. Greater variability of bank composition occurred in the lower reaches of the creek. Most bedrock banks occurred in major blocks where bedrock ridges rose through the valley floor. Star thistle and grasses dominated both banks. The average percent bank covered by vegetation was 52 percent for the right bank and 53 percent for the left bank. Occasional cottonwoods, willows, oaks, and walnut trees punctuate the bank. Only 18 percent of the habitat units had some degree of canopy. The average canopy cover was 5 percent, or 26 percent when considering only those units that had any canopy cover at all. Trees were concentrated at Golden Gate, where habitat typing began on Funks Creek, and in the upper reaches of the creek.

The average of the total units covered by all cover combined was 27 percent. Aquatic vegetation was the prevalent type of cover, boulders were the most common large cover item. Aquatic vegetation and boulders each comprised an average of 25 percent of the total cover (Table 29). Large woody debris and root masses occurred relatively infrequently. Undercut banks occurred in 17 percent of the habitat units. Pools overall had a large degree and variety of cover, while flat water and riffles had less cover.

	Percent		Percent of Cover Type							
	of each habitat having cover	Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges
Riffles	20	-	-	1	-	20	15	30	28	6
Flat water	38	34	1	1	-	1	27	10	25	1
Pools	24	18	3	1	1	1	34	2	21	19
Average	27	17	1	1	-	7	25	14	25	9

Grapevine Creek. Riffles made up 24 percent of the total creek measured (Figure 5). The average riffle length on Grapevine Creek was 72 feet. Flat water made up 23 percent of the total length with an average length of 143 feet, and was the least dominant habitat type. Pools made up just over half, 53 percent, of the total length of Grapevine Creek within the reservoir footprint.

Small cobble was the most common substrate in Grapevine Creek. Gravel was also common, occurring as the substrate in 30 percent of the habitat units. Large cobble was the dominant substrate in 13 percent of the units surveyed. Small cobble substrate was spread throughout the creek system; however, there were no distinct pockets of this or any other substrate.

Figure 5. Relative Occurrence of Habitat Types in Grapevine Creek

Thirty-two percent of the pools on Grapevine Creek were dominated by small cobble substrate. Gravel was dominant in 22 percent of these. Flat water was dominated by gravel and small cobbles (Table 30).

	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock
Riffle	5		32	24	11	1	27
Flat water	12	1	35	41	7	2	2
Pool	6		22	32	21	5	14
Average	8		30	32	13	3	14

Table 30. Summary of Substrates on Grapevine Creek

Bank composition was overwhelmingly silt/clay. Frequent patches of gravel/cobble banks occurred throughout the creek channel surveyed. Most bedrock banks occurred in major blocks where bedrock ridges rise through the valley floor.

Grasses and star thistle dominated both banks. The average percent bank covered by vegetation was 56 percent for the right bank and 54 percent for the left bank. Occasional oaks, willows, cottonwoods, walnuts, and gray pines punctuate the bank. Thirty-nine percent of the habitat units examined on Grapevine Creek had some degree of canopy—38 percent from deciduous trees and shrubs, and 1 percent from pines. The average canopy cover was 12 percent. Trees were more concentrated at the upstream end where Grapevine Creek starts to climb in elevation toward the edge of the reservoir footprint.

The average of the total unit covered by all cover combined was 29 percent. Aquatic vegetation was the most prevalent type of cover, occurring in 72 percent of the flat water units surveyed. Aquatic vegetation comprised an average 53 percent of the total unit cover (Table 31).

Pools had the largest mean total coverage at 32 percent. Aquatic vegetation comprised 46 percent of the cover in pools. Riffles had a mean total cover 28 percent, 40 percent of which was aquatic vegetation. Terrestrial vegetation, boulders, and bubble curtains also provided cover in riffles—14 percent, 17 percent, and 7 percent, respectively. Flat water averaged 26 percent total coverage, of this 72 percent of the cover was aquatic vegetation.

Aquatic vegetation was the most common large cover item, occurring in 53 percent of the units surveyed. Root masses were another large cover item that occurred with some frequency at 7 percent. Terrestrial vegetation occurred in 9 percent of the habitat units, and bedrock ledges in 4 percent of the units. Riffles and pools contained all of the major types of cover (Table 31).

	Percent of		Percent of Cover Type									
	each habitat having cover	Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges		
Riffles	28	1	3	3	13	14	40	7	17	2		
Flat water	26	5	3	-	4	8	72	4	4	-		
Pools	32	7	3	12	4	4	46	4	9	11		
Average	29	4	3	5	7	9	53	5	10	4		

 Table 31. Summary of Habitat Cover in Grapevine Creek

Stone Corral Creek. Flat water made up the majority of habitat type measured, comprising 52 percent of the total creek. The average flat water length on Stone Corral Creek was 213 feet. Pools, making up 36 percent of the total length and with an average length of 145 feet, were the second most dominant habitat type in terms of total footage. Riffles made up 12 percent of the creek's total length, with an average unit length of 48 feet (Figure 6).

Bedrock was the most common substrate, occurring as the primary substrate in 31 percent of the total units surveyed on Stone Corral Creek. Gravel substrate was the second most common substrate type, occurring in 24 percent of units surveyed. Silt/clay type substrate was commonly associated with bedrock or gravel, occurring as a layer over the other substrates. The lower reach of Stone Corral Creek was heavily dominated by bedrock, giving way to a more gravel base near the confluence with Antelope Creek. Silt/clay substrate is spread consistently throughout the creek system.

Thirty-three percent of pools had silt/clay as the dominant substrate (Table 32). Fifty-two percent of flat water had gravel as the dominant substrate. Riffles had 56 percent bedrock dominant and 17 percent silt/clay dominant substrate. The most common occurring pool tail substrate was bedrock.

	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock			
Riffle	17		9	1		17	56			
Flat water	20		52		14	14				
Pool	33	5	12	2		12	36			
Average	23	2	24	1	5	14	31			

Table 32. Summary of Substrates on Stone Corral Creek

The bank composition was overwhelmingly silt/clay. Occasional areas of bedrock bank or cobble bank occurred; where roads passed through or near the creek, boulders dominated the bank. Greater variability of bank composition then occurred in the lower reaches of the creek, where cobbled banks frequently occurred. Most bedrock banks occurred in major blocks where bedrock ridges rise through the valley floor.

Bank vegetation included grasses and star thistle, which dominated both banks. The average percent bank covered by vegetation was 62 percent for the right bank and 63 percent for the left bank. Occasional oaks, willows, cottonwoods, and walnut trees punctuate the bank. Only 11 percent of the habitat units surveyed had some degree of canopy. The average canopy cover was 4 percent, all deciduous trees and shrubs. Trees were more concentrated at the lower end where habitat typing began on Stone Corral Creek. The average of the total unit covered by all cover types combined was 33 percent. Aquatic vegetation was the most prevalent type of cover, comprising an average of 56 percent of the total unit coverage.

Riffles had a mean total cover of 39 percent, 49 percent of which was aquatic vegetation. An average of 7 percent of the cover in riffles was comprised of boulders. Flat water averaged 34 percent total coverage, of this 61 percent of the cover was aquatic vegetation. Pools had a mean percent total coverage of 26 percent.

Aquatic vegetation was the most common large cover item, occurring in 56 percent of the units surveyed. Boulders and terrestrial vegetation were the next most common cover items at 16 percent and 12 percent, respectively. Undercut banks occurred in 6 percent of the habitat units, and bedrock ledges in 4 percent of the units. No habitat unit types contained all major types of cover (Table 33).

	Percent of Percent of Cover Type									
	habitat having cover	Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges
Riffles	39	-	-	-	-	25	49	18	7	2
Flat water	34	5	5	-	-	6	61	-	21	3
Pools	26	12	-	-	1	4	57	-	19	7
Average	33	6	2	-	-	12	56	6	16	4

 Table 33. Summary of Habitat Cover in Stone Corral Creek

Antelope Creek. Flat water made up the majority of the total footage measured, comprising 53 percent of the total creek measured. The average flat water length on Antelope Creek was 135 feet. Riffles made up 7 percent of the creek's total length, with an average unit length of 18 feet. Pools comprised 40 percent of the total length measured with an average length of 103 feet (Figure 7).

Silt/clay was the most common substrate, occurring as the primary substrate in 24 percent of Antelope Creek. Gravel and small cobble were also common substrates at 22 percent each. Silt/clay type substrate was commonly associated with gravel. Small cobble increased in frequency of occurrence in the upper reaches of Antelope Creek. Gravel substrate occurred uniformly throughout Antelope Creek (Table 34).

Figure 7. Relative Occurrence of Habitat Types in Antelope Creek

Silt/clay dominated the majority of pools. Twenty-nine percent of flat water units had silt/clay as the dominant substrate. Gravel and small cobbles at 23 percent and 22 percent respectively (Table 34) dominated riffles.

	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock
Riffle	7	2	23	22	7	9	30
Flat water	29	3	25	27	7	2	7
Pool	35	3	18	16	10	14	4
Average	24	3	22	22	8	8	14

Table 34. Summary of Substrates on Antelope Creek

Bank composition was largely silt/clay. Occasional areas of bedrock bank or cobble bank occurred; where roads passed through or near the creek, boulders dominated the bank. The diversity of bank substrate increased, particularly gravel and cobble, in the upper reaches of Antelope Creek.

Grasses and star thistle dominated both banks. The average percent bank covered by vegetation was 80 percent for the right bank and 80 percent for the left bank. Oaks, willows, cottonwoods, walnut trees, and gray pines punctuate and occasionally line the bank. Forty-seven percent of the habitat units surveyed had some degree of canopy. The average canopy cover was 20 percent. Trees were more concentrated at the middle to upper reaches.

The average of the total stream habitat covered was 31 percent (Table 35). Aquatic vegetation was the most prevalent type of cover, occurring in 65 percent of the units surveyed. Aquatic vegetation comprised an average of 46 percent of the total unit cover.

Riffles had an average total cover of 34 percent, with 43 percent aquatic vegetation. Flat water averaged 30 percent total coverage—58 percent aquatic vegetation. The primary cover for all units was aquatic vegetation. Some units

indicated a higher percentage of cover, but these occur on an infrequent basis in this creek.

Aquatic vegetation and terrestrial vegetation were the most common large cover items, occurring in 46 percent and 17 percent respectively of the units surveyed. Most units surveyed had small amounts of a variety of cover types.

Habitat type	Percent of each habitat having cover	Percent of each habitat type									
		Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges	
Riffles	34	4	5	4	15	16	43	1	12	-	
Flat water	30	4	3	1	8	19	58	1	5	1	
Pools	29	18	7	1	7	15	37	1	13	1	
Average	31	9	5	2	10	17	46	1	10	1	

Table 35. Summary of Cover in Antelope Creek

Discussion

Habitat typing was done to quantify physical aquatic habitat to provide information for the NEPA and CEQA process. This quantification will determine habitat lost by inundation and will form the basis for mitigation. Grapevine Creek had more pools and riffles. Grapevine Creek also had the least amount of flat water. Funks Creek and Stone Corral Creek had similar amounts of pools, flat water, and riffles. Antelope Creek was more like Stone Corral and Funks Creeks than Grapevine Creek. Grapevine Creek flows from springs in hills to the west of Sites-Colusa and is steeper than the other creeks. That causes Grapevine Creek to have less flat water than the other creeks (Table 36 and Figure 8).

Table 36. Comparison of Relative Occurrence of Pools, Flat Water, and Riffles in Creeks in the Sites-Colusa Project Area

	Funks	Grapevine	Stone Corral	Antelope
Pools	21	32	22	24
Riffles	25	42	21	12
Flat water	28	13	29	30

Figure 8. Relative Occurrence of Habitat Types in Sites-Colusa

Stone Corral Creek had a high abundance of larger substrates. Grapevine Creek had the lowest percentage of silt. Grapevine Creek also had the most gravel, small cobble, and large cobble substrate. Fine materials are abundant in Stone Corral and Antelope Creeks. The relatively steep nature of Grapevine Creek washes fine materials away and leaves coarser materials behind (Table 37).

Creek	Habitat type									
	Silt/Clay	Sand	Gravel	Small cobble	Large cobble	Boulder	Bedrock			
Funks	12	3	32	28	7	3	15			
Grapevine	8	1	30	32	13	3	13			
Stone Corral	23	2	24	1	5	14	31			
Antelope	24	3	22	22	8	8	13			

Table 37.	. Summary of Substrates (%) by Habitat Type on Creeks
	in the Sites-Colusa Study Area

The occurrence of cover types followed the same trends for all four creeks surveyed. Aquatic vegetation was the dominant cover type in each creek. Stone Corral Creek showed a higher percent occurrence of boulders—nearly twice as many as Antelope Creek and nearly five times as many as Funks and Grapevine Creeks.

Bubble curtains were more common in Funks Creek. Antelope Creek had more cover provided by root masses than the other creeks (Table 38).

Creek	Percent of each	nt Percent of Habitat Cover ch									
	habitat having cover	Undercut banks	Small woody debris	Large woody debris	Root masses	Terrestrial vegetation	Aquatic vegetation	Bubble curtain	Boulders	Bedrock ledges	
Funks	27	17	1	1	1	7	25	14	25	9	
Grapevine	29	4	3	4	7	10	53	6	10	4	
Stone Corral	33	6	1	-	1	10	54	6	16	4	
Antelope	31	9	5	2	10	17	46	1	9	1	

Table 38. Summary of Cover (percent of each habitat type) onCreeks in the Sites-Colusa Study Area

The pools of all four creeks had similar degrees of cover for all habitats, which were spread very closely to 30 percent coverage. Notable spikes in percent unit covered occurred in unit types that have a very low frequency of occurrence. Grapevine and Antelope Creeks show an increase in the occurrence of canopy (Figure 9).

Figure 9. Percent of Canopy Over Creeks Measured at Sites-Colusa Project Area

Creek flows varied widely with lack of rainfall, forcing activity to be suspended on some areas of Funks, Stone Corral, and Antelope Creeks until further rain revived the stream flow. This suggests that streams on the floor of the Antelope Valley are intermittent and only flow during the summers of particularly wet years. Antelope Creek, and particularly Grapevine Creek, could flow year round. The majority of the fish found in this area were juvenile fish that would probably use the creeks only as rearing areas. The high concentration of sediments and aquatic vegetation would also raise the biological oxygen demand in the creeks during the summer months in any remaining deeper pools,

DRAFT

making them uninhabitable to most fish, with the exception of the California roach, *Lavinia exilicauda* (Moyle 1976).

Both Grapevine and Antelope Creeks are the continuations of the main creek channels of those systems. Both creeks also show an increase in canopy and larger substrates. When viewed as just two creek systems, Funks-Grapevine and Stone Corral-Antelope both show a trend toward more canopy and larger substrates. The increased canopy and decreased sedimentation in the upper reaches of Antelope Creek and Grapevine Creek may provide sufficient cooling factors for year-long fish inhabitants. Eight-to-10 inch largemouth bass, *Micropterus salmoides*, were seen in the upper reaches of Grapevine Creek, which suggests a year-round flow capable of supporting larger fish. The larger substrate size also provides cover for the minnow fry that occupy the creeks in the spring.

Very little riparian vegetation, such as rushes, essential cover for aquatic amphibians and reptiles, exists on the banks of any of the creeks in the Sites-Colusa Project area, with the exceptions of the upper reaches of Antelope and Grapevine Creeks.

Summary of Fish Studies for Proposed Projects

Thomes Creek has runs of fall-run, late fall-run, and limited numbers of spring-run chinook salmon. Steelhead also spawn in Thomes Creek. Large runs of Sacramento suckers and Sacramento pike minnows migrate up Thomes Creek. Fall-run salmon, Sacramento suckers, and Sacramento pike minnow also migrate up Stony Creek. Cottonwood Creek has larger runs of fall-run, late fall-run, and spring-run chinook salmon. Cottonwood Creek has a run of steelhead, as well as annual migrations of Sacramento suckers and Sacramento pike minnows. Stone Corral Creek and Funks Creek have no established runs of chinook salmon but have small runs of Sacramento suckers and Sacramento pike minnows.

References

Bill, A.J., L.A. Brown, and R.A. Steel. 1975. Major Surface Water Development Opportunities in the Sacramento Valley. California Department of Water Resources. 53p.

Brown, C.J. 1979. An Analysis of Stream Flows for Fishes of Cottonwood Creek, California. California Department of Fish and Game. 22 p.

______, E.D. Smith, J.M. Siperek, N.A. Villa, H.H. Reading, and J.P. Finn. 1983. *Thomes-Newville Unit Fish and Wildlife Evaluation*. California Department of Fish and Game. 207 p.

, J.R. Garcia and A. Woesner. 1985. *Final Report on Reconnaissance Level Studies of the Fish and Wildlife Resources at the Dippingvat and Schoenfield Reservoir Sites*. California Department of Fish and Game. 89 p.

- California Department of Fish and Game. 1966. *California Fish and Wildlife Plan. Vol. III. Supporting Data, Part B - inventory Salmon - Steelhead and Marine Resources.* California Department of Fish and Game. pp. 323-679.
- Elwell, R.F. 1962. *King Salmon Spawning Stocks in California's Central Valley,* 1961. California Department of Fish and Game, Mar. Res. Br. Admin. Rept. 62-5
- Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey, B. Collins. 1998. *California Salmonid Stream Habitat Restoration Manual*. State of California, the Resource Agency California Department of Fish and Game. Inland Fisheries Division 1998, pp. III-1 III54
- Fry, D.H. Jr. 1961. *King Salmon Spawning Stocks in California's Central Valley*, 1949-1959. Calif. Fish and Game 47(1):55-71.

_____, and A. Petrovich, Jr. 1970. *King salmon* (Onchorynchus tshawytscha) *Spawning Stocks of the California Central Valley, 1953-1969.* California Department of Fish and Game. Anad. Fish. Admin. Rept 70-11.

- Haley, R., E.S. Smith, and W.F. Van Woert. 1972. *Fish and Wildlife Problems and Opportunities in Relation to Sacramento River Water Developments*. California Department of Fish and Game. 41 pp.
- Hansen, H.A., O.R. Smith, and P.R. Needham. 1940. *An Investigation of Fish Salvage Problems in Relation to Shasta Dam*. U.S. Fish and Wildlife Service Special Scientific Report No. 100. 200 p.

DRAFT

Hoopaugh, D.A. (ed.) 1978. King Salmon (Chinook) Spawning Stocks in California's Central Valley, 1976. California Department of Fish and Game. Anad. Fish. Br. Admin. Rept. 78-19.

_____, ed. 1978a. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1975.* Calif. Fish and Game, Anad. Fish. Br. Admin. Rept. No. 77-12. 29 p.

_____, 1978b. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1976*. Calif. Fish and Game, Anadromous Fish Branch Administrative Report. No. 78-19. 28 p.

_____, and A.C. Knutson, Jr. (eds.) 1979. *Chinook (king) Salmon Spawning Stocks in California's Central Valley, 1977.* California Department of Fish and Game. Anad. Fish. Br. Admin. Rept. 79-11.

Kano, R.M., R.L. Reavis and F. Fisher (ed.) 1996. Annual report. Chinook Salmon Spawning Stocks in California's Central Valley, 1984. California Department of Fish and Game. Inland Fish. Div. Admin. Rept. 96-4.

_____,(ed.). 1998a. Annual Report. *Chinook Salmon Spawner Stocks in California's Central Valley, 1991*. California Department of Fish and Game. Inland Fish. Div. Admin. Rept. 98-6.

_____, (ed.). 1998b. Annual report. *Chinook Salmon Spawner Stocks in California's Central Valley, 1992*. California Department of Fish and Game. Inland Fish. Div. Admin. Rept. 98-10.

- Knutson, A.C. Jr. (ed.) 1980. Chinook (King) Salmon Spawning Stocks in California's Central Valley, 1977. California Department of Fish and Game. Anad. Fish. Br. Admin. Rept. 80-6.
- Leach, H.R. and W.F. VanWoert. 1968. Upper Sacramento River Basin Investigation-Fish and Wildlife Evaluation of Tributary Developments and Butte Basin Flood Control. California Department of Fish and Game. 132 p.
- Mahoney, J. 1958. 1957 King Salmon Spawning Population Estimates for the Sacramento-San Joaquin River Systems. Calif. Fish and Game, Marine Res. Br. Admin. Report. 18 p.

_____, 1960. 1959 King Salmon Spawning Population Estimates for the Sacramento-San Joaquin River Systems. Calif. Fish and Game, Marine Res. Br. Admin. Rept. 13 p. _____, 1962. 1960 King Salmon Spawning Population Estimates for the Sacramento-San Joaquin River System. California Department of Fish and Game. Mar. Res. Br. Admin. Rept. 62-1.

Menchen, R.S.(ed.) 1963. *King Salmon Spawning Stocks in California's Central Valley, 1962.* California Department of Fish and Game. Mar. Res. Br. Admin. Rept. 63-3.

_____, (ed.) 1964. *King Salmon Spawning Stocks in California's Central Valley, 1963.* California Department of Fish and Game. Mar. Res. Br. Admin. Rept. 64-3.

, ed. 1965. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1965.* Calif. Fish and Game, Marine Res. Br. Admin. Rept. No. 65-2. 17 p.

_____, 1966. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1967.* Calif. Fish and Game, Marine Res. Br. Admin. Rept. No. 66-6. 22 p.

, (ed.) 1967. *King Salmon Spawning Stocks in California's Central Valley, 1966*. California Department of Fish and Game. Mar. Res. Br. Admin. Rept. 67-13.

_____, 1968. *King (Chinook) Salmon Spawning Stocks in California's Central Valley, 1967.* Calif. Fish and Game, Marine Res. Br. Admin. Rept. No. 68-6. 27 p.

_____,(ed.) 1969. *King Salmon Spawning Stocks in California's Central Valley, 1968.* California Department of Fish and Game Anadromous Fishery Branch Administrative Report 69-4.

_____, (ed.) 1970. *King Salmon Spawning Stocks in California's Central Valley, 1969.* California Department of Fish and Game Anadromous Fishery Branch Administrative Report. 70-14.

Moyle, P. B. *Inland Fishes of California*. University of California Press, Berkeley and Los Angeles, CA 1976 pp. 162-210

Puckett, L.K., J.D. Massie, C.J. Brown, J.P. Finn, and N.A. Villa. 1979. A Summary of Fish and Wildlife Studies and Recommendations for the U.S. Corps of Engineers' Proposed Cottonwood Creek Project. California Department of Fish and Game. 62 pp. Reavis, R., Jr. (ed.) 1983. Annual report. *Chinook Salmon Spawning Stocks in California's Central Valley, 1981*. California Department of Fish and Game. Anadromous Fishery Branch Administrative Report 83-2.

_____, (ed.) 1984. Annual report. *Chinook Salmon Spawning Stocks in California's Central Valley, 1982*. California Department of Fish and Game Anadromous Fishery Branch Administrative Report 84-10.

_____, (ed.) 1986. Annual report. *Chinook Salmon Spawning Stocks in California's Central Valley, 1983.* California Department of Fish and Game Anadromous Fishery Branch Administrative Report 86-1.

Richardson, T.R. 1978. Observations on Downstream Migration of Salmonid Smolts in Cottonwood Creek. California Department of Fish and Game. 23 p.

_____, C.J. Brown and L.K. Puckett. 1978. *Inventory of Fishes of Cottonwood Creek, California*. California Department of Fish and Game. 23 p.

- Ricker, W. E. 1975. Computation and Interpretation of Biological Statistics of Fish Populations. Canada, Fish. Res. Bd. Bull. (191). 382 p.
- Seber, G. A. and E. D. LeCren. 1967. *Estimating Population Parameters from Catches Large Relative to the Population*. J. Animal Ecology 36(3):631-643.
- Smith, B.J. 1987. State Water Project Future Supply Cottonwood Creek Reformulation: the Dippingvat-Schoenfield Project. California Department of Water Resources Report. 40 p.
- Smith, E.S., and W. Van Woert. 1969. Reconnaissance-Level Fish and Wildlife Evaluation of Sacramento Valley Alternative West Side Conveyance Routes. California Department of Fish and Game. 75 p.

State of California, Gray Davis, Governor The Resources Agency, Mary D. Nichols, Secretary for Resources Department of Water Resources, Thomas M. Hannigan, Director

> Steve Macaulay, Chief Deputy Director Jonas Minton, Deputy Director L. Lucinda Chipponeri, Assistant Director for Legislation Susan N. Weber, Chief Counsel

Naser J. Bateni, Chief, Division of Planning and Local Assistance

In coordination with CALFED

by

5
Charlie Brown, Department of Fish and Game
Brad Burkholder, Department of Fish and Game
Jenny Marr*, Department of Fish and Game
Frank Wernette, Department of Fish and Game
David J. Bogener, Department of Water Resources
Gerald Boles, Department of Water Resources
Koll Buer, Department of Water Resources
Doug Denton, Department of Water Resources
K. Glyn Echols, Department of Water Resources
Gary Hester, Department of Water Resources
Ralph Hinton, Department of Water Resources
Gail Kuenster, Department of Water Resources
Joyce Lacey-Rickert, Department of Water Resources
Glen Pearson, Department of Water Resources
Doug Rischbieter, Department of Water Resources
Dwight P. Russell, Department of Water Resources
Jim Wieking, Department of Water Resources
Waiman Yip, Department of Water Resources

Robert Orlins, Department of Parks and Recreation

assisted by

Nikki Blomquist,	Department of Water	Resources
Linton Brown,	Department of Water	Resources
Elle Burns,	Department of Water	Resources
Barbara Castro,	Department of Water	Resources
Julia Culp,	Department of Water	Resources
Jennifer Davis-Ferris,	Department of Water	Resources
Mark Dombrowski,	Department of Water	Resources
Lawrence Janeway,	Department of Water	Resources
Liz Kanter,	Department of Water	Resources
Sandy Merritt,	Department of Water	Resources
Shawn Pike,	Department of Water	Resources
Carole Rains,	Department of Water	Resources
April Scholzen,	Department of Water	Resources
Michael Serna,	Department of Water	Resources
Ward Tabor,	Department of Water	Resources
Marilee Talley,	Department of Water	Resources
Susan Tatayon,	Department of Water	Resources
Caroline Warren,	Department of Water	Resources

Special thanks to DWR's Northern District staff, who drafted many chapters of this progress report and conducted many of the studies that form its core.

State of California The Resources Agency Department of Water Resources Division of Planning and Local Assistance